WorldWideScience

Sample records for three-dimensional magnetic field

  1. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  2. Three dimensional density cavities in guide field collisionless magnetic reconnection

    Science.gov (United States)

    Markidis, S.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Andersson, L.

    2012-03-01

    Particle-in-cell simulations of collisionless magnetic reconnection with a guide field reveal for the first time the three dimensional features of the low density regions along the magnetic reconnection separatrices, the so-called cavities. It is found that structures with further lower density develop within the cavities. Because their appearance is similar to the rib shape, these formations are here called low density ribs. Their location remains approximately fixed in time and their density progressively decreases, as electron currents along the cavities evacuate them. They develop along the magnetic field lines and are supported by a strong perpendicular electric field that oscillates in space. In addition, bipolar parallel electric field structures form as isolated spheres between the cavities and the outflow plasma, along the direction of the low density ribs and of magnetic field lines.

  3. Three dimensional magnetic solutions in massive gravity with (nonlinear field

    Directory of Open Access Journals (Sweden)

    S.H. Hendi

    2017-12-01

    Full Text Available The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.

  4. Three-dimensional imaging of magnetic nanoparticles using multiple pickup coils and field-free line

    Science.gov (United States)

    Muta, Masahiro; Hamanaga, Shohei; Tanaka, Naoki; Sasayama, Teruyoshi; Yoshida, Takashi; Enpuku, Keiji

    2018-02-01

    We performed three-dimensional detection of magnetic nanoparticle (MNP) samples using third-harmonic signal detection. In this method, a combination of five pickup coils and a gradient field with a field-free line was used to acquire three-dimensional MNP sample position information. The resulting two-dimensional maps of the signal fields generated by the MNP samples are sufficient for three-dimensional MNP image reconstruction. In the experiments, two MNP samples with different Fe contents were set at different positions. Two-dimensional field maps were measured using the five pickup coils, and the three-dimensional MNP sample distribution was then reconstructed from these field maps by solving an inversion problem. We demonstrated three-dimensional detection of two MNP samples where we reconstructed the three-dimensional positions and the Fe contents of these two MNP samples with reasonable accuracy. These results indicate the feasibility of the proposed system for three-dimensional magnetic particle imaging.

  5. Three-dimensional numerical simulation of natural convection under the influence of magnetic fields

    International Nuclear Information System (INIS)

    Moessner, R.

    1996-04-01

    This report deals with the influence of strong magnetic fields on three-dimensional natural convection. First the dimensionless basic equations are derived in cartesian coordinates. This equations are solved numerically in rectangular domains with a Finite-Difference-Method. The following calculations investigate the flow in an electrically insulated cube which is heated and cooled at side walls. It is possible to perform systematic computations for the variation of the direction of the magnetic field and thermal boundary conditions. (orig.)

  6. Magnetic field effect on a three-dimensional mixed convective flow ...

    African Journals Online (AJOL)

    An analytical solution to the problem of the MHD free and forced convection three dimensional flow of an incompressible viscous electrically conducting fluid with mass transfer along a vertical porous plate with transverse sinusoidal suction velocity is presented. A uniform magnetic field is assumed to be applied transversely ...

  7. A differential algebraic integration algorithm for symplectic mappings in systems with three-dimensional magnetic field

    International Nuclear Information System (INIS)

    Chang, P.; Lee, S.Y.; Yan, Y.T.

    2006-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  8. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field

    International Nuclear Information System (INIS)

    Chang, P

    2004-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  9. CONSTRAINING THREE-DIMENSIONAL MAGNETIC FIELD EXTRAPOLATIONS USING THE TWIN PERSPECTIVES OF STEREO

    International Nuclear Information System (INIS)

    Conlon, Paul A.; Gallagher, Peter T.

    2010-01-01

    The three-dimensional magnetic topology of a solar active region (NOAA 10956) was reconstructed using a linear force-free field extrapolation constrained using the twin perspectives of STEREO. A set of coronal field configurations was initially generated from extrapolations of the photospheric magnetic field observed by the Michelson Doppler Imager on SOHO. Using an EUV intensity-based cost function, the extrapolated field lines that were most consistent with 171 A passband images from the Extreme UltraViolet Imager on STEREO were identified. This facilitated quantitative constraints to be placed on the twist (α) of the extrapolated field lines, where ∇ x B = αB. Using the constrained values of α, the evolution in time of twist, connectivity, and magnetic energy were then studied. A flux emergence event was found to result in significant changes in the magnetic topology and total magnetic energy of the region.

  10. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  11. Three dimensional magnetic solutions in massive gravity with (non)linear field

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Momennia, M.

    2017-12-01

    The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings) in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.

  12. Three-dimensionality of field-induced magnetism in a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Lefmann, K.; Christensen, N.B.

    2005-01-01

    Many physical properties of high-temperature superconductors are two-dimensional phenomena derived from their square-planar CuO(2) building blocks. This is especially true of the magnetism from the copper ions. As mobile charge carriers enter the CuO(2) layers, the antiferromagnetism of the parent...... insulators, where each copper spin is antiparallel to its nearest neighbours(1), evolves into a fluctuating state where the spins show tendencies towards magnetic order of a longer periodicity. For certain charge-carrier densities, quantum fluctuations are sufficiently suppressed to yield static long......-period order(2-6), and external magnetic fields also induce such order(7-12). Here we show that, in contrast to the chemically controlled order in superconducting samples, the field-induced order in these same samples is actually three-dimensional, implying significant magnetic linkage between the CuO(2...

  13. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed. - Highlights: • Three-dimensional flow of Sisko nanofluid is modeled. • Uniform applied magnetic field is adopted. • Brownian motion and thermophoresis effects are accounted. • Heat transfer convective condition is utilized. • Recently constructed condition with zero nanoparticles mass flux is implemented.

  14. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xuefeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Wang Zhengxiong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  15. Three-dimensional stability of free convection vortices in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Dimitris; Pelekasis, Nikos, E-mail: pel@uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos 38334 (Greece)

    2012-06-01

    Three-dimensional (3D) stability of 2D vortical flow of a liquid metal in a cavity of square cross section is examined. Vortices are produced as a result of free convection and internal heating in the cavity in the presence of a magnetic field. Low-magnetic-Reynolds-number equations are used for the base flow and stability formulation. Finite element methodology is used to discretize the problem. Efficient calculation of the dominant eigenvalues is afforded by the Arnoldi method, while neutral stability diagrams are constructed using continuation techniques. The number of vortices exhibited by the base flow switches from one to two as the internal heating crosses a threshold value. The dominant instability mechanism is the Goertler instability in the case of a single vortex and elliptical instability in the case of two vortices. In elliptic instability, axial vorticity is symmetric, it is characterized by two lobed structures aligned with one of the two principal directions of strain and the dominant eigenmode assumes the form of a traveling wave. The magnetic field opposes buoyancy, alters the direction of maximal strain by accentuating wall shear layers in comparison with the vortex pair in the core and leads to smaller frequencies at criticality.

  16. Three-dimensional magnetic field produced by an axisymmetric iron yoke

    International Nuclear Information System (INIS)

    Laslett, L.J.; Caspi, S.; Helm, M.; Brady, V.

    1991-06-01

    A computational procedure, in which separate analyses are performed for conductor and high permeability iron yoke, has been developed for calculating the three-dimensional magnetic field components. Whereas the field components of the isolated 3-D current array can be evaluated at all desired points through the use of a 3-D Biot-Savart law program, we have developed a method for calculating the supplemental field that will arise as a result of the presence of a surrounding high-permeability magnetic yoke with an axially-symmetric bore. We may speak of this supplemental field as an ''image field'' although we shall realize that is may be possible in general to attribute it only to a distinctly diffuse distribution of ''image current'' or magnetic moments. The boundary associated with the ''image field'' is such that at each point along the boundary of the high permeability iron the total scalar potential shall be constant, e.g. V i = -V d (where i=image and d=direct). When we describe both potentials as a series of ''harmonic components'' then the nature of the boundary condition is such that a de-coupling of one harmonic from another is preserved, and therefore it is also true that V i (n) = -V d (n) at the iron interface, where n is a harmonic number. When we solve the appropriate differential equations for these scalar potential functions throughout the iron-free region with the proper applied boundary condition for the scalar potential of each harmonic number, we achieve upon summation the appropriate field contribution of the surrounding high-permeability iron

  17. Three dimensional magnetic abacus memory.

    Science.gov (United States)

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  18. Three dimensional magnetic abacus memory

    Science.gov (United States)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  19. Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface

    Energy Technology Data Exchange (ETDEWEB)

    Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Abdullah, Z. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)

    2016-02-01

    This article investigates the convective heat and mass conditions in three-dimensional flow of an Oldroyd-B nanofluid. The stretched flow is electrically conducting in the presence of an applied magnetic field. Thermal radiation effects are accounted in the energy equation. The governing nonlinear problems are computed for the convergent approximate solutions. Influences of different parameters on the dimensionless temperature and nanoparticle concentration fields are shown and examined. Quantities of physical interest namely local Nusselt and Sherwood numbers are computed and analyzed numerically. Comparison in a limiting case is made with the previous published result and an excellent agreement is noted. - Highlights: • Impact of magnetic field in three-dimensional flow is investigated. • Thermal radiation effects are accounted in the energy equation. • Convective type conditions of temperature and concentration are imposed. • The governing nonlinear problems are computed for the convergent approximate solutions. • Influences of different parameters are shown and examined.

  20. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  1. Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes

    Science.gov (United States)

    2009-07-13

    field Gauss bz radial magnetic field Gauss B0 magnetic field strength Tesla or Gauss c speed of light m/s cs acoustic velocity...eV ΦB magnetic flux Tesla -m2 λ0 mean free path or beam width m or cm λD Debye length m or cm λHelicon helicon wavelength m or cm...locations Turbo Pump Chamber Convectron vent valve Latched door Latched door Roughing Pump 0.5 meter 1.0 meter Cold Cathode Foreline Convectron

  2. Three-Dimensional View of Transient Horizontal Magnetic Fields in the Photosphere

    Czech Academy of Sciences Publication Activity Database

    Ishikawa, R.; Tsuneta, S.; Jurčák, Jan

    2010-01-01

    Roč. 713, č. 2 (2010), s. 1310-1321 ISSN 0004-637X R&D Projects: GA AV ČR IAA300030808 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic fields * Sun * photosphere * granulation * surface magnetism Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.436, year: 2010

  3. Three-dimensional particle-in-cell simulations of a plasma jet/cloud streaming across a transverse magnetic field

    Science.gov (United States)

    Voitcu, Gabriel; Echim, Marius

    2014-05-01

    The dynamics of collisionless plasma jets/clouds in magnetic field configurations typical for the terrestrial magnetotail and frontside magnetosheath is a topic of interest for understanding the physics of the magnetosphere and its interaction with the solar wind. The presence of high-speed jets in the frontside magnetosheath has been recently proved experimentally by Cluster and THEMIS spacecrafts. There is increasing evidence that the bursty bulk flows in the magnetotail have jet-like features. In the present paper we use fully electromagnetic 3D explicit particle-in-cell (PIC) simulations to investigate the interaction of a localized three-dimensional plasma element/jet/cloud with a transverse magnetic field. We consider a plasma jet/cloud that moves in vacuum and perpendicular to an ambient magnetic field. Ampère and Faraday's laws are used to compute the self-consistent electric and magnetic fields on a three-dimensional spatial grid having a step-size of the order of the Debye length and using a time-step that resolves the plasma frequency. The initial magnetic field inside the simulation domain is uniform and the plasma bulk velocity at the beginning of the simulation is normal to the magnetic field direction. The total time scale of the simulation is of the order of few ion Larmor periods. Space and time variations of the plasma parameters and of the electromagnetic field are analyzed and discussed. We emphasize non-MHD effects like the energy-dispersion signatures at the edges of the plasma element, similar to results previously reported by Voitcu and Echim (2012) using test-kinetic simulations. Acknowledgments: Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  4. Three-dimensional numerical analyses of liquid-metal magnetohydrodynamic flow in magnetic-field outlet-region

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige

    2003-01-01

    A three-dimensional numerical calculation has been performed on liquid-metal magnetohydrodynamic (MHD) flow through a rectangular channel in the outlet region of the magnetic field, including a region downstream the magnetic field section. The continuity equation, the momentum equation and the induction equation have been solved numerically by the finite difference method. Along the flow axis (i.e. the channel axis), the pressure decreases rapidly as a fully-developed MHD flow, drops more rapidly in the magnetic-field outlet-region, and finally decreases slowly as a normal non-MHD flow. The pressure recovery that was observed in the magnetic-field inlet-region does not appear in the magnetic-field outlet-region. The total pressure drop through the magnetic-field outlet-region is larger than that through the magnetic-field inlet-region. The flow velocity distribution also changes gradually from a flat profile of a fully-developed MHD flow to a parabolic profile of a non-MHD laminar flow. (author)

  5. A Three-dimensional Magnetohydrodynamic Simulation of the Formation of Solar Chromospheric Jets with Twisted Magnetic Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, H. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-0814 Japan (Japan); Yokoyama, T., E-mail: h.iijima@isee.nagoya-u.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-10-10

    This paper presents a three-dimensional simulation of chromospheric jets with twisted magnetic field lines. Detailed treatments of the photospheric radiative transfer and the equations of state allow us to model realistic thermal convection near the solar surface, which excites various MHD waves and produces chromospheric jets in the simulation. A tall chromospheric jet with a maximum height of 10–11 Mm and lifetime of 8–10 minutes is formed above a strong magnetic field concentration. The magnetic field lines are strongly entangled in the chromosphere, which helps the chromospheric jet to be driven by the Lorentz force. The jet exhibits oscillatory motion as a natural consequence of its generation mechanism. We also find that the produced chromospheric jet forms a cluster with a diameter of several Mm with finer strands. These results imply a close relationship between the simulated jet and solar spicules.

  6. Theoretical description and numerical calculations of significant three-dimensional magnetic field configurations

    Energy Technology Data Exchange (ETDEWEB)

    Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)

    2010-07-01

    The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.

  7. Transition between quasi-two-dimensional and three-dimensional Rayleigh-Bénard convection in a horizontal magnetic field

    Science.gov (United States)

    Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven

    2018-01-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.

  8. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  9. Energy levels of an anisotropic three-dimensional polaron in a magnetic field

    International Nuclear Information System (INIS)

    Brancus, D. E. N.; Stan, G.

    2001-01-01

    In the context of the improved Wigner-Brillouin theory, the energy levels are found of a Frohlich polaron in a uniaxial anisotropic polar semiconductor with complex structure, placed in a magnetic field directed either along the optical axis or orthogonal to it. All sources of anisotropy that are contained in the shape of constant-energy surfaces of the bare electron, the electron - optical-phonon interaction, and the frequency spectrum of the extraordinary phonon modes are considered. Analytical results for the electron-phonon interaction correction to the Landau levels below the optical-phonon continuum are given and, numerical results for the magnetic-field dependence of the cyclotron resonance frequency at low temperature are presented for the particular case of the layered semiconductors InSe and GaSe. Although the interaction between the bare electron and quasitransverse optical-phonon modes is weak, these modes play an important role in the pinning of Landau levels. The results given by Das Sarma for a two-dimensional isotropic magnetopolaron are generalized to the anisotropic uniaxial case by taking formally m # parallel→infinity# in the expression of the perturbed Landau levels found when the magnetic field is directed along the optical axis, m # parallel# being the component of the bare-electron effective-mass tensor along the optical axis

  10. Computer simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation

    Science.gov (United States)

    Ling, C.; Connor, K. A.; Demers, D. R.; Radke, R. J.; Schoch, P. M.

    2007-11-01

    A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This paper describes the computational tools created to model camera images of the light emitted from a simulated ion beam, reconstruct a three-dimensional trajectory, and estimate the accuracy of the reconstruction. First, a computer model is used to create images of the torus interior from any candidate camera location. It is used to explore the visual field of the camera and thus to guide camera parameters and placement. Second, it is shown that a three-dimensional ion beam trajectory can be recovered from a pair of perspectively projected trajectory images. The reconstruction considers effects due to finite beam size, nonuniform beam current density, and image background noise. Third, it is demonstrated that the trajectory reconstructed from camera images can help compute magnetic field profiles, and might be used as an additional constraint to an equilibrium reconstruction code, such as MSTFit.

  11. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Abdullah, Z. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Hayat, T. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan)

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed. - Highlights: • Three-dimensional hydromagnetic flow of Jeffrey nanofluid is considered. • Brownian motion and thermophoresis effects are encountered. • Heat transfer analysis is performed with thermal radiation. • Results are plotted and visualized.

  12. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

  13. Band structure of a three-dimensional topological insulator quantum wire in the presence of a magnetic field.

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-07-13

    By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the [Formula: see text] quantum Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.

  14. Monte Carlo study of the three-dimensional spatially anisotropic Ising superantiferromagnet in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Octavio D.R., E-mail: octaviors@gmail.com [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Neto, Minos A., E-mail: minosneto@pq.cnpq.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Viana, J. Roberto, E-mail: vianafisica@bol.com.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Padilha, Igor T., E-mail: igorfis@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Sousa, J. Ricardo de, E-mail: jsousa@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus-AM (Brazil)

    2013-11-01

    The phase transition of the three-dimensional spatially anisotropic Ising antiferromagnetic model in the presence of an uniform longitudinal magnetic field H is studied by using the traditional Monte Carlo (MC) simulation for sizes L=16, 32 and 64. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnetic). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the T–H plane. Was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point.

  15. Magnetic field reconnection and evolution of flux ropes in the dayside magnetosheath: A three-dimensional global hybrid simulation

    Science.gov (United States)

    Guo, Z.; Lin, Y.; Du, A.; Wang, X.; Lu, Q.; Wu, M.; Ge, Y. S.

    2017-12-01

    Generation and structure of magnetic reconnection in the dayside magnetosheath due to the interaction of an interplanetary tangential discontinuity (TD) with the Earth's bow shock (BS) and magnetosphere, is investigated by performing a three-dimensional (3-D) global-scale hybrid simulation. Results from several runs are presented, which are performed for solar wind TDs possessing different shapes of the magnetic field and initial half-widths and the shear angle from 120° to 180°. Our results indicate a two-step compression processes in the transmitted TD, including a shock compression as the TD passes through the quasi-perpendicular bow shock and a subsequent convective compression while the TD is moving toward the magnetopause in the magnetosheath. However, the convective compression has always takes the dominant role when the TD passes through the quasi-parallel bow shock. When the transmitted TD becomes relatively thin, 3-D patchy reconnection is initiated in it, forming flux ropes in the magnetosheath. The interaction between the magnetosheath flux ropes and the magnetopause is also discussed.

  16. Three-dimensional Measurements of Flow Field and Contaminant Dispersion in Urban Environments using Magnetic Resonance Imaging

    Science.gov (United States)

    Prasad, Dipak; Divito, Nicholas; Byers, Matthew; White, William; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Containment Dispersion Team

    2017-11-01

    The dispersion of a scalar contaminant through an urban environment is complex to simulate and current modeling techniques lack detailed validation data necessary to assess accuracy. This work provides a detailed data set for Computational Fluid Dynamic simulations as well as an analysis of fluid flow and contaminant dispersion across two incident angles, 0 and 45 degrees from the freestream, across an array of cubical buildings, with one building in the center column three times as tall. The contaminant is injected from the base behind the tall building. Magnetic resonance imaging techniques are used to collect three-dimensional, time-averaged, three-component velocity and concentration field data. The flow is conducted in a water channel at a fully turbulent condition. The 0 degree case shows symmetrical velocity flow around each building with counter-rotating vortices immediately behind the tall building. Scalar contaminant dispersion in this array shows a rapid draw of higher concentration fluid up the back of the tall building, which is advected downstream. The 45 degree array shows similar patterns with vortices covering a larger area in the wake of the tall building. Analysis of the streamlines around the tall building indicate more `mechanical' dispersion due to the lateral spreading of the streamlines. These experiments should help improve prediction performance.

  17. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration

    Science.gov (United States)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.

    2014-01-01

    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  18. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    Science.gov (United States)

    Tsiklauri, David

    2015-04-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed

  19. ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    Directory of Open Access Journals (Sweden)

    Kevin Dalmasse

    2016-07-01

    Full Text Available The Coronal Multichannel Polarimeter (CoMP routinely performs coronal polarimetric measurements using the Fe XIII 10747 $AA$ and 10798 $AA$ lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM. Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  20. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  1. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  2. Three dimensional simulation study of spheromak injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.H.; Sato, T.; Hayashi, T.

    2000-01-01

    The three dimensional dynamics of a spheromak-like compact toroid (SCT) plasmoid, which is injected into a magnetized target plasma region, is investigated by using MHD numerical simulations. It is found that the process of SCT penetration into this region is much more complicated than that which has been analysed so far by using a conducting sphere (CS) model. The injected SCT suffers from a tilting instability, which grows with a similar timescale to that of the SCT penetration. The instability is accompanied by magnetic reconnection between the SCT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the SCT. Magnetic reconnection plays a role in supplying the high density plasma, initially confined in the SCT magnetic field, to the target region. The penetration depth of the SCT high density plasma is also examined. It is shown to be shorter than that estimated from the CS model. The SCT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the SCT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, i.e. the deceleration of the SCT plasmoid. (author)

  3. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.

    1989-11-01

    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  4. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  5. An internal magnetic field strategy to reuse pulverized active materials for high performance: a magnetic three-dimensional ordered macroporous TiO2/CoPt/α-Fe2O3 nanocomposite anode.

    Science.gov (United States)

    Tang, Yiping; Hong, Liang; Li, Jiquan; Hou, Guangya; Cao, Huazhen; Wu, Liankui; Zheng, Guoqu; Wu, Qingliu

    2017-05-09

    A ferromagnetic three-dimensional ordered macroporous TiO 2 /CoPt/α-Fe 2 O 3 (3DOMTCF) nanocomposite was synthesized via a sol-gel approach templated by poly(methyl methacrylate) (PMMA) microspheres. After magnetization, it exhibited an extremely high reversible capacity and a long cycle life, which were ascribed to the internal magnetic field for reusing pulverized active materials and its unique structure.

  6. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  7. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    Science.gov (United States)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  8. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Zank, G. P.; Suess, S. T.; Borovikov, S. N.; Ebert, R. W.; McComas, D. J.

    2013-01-01

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90°, separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)—the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  9. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Zank, G. P. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Suess, S. T. [National Space Science and Technology Center, Huntsville, AL 35805 (United States); Borovikov, S. N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Ebert, R. W.; McComas, D. J., E-mail: np0002@uah.edu [Southwest Research Institute, San Antonio, TX 78227 (United States)

    2013-07-20

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  10. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  11. Functional renormalization group for three-dimensional quantum magnetism

    Science.gov (United States)

    Iqbal, Yasir; Thomale, Ronny; Parisen Toldin, Francesco; Rachel, Stephan; Reuther, Johannes

    2016-10-01

    We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum Heisenberg antiferromagnet, and benchmark it against other approaches, if available.

  12. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  13. WE-E-BRB-06: Monte Carlo Calculations of the Skin Dose for Longitudinal Linac-MR System Using Realistic Three-Dimensional Magnetic Field Modeling.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Tadic, T; Warkentin, B; Kirkby, C; Rathee, S; Fallone, B

    2012-06-01

    This study quantifies the effects of the magnetic field of a longitudinal linac-MR system (B-field parallel to beam direction) on skin dose due to the confinement of contaminant electrons, using Monte Carlo calculations and realistic 3-D models of the magnetic field. The complete realistic 3-D magnetic fields generated by the bi-planar Linac-MR magnet assembly are calculated with the finite element method using Opera- 3D. EGSnrc simulations are performed in the presence of ∼0.6T and IT MRI fields that have realistic rapid fall-off of the fringe field. The simulation geometry includes a Varian 600C 6MV linac, the yoke and magnetic shields of the MRIs, and features an isocentre distance of 126 cm. Phase spaces at the surface of a water phantom are scored using BEAMnrc; DOSXYZnrc is used to score the resulting CAX percent depth-doses in the phantom and the 2D skin dose distributions in the first 70 urn layer. For comparison, skin doses are also calculated in the absence of magnetic field and using a 1-D magnetic field with an unrealistic fringe field. The effects of field size and air gap (between phantom surface and magnet pole) are also examined. Analysis of the phase-space and dose distributions reveals that significant containment of electrons occurs primarily close to the uniform magnetic field region. The increase in skin dose due to the magnetic field depends on the air gap, varying from 1% to 13% for air gaps of 5 to 31 cm, respectively. The increase is also field-size dependent, varying from 3% at 20×20 cm2 to 11% at 5×5 cm2. Calculations based on various realistic MRI 3D magnetic-field maps that appropriately account for the rapid decay of the fringe field show that the increase in the patient skin dose of a longitudinal Linac-MR system is clinically insignificant. © 2012 American Association of Physicists in Medicine.

  14. The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection

    International Nuclear Information System (INIS)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L.; Aunai, N.; Karimabadi, H.; Daughton, W.

    2013-01-01

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line

  15. Polarization singularity anarchy in three dimensional ellipse fields

    Science.gov (United States)

    Freund, Isaac

    2004-11-01

    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  16. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313 001 (India); Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2014-09-01

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.

  17. Wave field restoration using three-dimensional Fourier filtering method.

    Science.gov (United States)

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  18. Field approach to three-dimensional gene expression pattern characterization

    Science.gov (United States)

    Costa, L. da F.; Travençolo, B. A. N.; Azeredo, A.; Beletti, M. E.; Müller, G. B.; Rasskin-Gutman, D.; Sternik, G.; Ibañes, M.; Izpisúa-Belmonte, J. C.

    2005-04-01

    We present a vector field method for obtaining the spatial organization of three-dimensional patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful framework to characterize the organization and dynamics of biological structures. We apply this methodology to analyze the expression pattern of the enhanced green fluorescent protein (EGFP) driven by the promoter of light chain myosin II during zebrafish heart formation.

  19. Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Heerikhuisen, J. [Department of Space Science, The University of Alabama in Huntsville, AL 35805 (United States); Roytershteyn, V. [Space Science Institute, Boulder, CO 80301 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gurnett, D. A.; Kurth, W. S., E-mail: nikolai.pogorelov@uah.edu [Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-08-10

    The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. It is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .

  20. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

    Directory of Open Access Journals (Sweden)

    D. Mietchen

    2008-01-01

    Full Text Available The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.

  1. Global Classical Solutions of Three Dimensional Viscous MHD System Without Magnetic Diffusion on Periodic Boxes

    Science.gov (United States)

    Pan, Ronghua; Zhou, Yi; Zhu, Yi

    2018-02-01

    In this paper, we study the global existence of classical solutions to the three dimensional incompressible viscous magneto-hydrodynamical system without magnetic diffusion on periodic boxes, that is, with periodic boundary conditions. We work in Eulerian coordinates and employ a time-weighted energy estimate to prove the global existence result, under the assumptions that the initial magnetic field is close enough to an equilibrium state and the initial data have some symmetries.

  2. Three-dimensional display of magnetic source imaging (MSI)

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Takato; Yamamoto, Tomoya; Nishio, Shunji; Hasuo, Kanehiro; Fujii, Kiyotaka; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Nitta, Koichi

    1995-03-01

    Magnetic source imaging (MSI) is a relatively new, noninvasive technique for defining the relationship between brain structure and function of individual patients, and to establish comparisons from one patient to another. This is achieved by combining detailed neurophysiological data derived via magnetoencephalography (MEG) with neuroimaging data such as computed tomographic scan and magnetic resonance imaging (MRI). The noninvasive presurgical mapping of cortical functional somatosensory activity and the direct mapping of epilepsy-associated activity are among the neurosurgical uses that are emerging for MSI. Although the procedure provides clinically useful data, there are still limitations to two-dimensional MSI. We employ three-dimensional (3-D) MSI, superimposing MSI localizations on 3-D volumetric reconstruction of MRI. 3-D MSI enhances the visualization of the entire sensory homunculus and clearly demonstrates the spatial relationship with structural lesions. The functional localization of the epileptic focus in spatial relation to the lesion provides important clues for preoperative planning and on the epileptogenicity of the lesion. 3-D MSI improves localization of the sensory cortex and generator areas of epileptic activity. (author).

  3. Three-dimensional display of magnetic source imaging (MSI)

    International Nuclear Information System (INIS)

    Morioka, Takato; Yamamoto, Tomoya; Nishio, Shunji; Hasuo, Kanehiro; Fujii, Kiyotaka; Fukui, Masashi; Nitta, Koichi.

    1995-01-01

    Magnetic source imaging (MSI) is a relatively new, noninvasive technique for defining the relationship between brain structure and function of individual patients, and to establish comparisons from one patient to another. This is achieved by combining detailed neurophysiological data derived via magnetoencephalography (MEG) with neuroimaging data such as computed tomographic scan and magnetic resonance imaging (MRI). The noninvasive presurgical mapping of cortical functional somatosensory activity and the direct mapping of epilepsy-associated activity are among the neurosurgical uses that are emerging for MSI. Although the procedure provides clinically useful data, there are still limitations to two-dimensional MSI. We employ three-dimensional (3-D) MSI, superimposing MSI localizations on 3-D volumetric reconstruction of MRI. 3-D MSI enhances the visualization of the entire sensory homunculus and clearly demonstrates the spatial relationship with structural lesions. The functional localization of the epileptic focus in spatial relation to the lesion provides important clues for preoperative planning and on the epileptogenicity of the lesion. 3-D MSI improves localization of the sensory cortex and generator areas of epileptic activity. (author)

  4. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  5. Desingularization strategies for three-dimensional vector fields

    CERN Document Server

    Torres, Felipe Cano

    1987-01-01

    For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the pro...

  6. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    International Nuclear Information System (INIS)

    Moritaka, Toseo; Kuramitsu, Yasuhiro; Sakawa, Youichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki; Morita, Taichi

    2016-01-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism. (paper)

  7. The Kelvin-Helmholtz instability, differential rotation, and three-dimensional, localized, magnetic reconnection

    International Nuclear Information System (INIS)

    Knoll, D.A.; Brackbill, J.U.

    2002-01-01

    Results are presented from a study of three-dimensional magnetic reconnection caused by a Kelvin-Helmholtz instability and differential rotation. Specifically, subsonic and sub-Alfvenic flow is considered, which is Kelvin-Helmholtz stable in the direction of the magnetic field, but unstable perpendicular to the magnetic field. The flow is modeled by the resistive magnetohydrodynamics equations in three dimensions with constant resistivity. As a result of differential rotation (a gradient in vorticity parallel to the initial field), localized transient reconnection is observed on the Kelvin-Helmholtz time scale. Current amplification is observed along with the generation of parallel current. Results indicate that the observed transient reconnection rate is insensitive to resistivity (even with a constant resistivity model), but is sensitive to the initial flow shear

  8. Three-dimensional magnetic resonance imaging for groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Legchenko, A; Descloitres, M; Guyard, H [IRD/ UJF-Grenoble 1/CNRS/G-INP, LTHE UMR 5564, Grenoble F-38041 (France); Vincent, C [Laboratoire de Glaciologie et Geophysique de l' Environnement and CNRS-LGGE, 38041 Grenoble Cedex 9 (France); Garambois, S [Institut des Sciences de la terre (ISTerre), Universite Joseph Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9 (France); Chalikakis, K [Universite d' Avignon, UMR EMMAH (UAPV-INRA), 33, rue Pasteur, 84000 Avignon (France); Ezersky, M, E-mail: anatoli.legtchenko@ird.fr [Geophysical Institute of Israel, BP182, Lod 71100 (Israel)

    2011-02-15

    The surface nuclear magnetic resonance method (SNMR) is an established geophysical tool routinely used for investigating one-dimensional (1D) and sometimes 2D subsurface water-saturated formations. We have expanded the tool by developing a 3D application. 3D-SNMR is a large-scale method that allows magnetic resonance imaging of groundwater down to about 80 m. Similar to most surface geophysical methods, 3D-SNMR has limited resolution, but it is effective for investigating water-saturated geological formations larger than several tens of meters. Because the performance of the method depends on variable survey conditions, we cannot estimate it in general. For demonstration purposes, we present an example of numerical modeling under fixed conditions. Results show that under certain conditions it is possible to detect a water volume as small as 500 m{sup 3} and the detection threshold depends on the ambient electromagnetic noise magnitude and on the location of the target volume relative to the SNMR loops. The 3D-SNMR method was used to investigate accumulated water within the Tete Rousse glacier (French Alps). Inversion of the field measurements made it possible to locate the principal reservoir in the central part of the glacier and estimate the volume of accumulated water. These results were verified by 20 boreholes installed after the 3D-SNMR results were obtained and by pumping water out of the glacier. Very good correspondence between the 3D-SNMR and borehole results was observed.

  9. Three-dimensional supercritical resolved light-induced magnetic holography.

    Science.gov (United States)

    Hao, Chenglong; Nie, Zhongquan; Ye, Huapeng; Li, Hao; Luo, Yang; Feng, Rui; Yu, Xia; Wen, Feng; Zhang, Ying; Yu, Changyuan; Teng, Jinghua; Luk'yanchuk, Boris; Qiu, Cheng-Wei

    2017-10-01

    In the era of big data, there exists a growing gap between data generated and storage capacity using two-dimensional (2D) magnetic storage technologies (for example, hard disk drives), because they have reached their performance saturation. 3D volumetric all-optical magnetic holography is emerging rapidly as a promising road map to realizing high-density capacity for its fast magnetization control and subwavelength magnetization volume. However, most of the reported light-induced magnetization confronts the problems of impurely longitudinal magnetization, diffraction-limited spot, and uncontrollable magnetization reversal. To overcome these challenges, we propose a novel 3D light-induced magnetic holography based on the conceptual supercritical design with multibeam combination in the 4π microscopic system. We theoretically demonstrate a 3D deep super-resolved [Formula: see text] purely longitudinal magnetization spot by focusing six coherent circularly polarized beams with two opposing high numerical aperture objectives, which allows 3D magnetic holography with a volumetric storage density of up to 1872 terabit per cubic inches. The number and locations of the super-resolved magnetization spots are controllable, and thus, desired magnetization arrays in 3D volume can be produced with properly designed phase filters. Moreover, flexible magnetization reversals are also demonstrated in multifocal arrays by using different illuminations with opposite light helicity. In addition to data storage, this magnetic holography may find applications in information security, such as identity verification for a credit card with magnetic stripe.

  10. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  11. Integration of the three-dimensional Vlasov equation for a magnetized plasma

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1976-04-01

    A second order splitting scheme is developed to integrate the three dimensional Vlasov equation for a plasma in a magnetic field. The integration of the Vlasov equation is divided into a series of intermediate steps and Fourier interpolation and the ASD method with a third order Taylor expansion are used to integrate the fractional equations. Numerical experiments related to cyclotron waves in 2 and 2 1 / 2 D are demonstrated with high accuracy and efficiency. The computer storage requirements are modest; for example, a typical 2D nonlinear electron plasma simulation requires only 4000 ''particles.''

  12. THREE-DIMENSIONAL SIMULATIONS OF VERTICAL MAGNETIC FLUX IN THE IMMEDIATE VICINITY OF BLACK HOLES

    International Nuclear Information System (INIS)

    Punsly, Brian; Igumenshchev, Igor V.; Hirose, Shigenobu

    2009-01-01

    This article reports on three-dimensional MHD simulations of non-rotating and rapidly rotating black holes and the adjacent black hole accretion disk magnetospheres. A particular emphasis is placed on the vertical magnetic flux that is advected inward from large radii and threads the equatorial plane near the event horizon. In both cases of non-rotating and rotating black holes, the existence of a significant vertical magnetic field in this region is like a switch that creates powerful jets. There are many similarities in the vertical flux dynamics in these two cases in spite of the tremendous enhancement of azimuthal twisting of the field lines and enhancement of the jet power because of an 'ergospheric disk' in the Kerr metric. A three-dimensional approach is essential because two-dimensional axisymmetric flows are incapable of revealing the nature of the vertical flux near a black hole. Poloidal field lines from the ergospheric accretion region have been visualized in three dimensions and much of the article is devoted to a formal classification of the different manifestations of the vertical flux in the Kerr case.

  13. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  14. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    Science.gov (United States)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  15. Three-dimensional magnetic interactions in quasi-two-dimensional PdAs2O6

    Science.gov (United States)

    Zhao, Z. Y.; Wu, Y.; Cao, H. B.; Zhou, H. D.; Yan, J.-Q.

    2017-06-01

    Millimeter-sized PdAs2O6 single crystals are grown using the vapor transport technique. The magnetic order at {{T}\\text{N}}=140 K is studied by measuring magnetic properties, specific heat, and neutron single crystal diffraction. The anisotropic magnetic susceptibility and a metamagnetic transition observed in magnetic fields above 20 kOe suggest that the magnetic moment lies in the ab plane, consistent with the magnetic structure determined by neutron single crystal diffraction. Below 140 K, Pd2+ ions order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is refined to be 2.09(2) {μ\\text{B}} /Pd2+ using the fitted magnetic form factor of Pd2+ . A weak λ-type anomaly around T N was observed in specific heat and the magnetic entropy change across T N is 1.72 J mol-1 K.This small entropy change and the temperature dependence of the magnetic susceptibility support the presence of short range correlations in a wide temperature range {{T}\\text{N}} 250 K. The comparison with SrRu2O6 suggests that the magnetic interactions in PdAs2O6 are dominated by Pd-(O-\\text{As}\\text{As} -O)-Pd super-superexchange and three dimensional despite the quasi-two-dimensional arrangement of magnetic ions. The comparison with NiAs2O6 suggests that increasing covalency of isostructural compounds is an effective approach to design and to discover new materials with higher magnetic order temperatures in the localized regime.

  16. Carotid plaque segmentation from three-dimensional ultrasound images by direct three-dimensional sparse field level-set optimization.

    Science.gov (United States)

    Cheng, Jieyu; Chen, Yimin; Yu, Yanyan; Chiu, Bernard

    2018-03-01

    Total plaque volume (TPV) measured from 3D carotid ultrasound has been shown to be able to predict cardiovascular events and is sensitive in detecting treatment effects. Manual plaque segmentation was performed in previous studies to quantify TPV, but is tedious, requires long training times and is prone to observer variability. This article introduces the first 3D direct volume-based level-set algorithm to segment plaques from 3D carotid ultrasound images. The plaque surfaces were first initialized based on the lumen and outer wall boundaries generated by a previously described semi-automatic algorithm and then deformed by a direct three-dimensional sparse field level-set algorithm, which enforced the longitudinal continuity of the segmented plaque surfaces. This is a marked advantage as compared to a previously proposed 2D slice-by-slice plaque segmentation method. In plaque boundary initialization, the previous technique performed a search on lines connecting corresponding point pairs of the outer wall and lumen boundaries. A limitation of this initialization strategy was that an inaccurate initial plaque boundary would be generated if the plaque was not enclosed entirely by the wall and lumen boundaries. A mechanism is proposed to extend the search range in order to capture the entire plaque if the outer wall boundary lies on a weak edge in the 3D ultrasound image. The proposed method was compared with the previously described 2D slice-by-slice plaque segmentation method in 26 three-dimensional carotid ultrasound images containing 27 plaques with volumes ranging from 12.5 to 450.0 mm 3 . The manually segmented plaque boundaries serve as the surrogate gold standard. Segmentation accuracy was quantified by volume-, area- and distance-based metrics, including absolute plaque volume difference (|ΔPV|), Dice similarity coefficient (DSC), mean and maximum absolute distance (MAD and MAXD). The proposed direct 3D plaque segmentation algorithm was associated with a

  17. Three-dimensional field map of the Fermilab D0 detector

    International Nuclear Information System (INIS)

    Ostiguy, J.; Yamada, R.

    1991-08-01

    The D0 detector is a general purpose hadron collider detector presently under construction at Fermilab and scheduled to be put in operation in the fall of 1991. The D0 muon detection system is composed of three major toroids referred to respectively as the Central Field (CF) toroid and the End Field (EF) toroids. The complete detector weighs in excess of 4000 metric tons and rests on a steel platform. The muon detection system was designed using standard 2D codes and flux maps inside were obtained for each of the toroids taken separately. Various magnetic field measurements were performed; discrepancies with the design calculations have been observed and attributed to three dimensional effects. In this paper, we compare the predictions of the 2D computations to 3D calculations for a fully assembled detector. We also estimate the electromagnetic forces between the toroids and discuss other 3D effects, in particular, the effect of the supporting platform. 4 refs., 3 figs

  18. Three dimensional field calculations for a short superconducting dipole for the UCLA Ultra Compact Synchrotron

    CERN Document Server

    Green, M A

    1999-01-01

    The Ultra Compact Synchrotron (UCS), proposed for UCLA, is a compact 1.5 GeV electron light source with superconducting magnets to produce X-rays with a critical energy of about 10 keV. The design physical length (cold length) for $9 the dipole is 418 mm. The synchrotron requires that a uniform field be produced in a region that is 180 mm wide by 40 mm high by about 380 mm long. The end regions of the dipole should be short compared to the overall length of the $9 dipole field region. A Vobly H type of dipole was selected for the synchrotron bending magnets. In order for each dipole to bend a 1.5 GeV electron beam 30 degrees, the central induction must be in the range of 6.4 to 6.9 T $9 (depending on the dipole magnetic length). The pole width for the dipole was set so that over 90 percent of the X- rays generated by the magnet can be extracted. The three dimensional field calculations were done using TOSCA. This $9 report shows that Vobly type of dipole will behave magnetically as a conventional water cooled...

  19. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... ... Singh P K Panigrahi. Contributed Papers Volume 82 Issue 2 February 2014 pp 439-444 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 2 cross-section. The flow field is seeded with ...

  20. Field Line Resonances in Quiet and Disturbed Time Three-dimensional Magnetospheres

    CERN Document Server

    Chi Zhu Cheng

    2002-01-01

    Numerical solutions for field line resonances (FLR) in the magnetosphere are presented for three-dimensional equilibrium magnetic fields represented by two Euler potentials as B = -j Y -a, where j is the poloidal flux and a is a toroidal angle-like variable. The linearized ideal-MHD equations for FLR harmonics of shear Alfvin waves and slow magnetosonic modes are solved for plasmas with the pressure assumed to be isotropic and constant along a field line. The coupling between the shear Alfvin waves and the slow magnetosonic waves is via the combined effects of geodesic magnetic field curvature and plasma pressure. Numerical solutions of the FLR equations are obtained for a quiet time magnetosphere as well as a disturbed time magnetosphere with a thin current sheet in the near-Earth region. The FLR frequency spectra in the equatorial plane as well as in the auroral latitude are presented. The field line length, magnetic field intensity, plasma beta, geodesic curvature and pressure gradient in the poloidal flux...

  1. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  2. Magnetic resonance imaging of three-dimensional cervical anatomy in the second and third trimester.

    Science.gov (United States)

    House, Michael; Bhadelia, Rafeeque A; Myers, Kristin; Socrate, Simona

    2009-05-01

    Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to (1) construct three-dimensional anatomic models during normal pregnancy and (2) use the models to compare cervical anatomy in the second and third trimester. A cross-sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. Fourteen patients were imaged and divided into two groups according to gestational age: 20-24 weeks (n=7)) and 31-36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These three-dimensional changes were associated with a cervix that appeared shorter in the third trimester. We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment.

  3. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... set equal to 20 μl/min. The instantaneous 3D velocity field is obtained by correlating the particles obtained from the 3D numerical reconstruction of holograms using particle tracking velocimetry. (PTV). Keywords. Holography; velocity measurements; laminar flow in microchannel. PACS Nos 42.40.–i; 06.30.

  4. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... In the present study, a digital holography microscope has been developed to study instantaneous 3D ... Rv. 1. Introduction. Digital holography is a nonintrusive optical technique having immense potential for 3D .... microscope (DHM) for 3D instantaneous velocity field measurements in microchannels.

  5. Three-dimensional plasma simulation models and their application to magnetically confined plasmas

    International Nuclear Information System (INIS)

    Okuda, H.

    1977-03-01

    Three-dimensional plasma simulation models using particles have been described and applied to the various microscopic processes in a plasma in a magnetic field. The model makes use of the hybrid approach using eigenfunction expansion in one direction and multipole expansion on a two-dimensional spatial grid introduced in the cross section of a plasma. The models for cylindrical and toroidal systems correctly reproduce the expected fluctuation spectrum in thermal equilibrium. Application to the study of anomalous plasma diffusion due to collisionless drift instabilities in a cylindrical plasma is shown. Some considerations are given as to how to construct a quasi-neutral particle simulation model and particle-fluid hybrid plasma model which eliminate the high frequency oscillations associated with the electrons

  6. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    Science.gov (United States)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  7. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...... is illustrated through time dependent quantum mechanical calculations. Experimentally, 3, 4-dibromothiophene molecules are aligned with a nanosecond laser pulse. The alignment is probed by 2D ion imaging of the fragments from a 20 fs laser pulse induced Coulomb explosion....

  8. Three-dimensional imaging in degraded visual field

    International Nuclear Information System (INIS)

    Oran, A.; Ozdur, I.; Ozharar, S.

    2016-01-01

    Imaging at degraded visual environments is one of the biggest challenges in today’s imaging technologies. Especially military and commercial rotary wing aviation is suffering from impaired visual field in sandy, dusty, marine and snowy environments. For example during landing the rotor churns up the particles and creates dense clouds of highly scattering medium, which limits the vision of the pilot and may result in an uncontrolled landing. The vision in such environments is limited because of the high ratio of scattered photons over the ballistic photons which have the image information. We propose to use optical spatial filtering (OSF) method in order to eliminate the scattered photons and only collect the ballistic photons at the receiver. OSF is widely used in microscopy, to the best of our knowledge this will be the first application of OSF for macroscopic imaging. Our experimental results show that most of the scattered photons are eliminated using the spatial filtering in a highly scattering impaired visual field. The results are compared with a standard broad area photo detector which shows the effectiveness of spatial filtering. (paper)

  9. Unstable three dimensional nuclear matter in stochastic mean field approach

    International Nuclear Information System (INIS)

    Colonna, M.; Chomaz, Ph.

    1993-01-01

    A semi-classical stochastic mean-field approach is discussed. In the case of unstable infinite nuclear matter, the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes are calculated in the framework of the Boltzmann-Langevin theory. In order to make realistic 3D calculations feasible, the complicated Boltzmann-Langevin theory is suggested to be replaced by a simpler stochastic meanfield approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally, it is explained how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzmann-like calculations. (authors) 17 refs., 5 figs

  10. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    Directory of Open Access Journals (Sweden)

    H. Hasegawa

    2015-02-01

    Full Text Available We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011, for reconstructing three-dimensional (3-D, magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE, which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E. Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.

  11. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Directory of Open Access Journals (Sweden)

    Woo Chul Jeong

    2015-08-01

    Full Text Available Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  12. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    NARCIS (Netherlands)

    Van Der Wurff, E. C I; Stoof, H. T C

    2016-01-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the

  13. Three-dimensional magnetization structures revealed with X-ray vector nanotomography

    Science.gov (United States)

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Gliga, Sebastian; Holler, Mirko; Raabe, Jörg; Heyderman, Laura J.

    2017-07-01

    In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications.

  14. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Dobroserdova, A.B.; Kantorovich, S.S.

    2017-01-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  15. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  16. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  17. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  18. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim [Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen (Germany)

    2016-01-29

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.

  19. Three-dimensional visualization of magnetic domain structure with strong uniaxial anisotropy via scanning hard X-ray microtomography

    Science.gov (United States)

    Suzuki, Motohiro; Kim, Kab-Jin; Kim, Sanghoon; Yoshikawa, Hiroki; Tono, Takayuki; Yamada, Kihiro T.; Taniguchi, Takuya; Mizuno, Hayato; Oda, Kent; Ishibashi, Mio; Hirata, Yuushou; Li, Tian; Tsukamoto, Arata; Chiba, Daichi; Ono, Teruo

    2018-03-01

    An X-ray tomographic technique was developed to investigate the internal magnetic domain structure in a micrometer-sized ferromagnetic sample. The technique is based on a scanning hard X-ray nanoprobe using X-ray magnetic circular dichroism (XMCD). From transmission XMCD images at the Gd L3 edge as a function of the sample rotation angle, the three-dimensional (3D) distribution of a single component of the magnetic vector in a GdFeCo microdisc was reconstructed with a spatial resolution of 360 nm, using a modified algebraic reconstruction algorithm. The method is applicable to practical magnetic materials and can be extended to 3D visualization of the magnetic domain formation process under external magnetic fields.

  20. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    Science.gov (United States)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  1. Three-dimensional reconstructed magnetic resonance scans: Accuracy in identifying and defining knee meniscal tears

    OpenAIRE

    Kruger, Neil; McNally, Eugene; Al-Ali, Sami; Rout, Raj; Rees, Jonathan L; Price, Andrew J

    2016-01-01

    AIM To determine whether three-dimensional (3D) reconstruction from conventional magnetic resonance imaging (MRI) is able to accurately detect a meniscal tear, and define the configuration. METHODS Thirty-three patients? 3T MRI scan data were collected and sagittal uni-planar 3D reconstructions performed from the preoperative MRI. There were 24 meniscal tears in 24 patients, and nine controls. All patients had arthroscopic corroboration of MRI findings. Two independent observers prospectively...

  2. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    CERN Document Server

    Blais, A; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...

  3. Polarization monotones of two-dimensional and three-dimensional random electromagnetic fields

    Science.gov (United States)

    Bosyk, G. M.; Bellomo, G.; Luis, A.

    2018-02-01

    We propose a formal resource-theoretic approach to quantify the degree of polarization of two- and three-dimensional random electromagnetic fields. This endows the space of spectral polarization matrices with the orders induced by majorization or convex mixing that naturally recover the best-known polarization measures.

  4. Three-dimensional integration technology of magnetic tunnel junctions for magnetoresistive random access memory application

    Science.gov (United States)

    Yakushiji, Kay; Takagi, Hideki; Watanabe, Naoya; Fukushima, Akio; Kikuchi, Katsuya; Kurashima, Yuuichi; Sugihara, Atsushi; Kubota, Hitoshi; Yuasa, Shinji

    2017-06-01

    Three-dimensional integration processes (based on direct wafer bonding and back-surface silicon removal) for magnetic tunnel junctions with perpendicular magnetization (p-MTJs) were developed. Perfect wafer bonding, namely, bonding without interfacial voids, and damageless silicon removal were successfully demonstrated by using very flat tantalum cap layers. Moreover, p-MTJ nanopillars subjected to these processes exhibited no degradation in magnetoresistance or spin-transfer-torque (STT) switching. Magnetoresistive random access memory (MRAM) technology incorporating these processes (direct wafer bonding and back-surface silicon removal) will make it possible to integrate epitaxial MTJs (with a single-crystal tunnel barrier) and ferromagnetic electrode layers (based on new materials).

  5. Time-domain Electromagnetic Exploration of Salt Islands: Three-dimensional Modelling and Field Results

    Science.gov (United States)

    Bauer-Gottwein, P.; . Gondwe, B. R. N.; Christiansen, L.; Kgotlhang, L.; Herckenrath, D.; Zimmermann, S.

    2009-04-01

    The time-domain electromagnetic method (TDEM) has been widely used in groundwater exploration and geological mapping applications. TDEM measures the subsurface electrical conductivity, which is strongly correlated with groundwater salinity. TDEM thus offers cheap and non-invasive ways to map saltwater intrusion and groundwater salinization. Typically, TDEM data is interpreted using 1D layered-earth models of the subsurface. However, most saltwater intrusion and groundwater salinization phenomena produce eminently three-dimensional anomalies. To fully exploit the information of TDEM data in this context, three-dimensional modeling of the TDEM response is required. We present a finite-element solution for three-dimensional forward modeling of TDEM responses from arbitrary subsurface electrical conductivity distributions. As an application example, the groundwater salinization process on islands in the Okavango Delta is simulated using a variable-density flow and salinity transport model. The transport model outputs are subsequently converted to TDEM responses using the 3D TDEM forward code. A field dataset of ground-based and airborne TDEM data from a selected Okavango Delta island is presented. The TDEM field data cannot be interpreted in terms of 1D layered-earth models, because of the strongly three-dimensional nature of the salinity anomaly under the island. A 3D interpretation of the field data allows detailed and consistent mapping of this anomaly.

  6. Three-dimensional computer visualization of field screening information: Examples and applications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, L.A. [Automated Sciences Group, Oliver Springs, TN (United States); Hammons, W. [Analysas Corp., Oak Ridge, TN (United States)

    1995-12-31

    The first step in conducting environmental investigations is the development of a conceptual model of the area to be investigated, including the probable distribution of contaminants. Sampling locations are based on this conceptual model. Field screening techniques allow the investigator to confirm or revise the conceptual model as the investigation is being conducted and provides the investigator with real-time information about groundwater contamination at discrete depth intervals. This information enhances accurate well screen placement and optimization of subsequent well locations. The obvious benefits of field screening are reducing the time and cost associated with field investigations and defining the nature and extent of contamination in one field effort. Groundwater field screening techniques also provide a profusion of information that is essential in interpreting contaminant fate and transport, selecting remedial alternatives, and designing remediation systems. This paper will give an overview of the screened hollow-stem auger field screening technique and its application in conducting groundwater investigations at a major National Priorities List (NPL) site. The three-dimensional visualization of the field screening information collected will be discussed and applications of the three-dimensional modeling will be presented to discuss the points mentioned above. Future applications of three-dimensional modeling will be examined.

  7. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Science.gov (United States)

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  8. Large Eddy Simulation of turbulent flow fields over three- dimensional alluvial dunes

    Science.gov (United States)

    Hardy, R. J.; Parsons, D. R.; Best, J.; Reesink, A. J. H.; Ockelford, A.

    2016-12-01

    Flow over fluvial dunes has been extensively studied and there is general understanding of the nature of the flow field over two dimensional dunes under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we report on a numerical experiment which predicts flow over three dimensional dunes using Large Eddy Simulation (LES). Bed topography generated through flume experiments, where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms, was measured with terrestrial LiDAR to create digital elevation models. This topography was then incorporated into a LES model, with a wall-adapting local eddy-viscosity turbulence model, through a Mass Flux Scaling algorithm, to generate three dimensional, high resolution space time prediction of flow over naturally formed dunes. The numerically predicted flows were analysed by standard Reynolds decomposition approaches, Eulerian and Lagrangian coherent flow structure identification methods and proper orthogonal decomposition. The results show that superimposed bed forms can cause changes in the nature of the classical separated flow regions and turbulence field. In particular, the number of locations where vortices are shed increase which causes coalescence of vortices. This increases the rate of transfer of turbulent kinetic energy into smaller scales. This has significant implications for the time dependent prediction of shear stress and as such for sediment transport dynamics which are required for an improved process understanding of three-dimensional bed form adjustment.

  9. The importance of three dimensional dune morphology on the time dependent flow field

    Science.gov (United States)

    Hardy, Richard; Parsons, Dan; Reesink, Arnold; Best, Jim

    2017-04-01

    The flow field over dunes has been extensively studied and there is general understanding of the nature of the flow over dunes formed over two dimensional dunes under equilibrium flow conditions. This model is typically used to explain flow fields over all dunes fields. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we investigate how flow over natural three dimensional dunes differs from the accepted model of flow of two dimensional dunes. A series of experiments were undertaken in a flume where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms. On four occasions, the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models (DEM). Here to demonstrate the approach we choose the DEM with the greatest topographic variation and apply a new Large Eddy Simulation model with an wall-adapting local eddy-viscosity (WALE) turbulence model and a non-linear higher-order numerical differencing scheme. This provided a three dimensional time dependent prediction of the flow field over the static three-dimensional dune morphology at millimeter and hertz scale resolution. The numerically predicted flows were analyzed by standard Reynolds decomposition approaches and Eulerian and Lagrangian coherent flow structure identification methods. The results show that the superimposed bed forms can cause changes in the nature of the classical separated flow regions, in particularly the number of locations where vortices are shed and the points of flow reattachment. Coalescence of vortices generated downstream and can be seen to move to the free surface and form kolk signatures. These structures also correlate in space and time showing a clear flow morphology feedback. The modified flow field

  10. Computation of zero β three-dimensional equilibria with magnetic islands

    International Nuclear Information System (INIS)

    Reiman, A.H.; Greenside, H.S.

    1989-01-01

    A Picard iteration scheme has been implemented for the computation of toroidal, fully three-dimensional, zero β equilibria with islands and stochastic regions. Representation of the variables in appropriate coordinate systems has been found to be a key to making the scheme work well. In particular, different coordinate systems are used for solving magnetic differential equations and Ampere's law. The current profile is adjusted when islands and stochastic regions appear. An underrelaxation of the current profile modifications is generally needed for stable iteration of the algorithm. Some examples of equilibrium calculations are presented. 16 refs., 6 figs., 1 tab

  11. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2011-01-01

    Full Text Available User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  12. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    Science.gov (United States)

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  13. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, Roger A. [Univ. of California, Davis, CA (United States)

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  14. Conformal Field Theories on K3 and Three-Dimensional Gauge Theories

    CERN Document Server

    Mayr, Peter

    2000-01-01

    According to a recent conjecture, the moduli space of the heterotic conformal field theory on a $G\\subset$ ADE singularity of an ALE space is equivalent to the moduli space of a pure $\\cx N=4$ supersymmetric three-dimensional gauge theory with gauge group G. We establish this relation using geometric engineering of heterotic strings and generalize it to theories with non-trivial matter content.

  15. Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents 1. Three-dimensional current flows associated with a substorm-intensified eastward electrojet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Untiedt, J.; Greenwald, R.A.

    1980-01-01

    Two-dimensional distributions of ground magnetic and ionospheric electric fields in the evening sector auroral oval have been simultaneously observed by the Scandinavian Magnetometer Array and the Scandinavian Twin Auroral Radar Experiment (Stare) radars, respectively, on February 15, 1977. They were associated with varying, substorm-intensified, eastward electrojet current systems of the western, middle, and eastern segment of the eastward electrojet. We conclude that the substorm-intensified eastward electroject was a nearly pure Hall current driven by northward electric fields. The observed eastward increase of the current in the western segment of the electrojet was due to a gradual enhancement of the Hall conductivity. Here, the electrojet was fed by a broad sheet of net downward field-aligned current. During one period, the eastern-terminating part of the eastward electrojet diverged up the field lines in a rather local area because of a strong longitudinal decrease in the northward-directed electric field. On another occasion, it diverged northward within the ionosphere and joined the westward-flowing current because of a rotation of the northward electric field with increasing latitude through west- to southward. These two observed mechanisms of current divergence in the region where eastward and westward electrojects coexist may shed some new light on the controversy over the existence of upward field-aligned current flow in the Harang discontinuity

  16. Three-dimensional sensitivity mapping of a handheld magnetic probe for sentinel lymph node biopsy

    Directory of Open Access Journals (Sweden)

    Akihiro Kuwahata

    2017-05-01

    Full Text Available An experimental apparatus for three-dimensional sensitivity mapping of a handheld magnetic probe with a permanent magnet and a Hall sensor was developed. To optimize the shapes and sizes of the magnets, the sensitivity mappings of two types of magnets, column- and cone-type magnets, were evaluated by the experimental apparatus. The longitudinal sensitivities of column and cone types are 8 and 9 mm, respectively, for 5 μL of magnetic nanoparticles. The measured longitudinal sensitivities agree well with the sensitivities calculated by the finite element method. Furthermore, the maximum lateral resolutions of column and cone types are 4.1 and 3.7 mm, respectively. In terms of the directionality, the sensitivities of column and cone types of the angle of 90° with respect to the probe axis fall approximately to 72% and 50% at 6 mm distance from the probe head, indicating that the cone type has high directionality due to its sharp shape. The measurement of sensitivity mapping revealed that the characteristics of the cone-type magnet are superior to that of the column-type magnet for the identification of sentinel lymph nodes.

  17. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  18. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Science.gov (United States)

    Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li

    2018-03-01

    In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  19. Magnetic resonance imaging of the coronary arteries : clinical results from three dimensional evaluation of a respiratory gated technique

    NARCIS (Netherlands)

    van Geuns, R J; de Bruin, H G; Rensing, B J; Wielopolski, P A; Hulshoff, M D; van Ooijen, P M; Oudkerk, M; de Feyter, P J

    1999-01-01

    BACKGROUND: Magnetic resonance coronary angiography is challenging because of the motion of the vessels during cardiac contraction and respiration. Additional challenges are the small calibre of the arteries and their complex three dimensional course. Respiratory gating, turboflash acquisition, and

  20. Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique

    NARCIS (Netherlands)

    R.J.M. van Geuns (Robert Jan); H.G. de Bruin (Hein); B.J.W.M. Rensing (Benno); P.A. Wielopolski (Piotr); M.D. Hulshoff; P.M.A. van Ooijen (Peter); M. Oudkerk (Matthijs); P.J. de Feyter (Pim)

    1999-01-01

    textabstractBACKGROUND: Magnetic resonance coronary angiography is challenging because of the motion of the vessels during cardiac contraction and respiration. Additional challenges are the small calibre of the arteries and their complex three dimensional course. Respiratory

  1. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays

    Directory of Open Access Journals (Sweden)

    Nan Yao

    2017-11-01

    Full Text Available The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.

  2. [Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].

    Science.gov (United States)

    Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long

    2008-12-01

    To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.

  3. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  4. Three-dimensional radar imaging techniques and systems for near-field applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  5. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    De Deene, Y.; De Wagter, C.; Van Duyse, B.; Achten, E.; De Neve, W. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; De Poorter, J. [Ghent Univ. (Belgium). Dept. of Magnetic Resonance

    1995-12-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes.

  6. Analysis of HRR stress field at the three-dimensional crack tip, 1

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Yano, Kazunori.

    1989-01-01

    CT specimens with different thickness and a CCT specimen are analyzed precisely using the three-dimensional finite element method in the elastic-plastic stress states. The stress and displacement fields at the crack tip are compared with the HRR singular stress field and discussed. It is found that in the CT specimens, the thicknesses are larger than those recommended by the standard of fracture toughness testing; the stress and displacement fields agree very well with those of HRR fields. For the CT specimen, the thickness of which is a little smaller than the recommended value, the HRR field exists only on the inside of the specimen. It is shown that there are no HRR fields in the CCT specimen although its thickness in not small. (author)

  7. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  8. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Directory of Open Access Journals (Sweden)

    Im O

    2012-04-01

    Full Text Available Owen Im1, Jian Li2, Mian Wang2, Lijie Grace Zhang2,3, Michael Keidar2,31Department of Biomedical Engineering, Duke University, Durham, NC; 2Department of Mechanical and Aerospace Engineering, 3Institute for Biomedical Engineering and Institute for Nanotechnology, The George Washington University, Washington, DC, USABackground: Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT, biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan. Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels.Methods: Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT and without a magnetic field (N-SWCNT for improving bone regeneration.Results: Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment.Conclusion: This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite

  9. Three dimensional display of the brain surface from magnetic resonance images using a personal computer

    International Nuclear Information System (INIS)

    Tamai, Jin

    1991-01-01

    A new system for three dimensional display of brain surface from magnetic resonance images has been developed using a personal computer. The system consists of the personal computer with a co-processor for mathematical operation and frame memory for full color graphic display. MRI data were transferred to the computer with the floppy disks. Using the paint algorithm, extraction of brain tissue was performed semi-automatically with a manual operation. Brain surface data were displayed on a CRT by a voxel method from an arbitral direction. The result of clinical application of the system showed that the 3-dimentional display of brain surface was useful in comprehending abnormalities including atrophy and cystic lesions. In this paper, we introduce the new system and discuss clinical applicabilities. (author)

  10. A Factor Increasing Venous Contamination on Bolus Chase Three-dimensional Magnetic Resonance Imaging: Charcot Neuroarthropathy.

    Science.gov (United States)

    Çildağ, Mehmet B; Ertuğrul, Mustafa B; Köseoğlu, Ömer Fk; Armstrong, David G

    2018-01-01

    The study aimed to evaluate the ratio of venous contamination in diabetic cases without foot lesion, with foot lesion and with Charcot neuroarthropathy (CN). Bolus-chase three-dimensional magnetic resonance (MR) of 396 extremities of patients with diabetes mellitus was analyzed, retrospectively. Extremities were divided into three groups as follows: diabetic patients without foot ulcer or Charcot arthropathy (Group A), patients with diabetic foot ulcers (Group B) and patients with CN accompanying diabetic foot ulcers (Group C). Furthermore, amount of venous contamination classified as no venous contamination, mild venous contamination, and severe venous contamination. The relationship between venous contamination and extremity groups was investigated. Severe venous contamination was seen in Group A, Group B, and Group C, 5.6%, 15.2%, and 34.1%, respectively. Statistically significant difference was seen between groups with regard to venous contamination. Venous contamination following bolus chase MR was higher in patients with CN.

  11. Ginzburg criterion for the mean-field to three-dimensional Ising crossover in polymer blends

    DEFF Research Database (Denmark)

    Schwahn, D.; Schmackers, T.; Mortensen, K.

    1995-01-01

    Composition fluctuations within the mean-field and three-dimensional Ising range were measured in a homogeneous binary polymer blend by small angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed in terms of the crossover function of Belyakov...... and Kiselev [Physica A 190, 75 (1992)]. It is shown that the reduced-crossover-temperature, the Ginzburg number Gi, decreases with pressure sensitively, in accordance with the prediction of Belyakov and Kiselev. On the other hand, de Gennes' crossover criterion for polymer blends predicts an increase of Gi...

  12. Image reconstruction using three-dimensional compound Gauss-Markov random field in emission computed tomography

    International Nuclear Information System (INIS)

    Watanabe, Shuichi; Kudo, Hiroyuki; Saito, Tsuneo

    1993-01-01

    In this paper, we propose a new reconstruction algorithm based on MAP (maximum a posteriori probability) estimation principle for emission tomography. To improve noise suppression properties of the conventional ML-EM (maximum likelihood expectation maximization) algorithm, direct three-dimensional reconstruction that utilizes intensity correlations between adjacent transaxial slices is introduced. Moreover, to avoid oversmoothing of edges, a priori knowledge of RI (radioisotope) distribution is represented by using a doubly-stochastic image model called the compound Gauss-Markov random field. The a posteriori probability is maximized by using the iterative GEM (generalized EM) algorithm. Computer simulation results are shown to demonstrate validity of the proposed algorithm. (author)

  13. Geometry and scaling of tangled vortex lines in three-dimensional random wave fields

    International Nuclear Information System (INIS)

    Taylor, A J; Dennis, M R

    2014-01-01

    The short- and long-scale behaviour of tangled wave vortices (nodal lines) in random three-dimensional (3D) wave fields is studied via computer experiment. The zero lines are tracked in numerical simulations of periodic superpositions of 3D complex plane waves. The probability distribution of local geometric quantities such as curvature and torsion are compared to previous analytical and new Monte Carlo results from the isotropic Gaussian random wave model. We further examine the scaling and self-similarity of tangled wave vortex lines individually and in the bulk, drawing comparisons with other physical systems of tangled filaments. (paper)

  14. Modeling flow and shear stress fields over unsteady three dimensional dunes

    Science.gov (United States)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim

    2014-05-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  15. An esophageal probe for measuring three-dimensional electric fields during external cardiac defibrillation.

    Science.gov (United States)

    Fitch, David A; de Jongh Curry, Amy L

    2012-03-01

    External defibrillation is a common treatment for the cardiac arrhythmia atrial fibrillation. Electrode placement has been shown to affect defibrillation efficacy and required energy levels. We suggest investigating the relationship between esophageal electric fields (EEFs) and atrial defibrillation thresholds to determine the feasibility of creating patient-specific electrode placements using EEFs. This study presents the design and implementation of an esophageal probe (EP) that accurately measures three-dimensional electric fields. The root-mean-square error of the EP was 1.69% as determined by measurements performed in an electrolytic tank. The EP also performed well during in vivo testing in a pig. There was a strong positive relationship between EEF(2)s and applied energy during defibrillation strength shocks. The EEF measurements were also repeatable, with less than 4.24% difference between repeated shocks. This is the first description of a probe designed specifically for measuring electric fields in the esophagus.

  16. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    Science.gov (United States)

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  17. Fermionic field perturbations of a three-dimensional Lifshitz black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Santiago (Chile); Vasquez, Yerko; Villalobos, Ruth Noemi [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2017-09-15

    We study the propagation of massless fermionic fields in the background of a three-dimensional Lifshitz black hole, which is a solution of conformal gravity. The black-hole solution is characterized by a vanishing dynamical exponent. Then we compute analytically the quasinormal modes, the area spectrum, and the absorption cross section for fermionic fields. The analysis of the quasinormal modes shows that the fermionic perturbations are stable in this background. The area and entropy spectrum are evenly spaced. In the low frequency limit, it is observed that there is a range of values of the angular momentum of the mode that contributes to the absorption cross section, whereas it vanishes in the high frequency limit. In addition, by a suitable change of variables a gravitational soliton can also be obtained and the stability of the quasinormal modes are studied and ensured. (orig.)

  18. Applications of three-dimensional printing technology in the cardiovascular field.

    Science.gov (United States)

    Shi, Di; Liu, Kai; Zhang, Xin; Liao, Hang; Chen, Xiaoping

    2015-10-01

    Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

  19. Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media

    Science.gov (United States)

    Jin, C.; Langston, P. A.; Pavlovskaya, G. E.; Hall, M. R.; Rigby, S. P.

    2016-01-01

    We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously extracting correlation functions Ru u(r ) of the spatial (Eulerian) velocity fields and microstructural two-point correlation functions S2(r ) of the random porous heterogeneous materials. This demonstrates that the effective physical transport properties depend on the characteristics of complex pore structure owing to the relationship between Ru u(r ) and S2(r ) revealed in this study. Further, the mean excess plot was used to investigate the right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity distribution.

  20. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; Coughlan, Hannah D.; Darmanin, Connie; Johnson, Brett C.; Harder, Ross; Clark, Jesse N.; Balaur, Eugeniu; Abbey, Brian

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.

  1. Far-field analysis of axially symmetric three-dimensional directional cloaks.

    Science.gov (United States)

    Ciracì, Cristian; Urzhumov, Yaroslav; Smith, David R

    2013-04-22

    Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.

  2. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    Science.gov (United States)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  3. A quantum simulation approach for a three-dimensional Ising spin model—Comparison to mean field theory

    Directory of Open Access Journals (Sweden)

    Zhaosen Liu

    2017-05-01

    Full Text Available We use a recently developed quantum simulation approach to study the properties of a three-dimensional Ising model consisting of S = 1/2 quantum spins localized at the sites of a simple cubic lattice. We assume nearest-neighbor interaction between spins with an exchange interaction that can be either ferromagnetic or antiferromagnetic. It is found that the computational method quickly converges towards the expected equilibrium spin configurations. The resulting spontaneous magnetization curves corresponding to the two types of magnetic interactions under consideration were found to be almost identical to the ones obtained via quantum mean field theory at all temperatures. The derived total energies, total free energies, magnetic entropies and specific heats per mole of spins show no sizeable differences from known theoretical values. Furthermore, the results of the simulations for two different 3D Ising systems containing 4×4×4 and 20×20×20 spins localized at the sites of a simple cubic lattice were found to be almost identical to each other. This finding suggests that the self-consistent algorithm approach of the current simulation method allows one to obtain the physical bulk properties of a large magnetic system by relying on simulations of a much smaller spin system sample. Therefore, the method presently considered appears to be not only very accurate as gauged by comparison to mean field theory, but also able to greatly increase the speed of simulations.

  4. Three-Dimensional Collisionless Magnetic Reconnection: Simulation With a Particle Electromagnetic Code

    Science.gov (United States)

    Scholer, M.; Sidorenko, I.; Jaroschek, C.; Treumann, R. A.; Zeiler, A.

    2002-12-01

    We have investigated the onset of reconnection in thin current sheets by means of three-dimensional full particle (PIC) simulations. Instead of imposing reconnection ab initio, reconnection is allowed to develop out of the numerical noise. We do not impose symmetry about the midplane, so that the drift kink instability, the Kelvin-Helmholtz instability, and the sausage instability are allowed for, and we use a high mass ratio of mi/m_e=160. The system is double periodic with two current sheets, which limits the time reconnection can proceed, but simplifies the boundary conditions. Two cases are investigated: (1) a thin current sheet with exactly antiparallel fields, and (2) a thin current sheet with a guide field of the same order as the antiparallel field. In case (1) the lower hybrid drift instability (LHDI) is excited and leads to current sheet thinning. Subsequently, patchy reconnection sets in, and arranges itself within a few ion times into a single neutral line. In case (2) the onset of reconnection is delayed, but eventually a single neutral line emerges. No sausage mode or kink mode, respectively, preceed in either case the onset of reconnection. After a single neutral line has evolved it kinks in the current direction.

  5. Near-field three-dimensional coherent imaging: Theory and simulations

    Science.gov (United States)

    Silverstein, Seth D.; Zheng, Yibin

    2004-04-01

    This work presents a rigorous mathematical derivation of an effective approximate solution to the three-dimensional inverse scattering/imaging problem that is applicable for all imaging zones ranging from the near to the far field. Simulation results for the point spread function illustrate the range and cross-range resolution as a function of the optical f number. The model system operates in a synthetic aperture type mode, where the coherent signals are transmitted, and the scattered signals are subsequently received at individual transmitters and receivers. Potential applications of this technology include: Medical ultrasound, foliage penetrating synthetic aperture radar, ground penetrating radar for land mine detection, and electromagnetic millimeter-wave scanning for concealed weapon detection.

  6. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    Science.gov (United States)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  7. User's manual for three-dimensional analysis of propeller flow fields

    Science.gov (United States)

    Chaussee, D. S.; Kutler, P.

    1983-01-01

    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.

  8. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  9. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Kiryu, Tohru

    2011-01-01

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T 2 -weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  10. Three-dimensional dynamic magnetic resonance angiography for the evaluation of radiosurgically treated cerebral arteriovenous malformations

    International Nuclear Information System (INIS)

    Gauvrit, Jean-Yves; Oppenheim, Catherine; Naggara, Olivier; Trystram, Denis; Fredy, Daniel; Meder, Jean-Francois; Nataf, Francois; Roux, Francois-Xavier; Munier, Thierry; Pruvo, Jean-Pierre; Leclerc, Xavier

    2006-01-01

    We assessed the value of three-dimensional (3D) dynamic magnetic resonance angiography (MRA) for the follow-up of patients with radiosurgically treated cerebral arteriovenous malformations (AVMs). Fifty-four patients with cerebral AVMs treated by radiosurgery (RS) were monitored using conventional catheter angiography (CCA) and 3D dynamic MRA with sensitivity encoding based on the parallel imaging. Cerebral AVM was qualitatively classified by two radiologists into one of five categories in terms of residual nidus size and persistence of early draining vein (I, >6 cm; II, 3-6 cm; III, <3 cm; IV, isolated early draining vein; V, complete obliteration). 3D MRA findings showed a good agreement with CCA in 40 cases (κ=0.62). Of 23 nidus detected on CCA, 3D dynamic MRA showed 14 residual nidus. Of 28 occluded nidus on 3D dynamic MRA, 22 nidus were occluded on CCA. The sensitivity and specificity of 3D dynamic MRA for the detection of residual AVM were 81% and 100%. 3D dynamic MRA after RS may therefore be useful in association with MRI and can be repeated as long as opacification of the nidus or early venous drainage persists, one CCA remaining indispensable to affirm the complete occlusion at the end of follow-up. (orig.)

  11. Locally Advanced Prostate Cancer: Three-Dimensional Magnetic Resonance Spectroscopy to Monitor Prostate Response to Therapy

    International Nuclear Information System (INIS)

    Valentini, Anna Lia; Gui, Benedetta; D’Agostino, Giuseppe Roberto; Mattiucci, Giancarlo; Clementi, Valeria; Di Molfetta, Ippolita Valentina; Bonomo, Pierluigi; Mantini, Giovanna

    2012-01-01

    Purpose: To correlate results of three-dimensional magnetic resonance spectroscopic imaging (MRSI) with prostate-specific antigen (PSA) levels and time since external beam irradiation (EBRT) in patients treated with long-term hormone therapy (HT) and EBRT for locally advanced disease to verify successful treatment by documenting the achievement of metabolic atrophy (MA). Methods and Materials: Between 2006 and 2008, 109 patients were consecutively enrolled. MA was assessed by choline and citrate peak area-to-noise-ratio 1.5:1 or choline signal-to-noise-ratio >5:1. To test the strength of association between MRSI results and the time elapsed since EBRT (TEFRT), PSA levels, Gleason score (GS), and stage, logistic regression (LR) was performed. p value 2 years. MA was detected in 54.1% of patients of group 1, 88.9% of group 2, and in 94.5% of group 3 (100% when PSA nadir was reached). CM was detected in 50% of patients with reached PSA nadir in group 1. Local relapse was found in 3 patients previously showing CM at long TEFRT. Conclusion: MA detection, indicative of successful treatment because growth of normal or abnormal cells cannot occur without metabolism, increases with decreasing PSA levels and increasing time on HT after EBRT. This supports long-term HT in advanced prostate cancer. Larger study series are needed to assess whether MRSI could predict local relapse by detecting CM at long TEFRT.

  12. Magnetic point sources in three dimensional Brans-Dicke gravity theories

    OpenAIRE

    Dias, Oscar J. C.; Lemos, Jose' P. S.

    2002-01-01

    We obtain geodesically complete spacetimes generated by static and rotating magnetic point sources in an Einstein-Maxwell-Dilaton theory of the Brans-Dicke type in three dimensions (3D). The theory is specified by three fields, the dilaton, the graviton and the electromagnetic field, and two parameters, the cosmological constant and the Brans-Dicke parameter, w. When the Brans-Dicke parameter is infinity, our solution reduces to the magnetic counterpart of the BTZ solution, while the w=0 case...

  13. Three dimensional dosimetry of radiation sensitive gels using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Baldock, C.; Murry, P.; Kron, T.

    1998-01-01

    Full text: It is generally believed that clinical radiation therapy treatment can be optimised by obtaining a closer conformation of the administered radiation dose distribution to the tumour volume. This is difficult with traditional radiation therapy techniques since they do not produce dose distributions which adequately cover tumour volumes of complex shapes and sizes while sparing normal healthy tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiation therapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. Since tumours being treated extend throughout some volume, conformal therapy is inherently three-dimensional (3-D) in nature. In conformal radiation therapy it is necessary to be able to accurately measure 3-D radiation dose distributions to verify that the administered dose is the same as that prescribed by the radiation oncologist. Conventional dosimetry techniques such as ion chambers, thermoluminescent dosimeters, radiographic and radiochromic film are not suitable for verification of such 3-D dose distributions. Work has been undertaken to investigate clinical applications of ferrous sulphate or Fricke gel systems in 3-D radiotherapy dosimetry using both magnetic resonance and optical imaging as the techniques of measurement (Harris 1996). This form of dosimeter is very limited in its application due to diffusion of the resultant radiation dose distribution in the gel over the period of time from irradiation to measurement. Newly developed polyacrylamide gels (PAG) do not exhibit similar diffusion problems and are therefore more suitable for radiation dosimetry applications (Baldock 1998). This work demonstrates the application in radiation dosimetry of PAG using Magnetic Resonance Imaging (MRI)

  14. High resolution three-dimensional magnetization mapping in Tokachidake Volcano using low altitude airborne magnetic survey data

    Science.gov (United States)

    Iwata, M.; Mogi, T.; Okuma, S.; Nakatsuka, T.

    2016-12-01

    Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a

  15. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Hong-hua Cai

    2017-01-01

    Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

  16. Three-Dimensional Near-Field Microwave Holography for Tissue Imaging

    Directory of Open Access Journals (Sweden)

    Reza K. Amineh

    2012-01-01

    Full Text Available This paper reports the progress toward a fast and reliable microwave imaging setup for tissue imaging exploiting near-field holographic reconstruction. The setup consists of two wideband TEM horn antennas aligned along each other’s boresight and performing a rectangular aperture raster scan. The tissue sensing is performed without coupling liquids. At each scanning position, wideband data is acquired. Then, novel holographic imaging algorithms are implemented to provide three-dimensional images of the inspected domain. In these new algorithms, the required incident field and Green’s function are obtained from numerical simulations. They replace the plane (or spherical wave assumption in the previous holographic methods and enable accurate near-field imaging results. Here, we prove that both the incident field and Green’s function can be obtained from a single numerical simulation. This eliminates the need for optimization-based deblurring which was previously employed to remove the effect of realistic non-point-wise antennas.

  17. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  18. Magnetically guided left ventricular lead implantation based on a virtual three-dimensional reconstructed image of the coronary sinus

    NARCIS (Netherlands)

    M. Rivero-Ayerza (Maximo); E. Jessurun; S. Ramcharitar (Steve); Y. van Belle (Yves); P.W.J.C. Serruys (Patrick); L.J.L.M. Jordaens (Luc)

    2008-01-01

    textabstractAims: Left ventricular (LV) lead implantation is feasible using remote magnetic navigation of a guidewire (Stereotaxis, St Louis, MO, USA). A novel software that performs a three-dimensional (3D) reconstruction of vessels based on two or more angiographic views has been developed

  19. Characterization of a chip-based bioreactor for three-dimensional cell cultivation via magnetic resonance imaging

    NARCIS (Netherlands)

    Gottwald, E.; Kleintschek, T.; Giselbrecht, S.; Truckenmüller, R.K.; Altmann, B; Worgull, M.; Döpfert, J.; Schad, L.; Heilmann, M.

    2013-01-01

    We describe the characterization of a chip-based platform (3D-KITChip) for the three-dimensional cultivation of cells under perfusion conditions via magnetic resonance imaging (MRI). Besides the chip, the microfluidic system is comprised of a bioreactor housing, a medium supply, a pump for

  20. Three-dimensional imaging of trapped cold atoms with a light field microscope.

    Science.gov (United States)

    Lott, Gordon E; Marciniak, Michael A; Burke, John H

    2017-11-01

    This research images trapped atoms in three dimensions, utilizing light field imaging. Such a system is of interest in the development of atom interferometer accelerometers in dynamic systems where strictly defined focal planes may be impractical. In this research, a light field microscope was constructed utilizing a Lytro Development Kit micro lens array and sensor. It was used to image fluorescing rubidium atoms in a magneto optical trap. The three-dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration that the low magnification (1.25) of the system changed typical assumptions used in the optics model for the PSF. The 3D reconstruction is analyzed with respect to a standard off-axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100 μm accuracy in a 3 mm deep volume, with a 16 μm in-focus standard resolution with a 3.9 mm by 3.9 mm field of view. Optical axis spreading is observed in the reconstruction and discussed. The 3D information can be used to determine properties of the atom cloud with a single camera and single image, and can be applied anywhere 3D information is needed but optical access may be limited.

  1. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    Science.gov (United States)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  2. Modeling of the three-dimensional motion of toroidal magnetic clouds in the inner heliosphere

    Czech Academy of Sciences Publication Activity Database

    Romashets, E.; Vandas, Marek; Poedts, S.

    2007-01-01

    Roč. 466, č. 1 (2007), s. 357-365 ISSN 0004-6361 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic cloud s * interplanetary magnetic field Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  3. Design and testing of indigenous cost effective three dimensional radiation field analyser (3D RFA).

    Science.gov (United States)

    Ganesh, K M; Pichandi, A; Nehru, R M; Ravikumar, M

    2014-06-01

    The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 x 750 x 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20 and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epo and X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.

  4. Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet

    Science.gov (United States)

    Belden, Jesse; Ravela, Sai; Truscott, Tadd T.; Techet, Alexandra H.

    2012-09-01

    A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements.

  5. Study of Three-dimensional Magnetic Structure and the Successive Eruptive Nature of Active Region 12371

    Science.gov (United States)

    Vemareddy, P.; Demóulin, P.

    2018-04-01

    We study the magnetic structure of a successively erupting sigmoid in active region 12371 by modeling the quasi-static coronal field evolution with nonlinear force-free field (NLFFF) equilibria. Helioseismic and Magnetic Imager/Solar Dynamic Observatory vector magnetograms are used as input to the NLFFF model. In all eruption events, the modeled structure resembles the observed pre-eruptive coronal sigmoid and the NLFFF core field is a combination of double inverse-J-shaped and inverse-S field lines with dips touching the photosphere. Such field lines are formed by the flux cancellation reconnection of opposite-J field lines at bald-patch locations, which in turn implies the formation of a weakly twisted flux-rope (FR) from large-scale sheared arcade field lines. Later on, this FR undergoes coronal tether-cutting reconnection until a coronal mass ejection is triggered. The modeled structure captured these major features of sigmoid-to-arcade-to-sigmoid transformation, which is reoccuring under continuous photospheric flux motions. Calculations of the field line twist reveal a fractional increase followed by a decrease of the number of pixels having a range of twist. This traces the buildup process of a twisted core field by slow photospheric motions and the relaxation after eruption, respectively. Our study infers that the large eruptivity of this AR is due to a steep decrease of the background coronal field meeting the torus instability criteria at a low height (≈40 Mm) in contrast to noneruptive ARs.

  6. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  7. Three-dimensional density field determination by external stationary detectors and gamma sources using selective scattering

    International Nuclear Information System (INIS)

    Kondic, N.; Jacobs, A.; Ebert, D.

    1983-01-01

    In many fields one needs to know the spatial density distribution; two-phase systems are of particular importance. In particular, gas-liquid mixtures play a role in power generation, chemistry, bio-medicine etc. An intrusion into the measured system is frequently undesired or not permitted. Therefore, external, non-invasive instrumentation has definite advantages. Photon-energy discrimination methods, measuring scattered fluxes, can employ stationary equipment; they need partial collimation or only protective shielding. The results are achieved with a higher information/irradiation ratio than is the case with transmission methods. The utilization a mesh of isogonic lines (each of them being characterised by its particular scattering angle) has several advantages when compared with the mesh of straight lines (''pencil beams'') used in tomography. The ultimate experimental arrangement employing Compton scattering has fan/fan beam geometry, i.e., wide angle emitting and receiving of gammas. The direct result of the measurement is a ''scattergram'', i.e., countrate versus scattered energy spectrum. Besides representing the ''signature'' of a two- or three-dimensional density distribution, it also enables the reconstruction of local density values. The report outlines the necessary analysis and presents experimental proof of principle

  8. Three-Dimensional Time Domain Simulation of Tsunami-Generated Electromagnetic Fields: Application to the 2011 Tohoku Earthquake Tsunami

    Science.gov (United States)

    Minami, Takuto; Toh, Hiroaki; Ichihara, Hiroshi; Kawashima, Issei

    2017-12-01

    We present a new finite element simulation approach in time domain for electromagnetic (EM) fields associated with motional induction by tsunamis. Our simulation method allows us to conduct three-dimensional simulation with realistic smooth bathymetry and to readily obtain broad structures of tsunami-generated EM fields and their time evolution, benefitting from time domain implementation with efficient unstructured mesh. Highly resolved mesh near observation sites enables us to compare simulation results with observed data and to investigate tsunami properties in terms of EM variations. Furthermore, it makes source separations available for EM data during tsunami events. We applied our simulation approach to the 2011 Tohoku tsunami event with seawater velocity from linear-long and linear-Boussinesq approximations. We revealed that inclusion of dispersion effect is necessary to explain magnetic variations at a northwest Pacific seafloor site, 1,500 km away from the epicenter, while linear-long approximation is enough at a seafloor site 200 km east-northeast of the epicenter. Our simulations provided, for the first time, comprehensive views of spatiotemporal structures of tsunami-generated EM fields for the 2011 Tohoku tsunami, including large-scale electric current circuits in the ocean. Finally, subtraction of the simulated magnetic fields from the observed data revealed symmetric magnetic variations on the western and eastern sides of the epicenter for 30 min since the earthquake origin time. These imply a pair of southward and northward electric currents in the ionosphere that exist on the western and eastern sides of the source region, respectively, which was likely to be caused by tsunami-generated atmospheric acoustic/gravity waves reaching the ionosphere.

  9. Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Odstrčil, Dušan; Watari, S.

    2002-01-01

    Roč. 107, A9 (2002), s. SSH2-1 - SSH2-11 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3012103; GA ČR GA205/99/1712; GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic cloud s * MHD simulations * interplanetary magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  10. r-Process Nucleosynthesis from Three-dimensional Jet-driven Core-Collapse Supernovae with Magnetic Misalignments

    Science.gov (United States)

    Halevi, Goni; Mösta, Philipp

    2018-03-01

    We investigate r-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15°, 30°, and 45° misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SKYNET. By using different neutrino luminosities in post-processing the tracer data with SKYNET, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak r-process elements. Our results show that for misalignments of 30° or less, r-process elements are robustly produced as long as neutrino luminosities are reasonably low (≲ 5 × 1052 erg s-1). For a more extreme misalignment of 45°, we find the production of r-process elements beyond the second peak significantly reduced. We conclude that robust r-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within ˜30°) aligned with the rotation axis.

  11. Fluid-structure interaction of three-dimensional magnetic artificial cilia

    NARCIS (Netherlands)

    Khaderi, S. N.; Onck, P. R.

    2012-01-01

    A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The

  12. Locally Advanced Prostate Cancer: Three-Dimensional Magnetic Resonance Spectroscopy to Monitor Prostate Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Anna Lia, E-mail: alvalentini@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Gui, Benedetta [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); D' Agostino, Giuseppe Roberto; Mattiucci, Giancarlo [Department of Bioimaging and Radiological Sciences, Section of Radiotherapy, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Clementi, Valeria [Clinical Science Development Group, GE Healthcare, Milan (Italy); Di Molfetta, Ippolita Valentina [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Bonomo, Pierluigi [OU Clinic Radiobiology, I.F.C.A. Florence (Italy); Mantini, Giovanna [Department of Bioimaging and Radiological Sciences, Section of Radiotherapy, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy)

    2012-11-01

    Purpose: To correlate results of three-dimensional magnetic resonance spectroscopic imaging (MRSI) with prostate-specific antigen (PSA) levels and time since external beam irradiation (EBRT) in patients treated with long-term hormone therapy (HT) and EBRT for locally advanced disease to verify successful treatment by documenting the achievement of metabolic atrophy (MA). Methods and Materials: Between 2006 and 2008, 109 patients were consecutively enrolled. MA was assessed by choline and citrate peak area-to-noise-ratio <5:1. Cancerous metabolism (CM) was defined by choline-to-creatine ratio >1.5:1 or choline signal-to-noise-ratio >5:1. To test the strength of association between MRSI results and the time elapsed since EBRT (TEFRT), PSA levels, Gleason score (GS), and stage, logistic regression (LR) was performed. p value <0.05 was statistically significant. The patients' outcomes were verified in 2011. Results: MRSI documented MA in 84 of 109 and CM in 25 of 109 cases. LR showed that age, GS, stage, and initial and recent PSA had no significant impact on MRSI results which were significantly related to PSA values at the time of MRSI and to TEFRT. Patients were divided into three groups according to TEFRT: <1 year, 1-2 years, and >2 years. MA was detected in 54.1% of patients of group 1, 88.9% of group 2, and in 94.5% of group 3 (100% when PSA nadir was reached). CM was detected in 50% of patients with reached PSA nadir in group 1. Local relapse was found in 3 patients previously showing CM at long TEFRT. Conclusion: MA detection, indicative of successful treatment because growth of normal or abnormal cells cannot occur without metabolism, increases with decreasing PSA levels and increasing time on HT after EBRT. This supports long-term HT in advanced prostate cancer. Larger study series are needed to assess whether MRSI could predict local relapse by detecting CM at long TEFRT.

  13. Three Dimensional Magneto-Hydrodynamics Simulations of Auto-Magnetizing Imploding Liners for ICF

    Science.gov (United States)

    Woolstrum, Jeff; Jennings, Chris; Shipley, Gabriel; Awe, Thomas; Slutz, Stephen; Jordan, Nicholas; Lau, Yy; Peterson, Kyle; McBride, Ryan

    2017-10-01

    AutoMag is a potential next step in the magnetized liner inertial fusion (MagLIF) program. In standard MagLIF, external coils are used to magnetize deuterium gas inside a metal cylindrical liner, which is imploded by the Z-machine at Sandia National Laboratories. In AutoMag, helical slots are cut into the liner and filled with dielectric insulator to form a solenoid, producing an axial magnetic field from the drive current and removing the need for external field coils. Alternatively with external field coils, AutoMag could produce a field-reversed configuration inside the liner. Recent work at Sandia has found that the breakdown of the dielectric material corresponds to the geometry of the liner/dielectric. We explore this finding in 3D resistive-MHD simulations, modeling geometries relevant to both the 20-MA Z facility, and to the 1-MA MAIZE facility at the University of Michigan. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DoE's NNSA under contract DE-NA0003525.

  14. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    Directory of Open Access Journals (Sweden)

    Wendy Whiteside

    2015-01-01

    Full Text Available Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  15. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    International Nuclear Information System (INIS)

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2005-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver

  16. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization.

    Science.gov (United States)

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2015-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  17. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration

    NARCIS (Netherlands)

    Mouser, Vivian H M; Levato, Riccardo; Bonassar, Lawrence J; D'Lima, Darryl D; Grande, Daniel A; Klein, Travis J; Saris, Daniel B F; Zenobi-Wong, Marcy; Gawlitta, Debby; Malda, Jos

    2017-01-01

    Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D

  18. Migration of the Three-dimensional Wind Field (3DWF) Model from Linux to Windows and Mobile Platforms

    Science.gov (United States)

    2017-11-01

    pages were written in JavaScript to allow the user to run those Fortran90 and C executable programs as mentioned in the previous section to: 1) produce...documentation/ javascript . Huynh G, Wang Y, Williamson C. Building and vegetation rasterization for the three-dimensional wind field (3DWF) model. Aberdeen

  19. Crossover from mean field to three-dimensional ising critical behavior in a three-component microemulsion system

    DEFF Research Database (Denmark)

    Seto, H.; Schwahn, D.; Nagao, M.

    1996-01-01

    in terms of the asymptotic crossover expression calculated by Belyakov ct al. The data are found exclusively in the crossover region between the universality class of three-dimensional Ising and mean field regimes. The Ginzburg number is found to be between one and two orders of magnitude less than...

  20. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    Science.gov (United States)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  1. Single-component molecular conductor [Cu(dmdt)2] with three-dimensionally arranged magnetic moments exhibiting a coupled electric and magnetic transition.

    Science.gov (United States)

    Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko; Cui, HengBo; Kato, Reizo; Takagi, Rina; Miyagawa, Kazuya; Kanoda, Kazushi; Kobayashi, Hayao

    2012-08-01

    Crystals of the single-component molecular conductor [Cu(dmdt)(2)] (dmdt = dimethyltetrathiafulvalenedithiolate) were prepared as a molecular system, with three-dimensionally arranged magnetic moments embedded in "sea" of π conduction electrons. [Cu(dmdt)(2)] had fairly large room-temperature conductivity (110 S cm(-1)) and exhibited weakly metallic behavior near room temperature. Below 265 K, the resistivity (R) increased very slowly with decreasing temperature and then increased rapidly, indicating a transition from a highly conducting state to an insulating state near 95 K. The magnetic susceptibility showed Curie-Weiss behavior at 100-300 K (C = 0.375 emu/mol, Θ = 180 K). The Curie constant and the high-temperature resistivity behavior indicate that conduction electrons and three-dimensionally arranged magnetic moments coexist in the crystal. The ESR intensity increased down to about 95 K. The ESR signal was broadened and decreased abruptly near 95 K, suggesting that electric and antiferromagnetic transitions occurred simultaneously near 95 K. The crystal structure was determined down to 13 K. To examine the stability of the twisted conformation of Cu complex with dithiolate ligands, the dihedral angle dependence of the conformational energy of an isolated M(L)(2)(n-) molecule was calculated, which revealed the dihedral angle dependence on the ligand (L) and the oxidation state of the molecule (n). High-pressure four-probe resistivity measurements were performed at 3.3-9.3 GPa using a diamond anvil cell. The small resistivity increase observed at 3.3 GPa below 60 K suggested that the insulating transition observed at ambient pressure near 95 K was essentially suppressed at 3.3 GPa. The intermolecular magnetic interactions were examined on the basis of simple mean field theory of antiferromagnetic transition and the calculated intermolecular overlap integrals of the singly occupied molecular orbital (SOMO) of Cu(dmdt)(2).

  2. Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results

    Science.gov (United States)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert

    2014-01-01

    Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

  3. Numerical, field and laboratory studies of three-dimensional flow structures at river channel confluences

    OpenAIRE

    Bradbrook, Kathryn Frances

    1999-01-01

    This thesis investigates controls on and the nature of three-dimensional flow structures at river channel confluences. Previous work has shown that junction angle is an important control on the flow patterns at channel junctions since it affects the degree of curvature of flow from each tributary and sets up secondary circulation cells similar to those in meander bends. Recent work has highlighted the common occurrence of, and importance of, bed discordance at river confluences due to a signi...

  4. Turbulent heat transport in two- and three-dimensional temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Samaraweera, Don Sarath Abesiri [Univ. of California, Berkeley, CA (United States)

    1978-03-01

    A fundamental numerical study of turbulent heat and mass transport processes in two- and three-dimensional convective flows is presented. The model of turbulence employed is the type referred to as a second-order closure. In this scheme transport equations for all nonzero components of the Reynolds stress tensor, for the isotropic dissipation rate of turbulent kinetic energy, for all nonzero scalar flux tensor components and for the mean square scalar fluctuations are solved by a finite difference method along with the mean momentum and mean enthalpy (or concentration) equations. The model used for the stresses was developed earlier. Parallel ideas were utilised in obtaining a model for turbulent heat and mass transfer processes. The study has focused especially on the problem of nonaxisymmetric convective heat and mass transport in pipes, which arises when the boundary conditions are not axisymmetric. The few available experimental data on such situations have indicated anisotropy in effective diffusivities. To expand the available data base an experiment was conducted to obtain heat transfer measurements in strong three-dimensional heating conditions. Numerical procedures especially suitable for incorporation of second-order turbulent closure models have been developed. The effect of circumferential conduction in the tube material, which is influential in the asymmetric heating data currently available, was accounted for directly by extending the finite difference calculations into the pipe wall. The principal goal of predicting three-dimensional scalar transfer has been achieved.

  5. Three-dimensional magnetization process in HoFe.sub.11./sub.Ti

    Czech Academy of Sciences Publication Activity Database

    Janssen, Y.; Klaasse, J. C. P.; Brück, E.; De Boer, F. R.; Buschow, K. H. J.; Kamarád, Jiří; Kudrevatykh, N. V.

    2002-01-01

    Roč. 319, - (2002), s. 59-72 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z1010914 Keywords : HoFe 11 Ti * magnetic anisotropy * magnetization processes * magnetization rotation * rare- earth -transition-metal compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  6. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    Science.gov (United States)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  7. Numerical simulation of three-dimensional fields of Chernobyl's radionuclides in the Kiev water reservoir

    International Nuclear Information System (INIS)

    Zheleznyak, M.I.; Margvelashvili, N.Yu.

    1997-01-01

    On the base of the three-dimensional numerical model of water circulation and radionuclide transport, the high flood water influence on the radionuclide dispersion in the Kiev water reservoir is studied. The model was verified on the base of data of the measurements of moderate flood phenomena in April-May 1987. Redistribution of the bottom sediment contamination is demonstrated. It is shown that even an extremely high flood water discharge does not change drastically the 137 Cs concentration in the water body of the Kiev water reservoir

  8. Magnetic-based minimum input motion control of paramagnetic microparticles in three-dimensional space

    NARCIS (Netherlands)

    Khalil, I.S.M.; Metz, R.M.P.; Reefman, B.A.; Misra, Sarthak

    2013-01-01

    Magnetic drug carriers such as microrobots and paramagnetic microparticles have the potential to increase the therapeutic indices by selectively targeting the diseased tissue. These magnetic microobjects can be controlled using magnetic-based manipulation systems. In this study, we analyze a minimum

  9. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial.

    Science.gov (United States)

    Wang, S M; Mu, S Y; Zhu, C; Gong, Y X; Xu, P; Liu, H; Li, T; Zhu, S N; Zhang, X

    2012-02-27

    We studied the quantum properties of magnetic plasmon waves in a three-dimensional coupled metamaterial. A Hong-Ou-Mandel dip of two-photon interference with a visibility of 86 ± 6.0% was explicitly observed, when the sample was inserted into one of the two arms of the interferometer. This meant that the quantum interference property survived in such a magnetic plasmon wave-mediated transmission process, thus testifying the magnetic plasmon waves owned a quantum nature. A full quantum model was utilized to describe our experimental results. The results showed that the metamaterials could not only steer the classical light but also the non-classical light and they might have potential application in the future quantum information.

  10. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    Science.gov (United States)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  11. Three-dimensional morphometric analysis of the coracohumeral distance using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Taku Hatta

    2017-03-01

    Full Text Available There have been no studies investigating three-dimensional (3D alteration of the coracohumeral distance (CHD associated with shoulder motion. The aim of this study was to investigate the change of 3D-CHD with the arm in flexion/internal rotation and horizontal adduction. Six intact shoulders of four healthy volunteers were obtained for this study. MRI was taken in four arm positions: with the arm in internal rotation at 0°, 45°, and 90° of flexion, and 90° of flexion with maximum horizontal adduction. Using a motion analysis system, 3D models of the coracoid process and proximal humerus were created from MRI data. The CHD among the four positions were compared, and the closest part of coracoid process to the proximal humerus was also assessed. 3D-CHD significantly decreased with the arm in 90° of flexion and in 90° of flexion with horizontal adduction comparing with that in 0° flexion (P<0.05. In all subjects, lateral part of the coracoid process was the closest to the proximal humerus in these positions. In vivo quasi-static motion analysis revealed that the 3D-CHD was narrower in the arm position of flexion with horizontal abduction than that in 0° flexion. The lateral part on the coracoid process should be considered to be closest to the proximal humerus during the motion.

  12. Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jer-Huan [Department of Mechanical Engineering, Northern Taiwan Institute of Science and Technology, Beitou, Taipei 11202 (China); Yan, Wei-Mon; Li, Hung-Yi; Tsai, Wei-Che [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 22305 (China)

    2008-01-15

    In this paper, a three-dimensional numerical model of the proton exchange membrane fuel cells (PEMFCs) with conventional flow field designs (parallel flow field, Z-type flow field, and serpentine flow field) has been established to investigate the performance and transport phenomena in the PEMFCs. The influences of the flow field designs on the fuel utilization, the water removal, and the cell performance of the PEMFC are studied. The distributions of velocity, oxygen mass fraction, current density, liquid water, and pressure with the convention flow fields are presented. For the conventional flow fields, the cell performance can be enhanced by adding the corner number, increasing the flow channel length, and decreasing the flow channel number. The cell performance of the serpentine flow field is the best, followed by the Z-type flow field and then the parallel flow field. (author)

  13. High immersive three-dimensional tabletop display system with high dense light field reconstruction

    Science.gov (United States)

    Zheng, Mengqing; Yu, Xunbo; Xie, Songlin; Sang, Xinzhu; Yu, Chongxiu

    2014-11-01

    Three-dimensional (3D) tabletop display is a kind of display with wide range of potential applications. An auto-stereoscopic 3D tabletop display system is designed to provide the observers with high level of immersive perception. To improve the freedom of viewing position, the eye tracking system and a set of active partially pixelated masks are utilized. To improve the display quality, large number of images is prepared to generate the stereo pair. The light intensity distribution and crosstalk of parallax images are measured respectively to evaluate the rationality of the auto-stereoscopic system. In the experiment, the high immersive auto-stereoscopic tabletop display system is demonstrated, together with the system architectures including hardware and software. Experimental results illustrate the effectiveness of the high immersive auto-stereoscopic tabletop display system.

  14. A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery

    NARCIS (Netherlands)

    Schuurman, P. R.; de Bie, R. M.; Majoie, C. B.; Speelman, J. D.; Bosch, D. A.

    1999-01-01

    OBJECT: The purpose of this prospective study was to compare stereotactic coordinates obtained with ventriculography with coordinates derived from stereotactic computer-reconstructed three-dimensional magnetic resonance (3D-MR) imaging in functional stereotactic procedures. METHODS: In 15

  15. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Groeger, Adriane; Godau, Jana; Berg, Daniela; Chadzynski, Grzegorz; Klose, Uwe

    2011-01-01

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  16. Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets.

    Science.gov (United States)

    Li, Hailing; Li, Xiaohong; Guo, Defeng; Lou, Li; Li, Wei; Zhang, Xiangyi

    2016-09-14

    Core/shell nanostructures are fascinating for many advanced applications including strong permanent magnets, magnetic recording, and biotechnology. They are generally achieved via chemical approaches, but these techniques limit them to nanoparticles. Here, we describe a three-dimensional (3D) self-assembly of core/shell-like nanocomposite magnets, with hard-magnetic Nd2Fe14B core of ∼45 nm and soft-magnetic α-Fe shell of ∼13 nm, through a physical route. The resulting Nd2Fe14B/α-Fe core/shell-like nanostructure allows both large remanent magnetization and high coercivity, leading to a record-high energy product of 25 MGOe which reaches the theoretical limit for isotropic Nd2Fe14B/α-Fe nanocomposite magnets. Our approach is based on a sequential growth of the core and shell nanocrystals in an alloy melt. These results make an important step toward fabricating core/shell-like nanostructure in 3D materials.

  17. Magnetohydrodynamic study for three-dimensional instability of the Petschek type magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.

    2013-01-01

    The 3D instability of the spontaneous fast magnetic reconnection process is studied with magnetohydrodynamics (MHD) simulations, where the 2D model of the spontaneous fast magnetic reconnection is destabilized in three dimension. As well known in many 2D numerical MHD studies, when a 1D current sheet is destabilized with the current-driven anomalous resistivity, the 2D Petschek type fast magnetic reconnection is established. This paper shows that the 2D Petschek type fast magnetic reconnection can be destabilized in three dimension by an initial resistive disturbance which includes a weak fluctuation in the sheet current direction, i.e., along the magnetic neutral line. The resulting 3D fast magnetic reconnection finally becomes intermittent and random through a 3D instability. In addition, it is also shown that the 3D instability is suppressed by the uniform resistivity. It suggests that the 3D instability is caused in the Petschek-type reconnection process which is characterized by a strongly localized magnetic diffusion region and the slow shock acceleration of the plasma jets and is suppressed in the Sweet-Parker type reconnection process

  18. Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

    Directory of Open Access Journals (Sweden)

    Zhong Xiaodong

    2011-12-01

    Full Text Available Abstract Background Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. Methods A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. Results Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for Err, Ecc, and Ell, respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for Erc, Erl, and Ecl, respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. Conclusions Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour.

  19. Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

    Science.gov (United States)

    2011-01-01

    Background Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. Methods A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. Results Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for Err, Ecc, and Ell, respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for Erc, Erl, and Ecl, respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. Conclusions Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour. PMID:22208954

  20. Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake

    Science.gov (United States)

    Ubaidillah; Permata, A. N. S.; Mazlan, S. A.; Tjahjana, D. D. D. P.; Widodo, P. J.

    2017-10-01

    This research delivers a finite element magnetic simulation of a novel disk type multi-coil magnetorheological brake (MR brake). The MR brake axial design had more than one coil located outside of the casing. This design could simplify the maintenance process of brakes. One pair of coils was used as the representative of the entire coil in the simulation process, and it could distribute magnetic flux in all parts of the electromagnetic. The objective of this simulation was to produce magnetic flux on the surface of the disc brake rotor. The value of the MR brake magnetic flux was higher than that of the current MR brake having one coil with a larger size. The result of the simulation would be used to identify the effect of different fluids on each variation. The Magneto-rheological fluid MRF-132DG and MRF-140CG were injected in each gap as much as 0.50, 1.00, and 1.50 mm, respectively. On the simulation process, the coils were energized at 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 A, respectively. The magnetic flux produced by MRF-140CG was 336 m Tesla on the gap of 0.5 mm. The result of the simulation shows that the smaller the gap variation was, the higher the magnetic value was.

  1. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    International Nuclear Information System (INIS)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin

    1998-01-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  2. Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2015-09-01

    Full Text Available Apoptosis is an essential biological function required during embryogenesis, tissue homeostasis, organ development and immune system regulation. It is an active cell death pathway involved in a variety of pathological conditions. During this process cytoskeletal proteins appear damaged and undergo an enzymatic disassembling, leading to formation of apoptotic features. This study was designed to examine the three-dimensional chromatin behavior and cytoskeleton involvement, in particular actin re-modeling. HL-60 cells, exposed to hyperthermia, a known apoptotic trigger, were examined by means of a Field Emission in Lens Scanning Electron Microscope (FEISEM. Ultrastructural observations revealed in treated cells the presence of apoptotic patterns after hyperthermia trigger. In particular, three-dimensional apoptotic chromatin rearrangements appeared involving the translocation of filamentous actin from cytoplasm to the nucleus. FEISEM immunogold techniques showed actin labeling and its precise three-dimensional localization in the diffuse chromatin, well separated from the condensed one. The actin presence in dispersed chromatin inside the apoptotic nucleus can be considered an important feature, indispensable to permit the apoptotic machinery evolution.

  3. Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field

    International Nuclear Information System (INIS)

    Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie

    2014-01-01

    We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)

  4. Magnetic Fields

    OpenAIRE

    Schöller, Markus; Hubrig, Swetlana

    2015-01-01

    In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

  5. New three-dimensional far-field potential repository thermomechanical calculations; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement.

  6. Simultaneous strain-volume analysis by three-dimensional echocardiography: validation in normal subjects with tagging cardiac magnetic resonance.

    Science.gov (United States)

    Lilli, Alessio; Tessa, Carlo; Diciotti, Stefano; Croisille, Pierre; Clarysse, Patrick; Del Meglio, Jacopo; Salvatori, Luca; Vignali, Claudio; Casolo, Giancarlo

    2017-04-01

    The aim of this study is to compare three-dimensional echocardiography strain-volume analysis with tagging cardiac magnetic resonance (cMR) measurements. Strain-volume analysis represents a noninvasive method to assess myocardial function and volumes simultaneously. It can be derived from echocardiography and speckle-tracking; however, it shows some variability that can limit clinical utilization. A three-dimensional approach partially overcomes these limitations since full-volume acquisition avoids images being foreshortened and geometrical reconstruction. In the study presented here, 23 healthy subjects were studied by three-dimensional echocardiography and cMR during the same session. Images were stored and the better cardiac cycle was chosen for simultaneous analysis of volumes and longitudinal (Long) and circumferential (Circ) strain. By means of full-volume acquisition all parameters can be calculated for each frame of the cardiac cycle using the speckle-tracking method. With cMR, left ventricle volumes were calculated as recommended; myocardial strains were computed in short-axis and long-axis views using the tagging technique. For each patient, volumes and strain values were plotted in a Cartesian system for strain-volume analysis. Data were compared between the two methods using Bland-Altman analysis based on mean difference and 95% limits of agreement (LoA). The volume as measured by three-dimensional echocardiography and cMR was comparable with the slightly higher end-diastolic volumes measured by cMR (mean difference 15.24 ml; LoA -53.6 to 26.5 ml, end-systolic volume 0.3 ml; LoA -19.9 to 20.5 ml). Long shortening was very similar in the two methods (1.5%; LoA -3.9 to 7%), whereas Circ strain was systematically lower with cMR (-8.5%; LoA -15.5 to -1.5%). Very similar values between three-dimensional echo and cMR both for Slope of strain-volume curves (-0.015; LoA -0.08 to 0.05) and ratio (-0.001; LoA -0.04 to 0.04) were observed in the

  7. Tracking nanoscale electric and magnetic singularities through three-dimensional space

    NARCIS (Netherlands)

    Rotenberg, N.; le Feber, B.; Visser, T.D.; Kuipers, L.

    2015-01-01

    The study of light fields near nanophotonic structures continually reveals new fundamental features of light–matter interactions on the nanoscale, driving advances in fields ranging from nonlinear and quantum optics to biosensing. Here, we have succeeded in separately mapping the electric and

  8. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    Science.gov (United States)

    Goyal, Amit , Kang; Sukill, [Knoxville, TN

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  9. Three dimensional viscoelastic simulation on dynamic evolution of stress field in North China induced by the 1966 Xingtai earthquake

    Science.gov (United States)

    Chen, Lian-Wang; Lu, Yuan-Zhong; Liu, Jie; Guo, Ruo-Mei

    2001-09-01

    Using three dimensional (3D) viscoelastic finite element method (FEM) we study the dynamic evolution pattern of the coseismic change of Coulomb failure stress and postseismic change, on time scale of hundreds years, of rheological effect induced by the M S=7.2 Xingtai earthquake on March 22, 1966. Then, we simulate the coseismic disturbance in stress field in North China and dynamic change rate on one-year scale caused by the Xingtai earthquake and Tangshan earthquake during 15 years from 1966 to 1980. Finally, we discuss the triggering of a strong earthquake to another future strong earthquake.

  10. Whole-field measurement of three-dimensional stress by scattered-light photoelasticity with unpolarized light

    Directory of Open Access Journals (Sweden)

    Kihara T.

    2010-06-01

    Full Text Available In digital scattered-light photoelasticity with unpolarized light (DSLPUL, secondary principal stress direction ψj and total relative phase retardation ρjtot in a three-dimensional stressed model with rotation of the principal stress axes are obtained by measuring Stokes parameters of scattered light from optical slices. The present paper describes intelligibly the principle of DSLPUL, and then demonstrates that the ψj and ρjtot in a frozen stress sphere model are nondestructively measured over the entire field.

  11. Development of fetal brain sulci and gyri: assessment through two and three-dimensional ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Rolo, Liliam Cristine; Araujo Júnior, Edward; Araujo, Edward; Nardozza, Luciano Marcondes Machado; de Oliveira, Patrícia Soares; Ajzen, Sérgio Aron; Moron, Antonio Fernandes

    2011-02-01

    Cerebral malformations may lead to permanent postnatal sequels. The antenatal detection of anomalous or absent fetal sulci and gyri may indicate abnormal brain development and future neurological and psychomotor problems in that infant. The prenatal diagnosis of these conditions allows genetic counseling, psychological support of the parents and optimization of obstetric management. Diagnosis is usually based on two-dimensional obstetric ultrasound (2DUS) and eventually fetal magnetic resonance imaging (MRI), to confirm findings. Fetal three-dimensional ultrasound (3DUS) using the rendering mode has been recently introduced but has not yet been extensively tested in clinical practice. This study reviewed and compared three imaging modalities, 2DUS, 3DUS, and MRI, in the analysis of the development of the main sulci and gyri of central nervous system of normal fetuses between 20 and 32 weeks' gestation.

  12. Application of Magnetic Resonance Imaging and Three-Dimensional Treatment Planning in the Treatment of Orbital Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Rudoltz, Marc S. [Department of Radiation Oncology And Nuclear Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, 19107 (United States); Ayyangar, Komanduri [Department of Radiation Therapy, Medical College of Ohio, Toledo, OH43699 (United States); Mohiuddin, Mohammed [Department of Radiation Oncology And Nuclear Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, 19107 (United States)

    2015-01-15

    Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens were then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.

  13. Application of Magnetic Resonance Imaging and Three-Dimensional Treatment Planning in the Treatment of Orbital Lymphoma

    International Nuclear Information System (INIS)

    Rudoltz, Marc S.; Ayyangar, Komanduri; Mohiuddin, Mohammed

    2015-01-01

    Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens were then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.

  14. Thermal evolution of the full three-dimensional magnetic excitations in the multiferroic BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijun [ORNL; Wen, Jinsheng [University of California, Berkeley; Berlijn, Tom [ORNL; Gehring, Peter M [ORNL; Stock, Christopher K [ORNL; Stone, Matthew B [ORNL; Gu, G. D. [Brookhaven National Laboratory (BNL); Shapiro, S. M. [Brookhaven National Laboratory (BNL); Birgeneau, R J [University of California, Berkeley & LBNL; Xu, Guangyong [Brookhaven National Laboratory (BNL)

    2012-01-01

    We present neutron inelastic scattering measurements of the full three-dimensional spin-wave dispersion in the multiferroic material BiFeO3 for temperatures from 5K to 700K. Despite the presence of strong electromagnetic coupling, the magnetic excitations behave like conventional magnons over all parts of the Brillouin zone. At low temperature the spin-waves are well-defined coherent modes, described by a classical model for a G-type antiferromagnet. A softening of the spin-wave velocity and broadening in energy is already present at room temperature, which is well below the N eel temperature TN 640K, and increases on heating. In addition, a strong hybridization of the Fe 3d and O 2p states is found to modify the distribution of the spin-wave spectral weight significantly, which implies that the spins are not restricted to the Fe atomic sites as previously believed.

  15. Volume rendering based on magnetic resonance imaging: advances in understanding the three-dimensional anatomy of the human knee

    Science.gov (United States)

    Anastasi, Giuseppe; Bramanti, Placido; Di Bella, Paolo; Favaloro, Angelo; Trimarchi, Fabio; Magaudda, Ludovico; Gaeta, Michele; Scribano, Emanuele; Bruschetta, Daniele; Milardi, Demetrio

    2007-01-01

    The choice of medical imaging techniques, for the purpose of the present work aimed at studying the anatomy of the knee, derives from the increasing use of images in diagnostics, research and teaching, and the subsequent importance that these methods are gaining within the scientific community. Medical systems using virtual reality techniques also offer a good alternative to traditional methods, and are considered among the most important tools in the areas of research and teaching. In our work we have shown some possible uses of three-dimensional imaging for the study of the morphology of the normal human knee, and its clinical applications. We used the direct volume rendering technique, and created a data set of images and animations to allow us to visualize the single structures of the human knee in three dimensions. Direct volume rendering makes use of specific algorithms to transform conventional two-dimensional magnetic resonance imaging sets of slices into see-through volume data set images. It is a technique which does not require the construction of intermediate geometric representations, and has the advantage of allowing the visualization of a single image of the full data set, using semi-transparent mapping. Digital images of human structures, and in particular of the knee, offer important information about anatomical structures and their relationships, and are of great value in the planning of surgical procedures. On this basis we studied seven volunteers with an average age of 25 years, who underwent magnetic resonance imaging. After elaboration of the data through post-processing, we analysed the structure of the knee in detail. The aim of our investigation was the three-dimensional image, in order to comprehend better the interactions between anatomical structures. We believe that these results, applied to living subjects, widen the frontiers in the areas of teaching, diagnostics, therapy and scientific research. PMID:17645453

  16. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Mein, Stewart [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Cai, Bin; Curcuru, Austen [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Juang, Titania; Miles, Devin [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Mutic, Sasa; Wang, Yuhe [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Oldham, Mark [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2017-04-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  17. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    International Nuclear Information System (INIS)

    Rankine, Leith J.; Mein, Stewart; Cai, Bin; Curcuru, Austen; Juang, Titania; Miles, Devin; Mutic, Sasa; Wang, Yuhe; Oldham, Mark; Li, H. Harold

    2017-01-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  18. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  19. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    Science.gov (United States)

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  20. Three-dimensional demonstration of pelvic veins by magnetic resonance angiography

    International Nuclear Information System (INIS)

    Richter, C.S.; Duewell, S.; Krestin G.P.; Vesti, B.; Franzeck, U.K.; Bollinger, A.; Schulthess, G.K. von; Fuchs, W.A.

    1993-01-01

    The veins in the pelvis and lower limbs have been demonstrated by means of magnetic resonance angiography (MRA) in 11 normals and in 20 patients,using a 'time-of-flight' technique (TOF). Using normals, changes in the measurement parameters were used in order to optimise the examination protocol; consequently, the internal and external iliac veins and the superior and inferior gluteal veins could be identified in all cases and the internal pudendal veins in 6 out of 11 cases. This examination protocol was then used in patients with clinical suspicion of lower limb or pelvic vein thrombosis. Comparison of the MRA findings with those of phlebography (7 cases), duplex sonography (6 cases) and colour Doppler examinations (11 cases) showed that MRA was better for diagnosing thrombosis of the internal iliac veins (10 cases) than the other methods. In two patients thromboses of the common iliac veins and the inferior vena cava were demonstrated which were missed by colour Doppler examination. On the basis of our present experiences, MRA, using a two-dimensional TOF technique, appears to be a reliable non-invasive technique for demonstrating the veins of the pelvis and thigh. (orig.) [de

  1. Luminescence and Magnetic Properties of Two Three-Dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4′-Dicarboxylic Linker

    Directory of Open Access Journals (Sweden)

    Belén Fernández

    2016-02-01

    Full Text Available We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4′-dicarboxylic acid (H2abd as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

  2. Information content of SNR/resolution trade-offs in three-dimensional magnetic resonance imaging.

    Science.gov (United States)

    Portnoy, S; Kale, S C; Feintuch, A; Tardif, C; Pike, G B; Henkelman, R M

    2009-04-01

    In MRI, a trade-off exists between resolution and signal-to-noise ratio, since different fractions of the available scan time can be used to acquire data at higher spatial frequencies and to perform signal averaging. By comparing a wide variety of 3D isotropic MR scans with different combinations of SNR, resolution, and scan duration, the impact of this trade-off on the image information content was assessed. The information content of mouse brain, mouse whole-body, and human brain images was evaluated using a simple numerical approach, which sums the information contribution of each individual k-space data point. Results show that, with a fixed receiver bandwidth and field of view, the information content of trade-off images is always maximized when the SNR is equal to about 16. The optimal imaging resolution is dependent on the scan duration, as well as certain MR system properties, such as field strength and coil sensitivity. These properties are, however, easily accounted for with the acquisition of a single scout MR image, and the optimal imaging resolution can then be calculated using a simple mathematical relationship. If the imaging task is approached with a predetermined resolution requirement, the same scout scan can be used to calculate the scan duration that will provide the maximum possible information. Using these relationships to maximize the image information content is an excellent technique for guiding the initial selection of imaging parameters.

  3. Controlling three-dimensional vortices using multiple and moving external fields

    Science.gov (United States)

    Das, Nirmali Prabha; Dutta, Sumana

    2017-08-01

    Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.

  4. Three dimensional numerical simulation for air flow field in melt blowing

    Science.gov (United States)

    Xie, Sheng; Han, Wanli; Jiang, Guojun

    2017-10-01

    Melt blowing is one-step approach for producing microfibrous nonwovens. In this study, the characteristics of air flow field in different die melt blowing were studied. CFD simulation analysis was adopted to complete the air flow field simulation. The characteristics of the air flow fields in different die melt blowing were revealed and compared. Meanwhile, the fiber paths in these two melt-blowing processes are recorded with a high-speed camera. The fiber path profiles, especially the whipping, are obtained and presented.

  5. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures.

    Science.gov (United States)

    Kumar, A; Nune, K C; Misra, Rdk

    2016-10-01

    The endogenous electric field plays a determining role in impacting biological functions including communication with the physiological system, brain, and bone regeneration by influencing cellular functions. From this perspective, the objective of the study described here is to elucidate the effect of external electric field under dynamic conditions, in providing a guiding cue to osteoblasts in terms of cell-cell interactions and synthesis of prominent adhesion and cytoskeleton proteins. This was accomplished using pulsed direct current electric field of strength 0.1-1 V/cm. The electric field provided guided cue to the cells to migrate toward cathode. Membrane blebbing or necrosis was nearly absent in the vicinity of cathode at 0.1 and 0.5 V/cm electric field strength. Moreover, a higher cell proliferation as well as higher expression of vinculin and densely packed actin stress fibers was observed. At anode, the cells though healthy but expression of actin and vinculin was less. We underscore for the first time that the biological functionality can be favorably modulated on 3D printed scaffolds in the presence of electric field and under dynamic conditions with consequent positive effect on cell proliferation, growth, and expression level of prominent proteins. © The Author(s) 2016.

  6. Usefulness of three-dimensional magnetic resonance cholangiopancreatography with partial maximum intensity projection for diagnosing autoimmune pancreatitis.

    Science.gov (United States)

    Yanagisawa, Shin; Fujinaga, Yasunari; Watanabe, Takayuki; Maruyama, Masahiro; Muraki, Takashi; Takahashi, Masaaki; Fujita, Akira; Fujita, Sachie; Kurozumi, Masahiro; Ueda, Kazuhiko; Hamano, Hideaki; Kawa, Shigeyuki; Kadoya, Masumi

    To compare three-dimensional magnetic resonance cholangiopancreatography (MRCP) with/without partial maximum intensity projection (MIP) and endoscopic retrograde cholangiopancreatography (ERCP) in patients with autoimmune pancreatitis (AIP). Three-dimensional MRCP and ERCP images were retrospectively analyzed in 24 patients with AIP. We evaluated the narrowing length of the main pancreatic duct (NR-MPD), multiple skipped MPD narrowing (SK-MPD), and side branches arising from the narrowed portion of the MPD (SB-MPD) using four MRCP datasets: 5 original images (MIP 5 ), 10 original images (MIP 10 ), all original images (full-MIP), and a combination of these three datasets (a-MIP). The images were scored using a 3- or 5-point scale. The scores of the four MRCP datasets were statistically analyzed, and the positive rate of each finding was compared between MRCP and ERCP. The median scores for SB-MPD on MIP 5 and a-MIP were significantly higher than those on MIP 10 and full-MIP. In other words, partial MIP is superior to full-MIP for visualization of detailed structures. The positive rate for SB-MPD on full-MIP was significantly lower than that on ERCP, whereas the positive rate on MIP 5 , MIP 10 , and a-MIP was not significantly different from that on ERCP. Moreover, the positive rate for NR-MPD and SK-MPD on the MRCP images was significantly higher than that on the ERCP images. Partial MIP is useful for evaluating the MPD and is comparable with ERCP for diagnosing AIP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  7. Determination of two- and three-dimensional radiation fields for neutron radiotherapy planning

    International Nuclear Information System (INIS)

    Boehm, J.K.

    1986-01-01

    The thesis deals with the computerized investigations for fast neutron radiotherapy planning, explaining the calculation and modelling of local dose distributions in patients as a result of mixed neutron and gamma radiation fields. For a computed irradiation program (elaborated for instance by the COMRAD program system), dose distribution functions are required for the simulation of multi-field or moving beam irradiations, the functions being derived semi-empirically by non-linear regression. The necessary data on stationary field doses are derived by measurements or by computed simulation with specific transport programs from the nuclear engineering sector. Transport calculations show the effects of inhomogeneities in the patient's body on the dose distribution. The determined, strong inhomogneity effects (lungs, head) have to be taken into account as precisely as possible in order to achieve optimum irradiation planning. (orig./HP) [de

  8. Convergence to equilibria for a three-dimensional conserved phase-field system with memory

    Directory of Open Access Journals (Sweden)

    Gianluca Mola

    2008-02-01

    Full Text Available We consider a conserved phase-field system with thermal memory on a tridimensional bounded domain. Assuming that the nonlinearity is real analytic, we use a Lojasiewicz-Simon type inequality to study the convergence to steady states of single trajectories. We also give an estimate of the convergence rate.

  9. Three-dimensional parallel edge-based finite element modeling of electromagnetic data with field redatuming

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael

    2015-01-01

    This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...

  10. Three-Dimensional Velocity Field De-Noising using Modal Projection

    Science.gov (United States)

    Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn

    2017-11-01

    PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.

  11. Three-dimensional reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni

    2013-01-01

    The acousto-optic effect can be used to measure the pressure fluctuations in air created by acoustic disturbances (the propagation of light is affected by changes in the medium due to the presence of sound waves). This makes it possible to measure an arbitrary sound field using acousto-optic tomo...

  12. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  13. Electronic sand table three-dimensional display with the wide field of view

    Science.gov (United States)

    Wu, Lei; Sang, Xinzhu; Chen, Duo

    2017-10-01

    Sand table technology has a great prospect in wide fields. However, sand table technology is mainly based on two-dimension (2D) display. Based on 3D display and head-tracking technique, a novel 3D sand table technology is proposed. The technology consists of a 3D display module, a head-tracking module and an image processing module. The head-tracking module can track the position of observer's head closing to the center of eyes. According to the position, the image processing module would modify the projection matrix of virtual cameras. 3D virtual scene rendered by the image processing module would be display as if floating upon the projection screen in the display module. An experimental system for the 3D sand table was demonstrated, which offers the observer great field of view (FOV) to watch immersive 3D virtual scene.

  14. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    Science.gov (United States)

    2016-12-06

    great success. Our acoustics research groups, the Ocean Acoustics and Signals Laboratory and the Acoustic Communications Group, in the Applied Ocean...field efforts in shallow-water acoustics and underwater acoustic communications. We have plans to upgrade our existing hydrophone arrays and sound...Hydrophone Receiver Unit) arrays. The immedate objective was to improve our fieldwork capibility and to enhance the quality of our underwater acoustic

  15. Analysis of three-dimensional field distributions for focussed unapodized/apodized annular beams

    OpenAIRE

    Bhabu, Shaleen J

    1990-01-01

    The study of focal shift in focused beams using unapodized apertures has been well documented. However, not much work has been done on apodized apertures. In this thesis we use a Fourier-Optic approach to analyze the field distribution of a focused beam around the region of geometrical focus. The analytical formulation developed is general in nature as it is valid for any arbitrary aperture functions. This is then applied to some specific cases. Two cases of interest that are considered ar...

  16. RECONSTRUCTING THE SUBSURFACE THREE-DIMENSIONAL MAGNETIC STRUCTURE OF A SOLAR ACTIVE REGION USING SDO/HMI OBSERVATIONS

    International Nuclear Information System (INIS)

    Chintzoglou, Georgios; Zhang Jie

    2013-01-01

    A solar active region (AR) is a three-dimensional (3D) magnetic structure formed in the convection zone, whose property is fundamentally important for determining the coronal structure and solar activity when emerged. However, our knowledge of the detailed 3D structure prior to its emergence is rather poor, largely limited by the low cadence and sensitivity of previous instruments. Here, using the 45 s high-cadence observations from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we are able for the first time to reconstruct a 3D data cube and infer the detailed subsurface magnetic structure of NOAA AR 11158, and to characterize its magnetic connectivity and topology. This task is accomplished with the aid of the image-stacking method and advanced 3D visualization. We find that the AR consists of two major bipoles or four major polarities. Each polarity in 3D shows interesting tree-like structure, i.e., while the root of the polarity appears as a single tree-trunk-like tube, the top of the polarity has multiple branches consisting of smaller and thinner flux tubes which connect to the branches of the opposite polarity that is similarly fragmented. The roots of the four polarities align well along a straight line, while the top branches are slightly non-coplanar. Our observations suggest that an active region, even appearing highly complicated on the surface, may originate from a simple straight flux tube that undergoes both horizontal and vertical bifurcation processes during its rise through the convection zone.

  17. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  18. Numerical simulation analysis of three dimensional flow field in the lower plenum of CNP1000

    International Nuclear Information System (INIS)

    Liu Changwen; Jiang Xiaohua; Chen Weihong

    2004-01-01

    China National Nuclear Corporation (CNNC) proposed the CNP1000 design for Chinese market, which is a 1000MWe class nuclear power plant with three loops, in order to meet the electric power requirements of China and to fit the Chinese nuclear power development plan. This design, in which the number of fuel assembly is reasonably increased to 177 to lower the linear power density, has the characteristics of high safety and better economy. Comparing with the typical three-loop 1000MWe class nuclear power plant with 157 fuel assemblies, the reactor internals has been redesigned due to increasing of core diameter. NPIC has performed the hydraulic simulation test in order to validate the reactor internals design and analyze the reactor hydraulic characteristics. The aims of this paper are to analyze the effect of the new reactor internals design on the reactor thermal-hydraulic characteristics, particularly the flow distribution of the lower plenum and the core inlet flow distribution. The hydraulic tests were usually used to investigate the flow-rate distribution and flow resistance in the core. But the experimental periods were so long and the experiments were too expensive, especially for optimizing schemes. Along with the development of computer, computational fluid dynamics (CFD) became one kind of powerful means for research and engineering design. The flow distribution and pressure drop of the lower core plate can be obtained by numerical simulation of the 3-D flow field in the lower plenum. Through the comparison with the experiment data, not only the reactor internals design can be validated, but also the thermal hydraulic characteristics of the flow in the reactor vessel can be analyzed in detail. Computational fluid dynamics is the combination of neoteric hydrodynamics, numerical mathematics and computer science. It is a fringe subject with powerful vitality. CFD uses computer and discretization method to simulate the practical hydrodynamic problem. There are

  19. Performance simulation of a three-dimensional nanoscale field-effect diode

    International Nuclear Information System (INIS)

    Gatabi, Iman Rezanejad; Raissi, Farshid

    2011-01-01

    The modified field effect diode (FED) can provide orders of magnitude larger ratio compared to regular MOSFETs at sub-100 nm channel lengths. However, fabrication of the modified FED requires implantation of very thin and highly doped n- and p-type regions on top of each other, which is a major practical problem to overcome. An improved sub-100 nm channel length 3D configuration of the FED is proposed and simulated using Silvaco TCAD software. Fabrication of this configuration is compatible with a regular CMOS process while providing a larger I ON /I OFF ratio. The current–voltage (I–V) characteristics of this structure is obtained and compared with that of a semiconductor-on-insulator MOSFET (SOI-MOSFET) with the same dimensions numerically. Simulation results indicate that the I ON /I OFF ratio of the 3D FED is five orders of magnitude larger than that of the comparable SOI-MOSFET

  20. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    International Nuclear Information System (INIS)

    Rauscher, Emily; Menou, Kristen

    2013-01-01

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T eq ≈ 1200 K) and HD 209458b (T eq ≈ 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B ≥ 3-10 G.

  1. Three-dimensional characteristics of alveolar macrophages in vitro observed by dark field microscopy

    Science.gov (United States)

    Swarat, Dominic; Wiemann, Martin; Lipinski, Hans-Gerd

    2014-05-01

    Alveolar macrophages (AM) are cells from immune defense inside the lung. They engulf particles in vacuoles from the outer membrane. Volume and surface are important parameters to characterize the particle uptake. AM change their shape within a few seconds, therefore it is hard to obtain by confocal laser scanning microscopy, which is commonly used to generate 3D-images. So we used an intensified dark field microscopy (DFM) as an alternative method to generate contrast rich AM gray tone image slices used for 3D-reconstructions of AM cells by VTK software applications. From these 3D-reconstructions approximate volume and surface data of the AM were obtained and compared to values found in the literature. Finally, simple geometrical 3D-models of the AM were created and compared to real data. Averaged volume and surface data from the DFM images are close to values found in the literature. Furthermore, calculation of volume and surface data from DFM images could be done faster if simplified geometrical 3D-models of the cells were used.

  2. Three-dimensional measurement of the laminar flow field inside a static mixer

    Science.gov (United States)

    Speetjens, Michel; Jilisen, Rene; Bloemen, Paul

    2011-11-01

    Static mixers are widely used in industry for laminar mixing of viscous fluids as e.g. polymers and food stuffs. Moreover, given the similarities in flow regime, static mixers often serve as model for compact mixers for process intensification and even for micro-mixers. This practical relevance has motivated a host of studies on the mixing characteristics of static mixers and their small-scale counterparts. However, these studies are primarily theoretical and numerical. Experimental studies, in contrast, are relatively rare and typically restricted to local 2D flow characteristics or integral quantities (pressure drop, residence-time distributions). The current study concerns 3D measurements on the laminar flow field inside a static mixer using 3D Particle-Tracking Velocimetry (3D-PTV) Key challenges to the 3D-PTV image-processing procedure are the optical distortion and degradation of the particle imagery due to light refraction and reflection caused by the cylindrical boundary and the internal elements. Ways to tackle these challenges are discussed and first successful 3D measurements in an actual industrial static mixer are presented.

  3. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method

    Science.gov (United States)

    Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2018-02-01

    Three-dimensional growth morphologies of equiaxed dendrites growing under forced convection, with their preferred growth direction inclined from the flow direction, were investigated by performing large-scale phase-field lattice Boltzmann simulations on a graphical-processing-unit supercomputer. The tip velocities of the dendrite arms with their preferred growth directions inclined toward the upstream and downstream directions increased and decreased, respectively, as a result of forced convection. In addition, the tip velocities decreased monotonically as the angle between the preferred growth direction and the upstream direction increased. Here, the degree of acceleration of the upstream tips was larger than the degree of deceleration of the downstream tips. The angles between the actual tip growth directions and the preferred growth direction of the dendrite arms exhibited a characteristic change with two local maxima and two local minima.

  4. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  5. Assessment of maxillary sinus volume for the sinus lift operation by three-dimensional magnetic resonance imaging.

    Science.gov (United States)

    Gray, C F; Staff, R T; Redpath, T W; Needham, G; Renny, N M

    2000-05-01

    To calculate sinus and bone graft volumes and vertical bone heights from sequential magnetic resonance imaging (MRI) examinations in patients undergoing a sinus lift operation. MRI scans were obtained pre-operatively and at 10 days and 10 weeks post-operatively, using a 0.95 tesla MRI scanner and a three-dimensional (3D) magnetisation prepared, rapid acquisition gradient-echo (MP-RAGE) sequence. Estimates of the bone graft volumes required for a desired vertical bone height were made from the pre-operative MRI scan. Measurements of the graft volumes and bone heights actually achieved were made from the post-operative scans. The MRI appearance of the graft changed between the 10 day and 10 week scans. We have proposed a technique which has the potential to give the surgeon an estimate of the optimum volume of graft for the sinus lift operation from the pre-operative MRI scan alone and demonstrated its application in a single patient. Changes in the sequential MRI appearance of the graft are consistent with replacement of fluid by a matrix of trabecular bone.

  6. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  7. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies

    Science.gov (United States)

    Nishimoto, Shinji; Gallant, Jack L.

    2012-01-01

    Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive nonlinearity, a divisive nonlinearity and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in prior experiments. PMID:21994372

  8. Modeling and Inversion of Magnetic Anomalies Caused by Sediment–Basement Interface Using Three-Dimensional Cauchy-Type Integrals

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2014-01-01

    This letter introduces a new method for the modeling and inversion of magnetic anomalies caused by crystalline basements. The method is based on the 3-D Cauchy-type integral representation of the magnetic field. Traditional methods use volume integrals over the domains occupied by anomalous...... is particularly significant in solving problems of the modeling and inversion of magnetic data for the depth to the basement. In this letter, a novel method is proposed, which only requires discretizing the magnetic contrast surface for modeling and inversion. We demonstrate the method using several synthetic...... susceptibility and on the prismatic representation of the volumes with an anomalous susceptibility distribution. Such discretization is computationally expensive, particularly in 3-D cases. The technique of Cauchy-type integrals makes it possible to represent the magnetic field as surface integrals, which...

  9. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis.

    Science.gov (United States)

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-10-10

    We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity.

  10. Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haitao [Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637 (United States); Bockenfeld, Danny [Department of Mechanical, Material and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States); Rempfer, Dietmar [Department of Mechanical, Material and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States); Kaminski, Michael D [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rosengart, Axel J [Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637 (United States)

    2007-09-07

    A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3 (registered) . The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/micro-spheres from the human blood stream while accommodating necessary clinical boundary conditions.

  11. Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Bockenfeld, D.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Illinois Inst. of Tech.

    2007-09-07

    A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3{reg_sign}. The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/micro-spheres from the human blood stream while accommodating necessary clinical boundary conditions.

  12. Magnetic fields

    International Nuclear Information System (INIS)

    Mestel, L.; Arizona Univ., Tucson)

    1985-01-01

    The role of the Galactic magnetic field in the early stages of star formation is examined. The dynamical and observational consequences of the anisotropic collapse of cool gas clouds permeated by the local Galactic magnetic field are discussed. Magneto-gravitational equilibria of such clouds with subcritical mass-flux ratios, especially in the thin disk approximation, are addressed. Magnetic braking of both subcritical and supercritical masses is considered, and the consequences of flux leakage during the molecular cloud phase are discussed, including the effect on field topology

  13. Three-dimensional Fourier transformation constructive interference in steady state magnetic resonance imaging of the inner ear in patients with unilateral and bilateral Meniere's disease

    NARCIS (Netherlands)

    Mateijsen, DJM; Van Hengel, PWJ; Krikke, AP; Van Huffelen, WM; Wit, HP; Albers, FWJ

    Objective: In this study, three-dimensional Fourier transformation constructive interference in steady state (3DFT-CISS) magnetic resonance imaging was used to quantify the distance between the vertical part of the posterior semicircular canal and the posterior fossa as a measure of the

  14. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  15. A coastal three-dimensional water quality model of nitrogen in Jiaozhou Bay linking field experiments with modelling.

    Science.gov (United States)

    Lu, Dongliang; Li, Keqiang; Liang, Shengkang; Lin, Guohong; Wang, Xiulin

    2017-01-15

    With anthropogenic changes, the structure and quantity of nitrogen nutrients have changed in coastal ocean, which has dramatically influenced the water quality. Water quality modeling can contribute to the necessary scientific grounding of coastal management. In this paper, some of the dynamic functions and parameters of nitrogen were calibrated based on coastal field experiments covering the dynamic nitrogen processes in Jiaozhou Bay (JZB), including phytoplankton growth, respiration, and mortality; particulate nitrogen degradation; and dissolved organic nitrogen remineralization. The results of the field experiments and box model simulations showed good agreement (RSD=20%±2% and SI=0.77±0.04). A three-dimensional water quality model of nitrogen (3DWQMN) in JZB was improved and the dynamic parameters were updated according to field experiments. The 3DWQMN was validated based on observed data from 2012 to 2013, with good agreement (RSD=27±4%, SI=0.68±0.06, and K=0.48±0.04), which testifies to the model's credibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Three-dimensional temperature fields of the North Patagonian Sea recorded by Magellanic penguins as biological sampling platforms

    Science.gov (United States)

    Sala, Juan E.; Pisoni, Juan P.; Quintana, Flavio

    2017-04-01

    Temperature is a primary determinant of biogeographic patterns and ecosystem processes. Standard techniques to study the ocean temperature in situ are, however, particularly limited by their time and spatial coverage, problems which might be partially mitigated by using marine top predators as biological platforms for oceanographic sampling. We used small archival tags deployed on 33 Magellanic penguins (Spheniscus magellanicus), and obtained 21,070 geo-localized profiles of water temperature, during late spring of 2008, 2011, 2012 and 2013; in a region of the North Patagonian Sea with limited oceanographic records in situ. We compared our in situ data of sea surface temperature (SST) with those available from satellite remote sensing; to describe the three-dimensional temperature fields around the area of influence of two important tidal frontal systems; and to study the inter-annual variation in the three-dimensional temperature fields. There was a strong positive relationship between satellite- and animal-derived SST data although there was an overestimation by remote-sensing by a maximum difference of +2 °C. Little inter-annual variability in the 3-dimensional temperature fields was found, with the exception of 2012 (and to a lesser extent in 2013) where the SST was significantly higher. In 2013, we found weak stratification in a region which was unexpected. In addition, during the same year, a warm small-scale vortex is indicated by the animal-derived temperature data. This allowed us to describe and better understand the dynamics of the water masses, which, so far, have been mainly studied by remote sensors and numerical models. Our results highlight again the potential of using marine top predators as biological platforms to collect oceanographic data, which will enhance and accelerate studies on the Southwest Atlantic Ocean. In a changing world, threatened by climate change, it is urgent to fill information gaps on the coupled ocean-atmosphere system

  17. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta.

    Science.gov (United States)

    Akutsu, Toshinosuke; Matsumoto, Akira

    2010-12-01

    The current design of the bileaflet valve, the leaflets of which open outside first, differs significantly from the natural valve whose leaflets open center first. This difference generates a completely different flow field in the bileaflet valve compared to that in the natural heart valve. In a previous study, it was demonstrated that the valve design greatly affects the aortic flow field as well as the circulatory flow inside sinuses of Valsalva, using saline solution as a working fluid. A limited discussion on the turbulence flow field that could be generated by the valve was provided. In this continuation of that study, therefore, a dynamic PIV study was conducted to analyze the influence of the heart valve design on the aortic flow field, and particularly on the turbulent profile. This study also aimed to determine the influence of the viscosity of the testing fluid. Three bileaflet prostheses-the St. Jude Medical (SJM), the On-X, and the MIRA valves-were tested under pulsatile flow conditions. Flow through the central orifice of the SJM valve was slower than that through the newer designs. The newer designs tend to show strong flow through all orifices. The On-X valve generates simple jet-type flow while the MIRA valve with circumferentially curved leaflets generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve with higher turbulence. A 180° orientation that is more popular clinically seems to provide a less diffuse flow than a 90° orientation. The effect of increasing the viscosity was found to be an increase in the flow velocity through the central orifice and a more organized flow field for all of the valves tested.

  18. Three-Dimensional Constructive Interference in Steady State Sequences and Phase-Contrast Magnetic Resonance Imaging of Arrested Hydrocephalus.

    Science.gov (United States)

    Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel

    2017-02-01

    To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Two iridates, two models, and two approaches: A comparative study on magnetism in three-dimensional honeycomb materials

    Science.gov (United States)

    Lee, Eric Kin-Ho; Rau, Jeffrey G.; Kim, Yong Baek

    2016-05-01

    Two recent theoretical works studied the role of Kitaev interactions in the newly observed incommensurate magnetic order in the hyper-honeycomb (β -Li2IrO3 ) and stripy-honeycomb (γ -Li2IrO3 ) iridates. Each of these works analyzed a different model (J K Γ versus coupled zigzag chain model) using a contrasting method (classical versus soft-spin analysis). The lack of commonality between these works precludes meaningful comparisons and a proper understanding of these unusual orderings. In this study, we complete the unfinished picture initiated by these two works by solving both models with both approaches for both three-dimensional (3D) honeycomb iridates. Through comparisons between all combinations of models, techniques, and materials, we find that the bond-isotropic J K Γ model consistently predicts the experimental phase of β -Li2IrO3 regardless of the method used, while the experimental phase of γ -Li2IrO3 can be generated by the soft-spin approach with eigenmode mixing irrespective of the model used. To gain further insights, we solve a one-dimensional (1D) quantum spin-chain model related to both 3D models using the density matrix renormalization group method to form a benchmark. We discover that in the 1D model, incommensurate correlations in the classical and soft-spin analysis survive in the quantum limit only in the presence of the symmetric-off-diagonal exchange Γ found in the J K Γ model. The relevance of these results to the real materials is also discussed.

  20. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  2. Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience.

    Science.gov (United States)

    Jogiya, Roy; Schuster, Andreas; Zaman, Arshad; Motwani, Manish; Kouwenhoven, Marc; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2014-11-28

    The purpose of this study was to establish the feasibility of three-dimensional (3D) balanced steady-state-free-precession (bSSFP) myocardial perfusion cardiovascular magnetic resonance (CMR) at 3T using local RF shimming with dual-source RF transmission, and to compare it with spoiled gradient echo (TGRE) acquisition. Dynamic contrast-enhanced 3D bSSFP perfusion imaging was performed on a 3T MRI scanner equipped with dual-source RF transmission technology. Images were reconstructed using k-space and time broad-use linear acquisition speed-up technique (k-t BLAST) and compartment based principle component analysis (k-t PCA). In phantoms and volunteers, local RF shimming with dual source RF transmission significantly improved B1 field homogeneity compared with single source transmission (P=0.01). 3D bSSFP showed improved signal-to-noise, contrast-to-noise and signal homogeneity compared with 3D TGRE (29.8 vs 26.9, P=0.045; 23.2 vs 21.6, P=0.049; 14.9% vs 12.4%, p=0.002, respectively). Image quality was similar between bSSFP and TGRE but there were more dark rim artefacts with bSSFP. k-t PCA reconstruction reduced artefacts for both sequences compared with k-t BLAST. In a subset of five patients, both methods correctly identified those with coronary artery disease. Three-dimensional bSSFP myocardial perfusion CMR using local RF shimming with dual source parallel RF transmission at 3T is feasible and improves signal characteristics compared with TGRE. Image artefact remains an important limitation of bSSFP imaging at 3T but can be reduced with k-t PCA.

  3. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaoming; Yuan, Feng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Hui; Li, Shengtai, E-mail: zmgan@shao.ac.cn, E-mail: fyuan@shao.ac.cn, E-mail: hli@lanl.gov, E-mail: sli@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-04-10

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.

  4. A Three-Dimensional Model of Women’s Empowerment: Implications in the Field of Microfinance and Future Directions

    Directory of Open Access Journals (Sweden)

    Marloes A. Huis

    2017-09-01

    Full Text Available Women’s empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women’s empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women’s empowerment. We propose a Three-Dimensional Model of Women’s Empowerment to integrate previous findings and to gain a deeper understanding of women’s empowerment in the field of microfinance services. This model proposes that women’s empowerment can take place on three distinct dimensions: (1 the micro-level, referring to an individuals’ personal beliefs as well as actions, where personal empowerment can be observed (2 the meso-level, referring to beliefs as well as actions in relation to relevant others, where relational empowerment can be observed and (3 the macro-level, referring to outcomes in the broader, societal context where societal empowerment can be observed. Importantly, we propose that time and culture are important factors that influence women’s empowerment. We suggest that the time lag between an intervention and its evaluation may influence when empowerment effects on the different dimensions occur and that the type of intervention influences the sequence in which the three dimensions can be observed. We suggest that cultures may differ with respect to which components of empowerment are considered indicators of empowerment and how women’s position in society may influence the development of women’s empowerment. We propose that a Three-Dimensional Model of Women’s Empowerment should guide future programs in designing, implementing, and evaluating their interventions. As such our analysis offers two main practical implications. First, based on the model we suggest that future research should differentiate between the three dimensions of women

  5. A Three-Dimensional Model of Women's Empowerment: Implications in the Field of Microfinance and Future Directions.

    Science.gov (United States)

    Huis, Marloes A; Hansen, Nina; Otten, Sabine; Lensink, Robert

    2017-01-01

    Women's empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women's empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women's empowerment. We propose a Three-Dimensional Model of Women's Empowerment to integrate previous findings and to gain a deeper understanding of women's empowerment in the field of microfinance services. This model proposes that women's empowerment can take place on three distinct dimensions: (1) the micro-level, referring to an individuals' personal beliefs as well as actions, where personal empowerment can be observed (2) the meso-level, referring to beliefs as well as actions in relation to relevant others, where relational empowerment can be observed and (3) the macro-level, referring to outcomes in the broader, societal context where societal empowerment can be observed. Importantly, we propose that time and culture are important factors that influence women's empowerment. We suggest that the time lag between an intervention and its evaluation may influence when empowerment effects on the different dimensions occur and that the type of intervention influences the sequence in which the three dimensions can be observed. We suggest that cultures may differ with respect to which components of empowerment are considered indicators of empowerment and how women's position in society may influence the development of women's empowerment. We propose that a Three-Dimensional Model of Women's Empowerment should guide future programs in designing, implementing, and evaluating their interventions. As such our analysis offers two main practical implications. First, based on the model we suggest that future research should differentiate between the three dimensions of women's empowerment to increase our

  6. A Three-Dimensional Model of Women’s Empowerment: Implications in the Field of Microfinance and Future Directions

    Science.gov (United States)

    Huis, Marloes A.; Hansen, Nina; Otten, Sabine; Lensink, Robert

    2017-01-01

    Women’s empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women’s empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women’s empowerment. We propose a Three-Dimensional Model of Women’s Empowerment to integrate previous findings and to gain a deeper understanding of women’s empowerment in the field of microfinance services. This model proposes that women’s empowerment can take place on three distinct dimensions: (1) the micro-level, referring to an individuals’ personal beliefs as well as actions, where personal empowerment can be observed (2) the meso-level, referring to beliefs as well as actions in relation to relevant others, where relational empowerment can be observed and (3) the macro-level, referring to outcomes in the broader, societal context where societal empowerment can be observed. Importantly, we propose that time and culture are important factors that influence women’s empowerment. We suggest that the time lag between an intervention and its evaluation may influence when empowerment effects on the different dimensions occur and that the type of intervention influences the sequence in which the three dimensions can be observed. We suggest that cultures may differ with respect to which components of empowerment are considered indicators of empowerment and how women’s position in society may influence the development of women’s empowerment. We propose that a Three-Dimensional Model of Women’s Empowerment should guide future programs in designing, implementing, and evaluating their interventions. As such our analysis offers two main practical implications. First, based on the model we suggest that future research should differentiate between the three dimensions of women’s empowerment to

  7. Active feedback wide-field optical low-coherence interferometry for ultrahigh-speed three-dimensional morphometry

    International Nuclear Information System (INIS)

    Choi, Woo June; Choi, Hae Young; Lee, Byeong Ha; Na, Jihoon; Eom, Jonghyun

    2010-01-01

    A novel optical interferometric scheme for ultrahigh-speed three-dimensional morphometry is proposed. The system is based on wide-field optical coherence tomography (WF-OCT) but with optically chopped illumination. The chopping frequency is feedback-controlled to be always matched with the Doppler frequency of the OCT interferometer, which provides an efficient page-wide demodulation suitable for ultrahigh-speed volumetric imaging. To compensate the unwanted variation in the OCT Doppler frequency of the system, the illumination frequency is phase-locked with an auxiliary laser interferometer which shares the reference arm with the OCT interferometer. The two-dimensional (2D) interference signals projected on the 2D array pixels of a 200 Hz CCD are accumulated during one imaging frame of the CCD. Then, each pixel of the CCD demodulates the OCT signal automatically. Owing to the proposed active frequency-locked illumination scheme, the demodulation does not depend on the variation in the axial scanning speed. Volumetric topograms or/and tomograms of several samples were achieved and rendered with a sensitivity of 58 dB at an axial scan speed of 0.805 mm s −1

  8. Plaques of Nonstenotic Basilar Arteries with Isolated Pontine Infarction on Three-dimensional High Isotropic Resolution Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xian-Jin Zhu

    2015-01-01

    Conclusions: Three-dimensional VISTA images enable detection of BA plaques not visualized by MRA. BA plaques could be found in both the IPI and non-IPI group. However, IPI group showed plaques more extensively in BA than the non-IPI group.

  9. Three-dimensional ultrasound in the diagnosis of Müllerian duct anomalies and concordance with magnetic resonance imaging.

    Science.gov (United States)

    Bermejo, C; Martínez Ten, P; Cantarero, R; Diaz, D; Pérez Pedregosa, J; Barrón, E; Labrador, E; Ruiz López, L

    2010-05-01

    To demonstrate the value of three-dimensional (3D) ultrasound in the diagnosis of uterine malformations and its concordance with magnetic resonance imaging (MRI). This study included 286 women diagnosed with uterine malformation by 3D ultrasound, having been referred to our clinics on suspicion of uterine malformation following clinical and/or conventional two-dimensional ultrasound examination. With the exception of three with intact hymen, patients underwent both bimanual examination and speculoscopy before and/or after sonography. MRI was performed in 65 cases. We analyzed the diagnostic concordance between the techniques in the study of uterine malformations. Using 3D ultrasound we diagnosed: one case with uterine agenesis; 10 with unicornuate uterus, four of which also underwent MRI; six with didelphic uterus, one of which had MRI; 45 with bicornuate uterus, 12 of which had MRI; 125 with septate uterus (18 with two cervices), 42 of which had MRI (six with two cervices); 96 with arcuate uterus, three of which had MRI; and three with diethylstilbestrol (DES) iatrogenic uterine malformations, all of which had MRI. Among the 65 which underwent MRI, the diagnosis was: four cases with unicornuate uterus, 10 with bicornuate uterus (two with two cervices), 45 with septate uterus (five with two cervices), three with arcuate uterus and three with DES-related uterine malformations. The concordance between 3D ultrasound and MRI was very good (kappa index, 0.880 (95% CI, 0.769-0.993)). Discrepancies in diagnosis between the two techniques occurred in four cases. There was very good concordance in the diagnosis of associated findings (kappa index, 0.878 (95% CI, 0.775-0.980)), this analysis identifying differences in two cases. There is a high degree of concordance between 3D ultrasound and MRI in the diagnosis of uterine malformations, the relationship between cavity and fundus being visualized equally well with both techniques. 3D ultrasound should be complemented by

  10. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    Silva, J.M.

    1992-12-01

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  11. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad

    2013-05-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.

  12. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    DEFF Research Database (Denmark)

    Eltschka, M.; Klaui, M.; Rudiger, U

    2008-01-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using t....... The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states. (c) 2008 American Institute of Physics....

  13. User's manual for three dimensional FDTD version C code for scattering from frequency-independent dielectric and magnetic materials

    Science.gov (United States)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three-dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain (FDTD) technique. The supplied version of the code is one version of our current three-dimensional FDTD code set. The manual given here provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing radar cross section computations, a section discussing some scattering results, a new problem checklist, references, and figure titles.

  14. Propagation of the three-dimensional dust acoustic solitons in magnetized quantum plasmas with dust polarity effect

    Science.gov (United States)

    Sadiq, M.; Ali, S.; Sabry, R.

    2009-01-01

    The quantum hydrodynamical model is employed to investigate the nonlinear properties of the quantum dust acoustic waves in a magnetized dusty plasma composed of inertialess electrons, ions, and mobile positive/negative charged dust particles. For this purpose, a quantum Zakharov-Kuznetsov equation is derived and the basic features of the electrostatic excitations are investigated by applying the direct method. It is found that positive and negative bell-shaped solitary pulses become explosive pulses depending mainly upon the angles of propagation and dust polarity. Furthermore, the effects due to nondimensional quantum parameter and the external magnetic field are examined on the width of the quantum dust acoustic solitary pulses. The relevance of the present results to semiconductor quantum wells is mentioned.

  15. Analysis of the efficacy and safety of conventional radiotherapy of chest wall and clavicular field and three-dimensional conformal radiotherapy in patients after modified radical mastectomy

    Directory of Open Access Journals (Sweden)

    Song-Lin Wang

    2017-04-01

    Full Text Available Objective: To explore the efficacy and safety of conventional radiotherapy of chest wall and clavicular field and three-dimensional conformal radiotherapy in patients after modified radical mastectomy. Methods: A total of 84 patients who were admitted in our hospital after modified radical mastectomy were included in the study and divided into the conventional radiotherapy group (n=42 and the three-dimensional conformal radiotherapy group (n=42 according to different radiotherapy methods. The patients in the conventional radiotherapy group were given conventional radiotherapy of chest wall and clavicular field, while the patients in the three-dimensional conformal radiotherapy group were given three-dimensional conformal radiotherapy. The serum tumor markers and peripheral blood T lymphocyte subsets 6-8 weeks after treatment in the two groups were detected. The clinical efficacy, and toxic and side effects in the two groups were evaluated. Results: The serum CA15-3, CA125, CEA, and CK19 levels after treatment in the two groups were significantly reduced when compared with before treatment, CD3 +,CD4 +, and CD4 +/CD8 + were significantly elevated, while CD8 + was significantly reduced when compared with before treatment, but the comparison of the above indicators between the two groups was not statistically significant. The occurrence rate of radioactive skin damage and pneumonia after treatment in the conventional radiotherapy group was significantly higher than that in the three-dimensional conformal radiotherapy group. Conclusions: The two kinds of radiotherapy schemes have an equal efficacy, but the toxic and side effects of three-dimensional conformal radiotherapy are significantly lower than those by the conventional radiotherapy, with a certain advantage.

  16. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S.; Maryanski, Marek J.; Eastman, Peter; Holcomb, Stephen D.; Yashan, Zhang; Avison, Robin G.; Sanders, Michael; Gore, John C.

    1997-01-01

    nonlinear least-squares fit based on the Levenberg-Marquardt algorithm. The program also creates a dose-to-R2 calibration function by fitting a polynomial to a set of dose and R2 data points, obtained from gels irradiated in test tubes to known doses. This function can then be applied to any other R2 map, so that a dose map can be computed and displayed. Results: Through exposure to known doses of radiation, the gel has been shown to respond linearly with dose in the range of 0 to 10 Gy, and its response is independent of the beam energy or modality. Dose distributions have been imaged in orthogonal planes, and can be displayed in a convenient form for comparison with isodose plans. The response of the gel is stable; the gel can be irradiated at any time after its manufacture, and imaging can be conducted any time following a brief interval after irradiation. Conclusion: The polymer gel dosimeter has been shown to be a valuable device for displaying three-dimensional dose distributions. The imaged dose distribution can be compared easily with calculated dose distributions, to validate a treatment planning system. In the future, gels may be prepared in anthropomorphic phantoms, to confirm unique patient dose distributions

  17. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    Science.gov (United States)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  18. Do three-dimensional reconstructions add to the diagnostic value of computed tomography in the field of traumatology?

    International Nuclear Information System (INIS)

    Billet, F.P.J.; Schmitt, W.G.H.; Hofmann, M.; Huber, M.; Gay, B.

    1990-01-01

    Very little time was needed for three-dimensional techniques to show that they are of great importance to the accurracy and, above all, interpretation of CT-based diagnostic findings in the skeleton. This method is not associated with any increased risks from radiation and if there is no absolute requirement for a 'second plane' to be displayed, as for instance in fractures of the calcaneus, radiation exposure can be reduced even further. Particular mention should here also be made of the sternoclavicular joint, coracoid process and intervertebral foramina, even more so as we feel that the diagnostic advantages offered by three-dimensional techniques in traumatology have so far not been described in sufficient detail. (orig./GDG) [de

  19. A Three-Dimensional Model of Women’s Empowerment: Implications in the Field of Microfinance and Future Directions

    OpenAIRE

    Marloes A. Huis; Nina Hansen; Sabine Otten; Robert Lensink; Robert Lensink

    2017-01-01

    Women’s empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women’s empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women’s empowerment. We propose a Three-Dimensional Model of Women’s Empowerment to integrate previous findings and to gain a deeper un...

  20. A Three-Dimensional Model of Women's Empowerment: Implications in the Field of Microfinance and Future Directions

    OpenAIRE

    Huis, Marloes A.; Hansen, Nina; Otten, Sabine; Lensink, Robert

    2017-01-01

    Women's empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women's empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women's empowerment. We propose a Three-Dimensional Model of Women's Empowerment to integrate previous findings and to gain a deeper un...

  1. Analogous Three-Dimensional Constructive Interference in Steady State Sequences Enhance the Utility of Three-Dimensional Time of Flight Magnetic Resonance Angiography in Delineating Lenticulostriate Arteries in Insular Gliomas: Evidence from a Prospective Clinicoradiologic Analysis of 48 Patients.

    Science.gov (United States)

    Rao, Arun S; Thakar, Sumit; Sai Kiran, Narayanam Anantha; Aryan, Saritha; Mohan, Dilip; Hegde, Alangar S

    2018-01-01

    Three-dimensional (3D) time of flight (TOF) imaging is the current gold standard for noninvasive, preoperative localization of lenticulostriate arteries (LSAs) in insular gliomas; however, the utility of this modality depends on tumor intensity. Over a 3-year period, 48 consecutive patients with insular gliomas were prospectively evaluated. Location of LSAs and their relationship with the tumor were determined using a combination of contrast-enhanced coronal 3D TOF magnetic resonance angiography and coronal 3D constructive interference in steady state (CISS) sequences. These findings were analyzed with respect to extent of tumor resection and early postoperative motor outcome. Tumor was clearly visualized in 29 (60.4%) patients with T1-hypointense tumors using 3D TOF and in all patients using CISS sequences. Using combined 3D TOF and CISS, LSA-tumor interface was well seen in 47 patients, including all patients with T1-heterointense or T1-isointense tumors. Extent of resection was higher in the LSA-pushed group compared with the LSA-encased group. In the LSA-encased group, 6 (12.5%) patients developed postoperative hemiparesis; 2 (4.2%) cases were attributed to LSA injury. Contrast-enhanced 3D TOF can delineate LSAs in almost all insular gliomas but is limited in identifying the LSA-tumor interface. This limitation can be overcome by addition of analogous CISS sequences that delineate the LSA-tumor interface regardless of tumor intensity. Combined 3D TOF and 3D CISS is a useful tool for surgical planning and safer resections of insular tumors and may have added surgical relevance when included as an intraoperative adjunct. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  3. A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity.

    Science.gov (United States)

    Mon, Marta; Vallejo, Julia; Pasán, Jorge; Fabelo, Oscar; Train, Cyrille; Verdaguer, Michel; Ohkoshi, Shin-Ichi; Tokoro, Hiroko; Nakagawa, Kosuke; Pardo, Emilio

    2017-11-07

    A novel three-dimensional (3D) coordination polymer with the formula (C 3 N 2 H 5 ) 4 [MnCr 2 (ox) 6 ]·5H 2 O (2), where ox = oxalate and C 3 N 2 H 5 = imidazolium cation, is reported. Single crystal X-ray diffraction reveals that this porous coordination polymer adopts a chiral three-dimensional quartz-like architecture, with the guest imidazolium cations and water molecules being hosted in its pores. This novel multifunctional material exhibits both a ferromagnetic ordering at T C = 3.0 K, related to the host MnCr 2 network, and high proton conductivity [1.86 × 10 -3 S cm -1 at 295 K and 88% relative humidity (RH)] due to the presence of the acidic imidazolium cations and free water molecules. The similarity of the structure of compound 2 to that of the previously reported analogous compound (NH 4 ) 4 [MnCr 2 (ox) 6 ]·4H 2 O, (1), also allows us to analyse, to a certain extent, the effect of the acidity of the proton donating guest molecules on proton conduction properties. 2 hosts, in one-dimensional (1D) channels, imidazolium cations, which are more acidic than the ammonium ones in 1 and, as a consequence, 2 shows higher proton conduction than 1, highlighting the effect of the pK a of the proton donating guest molecules on proton conductivity.

  4. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin Shammel

    2015-06-30

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.

  5. Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations.

    Science.gov (United States)

    Zhang, Xing; Ibrahim, Yehia M; Chen, Tsung-Chi; Kyle, Jennifer E; Norheim, Randolph V; Monroe, Matthew E; Smith, Richard D; Baker, Erin S

    2015-10-21

    Multidimensional high throughput separations are ideal for analyzing distinct ion characteristics simultaneously in one analysis. We report on the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (μFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The μFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional FAIMS compensation fields, IMS drift times, and accurate ion masses for the detected features. These separations thereby increased the overall measurement separation power, resulting in greater information content and more complete characterization of the complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by improving isomeric separations and allowing detection of species obscured by interfering peaks.

  6. Three-dimensional magnetic spin-echo small-angle neutron scattering and neutron depolarization: A comparison

    International Nuclear Information System (INIS)

    Rekveldt, M. Theo; Dijk, Niels H. van; Grigoriev, Serguei V.; Kraan, Wicher H.; Bouwman, Wim G.

    2006-01-01

    The recently developed magnetic spin-echo small-angle neutron scattering (SANS) technique provides unique information about the distance correlation of the local vector magnetization as a function of the spin-echo length within a magnetic material. The technique probes the magnetic correlations on a length scale from 10 nm up to 10 μm within the bulk of a magnetic material by evaluating the Larmor precession of a polarized neutron beam in a spin-echo setup. The characteristics of the spin-echo SANS technique are discussed and compared to those of the more conventional neutron depolarization technique. Both of these techniques probe the average size of the magnetic inhomogeneities and the local magnetic texture. The magnetic spin-echo SANS technique gives information on the size distribution of these magnetic inhomogeneities perpendicular to the beam and, in principle, independent on the local magnetic induction. This information is not accessible by the neutron depolarization technique that gives the average size parallel to the beam multiplied with the square of the local magnetic induction. The basic possibilities of the magnetic spin-echo SANS technique are demonstrated by experiments on samples with a strong magnetic texture

  7. Three-dimensional analysis of the magnetic structure in Hokkaido, Japan; Hokkaido no sanjigen jiki kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Makino, M. [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    The magnetic structure in Hokkaido was quantitatively analyzed by the magnetic anomaly distribution. This paper describes its characteristics. Detection of structural boundaries and 3-D analysis of double-layer structure were conducted for the regional magnetic data in a region with about 500 km square. There was not so large difference in patterns of magnetic anomaly distribution between the case that the direction of magnetization was set at 45{degree} to the west during the geomagnetic conversion according to Segawa and Oshima and the case that it was set as same as the current geomagnetic direction. The method of Blakely and Simpson was useful to detect the boundaries of magnetic structures. The structural boundaries obtained were more linear than the iso-magnetic contour lines. A new method has been conceived in which the approximation of 3-D magnetic structure analysis can be deduced, and the irregularity of magnetic basement can be determined by the repeated calculation. In practice, this method was applied to the magnetic data in the whole Hokkaido. The calculation was stably converged. It was found that the magnetic structure obtained in the Kamuikotan/Ishikari-Kitakami magnetic belt exhibited a fault structure having steep slopes accompanied by the basin structure in the western boundaries. 19 refs., 6 figs.

  8. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  9. Feasibility and Accuracy of Automated Software for Transthoracic Three-Dimensional Left Ventricular Volume and Function Analysis: Comparisons with Two-Dimensional Echocardiography, Three-Dimensional Transthoracic Manual Method, and Cardiac Magnetic Resonance Imaging.

    Science.gov (United States)

    Tamborini, Gloria; Piazzese, Concetta; Lang, Roberto M; Muratori, Manuela; Chiorino, Elisa; Mapelli, Massimo; Fusini, Laura; Ali, Sarah Ghulam; Gripari, Paola; Pontone, Gianluca; Andreini, Daniele; Pepi, Mauro

    2017-11-01

    Recently, a new automated software package (HeartModel) was developed to obtain three-dimensional (3D) left ventricular (LV) volumes using a model-based algorithm (MBA) with a "one-button" simple system and user-adjustable slider. The aims of this study were to verify the feasibility and accuracy of the MBA in comparison with other commonly used imaging techniques in a large unselected population, to evaluate possible accuracy improvements of free operator border adjustments or changes of the slider's default position, and to identify differences in method accuracy related to specific pathologies. This prospective study included consecutive 200 patients. LV volumes and ejection fraction were obtained using the MBA and compared with the two-dimensional biplane method, the 3D full-volume (3DFV) modality, and, in 90 of 200 cases, cardiac magnetic resonance (CMR) measurements. To evaluate the optimal position of the slider with respect to the 3DFV and CMR modalities, a set of threefold cross-validation experiments was performed. Optimized and manually corrected LV volumes obtained using the MBA were also tested. Linear correlation and Bland-Altman analysis were used to assess intertechnique agreement. Automatic volumes were feasible in 194 patients (94.5%), with a mean processing time of 29 ± 10 sec. MBA-derived volumes correlated significantly with all evaluated methods, with slight overestimation of two-dimensional biplane and slight underestimation of CMR measurements. Higher correlations were found between MBA and 3DFV measurements, with negligible differences both in volumes (overestimation) and in LV ejection fraction (underestimation), respectively. Optimization of the user-adjustable slider position improved the correlation and markedly reduced the bias between the MBA and 3DFV or CMR. The accuracy of MBA volumes was lower in some pathologies for incorrect definition of LV endocardium. The MBA is highly feasible, reproducible, and rapid, and it correlates

  10. Common site of subchondral insufficiency fractures of the femoral head based on three-dimensional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Kenyu; Yamamoto, Takuaki; Motomura, Goro; Karasuyama, Kazuyuki; Sonoda, Kazuhiko; Kubo, Yusuke; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan)

    2016-01-15

    The objective of this study was to investigate the common sites of subchondral insufficiency fractures of the femoral head (SIF) based on three-dimensional (3-D) reconstruction of MR images. In 33 hips of 31 consecutive patients diagnosed with SIF, 3-D reconstruction of the bone, fracture, and acetabular edge was performed using MR images. These 3-D images were used to measure the fractured areas and clarify the positional relationship between the fracture and degree of acetabular coverage. The fractured area in the anterior portion was significantly larger than in the posterior area. In 11 cases, the fractures contacted the acetabular edge and were distributed on the lateral portion. The indices of acetabular coverage (center-edge angle and acetabular head index) in these cases were less than the normal range. In the remaining 22 cases, the fractures were apart from the acetabular edge and distributed on the mediolateral centerline of the femoral head. The majority of these cases had normal acetabular coverage. The common site of SIF is the anterior portion. In addition, two types of SIF are proposed: (1) Lateral type: the contact stress between the acetabular edge and lateral portion of the femoral head causes SIF based on the insufficient acetabular coverage, and (2) Central type: the contact stress between the acetabular surface and the mediolateral center of the femoral head causes SIF independent from the insufficiency of acetabular coverage. These findings may be useful for considering the treatment and prevention of SIF. (orig.)

  11. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data

    Science.gov (United States)

    Tian, Yu; Ke, Xiaoping; Wang, Yong

    2018-04-01

    This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.

  12. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  13. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Groeger, Adriane; Godau, Jana; Berg, Daniela [University of Tuebingen, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Disease (DZNE), Tuebingen (Germany); Chadzynski, Grzegorz; Klose, Uwe [University Hospital Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany)

    2011-09-15

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  14. Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study

    Science.gov (United States)

    Grégoire, V.; Darrozes, J.; Gaillot, P.; Nédélec, A.; Launeau, P.

    1998-07-01

    Shape fabric and distribution anisotropy of magnetite grains in a highly ferromagnetic ( s. l.) syenite are determined for three mutually perpendicular planes on about 600 magnetite grains. The grains are lenticular with an average aspect ratio of about 2.0. Their preferred orientation, determined by the inertia tensor method, is consistent with the principal directions of the magnetic susceptibility ellipsoid and the axial ratios of the magnetic fabric ellipses are very close to those of the shape fabric ellipses (e.g. 1.41 and 1.39 in the section plane perpendicular to the magnetic foliation and parallel to the magnetic lineation). The anisotropic wavelet transform can detect and quantify the anisotropic distribution of the magnetite grains which are located interstitially along the feldspar grain boundaries. This anisotropic distribution has no noticeable effect on the rock's anisotropy of magnetic susceptibility (AMS), since only a few percent of grains are close enough to interact magnetically. Therefore, it is realistic to consider that the AMS of ferromagnetic granitic rocks originates mainly from the shape fabric of anisotropic magnetite grains and a close correlation between the magnetic fabric and the magnetite grain shape fabric is expected.

  15. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  16. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  17. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  18. Magnetic solid-phase extraction using nanoporous three dimensional graphene hybrid materials for high-capacity enrichment and simultaneous detection of nine bisphenol analogs from water sample.

    Science.gov (United States)

    Wang, Lingling; Zhang, Zhenzhen; Zhang, Jing; Zhang, Lei

    2016-09-09

    The synthesis of a magnetic nanoporous three dimensional graphene (3DG)/ZnFe2O4 composite has been achieved. Through formation of graphene hydrogel, ZnFe2O4 magnetic particles was successfully introduced into the nanoporous 3DG, resulting in a magnetic porous carbon material. The morphology, structure, and magnetic behavior of the as-prepared 3DG/ZnFe2O4 were characterized by using the techniques of SEM, XRD, BET, VSM, FTIR, Raman and TGA. The 3DG/ZnFe2O4 has a high specific surface area and super paramagnetism. Its performance was evaluated by the magnetic solid-phase extraction of nine bisphenol analogs (BPs) from water samples followed by HPLC analysis, and showed excellent adsorption capability for the nine target compounds. Under optimized condition, the lower method detection limits (0.05-0.18ngmL(-1)), the higher enrichment factors (800 fold) and good recoveries (95.1-103.8%) with relative standard deviation (RSD) values less than 6.2% were achieved. The results indicated that the developed method based on the use of 3DG/ZnFe2O4 as the magnetic adsorbent has the advantages of convenience and high efficiency, and can be successfully applied to detect the nine BPs in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging.

    Science.gov (United States)

    Thorstensen, Anders; Dalen, Håvard; Hala, Pavel; Kiss, Gabriel; D'hooge, Jan; Torp, Hans; Støylen, Asbjørn; Amundsen, Brage

    2013-07-01

    We aimed to compare three-dimensional (3D) and two-dimensional (2D) echocardiography in the evaluation of patients with recent myocardial infarction (MI), using late-enhancement magnetic resonance imaging (LE-MRI) as a reference method. Echocardiography and LE-MRI were performed approximately 1 month after first-time MI in 58 patients. Echocardiography was also performed on 35 healthy controls. Left ventricular (LV) ejection fraction by 3D echocardiography (3D-LVEF), 3D wall-motion score (WMS), 2D-WMS, 3D speckle tracking-based longitudinal, circumferential, transmural and area strain, and 2D speckle tracking-based longitudinal strain (LS) were measured. The global correlations to infarct size by LE-MRI were significantly higher (P WMS and 2D-WMS compared with 3D-LVEF and the 4 different measurements of 3D strain, and 2D global longitudinal strain (GLS) was more closely correlated to LE-MRI than 3D GLS (P WMS, 2D-WMS, and 2D LS compared with the other indices. Three-dimensional WMS showed a sensitivity of 76% and a specificity of 72% for identification of LV infarct size >12%, and a sensitivity of 73% and a specificity of 95% for identification of segments with transmural infarct extension. Three-dimensional WMS and 2D gray-scale echocardiography showed the strongest correlations to LE-MRI. The tested 3D strain method suffers from low temporal and spatial resolution in 3D acquisitions and added diagnostic value could not be proven. © 2013, Wiley Periodicals, Inc.

  20. Improvement of the Method for Reconstructing the Temperature and Salinity Three-Dimensional Fields of the Black Sea Based on Insufficient Measurements and Altimetry

    Directory of Open Access Journals (Sweden)

    V.V. Knysh

    2016-12-01

    Full Text Available The article represents the results of two special numerical experiments aimed at improving the previously proposed procedure of reconstructing salinity and temperature three-dimensional fields based on the altimetry data and the insufficient measurements performed at the stations and the Argo buoys in 2012. In the Experiment 1, the monthly average coefficients of sea level linear dependence and depths where the salinity values of the “zero” gradation altimetry level profile lie within the salinity profiles of positive and negative gradations are applied. The procedure for calculating the daily average coefficients of the depth linear trends is realized in the Experiment 2. It is shown that the thermohaline fields reconstructed in the Experiment 2 for the deepwater area are more accurate; on the horizons of the 100–500 m layer their values range smoothly from one day to another. The Black Sea hydrophysical fields are reconstructed by assimilation in the model of three-dimensional thermohaline parameters in the reanalysis for 2012. It is revealed that, as compared to the observations on the overwhelming majority of horizons in the 0–500 m layer (the Experiment 2, the standard root-mean-square deviations of temperature and salinity are lower than those in Experiment 1. The root of the measured salinity field dispersion exceeds the standard deviations on all the horizons within 0–500 m, inclusive. Application of the daily average coefficients of the linear trends for reconstructing three-dimensional fields of temperature and salinity, and their subsequent assimilation in the model is preferable. It is revealed that the model of the upper 0–100 m layer thermodynamics requires improvement.

  1. Integration of three-dimensional magnetic resonance spectrometry to the irradiation treatment plan for glioblastomas: definition of new target volumes

    International Nuclear Information System (INIS)

    Ken, S.; Vieillevigne, L.; Cohen-Jonathan, E.M.; Laprie, A.; Ken, S.; Franceries, X.; Lotterie, J.A.; Lubrano, V.; Catalaa, I.; Celsis, P.; Berry, I.; Laprie, A.; Lotterie, J.A.; Lubrano, V.; Berry, I.; Catalaa, I.

    2010-01-01

    Based on a clinic trial, the authors report the definition of a new reliable and reproducible method to delimit and integrate targets to the treatment plan which are specific to magnetic resonance spectrometry imagery for the radiotherapy of glioblastomas, in order to perform a treatment by intensity-modulated conformational radiotherapy (IMRT). A weighted conventional MRI has been performed before radiotherapy. The importation of anatomic-metabolic images into the dose planning system comprises two steps: normalization on the whole volume of magnetic resonance spectrometry imagery, and segmentation of target volumes specific to spectrometry anomalies. This integration of target volumes is thus facilitated. Short communication

  2. Rockfall hazard assessment by coupling three-dimensional, process based models and field-based tree-ring data

    Science.gov (United States)

    Trappmann, Daniel; Stoffel, Markus; Corona, Christophe

    2014-05-01

    A realistic evaluation of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable to reproduce the spatial probability of rockfalls with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the real frequency of rockfalls. The analysis of impact scars on trees, in contrast, yields empirical rockfall frequencies but, trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands on rockfall slopes. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real empirical frequencies. Calibrated simulation results are in good agreement with empirical rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Empirical frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies through a systematic inclusion of impact records in trees.

  3. Relaxation of the three dimensional strain field near a notch in Zr-2.5nb ct specimen

    International Nuclear Information System (INIS)

    Leitch, B.W.; Christodoulou, N.; Tome, C.N.; Turner, P.A.

    2000-01-01

    The time-dependent, elastic lattice strain distribution ahead of a blunt notch in a curved, compact toughness (CT) specimen has been examined analytically and compared to experimental results. The CT specimen was manufactured from Zr-2.5Nb pressure tube material that is used for the manufacturing of pressure tubes in CANDU power generating stations. The thermally-induced creep strain distribution in the specimen was determined experimentally using neutron diffraction techniques. A three dimensional (3-D) finite element analysis of the compact toughness specimen is performed using as material subroutine, a self-consistent polycrystalline model that takes into account the anisotropic plastic and creep response of the Zr-2.5Nb material. This material model allows for the quantitative determination of the strain and stress distribution that evolve during the loading of the specimen. The stresses from the 3-D finite element calculation were then processed through the elasto-plastic polycrystalline code to extract the lattice strains in a given specimen direction. It was found that the lattice strains in the plane of the notch calculated at various time intervals compare very well with the distribution and magnitude of the experimentally determined measurements obtained at the same time intervals by means of neutron diffraction. The experimental results have shown that localised stress relaxation does occur near a notch region and that the model does capture this phenomenon. This indicates that in-service pressure tubes will have a higher tolerance to surface defects as a result of stress relaxation occurring due to creep

  4. Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.

    Science.gov (United States)

    Yang, Yali; Lin, Jun; Meschewski, Ryan; Watson, Erin; Valentine, Megan T

    2011-07-01

    We have designed and built a magnetic tweezers device that enables the application of calibrated stresses to soft materials while simultaneously measuring their microscale deformation using confocal microscopy. Unlike previous magnetic tweezers designs, our device is entirely portable, allowing easy use on microscopes in core imaging facilities or in collaborators' laboratories. The imaging capabilities of the microscope are unimpaired, enabling the 3-D structures of fluorescently labeled materials to be precisely determined under applied load. With this device, we can apply a large range of forces (~1-1200 pN) over micron-scale contact areas to beads that are either embedded within 3-D matrices or attached to the surface of thin slab gels. To demonstrate the usefulness of this instrument, we have studied two important and biologically relevant materials: polyacrylamide-based hydrogel films typical of those used in cell traction force microscopy, and reconstituted networks of microtubules, essential cytoskeletal filaments.

  5. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Czech Academy of Sciences Publication Activity Database

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  6. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Czech Academy of Sciences Publication Activity Database

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  7. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  8. Detection of viable myocardium by dobutamine stress tagging magnetic resonance imaging with three-dimensional analysis by automatic trace method

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Isao [Yatsu Hoken Hospital, Narashino, Chiba (Japan); Watanabe, Shigeru; Masuda, Yoshiaki

    2000-07-01

    The present study attempted to detect the viability of myocardium by quantitative automatic 3-dimensional analysis of the improvement of regional wall motion using an magnetic resonance imaging (MRI) tagging method. Twenty-two subjects with ischemic heart disease who had abnormal wall motion on echocardiography at rest were enrolled. All patients underwent dobutamine stress echocardiography (DSE), coronary arteriography and left ventriculography. The results were compared with those of 7 normal volunteers. MRI studies were done with myocardial tagging using the spatial modulation of magnetization technique. Automatic tracing with an original program was performed, and wall motion was compared before and during dobutamine infusion. The evaluation of myocardial viability with MRI and echocardiography had similar results in 19 (86.4%) of the 22 patients; 20 were studied by positron emission tomography or thallium-201 single photon emission computed tomography for myocardial viability, or studied for improvement of wall motion following coronary intervention. The sensitivity of dobutamine stress MRI (DSMRI) with tagging was 75.9% whereas that of DSE was 65.5%. The specificity of DSMRI was 85.7% (6/7) and that of DSE was 100% (7/7). The accuracy of DSMRI was 77.8% (28/36) and that of DSE 72.2% (26/36). DSMRI was shown to be superior to DSE in terms of evaluation of myocardial viability. (author)

  9. Symptomatic middle cerebral artery stenosis and occlusion. Comparison of three-dimensional time-of-flight magnetic resonance angiography with conventional angiography

    International Nuclear Information System (INIS)

    Sawada, Motoshi; Yano, Hirohito; Shinoda, Jun; Funakoshi, Takashi; Kumagai, Morio.

    1994-01-01

    The usefulness of magnetic resonance (MR) angiography using the three-dimensional time-of-flight method for the characterization of symptomatic middle cerebral artery (MCA) occlusive lesions was evaluated in 10 patients with MCA occlusion and 10 with MCA stenosis. All lesions were symptomatic and documented by conventional angiography. There was no false-negative MR angiogram that failed to demonstrate the MCA occlusive lesion. MR angiography correctly evaluated the location of lesions and the difference between stenosis and occlusion. Stenosis appeared as a focal signal loss (<1.0cm) of the MCA at the site of stenosis, and occlusion as a complete signal loss of the MCA distal to the site of occlusion. However, MR angiography could not distinguish diffuse stenosis and one point stenosis demonstrated by conventional angiography. MR angiography is a useful noninvasive diagnostic method for evaluating occlusive lesions of the MCA in symptomatic patients. (author)

  10. Analyses of magnetic structures and nuclear-density distribution by the structure-refinement and three-dimensional visualization systems RIETAN-FP-VENUS

    International Nuclear Information System (INIS)

    Izumi, Fujio; Momma, Koichi

    2010-01-01

    We have been developing a multi-purpose pattern-fitting system RIETAN-FP and a three-dimensional visualization system VENUS, which have been extensively used for structure refinements of various metal and inorganic materials from neutron powder diffraction data. At first, their outlines and the history of their developments are shortly looked back. The second part describes procedures for analyzing collinear magnetic structures with the combination of VESTA in the VENUS system and RIETAN-FP by taking BiCoO 3 for instance. Finally, a new C++ program, Dysnomia, for the maximum entropy method is introduced with emphasis on its new features. Dysnomia excels its predecessor, PRIMA, in computation speed, memory efficiency, scalability, and reliability. In particular, addition of a normal-distribution constraint is effective in obtaining nuclear-density distribution that is physically and chemically reasonable. (author)

  11. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging.

    Science.gov (United States)

    Niemann, Petra S; Pinho, Luiz; Balbach, Thomas; Galuschky, Christian; Blankenhagen, Michael; Silberbach, Michael; Broberg, Craig; Jerosch-Herold, Michael; Sahn, David J

    2007-10-23

    We tested a newly developed 4-dimensional (4D) right ventricular (RV) analysis method for computing RV volumes for both 3-dimensional (3D) ultrasound (US) and magnetic resonance (MR) images. Asymmetry and the anatomical complexity of the RV make accurate determination of RV shape and volume difficult. Thirty patients, 14 with grossly normal cardiac anatomy and 16 with major congenital heart disease, were studied at the same visit with both 3D echocardiography (echo) and magnetic resonance imaging (MRI) for RV size and function. Ultrasound images were acquired on a Philips 7500 system (Philips Medical Systems, Andover, Massachusetts) with a matrix-array transducer (real-time 3D echo) with full volume sweeps from apical and subcostal views. Sagittal, 4-chamber, and coronal views were derived for contour detection (all 12 to 24 slices). The MR images were acquired with a 3-T MRI magnet with segmented cine-loop gradient echo sequences in short- and rotated long-axis views to cover the RV inflow, body, and outflow tract. The RV volumes were analyzed with the new software applicable to 3D echo MR images. New software aided delineation of the RV free wall, tricuspid valve, RV outflow tract, and apex on 3D echo volumes. Although there was a slightly higher variability measuring right ventricular ejection fraction (RVEF) and volumes obtained by US compared with MRI, both imaging methods showed closely correlated results. The RVEF was measured with 4% variability for US and 5% variability for MRI with a correlation coefficient of r = 0.91. The RV end-diastolic volume was measured at 70.97 +/- 15.0 ml with 3D US and at 70.06 +/- 14.8 ml with MRI (r = 0.99), end-systolic volume measured 39.8 +/- 10.4 ml with 3D US and 39.1 +/- 10.2 ml with MRI (r = 0.98). The new RV analysis software allowed validation of the accuracy of 4D echo RV volume data compared with MRI.

  12. Weyl and Dirac semimetals in three-dimensional solids

    Science.gov (United States)

    Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin

    2018-01-01

    Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

  13. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  14. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    C Lalande

    2011-04-01

    Full Text Available For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI-based tracking of these cells, labelled with magnetic agents for in vivo longitudinal assessment. hADSCs were isolated from adipose tissue and labelled with USPIO-rhodamine (Ultrasmall SuperParamagnetic Iron Oxide. USPIO internalisation, absence of toxicity towards hADSCs, and osteogenic differentiation of the labelled cells were evaluated in standard culture conditions. Labelled cells were then seeded within a 3D porous polysaccharide-based scaffold and imaged in vitro using fluorescence microscopy and MRI. Cellularised scaffolds were implanted subcutaneously in nude mice and MRI analyses were performed from 1 to 28 d after implantation. In vitro, no effect of USPIO labelling on cell viability and osteogenic differentiation was found. USPIO were efficiently internalised by hADSCs and generated a high T2* contrast. In vivo MRI revealed that hADSCs remain detectable until 28 d after implantation and could migrate from the scaffold and colonise the area around it. These data suggested that this scaffold might behave as a cell carrier capable of both holding a cell fraction and delivering cells to the site of implantation. In addition, the present findings evidenced that MRI is a reliable technique to validate cell-seeding procedures in 3D porous scaffolds, and to assess the fate of hADSCs transplanted in vivo.

  15. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  16. Magnetic resonance cholangiography: comparison of two- and three-dimensional sequences for assessment of malignant biliary obstruction

    International Nuclear Information System (INIS)

    Choi, Jin-Young; Kim, Myeong-Jin; Lee, Jeong Min; Lee, Jae Young; Kim, Se Hyung; Han, Joon Koo; Choi, Byung Ihn; Kim, Ki Whang

    2008-01-01

    The purpose was to retrospectively compare two-dimensional (2D) magnetic resonance cholangiography (MRC) including breath-hold single-shot rapid acquisition with relaxation enhancement (RARE) and multislice half-Fourier RARE versus navigator-triggered 3D-RARE MRC in the evaluation of biliary malignancy. MRC findings were evaluated in 31 patients with malignant biliary obstruction, including biliary malignancy, gallbladder carcinoma, and ampullary cancer. Two observers independently reviewed the images to assess the overall image quality, artifacts, ductal conspicuity, extent of disease, diagnostic confidence of tumor extent, and origin of tumor. The results were compared with surgical and histopathologic findings. Studies obtained with 3D-MRC were of significantly higher technical quality than those obtained with 2D-MRC. However, the accuracy between two sequences for classification of tumor showed no statistical significance. There was no significant difference between the Az values of 2D- and 3D-MRC for overall tumor extent in bilateral second order branch, intrapancreatic common bile duct (CBD) involvement (Az = 0.889, 0.881 for 2D and Az = 0.903, 0.864 for 3D). Nor was there a significant difference between two sequences in the assessment of the origin of tumor. Although 3D-MRC has superior image quality over 2D-MRC, 3D-MRC showed no statistically significant difference in accuracy compared with 2D-MRC for evaluating the extent of disease in malignant biliary obstructions. (orig.)

  17. Age and gender assessment through three-dimensional morphometric analysis of maxillary sinus using magnetic resonance imaging.

    Science.gov (United States)

    Rani, Sanda Usha; Rao, Guttikonda Venkateswara; Kumar, Dumpala Rakesh; Sravya, Taneeru; Sivaranjani, Yeluri; Kumar, Manchikatla Praveen

    2017-01-01

    Age and sex determinations are important tools in forensic odontology which help in the identification of an individual. Radiographic method of sex and age estimation is a noninvasive simple technique. Measurements of the maxillary sinuses can be used for the estimation of age and gender when other methods are inconclusive. Maxillary sinus dimensions were used as an important tool in the identification of unknown. This study aims to estimate age and sex using the dimensions and volume of the maxillary sinus in magnetic resonance imaging (MRI). This study included sixty patients visiting Department of Radiology Mamata General Hospital, Khammam requiring MRI of the brain and paranasal sinuses. Maxillary sinus dimensions were measured using Siemens software, and statistical analysis was done. The volume and dimensions of the maxillary sinus were more in males when compared to the females with a statistically significant difference. The highest percentage of sexual dimorphism was seen in the volume of left maxillary sinus. Age estimated using the volume of maxillary sinus showed no statistically significant difference from the actual age of the subjects. The dimensions and volume of the maxillary sinuses were larger in males than in females, in addition to that they tend to be less with the older age. MRI measurements of maxillary sinuses may be useful to support gender and age estimation in forensic radiology.

  18. Time-resolved three-dimensional magnetic resonance velocity mapping of chronic thoracic aortic dissection. A preliminary investigation

    International Nuclear Information System (INIS)

    Amano, Yasuo; Sekine, Tetsuro; Tanaka, Keiji; Takagi, Ryo; Kumita, Shinichiro; Suzuki, Yuriko

    2011-01-01

    The blood flow patterns of chronic thoracic aortic dissection are complicated, and their clinical significance remains unknown. We evaluated the technical and clinical potentials of time-resolved 3-dimensional (3D) magnetic resonance (MR) velocity mapping for assessing these patterns. We used data collected from time-resolved 3D phase-contrast MR imaging of 16 patients with chronic thoracic aortic dissection to generate time-resolved 3D MR velocity mapping that included 3D streamline and path line. We investigated blood flow patterns of this disease in the mapping and compared them with the morphological changes of the patent false lumen. Time-resolved 3D MR velocity mapping visualized rapid flow at the entry and in the true lumen immediately distal to the entry. We observed slower helical or laminar flow in the patent false lumen. In patients with disease progression, slower helical flow following rapid entry jet collided with the outer wall of the false lumen and was also observed in a growing ulcer-like projection. We showed the potential of time-resolved 3D MR velocity mapping for visualizing pathologic flow patterns related to chronic thoracic aortic dissection. (author)

  19. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  20. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  1. Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging.

    Science.gov (United States)

    Tanitame, Nobuko; Tanitame, Keizo; Awai, Kazuo

    2017-04-01

    This article reviews the clinical utility of 3D magnetic resonance imaging (MRI) sequences optimized for the evaluation of various intraspinal lesions. First, intraspinal tumors with hypervascular components and arteriovenous malformations (AVM) are clearly shown on contrast-enhanced (CE)-3D T1-weighted gradient-echo (GE) sequences with high spatial resolution. Second, dynamic CE-3D time-resolved magnetic resonance angiography (MRA) shows delineated feeding arteries of intraspinal AVM or arteriovenous fistula (AVF), greatly aiding subsequent digital subtraction angiography (DSA). Third, 3D multiecho T2*-weighted GE sequences are used to visualize intraspinal structures and spinal cord lesions and are sensitive to the magnetic susceptibility of intraspinal hemorrhages. Three-dimensional balanced steady-state free precession (SSFP) and multishot 3D balanced non-SSFP sequences produce contiguous thin images with high signal-to-noise ratio (SNR) in short scanning times. Intraspinal cystic lesions and small nerve-root tumors in subarachnoid space can be viewed using 3D balanced SSFP. Spinal cord myelomalacia and cord compression can be evaluated on fat-suppressed multishot 3D balanced non-SSFP. Finally, a 3D T2-weighted fast spin-echo (FSE) sequence with variable flip angle (FA) refocusing pulse improves through-plane spatial resolution over conventional 2D T2-weighted FSE sequences while matching image contrast.

  2. Three-dimensional interactive and stereotactic atlas of the cranial nerves and their nuclei correlated with surface neuroanatomy, vasculature and magnetic resonance imaging.

    Science.gov (United States)

    Nowinski, Wieslaw L; Johnson, Aleksandra; Chua, Beng Choon; Nowinska, Natalia G

    2012-01-01

    Knowledge of the cranial nerves and their nuclei is critical in clinical practice, medical research and education. However to our best knowledge, a comprehensive source capturing full three-dimensional (3D) relationships of the cranial nerves along with surrounding neuroanatomy is not yet available. This work addresses the construction and validation of an atlas of the cranial nerves with their nuclei, correlated with surface neuroanatomy, vasculature, and magnetic resonance imaging. The atlas is interactive, stereotactic, 3D, detailed, fully parcellated, completely labeled, consistent in 3D, electronically dissectible, and scalable. A 3D geometrical model of the 12 pairs of cranial nerves with nuclei was created from an in vivo magnetic resonance scan exploiting in-house developed tools and methods, including tubular and iso-surface modeling, interactive editing, and mesh compression. This virtual model contains 439 objects with 121 different names, labeled based on Terminologia Anatomica. The model was integrated with a 3D atlas of structure, vasculature and tracts developed earlier, and correlated with sectional magnetic resonance anatomy. The whole model or its components can be interactively rotated, zoomed, panned, and add or removed with a simple few clicks. The studied material can be adaptively selected in an in-depth manner by using controls available in the user interface. This atlas is potentially useful for anatomy browsing, user self-testing, automatic student assessment, preparing materials, and localization in clinical neurology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. High temporal resolution magnetic resonance imaging: development of a parallel three dimensional acquisition method for functional neuroimaging

    International Nuclear Information System (INIS)

    Rabrait, C.

    2007-11-01

    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2-dimensional acquisition is subject to vascular in flow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developing a 3-dimensional high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, E.V.I. allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3-dimensional brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize S.N.R., so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve S.N.R., the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel E.V.I. such as the study of non-stationary effects in the B.O.L.D. response

  4. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  5. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  6. Three-dimensional metamaterials

    Science.gov (United States)

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  7. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  8. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    Science.gov (United States)

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  9. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxic region of interest template. Validation using magnetic resonance imaging. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Ryo; Katayama, Shigenori; Takeda, Naoya; Fujita, Katsuzo [Nishi-Kobe Medical Center (Japan); Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan); Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine

    2003-03-01

    The previously reported three-dimensional stereotaxic region of interest (ROI) template (3DSRT-t) for the analysis of anatomically standardized technetium-99m-L,L-ethyl cysteinate dimer ({sup 99m}Tc-ECD) single photon emission computed tomography (SPECT) images was modified for use in a fully automated regional cerebral blood flow (rCBF) quantification software, 3DSRT, incorporating an anatomical standardization engine transplanted from statistical parametric mapping 99 and ROIs for quantification based on 3DSRT-t. Three-dimensional T{sub 2}-weighted magnetic resonance images of 10 patients with localized infarcted areas were compared with the ROI contour of 3DSRT, and the positions of the central sulcus in the primary sensorimotor area were also estimated. All positions of the 20 lesions were in strict accordance with the ROI delineation of 3DSRT. The central sulcus was identified on at least one side of 210 paired ROIs and in the middle of 192 (91.4%) of these 210 paired ROIs among the 273 paired ROIs of the primary sensorimotor area. The central sulcus was recognized in the middle of more than 71.4% of the ROIs in which the central sulcus was identifiable in the respective 28 slices of the primary sensorimotor area. Fully automated accurate ROI delineation on anatomically standardized images is possible with 3DSRT, which enables objective quantification of rCBF and vascular reserve in only a few minutes using {sup 99m}Tc-ECD SPECT images obtained by the resting and vascular reserve (RVR) method. (author)

  10. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxic region of interest template. Validation using magnetic resonance imaging. Technical note

    International Nuclear Information System (INIS)

    Takeuchi, Ryo; Katayama, Shigenori; Takeda, Naoya; Fujita, Katsuzo; Yonekura, Yoshiharu; Konishi, Junji

    2003-01-01

    The previously reported three-dimensional stereotaxic region of interest (ROI) template (3DSRT-t) for the analysis of anatomically standardized technetium-99m-L,L-ethyl cysteinate dimer ( 99m Tc-ECD) single photon emission computed tomography (SPECT) images was modified for use in a fully automated regional cerebral blood flow (rCBF) quantification software, 3DSRT, incorporating an anatomical standardization engine transplanted from statistical parametric mapping 99 and ROIs for quantification based on 3DSRT-t. Three-dimensional T 2 -weighted magnetic resonance images of 10 patients with localized infarcted areas were compared with the ROI contour of 3DSRT, and the positions of the central sulcus in the primary sensorimotor area were also estimated. All positions of the 20 lesions were in strict accordance with the ROI delineation of 3DSRT. The central sulcus was identified on at least one side of 210 paired ROIs and in the middle of 192 (91.4%) of these 210 paired ROIs among the 273 paired ROIs of the primary sensorimotor area. The central sulcus was recognized in the middle of more than 71.4% of the ROIs in which the central sulcus was identifiable in the respective 28 slices of the primary sensorimotor area. Fully automated accurate ROI delineation on anatomically standardized images is possible with 3DSRT, which enables objective quantification of rCBF and vascular reserve in only a few minutes using 99m Tc-ECD SPECT images obtained by the resting and vascular reserve (RVR) method. (author)

  11. Viscoelastic effects in three-dimensional microphase separation of block copolymers : Dynamic mean-field density functional approach

    NARCIS (Netherlands)

    Maurits, NM; Zvelindovsky, AV; Fraaije, JGEM

    1998-01-01

    In the present paper, we extend the dynamic mean-field density functional method which describes microphase separation phenomena in polymer liquids, to account for viscoelastic effects. The effect of simple steady shear on polymer orientation and elongation is taken into account by adapting the

  12. Three-dimensional, extended field-of-view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy.

    Science.gov (United States)

    House, Michael; Feltovich, Helen; Hall, Timothy J; Stack, Trevor; Patel, Atur; Socrate, Simona

    2012-01-01

    Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by (1) lack of thorough characterization of the three-dimensional anatomical changes associated with cervical deformation and (2) difficulty measuring cervical tissue properties in vivo. The objective of the present study was to explore the feasibility of using three-dimensional ultrasound and fundal pressure to obtain anatomically-accurate numerical models of large-strain cervical deformation during pregnancy and enable noninvasive assessment of cervical-tissue compliance. Healthy subjects (n = 6) and one subject with acute cervical insufficiency in the midtrimester were studied. Extended field-of-view ultrasound images were obtained of the entire uterus and cervix. These images aided construction of anatomically accurate numerical models. Cervical loading was achieved with fundal pressure, which was quantified with a vaginal pressure catheter. In one subject, the anatomical response to fundal pressure was matched by a model-based simulation of the deformation response, thereby deriving the corresponding cervical mechanical properties and showing the feasibility of noninvasive assessment of compliance. The results of this pilot study demonstrate the feasibility of a biomechanical modeling framework for estimating cervical mechanical properties in vivo. An improved understanding of cervical biomechanical function will clarify the pathophysiology of cervical shortening.

  13. A three-dimensional, extended field of view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy

    Science.gov (United States)

    House, Michael; Feltovich, Helen; Hall, Timothy J; Stack, Trevor; Patel, Atur; Socrate, Simona

    2015-01-01

    Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by 1) lack of thorough characterization of the three-dimensional anatomical changes associated with cervical deformation and 2) difficulty measuring cervical tissue properties in vivo. The objective of the present study was to explore the feasibility of using three-dimensional ultrasound and fundal pressure to obtain anatomically accurate numerical models of large-strain cervical deformation during pregnancy and enable non-invasive assessment of cervical tissue compliance. Healthy subjects (n=6) and one subject with acute cervical insufficiency in the midtrimester were studied. Extended field of view ultrasound images were obtained of the entire uterus and cervix. These images aided construction of anatomically accurate numerical models. Cervical loading was achieved with fundal pressure, which was quantified with a vaginal pressure catheter. In one subject, the anatomical response to fundal pressure was matched by a model-based simulation of the deformation response, thereby deriving the corresponding cervical mechanical properties and showing the feasibility of non-invasive assessment of compliance. The results of this pilot study demonstrate the feasibility of a biomechanical modeling framework for estimating cervical mechanical properties in vivo. An improved understanding of cervical biomechanical function will clarify the pathophysiology of cervical shortening. PMID:22655487

  14. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren

    2012-01-01

    The stress field around a notch in a coarse grained Mg AZ31 sample has been measured under tensile load using the individual grains as probes in an in situ high energy synchrotron diffraction experiment. The experimental set-up, a variant of three-dimensional X-ray diffraction microscopy, allows...... the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when...... the traditional continuum mechanics approach breaks down and fracture is governed by local heterogeneities (e.g. phase or stress differences) between grains. As a first approximation the results obtained were averaged through the thickness of the sample and compared with an elastic–plastic continuum finite...

  15. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.

    Science.gov (United States)

    Welsch, Goetz H; Zak, Lukas; Mamisch, Tallal C; Resinger, Christoph; Marlovits, Stefan; Trattnig, Siegfried

    2009-09-01

    Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared

  16. Universal scaling of Néel temperature, staggered magnetization density, and spin-wave velocity of three-dimensional disordered and clean quantum antiferromagnets

    Science.gov (United States)

    Tan, D.-R.; Jiang, F.-J.

    2017-02-01

    The Néel temperature, staggered magnetization density, as well as the spin-wave velocity of a three-dimensional (3D) quantum Heisenberg model with antiferromagnetic disorder (randomness) are calculated using first-principles nonperturbative quantum Monte Carlo simulations. In particular, we examine the validity of universal scaling relations that are related to these three studied physical quantities. These relations are relevant to experimental data and are firmly established for clean (regular) 3D dimerized spin-1/2 Heisenberg models. Remarkably, our numerical results show that the considered scaling relations remain true for the investigated model with the introduced disorder. In addition, while the presence of disorder may change the physical properties of regular dimerized models, hence leading to different critical theories, both the obtained data of Néel temperature and staggered magnetization density in our study are fully compatible with the expected critical behavior for clean dimerized systems. As a result, it is persuasive to conclude that the related quantum phase transitions of the considered disordered model and its clean analogues are governed by the same critical theory, which is not always the case in general. Finally, we also find smooth scaling curves even emerging when both the data of the investigated disordered model as well as its associated clean system are taken into account concurrently. This in turn implies that, while in a restricted sense, the considered scaling relations for 3D spin-1/2 antiferromagnets are indeed universal.

  17. Utility of time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material for assessment of intracranial dural arterio-venous fistula

    International Nuclear Information System (INIS)

    Hori, Masaaki; Aoki, Shigeki; Nakanishi, Atsushi; Shimoji, Keigo; Kamagata, Koji; Houshito, Haruyoshi; Kuwatsuru, Ryohei; Oishi, Hidenori; Arai, Hajime

    2011-01-01

    Background: Intracranial dural arteriovenous fistula (DAVF) is an arteriovenous shunting disease of the dura. Magnetic resonance angiography (MRA) is expected to be a safer alternative method in evaluation of DAVF, compared with invasive intra-arterial digital subtraction angiography (IADSA). Purpose: To evaluate the diagnostic use of time-spatial labeling inversion pulse (Time-SLIP) three-dimensional (3D) magnetic resonance digital subtraction angiography (MRDSA) without contrast material in six patients with DAVF. Material and Methods: Images for 3D time-of-flight MRA, which has been a valuable tool for the diagnosis of DAVF but provide little or less hemodynamic information, and Time-SLIP 3D MRDSA, were acquired for each patient. The presence, side, and grade of the disease were evaluated according to IADSA. Results: In all patients, the presence and side of the DAVF were correctly identified by both 3D time-of-flight MRA and Time-SLIP 3D MRDSA. Cortical reflux present in a patient with a grade 2b DAVF was not detected by Time-SLIP 3D MRDSA, when compared with IADSA findings. Conclusion: Time-SLIP 3D MRDSA provides hemodynamic information without contrast material and is a useful complementary tool for diagnosis of DAVF

  18. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer.

    Science.gov (United States)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie; Garcia-Ramirez, Jose; Price, Samantha; Mutic, Sasa; Schwarz, Julie K; Grigsby, Perry W; Tanderup, Kari

    2015-01-01

    Dose accumulation of split-field external beam radiotherapy (EBRT) and brachytherapy (BT) is challenging because of significant EBRT and BT dose gradients in the central pelvic region. We developed a method to determine biologically effective dose parameters for combined split-field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were computed on the 3D combined EQD2 dose based on rigid image registration. The dose accumulation uncertainty introduced by organ deformations between IMRT and BT was evaluated. According to International Commission on Radiation Unit and Measurement and GEC European Society for Therapeutic Radiology and Oncology recommendations, D98, D90, D50, and D2cm3 EQD2 dose-volume histogram parameters were computed. GTV D98 was 84.0 ± 26.5 Gy and D2cc was 99.6 ± 13.9 Gy, 67.4 ± 12.2 Gy, 75.0 ± 10.1 Gy, for bladder, rectum, and sigmoid, respectively. The uncertainties induced by organ deformation were estimated to be -1 ± 4 Gy, -3 ± 5 Gy, 2 ± 3 Gy, and -3 ± 5 Gy for bladder, rectum, sigmoid, and GTV, respectively. It is feasible to perform 3D EQD2 dose accumulation to assess high and intermediate dose regions for combined split-field IMRT and BT. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Preliminary experience of a three-dimensional, large-field-of-view PET scanner for the localization of partial epilepsy

    International Nuclear Information System (INIS)

    Binns, D.S.; O'Brien, T.J.; Murphy, M.; Cook, M.J.; Hicks, R.J.

    1999-01-01

    Full text: PET scanning is a useful ancillary technique in the localization of intractable partial epilepsy, but its widespread use has been limited by the high cost of traditional PET equipment and radioisotopes. The use of 3D-scanning mode with a large-field of-view PET scanner involves lower equipment costs and requires significantly lower doses of radioisotope. Our aim was to report our preliminary experience of the use of a 3-D, large-field-of-view scanner for FDG-PET studies in the localization of partial epilepsy. 31 patients (pts) with partial epilepsy were studied. The FDG-PET scans were reviewed blindly by a single reviewer without knowledge of seizure localization on structural imaging or ictal electroencephalographic (EEG) monitoring. The PET results were correlated with the localization by more traditional techniques and the results on surgery when available. A localized region of hypometabolism on FDG-PET scanning was reported in 26/31 (84%) patients (21 temporal, 5 extratemporal). This compared favourably with volumetric MRI on which 19/31 (61%) had a focal potentially epileptogenic abnormality, all of which were concordant with the PET localization. PET was concordant with ictal EEG onset in all 22 patients with localizing studies, including 5 pts with normal MRI. PET demonstrated localized hypometabolism in 4/5 pts with non-localizing ictal EEG and was concordant in both pts with abnormal MRI in this group. PET was considered normal in 4 pts, including 3 pts with normal MRI but localizing EEG and 1 pt without EEG or MRI abnormality. One pt with a localizing EEG and normal MRI was felt to have bitemporal hypometabolism. Five patients have subsequently had resective epilepsy surgery with 4 currently seizure-free and 1 significantly improved. Four patients are planned for surgery in the near future. In conclusion, FDG-PET using a 3-D, large-field-of view PET scanner provides sensitive and specific localization in partial epilepsy, and may provide a

  20. Three dimensional evaluation of aluminum plates with wall-thinning by full-field pulse-echo laser ultrasound

    Science.gov (United States)

    Hong, Seung-Chan; Abetew, Ayalsew-Dagnew; Lee, Jung-Ryul; Ihn, Jeong-Beom

    2017-12-01

    We propose a full-field pulse-echo laser ultrasonic wave propagation imager (FF-PE-UPI) for the evaluation of structural defects. The FF-PE-UPI consists of a Q-switched laser for the generation of thermoelastic waves, a laser Doppler vibrometer (LDV) for sensing, and a two-axis translation stage for raster scanning of the combined generation and sensing laser beams. A-scan, B-scan, and C-scan data representations are used for the evaluation of structural defects. Three specimens were tested: a 4-mm aluminum plate with an area of 50% thickness reduction, a 6-mm aluminum plate with an area of 25% thickness reduction, and an 8-mm aluminum plate with engraved letters. The damages on the tested specimens were successfully visualized.

  1. Field enhancement and resonance phenomena in complex three-dimensional nanoparticles: efficient computation using the source-model technique.

    Science.gov (United States)

    Ishay, Yakir; Leviatan, Yehuda; Bartal, Guy

    2014-05-15

    We present a semi-analytical method for computing the electromagnetic field in and around 3D nanoparticles (NP) of complex shape and demonstrate its power via concrete examples of plasmonic NPs that have nonsymmetrical shapes and surface areas with very small radii of curvature. In particular, we show the three axial resonances of a 3D cashew-nut and the broadband response of peanut-shell NPs. The method employs the source-model technique along with a newly developed intricate source distributing algorithm based on the surface curvature. The method is simple and can outperform finite-difference time domain and finite-element-based software tools in both its efficiency and accuracy.

  2. Three-dimensional seismic full waveform inversion of ocean bottom cable data from the Valhall oil field

    Science.gov (United States)

    Etienne, V.; Hu, G.; Operto, S.; Virieux, J.

    2012-04-01

    In the past few years, the ability to reconstruct accurate 3D velocity models by full waveform inversion (FWI) has been shown by the academic research and the oil industry. In this study, we present a massively parallel algorithm for 3D seismic FWI together with an application to the ocean bottom cable (OBC) data from the Valhall oil field (North Sea). To achieve a computational efficiency and a flexible algorithm, we design a process, which can combine various forward modelling engines (such as finite-difference or finite-element methods) in time or frequency domains and an inversion core formulated in the frequency domain. Our algorithm relies on two key features: (1) the parametrizations of the subsurface for the seismic modeling and the inversion are uncoupled, that allows to interface different modeling engines with the inversion, and to consider target-oriented imaging. (2) Two nested levels of parallelism, by source distribution and domain decomposition, are implemented for the optimization of the performances of the scheme with respect to the computational platform, the dimensions of the model and the acquisition geometry. We present an application of our algorithm to OBC data recorded in the Valhall oil field. A total of 49 954 air-gun sources and 2 302 receivers located at the sea-floor (70 m depth) are used in this seismic experiment. The dimensions of the inverted target are 9.6 x 16.6 x 4.8 km. For the forward modelling, we adopt a finite-difference method in time to solve the acoustic wave equation, and monochromatic solutions are extracted from time signals. For the inversion, three overlapping groups of frequencies, [3.5 - 4], [4 - 5] and [5 - 7] Hz, respectively, are inverted successively to build a P-wave velocity model from the hydrophone component. The algorithm is performed on a IBM Blue Gene computer, by combining source distribution and domain decomposition over several hundreds of processors. The final FWI model exhibits remarkable

  3. Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model

    Science.gov (United States)

    Baczyk, Maxime; Tissier, Matthieu; Tarjus, Gilles; Sakamoto, Yoshinori

    2013-07-01

    We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d-2, and its breakdown in the case of the random-field Ising model in which both the interactions and the correlations of the disorder are long ranged, i.e., power-law decaying. To some extent the power-law exponents play the role of spatial dimension in a short-range model, which allows us to probe the theoretically predicted existence of a nontrivial critical value separating a region where dimensional reduction holds from one where it is broken, while still considering the physical dimension d=3. By extending our recently developed approach based on a nonperturbative functional renormalization group combined with a supersymmetric formalism, we find that such a critical value indeed exists, provided one chooses a specific relation between the decay exponents of the interactions and of the disorder correlations. This transition from dimensional reduction to its breakdown should therefore be observable in simulations and numerical analyses, if not experimentally.

  4. Numerical estimation of structure constants in the three-dimensional Ising conformal field theory through Markov chain uv sampler

    Science.gov (United States)

    Herdeiro, Victor

    2017-09-01

    Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] introduced a numerical recipe, dubbed uv sampler, offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036, 10.1007/JHEP08(2016)036].

  5. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM Fuel Cell with Micro Parallel Flow Field

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2008-03-01

    Full Text Available Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  6. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.

    Science.gov (United States)

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-03-03

    Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  7. Modelization of three-dimensional bone micro-architecture using Markov random fields with a multi-level clique system

    International Nuclear Information System (INIS)

    Lamotte, T.; Dinten, J.M.; Peyrin, F.

    2004-01-01

    Imaging trabecular bone micro-architecture in vivo non-invasively is still a challenging issue due to the complexity and small size of the structure. Thus, having a realistic 3D model of bone micro-architecture could be useful in image segmentation or image reconstruction. The goal of this work was to develop a 3D model of trabecular bone micro-architecture which can be seen as a problem of texture synthesis. We investigated a statistical model based on 3D Markov Random Fields (MRF's). Due to the Hammersley-Clifford theorem MRF's may equivalently be defined by an energy function on some set of cliques. In order to model 3D binary bone texture images (bone / background), we first used a particular well-known subclass of MRFs: the Ising model. The local energy function at some voxel depends on the closest neighbors of the voxels and on some parameters which control the shape and the proportion of bone. However, simulations yielded textures organized as connected clusters which even when varying the parameters did not approach the complexity of bone micro-architecture. Then, we introduced a second level of cliques taking into account neighbors located at some distance d from the site s and a new set of cliques allowing to control the plate thickness and spacing. The 3D bone texture images generated using the proposed model were analyzed using the usual bone-architecture quantification tools in order to relate the parameters of the MRF model to the characteristic parameters of bone micro-architecture (trabecular spacing, trabecular thickness, number of trabeculae...). (authors)

  8. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  9. Modelization of three-dimensional bone micro-architecture using Markov random fields with a multi-level clique system

    Energy Technology Data Exchange (ETDEWEB)

    Lamotte, T.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France); Peyrin, F. [Institut National des Sciences Appliquees (INSA), CREATIS, UMR CNRS 5515, inserm U630, 69 - Villeurbanne (France)

    2004-07-01

    Imaging trabecular bone micro-architecture in vivo non-invasively is still a challenging issue due to the complexity and small size of the structure. Thus, having a realistic 3D model of bone micro-architecture could be useful in image segmentation or image reconstruction. The goal of this work was to develop a 3D model of trabecular bone micro-architecture which can be seen as a problem of texture synthesis. We investigated a statistical model based on 3D Markov Random Fields (MRF's). Due to the Hammersley-Clifford theorem MRF's may equivalently be defined by an energy function on some set of cliques. In order to model 3D binary bone texture images (bone / background), we first used a particular well-known subclass of MRFs: the Ising model. The local energy function at some voxel depends on the closest neighbors of the voxels and on some parameters which control the shape and the proportion of bone. However, simulations yielded textures organized as connected clusters which even when varying the parameters did not approach the complexity of bone micro-architecture. Then, we introduced a second level of cliques taking into account neighbors located at some distance d from the site s and a new set of cliques allowing to control the plate thickness and spacing. The 3D bone texture images generated using the proposed model were analyzed using the usual bone-architecture quantification tools in order to relate the parameters of the MRF model to the characteristic parameters of bone micro-architecture (trabecular spacing, trabecular thickness, number of trabeculae...). (authors)

  10. The field-matching problem as it applies to the peacock three dimensional conformal system for intensity modulation

    International Nuclear Information System (INIS)

    Carol, Mark; Grant, Walter H.; Bleier, Alan R.; Kania, Alex A.; Targovnik, Harris S.; Butler, E. Brian; Shiao, W. Woo

    1996-01-01

    Purpose: Intensity modulated beam systems have been developed as a means of creating a high-dose region that closely conforms to the prescribed target volume while also providing specific sparing of organs at risk within complex treatment geometries. The slice-by-slice treatment paradigm used by one such system for delivering intensity modulated fields introduces regions of dose nonuniformity where each pair of treatment slices abut. A study was designed to evaluate whether or not the magnitude of the nonuniformity that results from this segmental delivery paradigm is significant relative to the overall dose nonuniformity present in the intensity modulation technique itself. An assessment was also made as to the increase in nonuniformity that would result if errors were made in indexing during treatment delivery. Methods and Materials: Treatment plans were generated to simulate correctly indexed and incorrectly indexed treatments of 4, 10, and 18 cm diameter targets. Indexing errors of from 0.1 to 2.0 mm were studied. Treatment plans were also generated for targets of the same diameter but of lengths that did not require indexing of the treatment couch. Results: The nonuniformity that results from the intensity modulation delivery paradigm is 11-16% for targets where indexing is not required. Correct indexing of the couch adds an additional 1-2% in nonuniformity. However, a couch indexing error of as little as 1 mm can increase the total nonuniformity to as much as 25%. All increases in nonuniformity from indexing are essentially independent of target diameter. Conclusions: The dose nonuniformity introduced by the segmental strip delivery paradigm is small relative to the nonuniformity present in the intensity modulation paradigm itself. A positioning accuracy of better than 0.5 mm appears to be required when implementing segmental intensity modulated treatment plans

  11. Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals

    KAUST Repository

    Zhang, Yang

    2013-01-01

    Semiconductor nanocrystals, especially their ordered assemblies, are promising materials for various applications. In this paper, we investigate the photoconductive behavior of sub-micron size, ordered three-dimensional (3D) assemblies of octapod-shaped CdSe/CdS nanocrystals that are contacted by overlay electron-beam lithography. The regular structure of the assemblies leads to photocurrent-voltage curves that can be described by the cold field electron emission model. Mapping of the photoconductivity versus excitation wavelength and bias voltage allows the extraction of the band gap and identification of the photoactive region in the voltage and spectral domain. These results have important implications for the understanding of photoconductive transport in similar systems. © 2013 The Royal Society of Chemistry.

  12. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    Science.gov (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  13. Simultaneous three-dimensional temperature and velocity field measurements using astigmatic imaging of non-encapsulated thermo-liquid crystal (TLC) particles.

    Science.gov (United States)

    Segura, Rodrigo; Rossi, Massimiliano; Cierpka, Christian; Kähler, Christian J

    2015-02-07

    A combination of cutting edge developments is presented to characterize three-dimensional (3D) temperature and velocity fields in microscopic flows. An emulsion of non-encapsulated thermo-liquid crystal (TLC) micro spheres, with a narrow size distribution is used to track the flow's motion and temperature distribution. A state-of-the-art light engine, which combines the spectrum of six light pipes, provides a balanced illumination which allows for strong and detectable color patterns across the TLC's temperature response range. Lastly, the ability of the TLC material to reflect select wavelength bands with an unchanging and independent circular polarization chirality is exploited by a filter that blocks background noise, while exclusively transmitting the color signal of the TLC particles. This approach takes advantage of the peculiar physical properties of TLCs to allow the estimation of individual TLC particle's 3D position, for the first time, using Astigmatism Particle Tracking Velocimetry (APTV).

  14. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  15. Numerical integration of gravitational field for general three-dimensional objects and its application to gravitational study of grand design spiral arm structure

    Science.gov (United States)

    Fukushima, Toshio

    2016-12-01

    We present a method to integrate the gravitational field for general three-dimensional objects. By adopting the spherical polar coordinates centred at the evaluation point as the integration variables, we numerically compute the volume integral representation of the gravitational potential and of the acceleration vector. The variable transformation completely removes the algebraic singularities of the original integrals. The comparison with exact solutions reveals around 15 digits accuracy of the new method. Meanwhile, the six digit accuracy of the integrated gravitational field is realized by around 106 evaluations of the integrand per evaluation point, which costs at most a few seconds at a PC with Intel Core i7-4600U CPU running at 2.10 GHz clock. By using the new method, we show the gravitational field of a grand design spiral arm structure as an example. The computed gravitational field shows not only spiral shaped details but also a global feature composed of a thick oblate spheroid and a thin disc. The developed method is directly applicable to the electromagnetic field computation by means of Coulomb's law, the Biot-Savart law, and their retarded extensions. Sample FORTRAN 90 programs and test results are electronically available.

  16. Assessment of neurovascular compression in patients with trigeminal neuralgia with a boundary fusion three-dimensional magnetic resonance cisternogram/angiogram

    International Nuclear Information System (INIS)

    Satoh, Toru; Omi, Megumi; Ohsako, Chika; Onoda, Keisuke; Date, Isao

    2007-01-01

    Precise assessment of the complex nerve-vessel relationship at the root entry zone (REZ) of the trigeminal nerve is useful for the planning of the microvascular decompression (MVD) in patients with trigeminal neuralgia. We have applied a boundary imaging of fusion three-dimensional (3D) magnetic resonance (MR) cisternogram/angiogram. The boundary imaging allows virtual assessment of the spatial relationship of the neurovascular compression at the REZ of the trigeminal nerve. The boundary images depicted complex anatomical relationship of the offending vessels to the trigeminal nerve REZ. The presence of offending vessels, compressive site, and degree of neurovascular compression were assessed from various viewpoints in the cistern and virtually through the brainstem and trigeminal nerve per se. The 3D visualization of the nerve-vessel relationship with fusion images was consistent with the intraoperative findings. The boundary fusion 3D MR cisternogram/angiogram may prove a useful adjunct for the diagnosis and decision-marking process to execute the MVD in patients with trigeminal neuralgia. (author)

  17. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding

    Science.gov (United States)

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-01

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  18. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    Science.gov (United States)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; hide

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, Pmeasurement methods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  19. Classification for the universal scaling of Néel temperature and staggered magnetization density of three-dimensional dimerized spin-1/2 antiferromagnets

    Science.gov (United States)

    Tan, D.-R.; Li, C.-D.; Jiang, F.-J.

    2018-03-01

    Inspired by the recent theoretical development relevant to the experimental data of TlCuCl3, particularly those associated with the universal scaling between the Néel temperature TN and the staggered magnetization density Ms, we carry out a detailed investigation of three-dimensional (3D) dimerized quantum antiferromagnets using the first-principles quantum Monte Carlo calculations. Through this study we wish to better understand the microscopic effects on these scaling relations of TN and Ms, hence to shed light on some of the observed inconsistency between the theoretical and the experimental results. Remarkably, for the considered 3D dimerized models, we find that the established universal scaling relations are not only valid, but can each be categorized within its kind by the amount of stronger antiferromagnetic couplings connected to each spin. Convincing numerical evidence is provided to support the validity of this classification scheme. Based on all the related results known in the literature, we further argue that the proposed categorization for the universal scaling investigated in our paper should be applicable for 3D dimerized spin systems with (certain kinds of) quenched disorder and (or) on lattice geometries other than those considered here. The relevance of the outcomes presented in this investigation to the experiments of TlCuCl3 is briefly discussed as well.

  20. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  1. Clinical significance of three-dimensional measurement of tumour thickness on magnetic resonance imaging in patients with oral tongue squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Minsu [Gyeongsang National University Hospital, School of Medicine, Department of Otorhinolaryngology, Jinju (Korea, Republic of); Moon, Hyun; Nam, Soon Yuhl; Kim, Ji Won; Lee, Yoon-Se; Roh, Jong-Lyel; Choi, Seung-Ho [University of Ulsan College of Medicine, Department of Otolaryngology, Asan Medical Centre, Seoul (Korea, Republic of); Lee, Jeong Hyun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Centre, Seoul (Korea, Republic of); Kim, Sang-Yoon [University of Ulsan College of Medicine, Department of Otolaryngology, Asan Medical Centre, Seoul (Korea, Republic of); Korea Institute of Science and Technology, Biomedical Research Institute, Seoul (Korea, Republic of)

    2016-03-15

    To identify the clinical significance of primary tumour thickness (TT) and its direction in patients with oral tongue squamous cell carcinoma (OTSCC), we measured TT in all axial/coronal/sagittal views on magnetic resonance imaging (MRI) and evaluated their meaning. A total of 53 OTSCC patients were analysed who had undergone preoperative three-dimensional MRI and had been surgically treated. TT measured on axial (mediolateral direction), coronal (superoinferior direction), and sagittal (anteroposterior direction) views was compared to that in pathologic specimens. The association between TT on MRI and other pathologic parameters was also evaluated. TT on MRI in each plane showed relatively high concordance rates with the histological measurements. TT in all three planes was significantly correlated with lymph node (LN) metastasis. Occult LN metastasis was found in 15 of 39 (38.5 %) patients, and the cutoff value of TT in axial/coronal/sagittal MRI predicting occult LN metastasis was 6.7 mm, 7.2 mm, and 12.3 mm, respectively. TT on MRI did not show any significant association with recurrence and survival. TT on MRI in all three planes showed relatively high coincidence with TT on histopathology and presented a potential cut-off value as a predictive indicator for occult LN metastasis. (orig.)

  2. Diagnosing common bile duct obstruction: comparison of image quality and diagnostic performance of three-dimensional magnetic resonance cholangiopancreatography with and without compressed sensing.

    Science.gov (United States)

    Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong

    2018-01-04

    This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.

  3. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  4. Preoperative assessment of trigeminal neuralgia and hemifacial spasm using constructive interference in steady state-three-dimensional fourier transformation magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Kobayashi, Eiichi; Hirai, Shinji; Yamaura, Akira [Chiba Univ. (Japan). School of Medicine

    2000-11-01

    Results of microvascular decompression (MVD) for trigeminal neuralgia (TN) and hemifacial spasm (HFS) may be improved by accurate preoperative assessment of neurovascular relationships at the root entry/exit zone (REZ). Constructive interference in steady state (CISS)-three-dimensional Fourier transformation (3DFT) magnetic resonance (MR) imaging was evaluated for visualizing the neurovascular relationships at the REZ. Fourteen patients with TN and eight patients with HFS underwent MR imaging using CISS-3DFT and 3D fast inflow with steady-state precession (FISP) sequences. Axial images of the cerebellopontine angle (CPA) obtained by the two sequences were reviewed to assess the neurovascular relationships at the REZ of the trigeminal and facial nerves. Eleven patients subsequently underwent MVD. Preoperative MR imaging findings were related to surgical observations and results. CISS MR imaging provided excellent contrast between the cranial nerves, small vessels, and cerebrospinal fluid (CSF) in the CPA. CISS was significantly better than FISP for delineating anatomic detail in the CPA (trigeminal and facial nerves, petrosal vein) and abnormal neurovascular relationships responsible for TN and HFS (vascular contact and deformity at the REZ). Preoperative CISS MR imaging demonstrated precisely the neurovascular relationships at the REZ and identified the offending artery in all seven patients with TN undergoing MVD. CISS MR imaging has high resolution and excellent contrast between cranial nerves, small vessels, and CSF, so can precisely and accurately delineate normal and abnormal neurovascular relationships at the REZ in the CPA, and is a valuable preoperative examination for MVD. (author)

  5. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI

    International Nuclear Information System (INIS)

    Isoda, Haruo; Takeda, Hiroyasu; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Hiramatsu, Hisaya; Namba, Hiroki; Alley, Marcus T.; Bammer, Roland; Pelc, Norbert J.

    2010-01-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall. (orig.)

  6. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI.

    Science.gov (United States)

    Isoda, Haruo; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Takeda, Hiroyasu; Hiramatsu, Hisaya; Yamashita, Shuhei; Takehara, Yasuo; Alley, Marcus T; Bammer, Roland; Pelc, Norbert J; Namba, Hiroki; Sakahara, Harumi

    2010-10-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall.

  7. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  8. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Introduction. Magnetic fields seem to be everywhere that we can look in the universe, from our own sun out to high-redshift Lyman-« systems. The fields we ... is the field tensor, is the four-potential, and В is the four-current. The field tensor is observer-independent, while the electric and magnetic fields depend on the ...

  9. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  10. Three-dimensional visualization of ensemble weather forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Science.gov (United States)

    Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.

    2015-07-01

    We present the application of interactive three-dimensional (3-D) visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX - North Atlantic Waveguide and Downstream Impact Experiment) campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs) has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF) ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off).

  11. Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2015-07-01

    Full Text Available We present the application of interactive three-dimensional (3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off.

  12. Near-Field Inductive-Coupling Link to Power a Three-Dimensional Millimeter-Size Antenna for Brain Implantable Medical Devices.

    Science.gov (United States)

    Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin

    2018-01-01

    Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9  three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated   in the pig's head and   in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).

  13. Navigated three-dimensional T1-weighted gradient-echo sequence for gadoxetic acid liver magnetic resonance imaging in patients with limited breath-holding capacity.

    Science.gov (United States)

    Yoon, Jeong Hee; Lee, Jeong Min; Lee, Eun Sun; Baek, Jeehyun; Lee, Sangwoo; Iwadate, Yuji; Han, Joon Koo; Choi, Byung Ihn

    2015-02-01

    To determine whether a navigator-gated three-dimensional T1-weighted gradient-echo sequence (T1W-GRE, navigated LAVA) can improve diagnostic performance for the detection of focal liver lesions (FLLs) compared to standard breath-hold (BH) T1W-GRE breath-hold LAVA (BH-LAVA) during the hepatobiliary phase (HBP) of gadoxetic acid liver magnetic resonance imaging (MRI) in patients with limited breath-holding capacity. This retrospective study was approved by our institutional review board and the requirement for informed consent was waived. We included 372 patients who underwent liver MRI including both navigated LAVA and BH-LAVA sequences. Overall image quality of the two HBP image sets was compared. In patients with limited breath-holding capacity, diagnostic performances in detecting FLLs on the two HBP images were compared using jackknife-alternative free-response receiver-operating characteristic (JAFROC) analysis by two reviewers. There were 13 cases (13/372; 3.5%) of image acquisition failure using the navigated LAVA sequence due to severe irregular breathing, and 50 of 359 patients had limited breath-holding capacity. In these patients, overall image quality of navigated LAVA (2.78 ± 0.95) was significantly better than that of BH-LAVA (2.42 ± 0.81, P breath-holding capacity (n = 309, 3.96 ± 0.88, 3.81 ± 0.66, respectively, P breath-holding capacity during HBP of gadoxetic acid MRI.

  14. Kawasaki disease-associated coronary artery lesions with navigator echo-based. Respiratory-gated three dimensional coronary magnetic resonance angiography compared with echocardiography in young children

    International Nuclear Information System (INIS)

    Amino, Masayuki; Teraoka, Kunihiko; Hirano, Masaharu; Kawashima, Naoshi; Kakizaki, Dai; Ookubo, Yasuo; Sasaki, Kazuyoshi; Katuyama, Hiroaki

    2004-01-01

    Navigator echo-based respiratory-gated three dimensional coronary magnetic resonance angiography (3D-CMRA) was compared with echocardiography, to determine whether 3D-CMRA was useful for the evaluation of Kawasaki disease-associated coronary artery lesions. Sixteen consecutive patients (imaging was performed 17 times in total) who were given a diagnosis of Kawasaki's disease at the pediatric department of our hospital and examined for the precise examination of complicating coronary artery lesions on MRI using a navigator-echo technique because of their incapability of holding their breath during imaging were entered into the present study. A 1.5T MRI system was used. Gd-DOTA was given at a total volume of 0.1 mmol/kg. During imaging, CMRA visualized the left coronary arteries in all 17 cases and the right coronary arteries in 16 cases, but not in one case. The left main coronary trunk segment no.5 was demonstrated in all cases with CMRA, but not in 4 cases with echocardiography. The left anterior descending branch no.6 was visualized in 11 of the 17 cases with CMRA, but only in 5 cases with echocardiography. The left circumflex branch no.11 was observed in 6 cases with CMRA, but only in 2 cases with echocardiography. As for the right coronary arteries, branches no.1 and no.2 were observed in 16 and 9 cases with CMRA, respectively, and in 13 and 3 cases with echocardiography, respectively. Vascular diameters measured on CMRA were almost identical to those on echocardiography, within the range of arteries visualized. 3D-CMRA combined with a navigator echo technique appears to be a useful tool for the observation of coronary artery lesions associated with Kawasaki's disease because it is superior in lesion visualization to echocardiography. (author)

  15. Quantitative assessment of changes in carotid plaques during cilostazol administration using three-dimensional ultrasonography and non-gated magnetic resonance plaque imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mao; Ohba, Hideki; Mori, Kiyofumi; Narumi, Shinsuke; Katsura, Noriyuki; Ohura, Kazumasa; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Morioka (Japan)

    2012-09-15

    Cilostazol, an antiplatelet agent, is reported to induce the regression of atherosclerotic changes. However, its effects on carotid plaques are unknown. Hence, we quantitatively investigated the changes that occur within carotid plaques during cilostazol administration using three-dimensional (3D) ultrasonography (US) and non-gated magnetic resonance (MR) plaque imaging. We prospectively examined 16 consecutive patients with carotid stenosis. 3D-US and T1-weighted MR plaque imaging were performed at baseline and 6 months after initiating cilostazol therapy (200 mg/day). We measured the volume and grayscale median (GSM) of the plaques from 3D-US data. We also calculated the contrast ratio (CR) of the carotid plaque against the adjacent muscle and areas of the intraplaque components: fibrous tissue, lipid, and hemorrhage components. The plaque volume on US decreased significantly (median at baseline and 6 months, 0.23 and 0.21 cm{sup 3}, respectively; p = 0.03). In the group exhibiting a plaque volume reduction of more than 10%, GSM on US increased significantly (24.8 and 71.5, respectively; p = 0.04) and CR on MRI decreased significantly (1.13 and 1.04, respectively; p = 0.02). In this group, in addition, the percent area of the fibrous component on MRI increased significantly (68.6% and 79.4%, respectively; p = 0.02), while those of the lipid and hemorrhagic components decreased (24.9% and 20.5%, respectively; p = 0.12) (1.0% and 0.0%, respectively; p = 0.04). There were no substantial changes in intraplaque characteristics in either US or MRI in the other group. 3D-US and MR plaque imaging can quantitatively detect changes in the size and composition of carotid plaques during cilostazol therapy. (orig.)

  16. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhang, E-mail: hbtjzj@yahoo.com.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Lang, Chen, E-mail: langc731@yahoo.com.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Qiu-Xia, Wang, E-mail: guaiqiuqiu1981@163.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Rong, Liu, E-mail: rongr007@yahoo.com.cn [Department of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Xin, Luo, E-mail: hoyoho2000@sina.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Wen-Zhen, Zhu, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Li-Ming, Xia, E-mail: limingxia@tjh.tjmu.edu.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Jian-Pin, Qi, E-mail: qijp2k01@yahoo.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); He, Wang, E-mail: he.wang@ge.com [GE Healthcare, 1 Build, 2F C109, 1 Hua TuoRoad, Zhang Jiang Hi-Tech Park, Shanghai 201203 (China)

    2013-09-15

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery.

  17. Cavernous malformations of the brainstem: three-dimensional-constructive interference in steady-state magnetic resonance imaging for improvement of surgical approach and clinical results.

    Science.gov (United States)

    Zausinger, Stefan; Yousry, Indra; Brueckmann, Hartmut; Schmid-Elsaesser, Robert; Tonn, Joerg-Christian

    2006-02-01

    The indications for resection of cavernous malformations (CMs) of the brainstem include neurological deficits, (recurrent) hemorrhage, and surgically accessible location. In particular, knowledge of the thickness of the parenchymal layer and of the CM's spatial relation to nuclei, tracts, cranial nerves, and vessels is critical for planning the surgical approach. We reviewed the operative treatment of 13 patients with 14 brainstem CMs, with special regard to refined three-dimensional (3D)-constructive interference in steady-state (CISS) magnetic resonance imaging (MRI). Patients were evaluated neurologically and by conventional spin-echo/fast spin-echo and 3D-CISS MRI. Surgery was performed with the use of microsurgical techniques and neurophysiological monitoring. Eleven CMs were located in the pons/pontomedullary region; 10 of the 11 were operated on via the lateral suboccipital approach. Three CMs were located near the floor of the fourth ventricle and operated on via the median suboccipital approach, with total removal of all CMs. Results were excellent or good in 10 patients; one patient transiently required tracheostomy, and two patients developed new hemipareses/ataxia with subsequent improvement. Not only did 3D-CISS sequences allow improved judgment of the thickness of the parenchymal layer over the lesion compared with spin-echo/fast spin-echo MRI, but 3D-CISS imaging also proved particularly superior in demonstrating the spatial relation of the lesion to fairly "safe" entry zones (e.g., between the trigeminal nerve and the VIIth and VIIIth nerve groups) by displaying the cranial nerves and vessels within the cerebellopontine cistern more precisely. Surgical treatment of brainstem CMs is recommended in symptomatic patients. Especially in patients with lesions situated ventrolaterally, the 3D-CISS sequence seems to be a valuable method for identifying the CM's relation to safe entry zones, thereby facilitating the surgical approach.

  18. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    International Nuclear Information System (INIS)

    Töger, Johannes; Carlsson, Marcus; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2011-01-01

    Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle

  19. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  20. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  1. Three-dimensional contrast enhanced ultrasound score and dynamic contrast-enhanced magnetic resonance imaging score in evaluating breast tumor angiogenesis: Correlation with biological factors

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Wan-Ru, E-mail: jiawanru@126.com [Department of Diagnostic Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Chai, Wei-Min, E-mail: chai_weimin@yahoo.com.cn [Department of Radiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Tang, Lei, E-mail: jessietang1003@163.com [Department of Diagnostic Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Wang, Yi, E-mail: xiatian.0602@163.com [Department of Diagnostic Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Fei, Xiao-Chun, E-mail: xcf0222@163.com [Department of Pathology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Han, Bao-San, E-mail: hanbaosan@126.com [Department of Comprehensive Breast Health Center, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China); Chen, Man, E-mail: lucyjia1370@126.com [Department of Diagnostic Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Rui Jin 2nd Road, Shanghai 200025 (China)

    2014-07-15

    Objective: To explore the clinical value of three-dimensional contrast enhanced ultrasound (3D-CEUS) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) score systems in evaluating breast tumor angiogenesis by comparing their diagnostic efficacy and correlation with biological factors. Methods: 3D-CEUS was performed in 183 patients with breast tumors by Esaote Mylab90 with SonoVue (Bracco, Italy), DCE-MRI was performed on a dedicated breast magnetic resonance imaging (DBMRI) system (Aurora Dedicated Breast MRI Systems, USA) with a dedicated breast coil. 3D-CEUS and DCE-MRI score systems were created based on tumor perfusion and vascular characteristics. Microvessel density (MVD), vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP-2, MMP-9) expression were measured by immunohistochemistry. Results: Pathological results showed 35 benign and 148 malignant breast tumors. MVD (P = 0.000, r = 0.76), VEGF (P = 0.000, r = 0.55), MMP-2 (P = 0.000, r = 0.39) and MMP-9 (P = 0.000, r = 0.41) expression were all significantly different between benignity and malignancy. Regarding 3D-CEUS 4 points as cutoff value, the sensitivity, specificity and accuracy were 85.1%, 94.3% and 86.9%, respectively, and correlated well with MVD (P = 0.000, r = 0.50), VEGF (P = 0.000, r = 0.50), MMP-2 (P = 0.000, r = 0.50) and MMP-9 (P = 0.000, r = 0.66). Taking DCE-MRI 5 points as cutoff value, the sensitivity, specificity and accuracy were 86.5%, 94.3% and 88.0%, respectively and also correlated well with MVD (P = 0.000, r = 0.52), VEGF (P = 0.000, r = 0.44), MMP-2 (P = 0.000, r = 0.42) and MMP-9 (P = 0.000, r = 0.35). Conclusions: 3D-CEUS score system displays inspiring diagnostic performance and good agreement with DCE-MRI scoring. Moreover, both score systems correlate well with MVD, VEGF, MMP-2 and MMP-9 expression, and thus have great potentials in tumor angiogenesis evaluation.

  2. Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency.

    Science.gov (United States)

    Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean

    2017-05-01

    Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image

  3. Three-dimensional seismic velocity models, high-precision earthquake locations and their implications for seismic, tectonic and magmatic settings in the Coso Geothermal Field, California

    Science.gov (United States)

    Zhang, Q.; Lin, G.

    2012-12-01

    The Coso Geothermal Field (CGF) lies at the east of Sierra Nevada and is situated in tectonically active area with the presence of hot spring, rhyolite domes at the surface, strike-slip and normal faulting and frequent seismic activity. In this study, we present our comprehensive analysis of three-dimensional velocity structure, high-precision earthquake relocation and in situ Vp/Vs estimates. We select 1,893 master events among 177,000 events between 1981 and 2011 recorded by the Southern California Seismic Network stations. High-resolution three-dimensional (3-D) Vp and Vp/Vs models in Coso are inverted from the master events with 52,160 P- and 23,688 S-wave first arrivals by using the SIMUL2000 algorithm. The tomographic model reveals slightly high Vp and Vp/Vs in most regions of Coso near the surface compared to the layers at depth of 6 and 12 km, which is consistent with the fact that the Coso area is filled with diorite and minor basalt. The feature of low Vp, low Vs and low Vp/Vs between 6 and 12 km depths underneath the CGF can be related to the porous, gas-filled rock or volatile-rich magma. The low Vp, low Vs and low Vp/Vs structure from the surface to 3 km depth beneath the Indian Wells Valley is consistent with the existence of the 2 km deep sediment strata revealed by the borehole data. The resulting new 3-D velocity model is used to improve the absolute event location accuracy. We then apply waveform cross-correlation, similar event cluster analysis and differential time relocation methods to improve relative event location accuracy with the horizontal and vertical location uncertainties in tens of meters. The relocated seismicity indicates that the brittle-ductile transition depth is as shallow as 5 km underneath the CGF. We also estimate in situ near-source Vp/Vs ratio within each event cluster using differential times from cross-correlation to complement the Vp/Vs model from tomographic inversions, which will help to estimate the volume fraction of

  4. Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning.

    Science.gov (United States)

    Beenakker, Jan-Willem M; Ferreira, Teresa A; Soemarwoto, Karina P; Genders, Stijn W; Teeuwisse, Wouter M; Webb, Andrew G; Luyten, Gregorius P M

    2016-06-01

    To assess the tumour dimensions in uveal melanoma patients using 7-T ocular MRI and compare these values with conventional ultrasound imaging to provide improved information for treatment options. Ten uveal melanoma patients were examined on a 7-T MRI system using a custom-built eye coil and dedicated 3D scan sequences to minimise eye-motion-induced image artefacts. The maximum tumour prominence was estimated from the three-dimensional images and compared with the standard clinical evaluation from 2D ultrasound images. The MRI protocols resulted in high-resolution motion-free images of the eye in which the tumour and surrounding tissues could clearly be discriminated. For eight of the ten patients the MR images showed a slightly different value of tumour prominence (average 1.0 mm difference) compared to the ultrasound measurements, which can be attributed to the oblique cuts through the tumour made by the ultrasound. For two of these patients the more accurate results from the MR images changed the treatment plan, with the smaller tumour dimensions making them eligible for eye-preserving therapy. High-field ocular MRI can yield a more accurate measurement of the tumour dimensions than conventional ultrasound, which can result in significant changes in the prescribed treatment.

  5. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  6. Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang

    2017-09-01

    Full Text Available In this study, three-dimensional (3-D geostatistical models were constructed to quantify distributions of sandstone and mudstone. We propose a new method that employs weight coefficients to balance the sandstone and mudstone data from irregular well patterns during stochastic modeling. This new method begins with classifying well groups according to well distribution patterns; areas with similar well distribution patterns are classified within the same zone. Then, the distributions of sandstone and mudstone for each zone are simulated separately using the sequential indicator simulation (SIS method, and the relevant variogram parameters for each zone are computed. In this paper, we used block S6 of the Sulige Gas Field in Ordos Basin in China as a case study. We evaluated the quality of each set of parameters through the vacuation checking method; certain wells were removed to generate equiprobable realizations using different seed numbers. Subsequently, the variogram parameters for the entire S6 area were obtained by assigning different weight coefficients to the parameters of each zone. Finally, a quality assessment of the sandstone and mudstone models of the S6 area was conducted using the horizontal wells, which were not involved in the stochastic modeling process. The results show that these variogram parameters, which were calculated using weight coefficients, are reliable.

  7. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    Science.gov (United States)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters

  8. Three dimensional moire pattern alignment

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1991-01-01

    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  9. The Three-Dimensional Sign.

    Science.gov (United States)

    Davis, Daniel R.

    1997-01-01

    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  10. Magnetic field measuring device

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Takeuchi, Kazuhiro; Hirota, Jun-ichi.

    1996-01-01

    In order to directly measure the magnetic fields in the vicinity of plasmas in a thermonuclear device, electric current is supplied to a conductor intersecting magnetic fields, and the position of the conductor is changed by generated electromagnetic forces, and the positional change of the conductor is measured to determine the magnetic fields. Namely, if electric current is supplied to the conductor crossing the magnetic fields, electromagnetic forces directly in proportion to the magnetic fields exert on the object. If the forces are measured, magnetic fields can be determined directly without using an integrator. If springs are attached to the conductor undergoing electromagnetic forces, as a method of measuring electromagnetic forces, since the distortion is in proportion to the electromagnetic forces, magnetic fields can be determined, for example, by changing the position of a contact of a variable resistor interlocking with the positional change of the spring. Since a semiconductor device which is sensitive to radiation is not necessary and the magnetic fields can be measured directly in this method for the measurement of the magnetic fields, the measurement can be conducted at a constant accuracy even in a long period of time. The device of the present invention can measure magnetic fields with no drift components of the integrator, has excellent radiation-resistance and can improve the plant safety. (N.H.)

  11. Magnetic field measuring device

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Abe, Mitsushi.

    1996-01-01

    If signal voltages are integrated with lapse of time in a thermonuclear device, erroneous voltages are also integrated with lapse of time thereby resulting in occurrence of measuring errors increased with lapse of time, and continuous measurement for magnetic fields at high accuracy for a long period of time has been difficult. Then, a movable coil is disposed in the magnetic fields to be measured in order to directly measure the magnetic fields at the periphery of the plasmas, and electric current is supplied to the coil and resulted electromagnetic force is measured to obtain a magnetic field. If electric current is supplied to the coil in the magnetic fields, electromagnetic force (rotational torque) directly in proportion to the magnetic fields is generated. If the electromagnetic force is measured, magnetic fields can be determined directly without using an integrator. If a resistor wire is disposed on one end of the coil so that the resistor wire extends/shrinks by the electromagnetic force and changes the resistance value, the electromagnetic force can be determined from the magnetic fields based on the change of the resistance values. Since the measurement using magnetic fields does not require semiconductor devices which are sensitive to radiation, and the magnetic fields can be measured directly, the measurement can be conducted at a constant accuracy even for a long period of time. (N.H.)

  12. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  13. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  14. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  15. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    Directory of Open Access Journals (Sweden)

    Ji Kai

    2012-11-01

    Full Text Available Abstract Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT with involved-field radiation (IFI. The conformal clinical target volume (CTV was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  16. Development and Clinical Evaluation of a Three-Dimensional Cone-Beam Computed Tomography Estimation Method Using a Deformation Field Map

    International Nuclear Information System (INIS)

    Ren, Lei; Chetty, Indrin J.; Zhang Junan; Jin Jianyue; Wu, Q. Jackie; Yan Hui; Brizel, David M.; Lee, W. Robert; Movsas, Benjamin; Yin Fangfang

    2012-01-01

    Purpose: To develop a three-dimensional (3D) cone-beam computed tomography (CBCT) estimation method using a deformation field map, and to evaluate and optimize the efficiency and accuracy of the method for use in the clinical setting. Methods and Materials: We propose a method to estimate patient CBCT images using prior information and a deformation model. Patients’ previous CBCT data are used as the prior information, and the new CBCT volume to be estimated is considered as a deformation of the prior image volume. The deformation field map is solved by minimizing deformation energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. This method was implemented in 3D form using hardware acceleration and multi-resolution scheme, and it was evaluated for different scan angles, projection numbers, and scan directions using liver, lung, and prostate cancer patient data. The accuracy of the estimation was evaluated by comparing the organ volume difference and the similarity between estimated CBCT and the CBCT reconstructed from fully sampled projections. Results: Results showed that scan direction and number of projections do not have significant effects on the CBCT estimation accuracy. The total scan angle is the dominant factor affecting the accuracy of the CBCT estimation algorithm. Larger scan angles yield better estimation accuracy than smaller scan angles. Lung cancer patient data showed that the estimation error of the 3D lung tumor volume was reduced from 13.3% to 4.3% when the scan angle was increased from 60° to 360° using 57 projections. Conclusions: The proposed estimation method is applicable for 3D DTS, 3D CBCT, four-dimensional CBCT, and four-dimensional DTS image estimation. This method has the potential for significantly reducing the imaging dose and improving the image quality by removing the organ distortion artifacts and streak artifacts shown in images reconstructed by the conventional Feldkamp

  17. Application of 19F magnetic resonance to study the efficacy of fluorine labeled drugs in the three-dimensional cultured breast cancer cells.

    Science.gov (United States)

    Bartusik, Dorota; Tomanek, Boguslaw

    2010-01-15

    The cellular monitoring of tumor response to treatments is important for drug discovery and drug development in cancer therapy. We studied efficacy of Herceptin, a common breast cancer drug conjugated with a fluorine organic compound, perfluoro-15-crown-5-ether (PFCE) which easily forms biocompatible emulsions. Three new pharmaceutical forms of Herceptin, Herceptin/PFCE, Herceptin/PFCE/Lipoplex and Herceptin/PFCE/HydraLink were synthesized for the ex vivo study of their efficacy in breast cancer treatment. The emulsions were administered to 10(9)cells mL(-1) of HER-2 positive human adenocarcinoma (MCF-7) cells and the same amount of human mammary epithelial cells (HMEC) cultured in three-dimensional (3D) geometry using hollow fiber bioreactor (HFB) device. Following drugs administration ex vivo, fluorine-19 magnetic resonance imaging ((19)F MRI) was applied for cells imaging to measure their viability and to study drug efficacy over 72h. To ensure optimum drug tracking, HydraLink was used to provide stable binding affinity of emulsified Herceptin to receptor while cationic lipid (Lipofectamine) was used to enhance lipophilicity of the emulsions. After 72h of treatment with Herceptin, Herceptin/PFCE, Herceptin/PFCE/Lipoplex and Herceptin/PFCE/HydraLink the viability of cells was 54+/-2%, 49+/-3%, 43+/-5% and 42+/-1%, respectively, as compared with control 93+/-2%. The efficacy (EC(50)) of Herceptin conjugated with emulsions was found to be 970+/-13 microg mL(-1) for Herceptin/PFCE, 645+/-11 microg mL(-1) for Herceptin/PFCE/Lipoplex, 678+/-7 microg mL(-1) for Herceptin/PFCE/HydraLink and 1000+/-3 microg mL(-1) for Herceptin. The results show that fluorine emulsions improved the efficacy of Herceptin and (19)F signal intensity changes validated drug efficiency. The significant correlations between duration of treatments and MCF-7 cells viability were observed. While we studied breast cancer cells, the fluorine emulsions could be applied for treatment of other cancer

  18. A comparison of inner ear imaging features at different time points of sudden sensorineural hearing loss with three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Honglei; Ou, Yongkang; Fu, Jia; Zhang, Ya; Xiong, Hao; Xu, Yaodong

    2015-10-01

    It has been reported that about half of patients with sudden sensorineural hearing loss (SSNHL) show high signals in the affected inner ear on three-dimensional, fluid-attenuated inversion recovery magnetic resonance imaging (3D-FLAIR MRI). These signals may reflect minor hemorrhage or an increased concentration of protein in the inner ear, which has passed through blood vessels with increased permeability. Our objective was to compare the positive ratio of the high signal in affected inner ears at different time points to determine the suitable imaging time point for 3D-FLAIR MRI in SSNHL. 3D-FLAIR MRI images were taken at three times, precontrast and approximately 10 min and 4 h after intravenous injection of a single dose of gadodiamide (Gd) (0.1 mmol/kg), in 46 patients with SNHL. We compared the positive findings of the high signals in the inner ear of patients with SNHL as well as the signal intensity ratio (SIR) between the affected cochleae and unaffected cochleae at three time points. The positive ratios of the high signals in the affected inner ear at the time points of precontrast and 10 min and 4 h after the intravenous Gd injection were 26.1, 32.6, and 41.3%, respectively. The high signal intensity ratios of affected inner ears at the three time points were 1.28, 1.31, and 1.48, respectively. The difference between the positive ratios precontrast and at 10 min after the intravenous Gd injection was statistically significant (P = 0.006); the differences between the positive ratios at 4 h after the intravenous Gd injection and precontrast and between the ratios at 4 h and 10 min after the intravenous Gd injection were not statistically significant. The time effects of the median value of SIR were not significant (P = 0.064). We do not recommend 4 h after intravenous Gd injection as a time point to image the inner ear in SNHL. We believe that imaging precontrast and at 10 min after the intravenous Gd injection are suitable time points.

  19. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  20. Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: A comparison with 3-Tesla cardiac magnetic resonance.

    Science.gov (United States)

    Levy, Franck; Marechaux, Sylvestre; Iacuzio, Laura; Schouver, Elie Dan; Castel, Anne Laure; Toledano, Manuel; Rusek, Stephane; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2018-03-30

    Quantitative assessment of primary mitral regurgitation (MR) using left ventricular (LV) volumes obtained with three-dimensional transthoracic echocardiography (3D TTE) recently showed encouraging results. Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time consuming. To investigate the accuracy and reproducibility of new automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for the quantification of LV volumes and MR severity in patients with isolated degenerative primary MR; and to compare regurgitant volume (RV) obtained with 3D TTE with a cardiac magnetic resonance (CMR) reference. Fifty-three patients (37 men; mean age 64±12 years) with at least mild primary isolated MR, and having comprehensive 3D TTE and CMR studies within 24h, were eligible for inclusion. MR RV was calculated using the proximal isovelocity surface area (PISA) method and the volumetric method (total LV stroke volume minus aortic stroke volume) with either CMR or 3D TTE. Inter- and intraobserver reproducibility of 3D TTE was excellent (coefficient of variation≤10%) for LV volumes. MR RV was similar using CMR and 3D TTE (57±23mL vs 56±28mL; P=0.22), but was significantly higher using the PISA method (69±30mL; PTTE). The PISA method consistently overestimated MR RV compared with CMR (bias 12±21mL), while no significant bias was found between 3D TTE and CMR (bias 2±14mL). Concordance between echocardiography and CMR was higher using 3D TTE MR grading (intraclass correlation coefficient [ICC]=0.89) than with PISA MR grading (ICC=0.78). Complete agreement with CMR grading was more frequent with 3D TTE than with the PISA method (76% vs 63%). 3D TTE RV assessment using the new generation of automated software correlates well with CMR in patients with isolated degenerative primary MR. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Three-dimensional analysis of magnetometer array data

    Science.gov (United States)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  2. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    Science.gov (United States)

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  3. Organic magnetic field sensor

    Science.gov (United States)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  4. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  5. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider the semiclassical asymptotics of the sum of negative eigenvalues of the three-dimensional Pauli operator with an external potential and a self-generated magnetic field $B$. We also add the field energy $\\beta \\int B^2$ and we minimize over all magnetic fields. The parameter $\\beta......$ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order...

  6. An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976-1985

    Science.gov (United States)

    Hoeksema, J. T.; Scherrer, P. H.

    1986-01-01

    Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field-Source Surface model. This provides a three-dimensional picture of the heliospheric field evolution during the solar cycle. This paper announces the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.

  7. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  8. Mid-term follow-up of patients with transposition of the great arteries after atrial inversion operation using two- and three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fogel, Mark A.; Weinberg, Paul M.; Hubbard, Anne

    2002-01-01

    Background: Older patients with transposition of the great arteries who have undergone an atrial inversion procedure (ATRIAL-INV) are difficult to image by echocardiography. The surgical baffles are spatially complex. Objective: To test the hypothesis that two- and three-dimensional MRI can elucidate the spatially complex anatomy in this patient population. Materials and methods; Twelve patients with ATRIAL-INV, ages 16±4.5 years, underwent routine T1-weighted spin-echo axial imaging to obtain a full cardiac volumetric data set. Postprocessing created three-dimensional shaded surface displays and allowed for multiplanar reconstruction. Routine transthoracic echocardiography was available on all patients. Results: Three-dimensional reconstruction enabled complete spatial conceptualization of the venous pathways, and allowed for precise localization of a narrowed region in the upper limb of the systemic venous pathway found in two patients. This was subsequently confirmed on angiography. Routine MRI was able to image the full extent of the venous pathways in all 12 patients. Routine transthoracic echocardiography was able to visualize proximal portions of the venous pathways in eight (67%), the distal upper limb in five (42%), and the distal lower limb in four (33%) patients, and it was able to visualize the outflow tracts in all patients. Conclusion: Three-dimensional reconstruction adds important spatial information, which can be especially important in stenotic regions. Routine MRI is superior to transthoracic echocardiography in delineation of the systemic and pulmonary venous pathway anatomy of ATRIAL-INV patients at mid-term follow-up. Although transesophageal echocardiography is an option, it is more invasive. (orig.)

  9. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  10. Towards three-dimensional optical metamaterials.

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-01-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  11. Transluminal color-coded three-dimensional magnetic resonance angiography for visualization of signal Intensity distribution pattern within an unruptured cerebral aneurysm: preliminarily assessment with anterior communicating artery aneurysms

    International Nuclear Information System (INIS)

    Satoh, T.; Ekino, C.; Ohsako, C.

    2004-01-01

    The natural history of unruptured cerebral aneurysm is not known; also unknown is the potential growth and rupture in any individual aneurysm. The authors have developed transluminal color-coded three-dimensional magnetic resonance angiography (MRA) obtained by a time-of-flight sequence to investigate the interaction between the intra-aneurysmal signal intensity distribution patterns and configuration of unruptured cerebral aneurysms. Transluminal color-coded images were reconstructed from volume data of source magnetic resonance angiography by using a parallel volume-rendering algorithm with transluminal imaging technique. By selecting a numerical threshold range from a signal intensity opacity chart of the three-dimensional volume-rendering dataset several areas of signal intensity were depicted, assigned different colors, and visualized transparently through the walls of parent arteries and an aneurysm. Patterns of signal intensity distribution were analyzed with three operated cases of an unruptured anterior communicating artery aneurysm and compared with the actual configurations observed at microneurosurgery. A little difference in marginal features of an aneurysm was observed; however, transluminal color-coded images visualized the complex signal intensity distribution within an aneurysm in conjunction with aneurysmal geometry. Transluminal color-coded three-dimensional magnetic resonance angiography can thus provide numerical analysis of the interaction between spatial signal intensity distribution patterns and aneurysmal configurations and may offer an alternative and practical method to investigate the patient-specific natural history of individual unruptured cerebral aneurysms. (orig.)

  12. Computation of magnetic field in DC brushless linear motors built with NdFeB magnets

    International Nuclear Information System (INIS)

    Basak, A.; Shirkoohi, G.H.

    1990-01-01

    A software package based on finite element technique has been used to compute three-dimensional magnetic fields and static forces developed in brushless d.c. linear motors. As the field flux-source two different types of permanent magnets, one of them being the high energy neodymium- iron-boron type, has been used in computer models. Motors with the same specifications as the computer models were built and experimental results obtained from them are compared with the computed results

  13. Fast reconnection of weak magnetic fields

    International Nuclear Information System (INIS)

    Zweibel, E.G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids. copyright 1998 American Institute of Physics

  14. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  15. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  16. Three-Dimensional Volumetric Assessment of Diastolic Function by Cardiac Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Nacif, Marcelo S; Almeida, Andre L C; Young, Alistair A; Cowan, Brett R; Armstrong, Anderson C; Yang, Eunice; Sibley, Christopher T; Hundley, W Gregory; Liu, Songtao; Lima, Joao Ac; Bluemke, David A

    2017-01-01

    Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p de um método simples e robusto para a avaliação da função diastólica que pode ser feito com sequências protocolares de rotina. Desenvolver e validar a avaliação volumétrica da função diastólica através de um modelo tridimensional (3D) com utilização de imagens de ressonância magnética cardíaca (RMC) e comparar os resultados obtidos com este modelo com os obtidos por ecocardiografia. Os participantes do estudo assinaram um termo de consentimento e foram incluídos se tivessem sido submetidos no mesmo dia tanto à ecocardiografia quanto à cine RMC com precessão livre no estado estacionário (steady-state free precession, SSFP). Pontos-guia foram utilizados no anel mitral septal e lateral para definir a velocidade de estiramento no início da diástole (E'), enquanto curvas de volume-tempo do modelo 3D foram utilizadas para avaliar os parâmetros de enchimento diastólico. Foram determinadas a correlação entre

  17. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  18. Three-dimensional force-free looplike magnetohydrodynamic equilibria

    Science.gov (United States)

    Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel

    1994-01-01

    Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.

  19. Cosmic magnetic fields

    CERN Document Server

    Sánchez Almeida, Jorge

    2018-01-01

    Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...

  20. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  1. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  2. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  3. Numerical simulation and experimental validation of the three-dimensional flow field and relative analyte concentration distribution in an atmospheric pressure ion source.

    Science.gov (United States)

    Poehler, Thorsten; Kunte, Robert; Hoenen, Herwart; Jeschke, Peter; Wissdorf, Walter; Brockmann, Klaus J; Benter, Thorsten

    2011-11-01

    In this study, the validation and analysis of steady state numerical simulations of the gas flows within a multi-purpose ion source (MPIS) are presented. The experimental results were obtained with particle image velocimetry (PIV) measurements in a non-scaled MPIS. Two-dimensional time-averaged velocity and turbulent kinetic energy distributions are presented for two dry gas volume flow rates. The numerical results of the validation simulations are in very good agreement with the experimental data. All significant flow features have been correctly predicted within the accuracy of the experiments. For technical reasons, the experiments were conducted at room temperature. Thus, numerical simulations of ionization conditions at two operating points of the MPIS are also presented. It is clearly shown that the dry gas volume flow rate has the most significant impact on the overall flow pattern within the APLI source; far less critical is the (larger) nebulization gas flow. In addition to the approximate solution of Reynolds-Averaged Navier-Stokes equations, a transport equation for the relative analyte concentration has been solved. The results yield information on the three-dimensional analyte distribution within the source. It becomes evident that for ion transport into the MS ion transfer capillary, electromagnetic forces are at least as important as fluid dynamic forces. However, only the fluid dynamics determines the three-dimensional distribution of analyte gas. Thus, local flow phenomena in close proximity to the spray shield are strongly impacting on the ionization efficiency.

  4. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...

  5. Three-dimensional accelerating electromagnetic waves.

    Science.gov (United States)

    Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai

    2013-06-17

    We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  6. [Magnetic field numerical calculation and analysis for magnetic coupling of centrifugal blood pump for extracorporeal circulation].

    Science.gov (United States)

    Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao

    2013-12-01

    This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.

  7. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  8. Three-dimensional MRI with independent slab excitation and encoding.

    Science.gov (United States)

    Eissa, Amir; Wilman, Alan H

    2012-02-01

    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  9. Mercury's Magnetic Field

    Science.gov (United States)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal

  10. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    Energy Technology Data Exchange (ETDEWEB)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.

  11. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Hideo [Dokkyo Univ., Saitama (Japan). Koshigaya Hospital; Uechi, Yoko; Honjyo, Shiro; Yamashita, Koichi; Tonami, Hisao

    1997-12-01

    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ``common cavity``. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  12. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  13. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  14. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  15. Three-Dimensional Printing in Orthopedic Surgery.

    Science.gov (United States)

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  16. Fast throughput determination of 21 allergenic disperse dyes from river water using reusable three-dimensional interconnected magnetic chemically modified graphene oxide followed by liquid chromatography-tandem quadrupole mass spectrometry.

    Science.gov (United States)

    Zhao, Yong-Gang; Li, Xiao-Ping; Yao, Shan-Shan; Zhan, Ping-Ping; Liu, Jun-Chao; Xu, Chang-Ping; Lu, Yi-Yu; Chen, Xiao-Hong; Jin, Mi-Cong

    2016-01-29

    We report the template-free fabrication of three-dimensional hierarchical nanostructures, i.e., three-dimensional interconnected magnetic chemically modified graphene oxide (3D-Mag-CMGO), through a simple and low-cost self-assembly process using one-pot reaction based on solvothermal method. The excellent properties of the 3D-Mag-CMGO are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), FTIR, elementary analyzer (EA) and X-ray photoelectron spectroscopy (XPS). The easiness-to-handle of the magnetic dispersive solid phase extraction (Mag-dSPE) procedure is developed for preconcentration of 21 allergenic disperse dyes from river water. The obtained results show the higher extraction capacity of 3D-Mag-CMGO with recoveries between 80.0-112.0%. Furthermore, an ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) method for determination of 21 allergenic disperse dyes in river at sub-ppt levels has been developed with pretreatment of the samples by Mag-dSPE. The limits of quantification (LOQs) for the allergenic disperse dyes are between 0.57-34.05ng/L. Validation results on linearity, specificity, trueness and precision, as well as on application to the analysis of 21 allergenic disperse dyes in fifty real samples demonstrate the applicability to environment monitoring analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Plasmoid Chain Dynamics in Three-Dimensional Kinetic Simulations

    Science.gov (United States)

    Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Laure, E.

    2013-10-01

    We study the dynamics of a plasmoid chain with three dimensional Particle-in-Cell simulations. The evolution of the system with and without a uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is investigated. The plasmoid chain forms by spontaneous magnetic reconnection: the tearing instability rapidly disrupts the initial current sheet generating several small-scale plasmoids, that rapidly grow in size coalescing and kinking. The plasmoid kink is mainly driven by the coalescence process. The presence of guide field strongly influences the evolution of the plasmoid chain. Without a guide field, a main reconnection site dominates and smaller reconnection regions are included in larger ones, leading to an hierarchical structure of the plasmoid-dominated current sheet. On the contrary in presence of a guide field, plasmoids have approximately the same size and the hierarchical structure does not emerge, a strong core magnetic field develops in the center of the plasmoid in the direction of the existing guide field, and bump-on-tail instability, leading to the formation of electron holes, is detected in proximity of the plasmoids. The present work is supported by NASA MMS Grant NNX08AO84G. Additional support rom the European Commission's Seventh Framework Programme under the grant agreement no. 287703 (CRESTA, cresta-project.eu).

  18. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  19. Generation of ten kilotesla longitudinal magnetic fields in ultraintense laser-solenoid target interactions

    OpenAIRE

    Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.

    2018-01-01

    Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...

  20. Efficient magnetic field measurements

    NARCIS (Netherlands)

    Setiawan, Iwan; Moonen, Niek; Buesink, Frits; Leferink, Frank

    2017-01-01

    Measuring magnetic fields of equipment under test at low frequencies which is received by loop antennas using an EMI receiver with small bandwidths takes much time and can even reach a week for a standard measurement. This waste in time could be avoided by applying time domain measurements.

  1. Fuzzy logic based ELF magnetic field estimation in substations

    International Nuclear Information System (INIS)

    Kosalay, I.

    2008-01-01

    This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed. (authors)

  2. Fuzzy logic based ELF magnetic field estimation in substations.

    Science.gov (United States)

    Kosalay, Ilhan

    2008-01-01

    This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed.

  3. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  4. Real three-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)

    2010-09-07

    We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.

  5. Evaluation of engraftment of superparamagnetic iron oxide-labeled mesenchymal stem cells using three-dimensional reconstruction of magnetic resonance imaging in photo thrombotic cerebral infarction models of rats

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae Hyun; Kwak, Byung Kook; Jung, Ji Sung; Park, Se Rah [Chung-Ang University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2{sup *}-(T2{sup *}WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 x 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 microL using SWI, T2{sup *}WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.

  6. Validation of the CMS Magnetic Field Map

    CERN Document Server

    INSPIRE-00096921; Amapane, N.; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Calvelli, V.; Hervé, A.; Loveless, R.

    2014-10-26

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4-T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 three-dimensional (3-D) Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.

  7. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  8. Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets

    Science.gov (United States)

    Shinozaki, Misako; Hoshino, Shintaro; Masaki, Yusuke; Kishine, Jun-ichiro; Kato, Yusuke

    2016-07-01

    We study a three-dimensional (3d) classical chiral helimagnet at finite temperatures through analysis of a spin Hamiltonian, which is defined on a simple cubic lattice and consists of the Heisenberg exchange, monoaxial Dzyaloshinskii-Moriya interactions, and the Zeeman energy due to a magnetic field applied in the plane perpendicular to the helical axis. We take account of the quasi-two-dimensionality of the known monoaxial chiral helimagnet CrNb3S6 and we adopt three methods: (i) a conventional mean-field (MF) analysis, which we call the 3dMF method, (ii) a hybrid method called the 2dMC-1dMF method, which is composed of a classical Monte Carlo (MC) simulation and a MF approximation applied respectively to the intra- and interlayer interactions, and (iii) a simple-MC simulation (3dMC) at zero field. The temperature dependence of the magnetization calculated by the 3dMF method shows a cusp-like structure similar to that observed in experiments. In the absence of a magnetic field, both 2dMC-1dMF and 3dMC yield similar values of the transition temperature. The 2dMC-1dMF method provides a quantitative description of the thermodynamic properties, even under an external field, at an accessible numerical cost.

  9. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  10. A three dimensional probe positioner

    International Nuclear Information System (INIS)

    Intrator, T.; Sun, X.; Furno, I.; Dorf, L.; Lapenta, G.

    2008-01-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a 'wobbly' probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  11. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...

  12. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  13. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and physics. Key is the separation of the field sources in the observations, especially, but not solely, during times of quiet geomagnetic conditions, when the most subtle geomagnetic effects can be identified and become significant. The collected articles are based on the current constellation of ground......This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...

  14. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    OpenAIRE

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; Garc?a-Lecina, Eva; Roldan, M?nica; Bar?, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles ...

  15. Tunneling decay in a magnetic field

    International Nuclear Information System (INIS)

    Sharpee, T.; Dykman, M.I.; Platzman, P.M.

    2002-01-01

    We provide a semiclassical theory of tunneling decay in a magnetic field and a three-dimensional potential of a general form. Because of broken time-reversal symmetry, the standard WKB technique has to be modified. The decay rate is found from the analysis of the Hamilton trajectories of the particle in complex phase space and time. In a magnetic field, the tunneling particle comes from beneath the barrier with a nonzero velocity. The exit location in the classically allowed region is obtained by matching the decaying and outgoing branches of the WKB wave function on a caustic of the set of the complex trajectories. The slope of the logarithm of the wave function sharply changes on the anti-Stokes surface where there occurs switching between different WKB branches. For potential wells that are parabolic near the minimum, we also provide a bounce-type formulation. The theory is applied to the models that are relevant to tunneling from correlated two-dimensional electron systems in a magnetic field parallel to the electron layer

  16. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  17. Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties.

    Science.gov (United States)

    Datcu, Angela; Roques, Nans; Jubera, Véronique; Imaz, Inhar; Maspoch, Daniel; Sutter, Jean-Pascal; Rovira, Concepció; Veciana, Jaume

    2011-03-21

    A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Left atrial volume assessment in atrial fibrillation using multimodality imaging: a comparison of echocardiography, invasive three-dimensional CARTO and cardiac magnetic resonance imaging.

    Science.gov (United States)

    Rabbat, Mark G; Wilber, David; Thomas, Kevin; Malick, Owais; Bashir, Atif; Agrawal, Anoop; Biswas, Santanu; Sanagala, Thriveni; Syed, Mushabbar A

    2015-06-01

    Left atrial size in atrial fibrillation is a strong predictor of successful ablation and cardiovascular events. Cardiac magnetic resonance multislice method (CMR-MSM) is the current gold standard for left atrial volume (LAV) assessment but is time consuming. We investigated whether LAV with more rapid area-length method by echocardiography (Echo-AL) or cardiac magnetic resonance (CMR-AL) and invasive measurement by 3D-CARTO mapping during ablation correlate with the CMR-MSM. We studied 250 consecutive patients prior to atrial fibrillation ablation. CMR images were acquired on 3T scanner to measure LAV by MSM and biplane area-length method. Standard echocardiography views were used to calculate LAV by biplane area-length method. LAV during ablation was measured by 3D-CARTO mapping. LAV was compared using intra-class correlation (ICC), Pearson's correlation and Bland-Altman plots. CMR-MSM was used as the reference standard. Mean LAV using CMR-MSM was 112.7 ± 36.7 ml. CMR-AL method overestimated LAV by 13.3 ± 21.8 ml (11.2%, p atrial fibrillation. CMR-AL and 3D-CARTO correlated and agreed well with CMR-MSM (r = 0.87 and 0.74, ICC = 0.80 and 0.77 respectively). However, Echo-AL had poor correlation and agreement with CMR-MSM (r = 0.66 and ICC = 0.48). Bland-Altman plots confirmed these findings. CMR-AL method may be used as an alternative to CMR-MSM, as it is non-invasive, rapid, and correlates well with CMR-MSM. LAV by different modalities should not be used interchangeably.

  19. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  20. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  1. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  2. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  3. A Three Dimensional Model of the Plasma Flow and Magnetic Fields in the Dayside Ionosphere of Venus.

    Science.gov (United States)

    1982-03-01

    Phsics nd A-Vtronomy Patricial . Reif f Associate Research Scientist Center for Space Phy cs Harold E. Rorschach , Jr. Professor of Physics HOUSTON...2.1.6) into Gauss’s Law (2.1.3b): Bm 1 __ 1 - B + + = 0 (2.1.12)am m rtanm rsinm a* Equation (2.1.8) through (2.1.12) form the mathematical framework...contained within the Bm component. Justification for this assumption is both mathematical and physical. First, mathematically the assumption allows one

  4. Electron acceleration during three-dimensional relaxation of an electron beam-return current plasma system in a magnetic field

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian; Kontar, E. P.

    2012-01-01

    Roč. 544, August (2012), A148/1-A148/8 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : Sun * flares * particle emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  5. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  6. Morphological evaluation of lateral ventricles of fetuses with ventriculomegaly by three-dimensional ultrasonography and magnetic resonance imaging: correlation with etiology.

    Science.gov (United States)

    Haratz, Karina Krajden; Nardozza, Luciano Marcondes Machado; de Oliveira, Patrícia Soares; Rolo, Liliam Cristine; Milani, Hérbene José Figuinha; de Sá Barreto, Enoch Quinderé; Araujo Júnior, Edward; Ajzen, Sérgio Aron; Moron, Antonio Fernandes

    2011-08-01

    To evaluate morphology of lateral ventricles of ventriculomegaly/hydrocephaly fetuses using 3D-sonography by virtual organ computer-aided analysis (VOCAL) technique and magnetic resonance imaging (MRI) and verify morphologic patterns related to etiology. Seventeen fetuses presenting with ventricular enlargement (atria > 10 mm) were evaluated. 3D datasets were acquired from a coronal reference plane and post-processed by the rotational imaging using VOCAL 30°. MRI study was analyzed in the three plans in all sequences. Morphologic aspects such as global shape, anterior, posterior and inferior horn characteristics, wall irregularities and deformities were analyzed and related to etiology factor. Twenty-nine percent of the cases were secondary to Arnold-Chiari syndrome and presented with global dilation of the three-horns. Cases related to aqueduct stenosis presented with ependymal rupture and wall irregularities in advanced cases. Corpus callosum agenesis cases presented with small ventricular volumes, thin shape, normal or slightly enlarged anterior and inferior horns with dilation restricted to posterior horn. Cases related to trisomy 18 and cytomegalovirus presented irregular ventricular walls associated with anomalous ventricular shapes, suggesting parenchymal destruction. Ventricular morphology evaluation gives important information on etiology of ventricular enlargement, supporting prognosis prediction and decision making process of the affected fetuses and their families.

  7. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Zhong, Yu-min; Zhang, Hong; Lin, Yi; Zhu, Ming [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Shanghai Children' s Medical Center, Shanghai (China); Nie, Quan-min; Guo, Lie-mei; Yang, Xi [Shanghai Jiao Tong University School of Medicine, Department of Neurosurgery Ren Ji Hospital, Shanghai (China); Chen, Wei-bo; Dai, Yong-ming [Philips Healthcare, Shanghai (China); Xu, Jian-rong [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ren Ji Hospital, Shanghai (China)

    2016-01-15

    To investigate the feasibility of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the diagnosis of skull fractures. The skull fracture models of ten Bama pigs and 364 patients with craniocerebral trauma were subjected to computed tomography (CT), UTE and conventional MRI sequences. The accuracy of UTE imaging in skull fracture diagnosis was analysed using receiver operating characteristic (ROC) curve analysis, McNemar's test and Kappa values. Differences among CT, UTE imaging and anatomical measurement (AM) values for linear fractures (LFs) and depressed fractures (DFs) were compared using one-way ANOVA and a paired-samples t-test. UTE imaging clearly demonstrated skull structures and fractures. The accuracy, validity and reliability of UTE MRI were excellent, with no significant differences between expert readings (P > 0.05; Kappa, 0.899). The values obtained for 42 LFs and 13 DFs in the ten specimens were not significantly different among CT, UTE MRI and AMs, while those obtained for 55 LFs and ten DFs in 44 patients were not significantly different between CT and UTE MRI (P > 0.05). UTE MRI sequences are feasible for the evaluation of skull structures and fractures, with no radiation exposure, particularly for paediatric and pregnant patients. (orig.)

  8. Three-Dimensional Mapping of Ozone-Induced Injury in the Nasal Airways of Monkeys Using Magnetic Resonance Imaging and Morphometric Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.; Wagner, James G.; Garcia, Guilherme M.; Ballinger, Carol A.; Kimbell, Julia; Plopper, Charles G.; Corley, Rick A.; Postlewait, Ed; Harkema, Jack R.

    2007-03-01

    ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosis and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.

  9. Tetracarboxylate-based Co(II), Ni(II) and Cu(II) three-dimensional coordination polymers: syntheses, structures and magnetic properties.

    Science.gov (United States)

    Su, Shengqun; Guo, Zhiyong; Li, Guanghua; Deng, Ruiping; Song, Shuyan; Qin, Chao; Pan, Chengling; Guo, Huadong; Cao, Feng; Wang, Song; Zhang, Hongjie

    2010-10-14

    Methylenediisophthalic acid (H(4)MDIP), as semi-rigid 'V'-shaped carboxylate ligands, react with CoO, NiO and Cu(NO(3))(2)·3H(2)O to give three novel coordination polymers [H(3)O](2)[Co(3)(MDIP)(2)]·2DMF (1), [Ni(2)(HMDIP)(μ(2)-OH)(H(2)O)(3)(DMF)]·4H(2)O·DMF (2) and [Cu(3)(MDIP)(μ(2)-OH)(2)(H(2)O)(4)]·6.5H(2)O (3) (DMF = N,N'-dimethylformamide). All compounds have been characterized by thermogravimetric analysis, IR spectroscopy, elemental and single-crystal X-ray diffraction analyses. Complex 1 is an unusual open anionic framework that is defined as the metal-organic replica of fluorite. Both 2 and 3 features a 3D open framework with one-dimensional elliptical channels and R- and L-helical chains, and their resulting frameworks can be rationalized as crb and pts topology respectively. An interesting feature of complex 3 is the presence of the linear Cu(3) units that is formed by carboxylate and μ(2)-hydroxyl groups linking three Cu(II) metal centers. Magnetic investigations indicate that ferromagnetic couplings are dominant in the three compounds.

  10. Laser-induced extreme magnetic field in nanorod targets

    Science.gov (United States)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  11. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    International Nuclear Information System (INIS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-01-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans

  12. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  13. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  14. Three-Dimensional Laser Microvision

    Science.gov (United States)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  15. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  16. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Rasmusson, Allan; Sørensen, Thomas Sangild; Kim, W Yong

    2009-02-20

    Two-dimensional, unidirectionally encoded, cardiovascular magnetic resonance (CMR) velocity mapping is an established technique for the quantification of blood flow in large vessels. However, it requires an operator to correctly align the planes of acquisition. If all three directional components of velocity are measured for each voxel of a 3D volume through the phases of the cardiac cycle, blood flow through any chosen plane can potentially be calculated retrospectively. The initial acquisition is then more time consuming but relatively operator independent. To compare the curves and volumes of flow derived from conventional 2D and comprehensive 3D flow acquisitions in a steady state flow model, and in vivo through planes transecting the ascending aorta and pulmonary trunk in 10 healthy volunteers. Using a 1.5 T Phillips Intera CMR system, 3D acquisitions used an anisotropic 3D segmented k-space phase contrast gradient echo sequence with a short EPI readout, with prospective ECG and diaphragm navigator gating. The 2D acquisitions used segmented k-space phase contrast with prospective ECG and diaphragm navigator gating. Quantitative flow analyses were performed retrospectively with dedicated software for both the in vivo and in vitro acquisitions. Analysis of in vitro data found the 3D technique to have overestimated the continuous flow rate by approximately 5% across the entire applied flow range. In vivo, the 2D and the 3D techniques yielded similar volumetric flow curves and measurements. Aortic flow: (mean +/- SD), 2D = 89.5 +/- 13.5 ml & 3D = 92.7 +/- 17.5 ml. Pulmonary flow: 2D = 98.8 +/- 18.4 ml & 3D = 94.9 +/- 19.0 ml). Each in vivo 3D acquisition took about 8 minutes or more. Flow measurements derived from the 3D and 2D acquisitions were comparable. Although time consuming, comprehensive 3D velocity acquisition could be relatively operator independent, and could potentially yield information on flow through several retrospectively chosen planes, for

  17. Measurement of magnetic fields in the direct proximity of power line conductors

    Energy Technology Data Exchange (ETDEWEB)

    Mamishev, A.V.; Russell, B.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Electrical Engineering

    1995-07-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed.

  18. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  19. Novel multipole Wien filter as three-dimensional spin manipulator

    Science.gov (United States)

    Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.

    2014-04-01

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  20. Novel multipole Wien filter as three-dimensional spin manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, T., E-mail: yasue@isc.osakac.ac.jp; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)

    2014-04-15

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  1. Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sciarrone, Danilo [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Chromaleont s.r.l. A start-up of the University of Messina, c/o University of Messina, Viale Annunziata, 98168 Messina (Italy); Pantò, Sebastiano [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Rotondo, Archimede [Dipartimento di Scienze Chimiche, Università di Messina, Via D’Alcontres 31, 98166 Messina (Italy); Tedone, Laura; Tranchida, Peter Quinto [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Dugo, Paola [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus Bio-Medico, Via Álvaro del Portillo, 21 - 00128 Roma (Italy); Mondello, Luigi, E-mail: lmondello@unime.it [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus Bio-Medico, Via Álvaro del Portillo, 21 - 00128 Roma (Italy)

    2013-06-27

    Graphical abstract: -- Highlights: •A recently-developed three-dimensional prep-GC system has been applied to wampee essential oil. •The prep GC system enables the rapid collection of pure compounds from complex samples. •An isolated unknown solute was identified through NMR, IR and MS data. •The structure of an oxygenated sesquiterpene is here reported for the first time. -- Abstract: The present research reports the use of a three-dimensional preparative gas chromatography (prep GC) system, equipped with three Deans-switch devices and 5%diphenyl/wax/mid-polarity ionic liquid stationary phases, for the isolation of volatile components from a complex natural source, namely wampee essential oil (derived from Clausena lansium Skeels leaves). Collection was performed by using a simple and effective lab-constructed trapping device. Initially, an unknown (and abundant) wampee oil constituent was erroneously identified as α-sinensal, through an MS database search (a low similarity match was attained), performed after a GC-quadMS experiment., The unknown compound was then the isolated by using the novel prep GC system, in a highly pure form (at the mg level), and was correctly identified by using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Both FTIR and MS data were used to confirm the NMR information. The name given to the molecule was (2E,6E)-2-methyl-6-(4-methylcyclohex-3-enylidene)hept-2-enal. The results herein described will demonstrate the need for a high-resolution GC step, prior to analyte collection, in the prep GC analysis of complex samples.

  2. Integration of an open magnetic resonance scanner in therapy simulation and three-dimensional radiation treatment planning; Einsatzmoeglichkeiten eines offenen Magnetresonanztomographen in der Therapiesimulation und dreidimensionalen Bestrahlungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, K.; Wenz, F.; Krempien, R.; Schramm, O.; Sroka-Perez, G.; Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Schraube, P. [Klinikum Ludwigsburg (Germany). Abt. Strahlentherapie

    1999-05-01

    Purpose: A system for digital integration of an open MR scanner (0.23 T) in therapy simulation and 3D radiation treatment planning is described. Results: Maximal and mean distortions of the MR images could be reduced from 19 mm to 8.2 mm and from 2.7 mm to 0.7 mm, respectively. Coronal MR images were recalculated in fan beam projection for use at the therapy simulator. Tumor and organ conturs were transferred from the MR image to the digitally acquired and corrected simulator image using a landmark matching algorithm. For 3D treatment planning, image fusion of axial MR images with standard CT planning images was performed using a landmark matching algorithm, as well. Representative cases are shown to demonstrate potential applications of the system. Conclusion: The described system enables the integration of the imaging information from an open MR system in therapy simulation and 3D treatment planning. The low-field MR scanner is an attractive adjunct for the radiooncologist because of the open design and the low costs. (orig./AJ) [Deutsch] Hintergrund: Es wird ein Verfahren zur rein digitalen Einbindung der diagnostischen Information aus einem offenen Niederfeld-MR-Tomographen (0,23 T) in die Therapiesimulation und die CT-gestuetzte dreidimensionale Bestrahlungsplanung vorgestellt. Ergebnisse: Die Bildverzeichnungen konnten durch die Verzeichnungskorrektur von maximal 19 mm auf maximal 8,2 mm und durchschnittlich von 2,7 mm auf 0,7 mm korrigiert werden. Fuer den Einsatz am Therapiesimulator wurden koronare Aufnahmen verwendet und gemaess Strahlensatz in die Faecherstrahlprojektion umgerechnet. Ein Landmark-Matching-Algorithmus ermoeglichte es, die aus der MRT erhaltene Tumorausdehnung in das zuvor digital eingelesene und korrigierte Simulatorbild zu uebertragen. An einem Bestrahlungsplanungssystem (TMS, Helax) wurde, ebenfalls mittels Landmark-Matching mit CT-Schichten, die diagnostische MRT-Information aus den transversalen Schichten zur Kontrolle des

  3. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  4. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  5. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  6. Three-Dimensional Interaction of a Large Number of Dense DEP Particles on a Plane Perpendicular to an AC Electrical Field

    Directory of Open Access Journals (Sweden)

    Chuanchuan Xie

    2017-01-01

    Full Text Available The interaction of dielectrophoresis (DEP particles in an electric field has been observed in many experiments, known as the “particle chains phenomenon”. However, the study in 3D models (spherical particles is rarely reported due to its complexity and significant computational cost. In this paper, we employed the iterative dipole moment (IDM method to study the 3D interaction of a large number of dense DEP particles randomly distributed on a plane perpendicular to a uniform alternating current (AC electric field in a bounded or unbounded space. The numerical results indicated that the particles cannot move out of the initial plane. The similar particles (either all positive or all negative DEP particles always repelled each other, and did not form a chain. The dissimilar particles (a mixture of positive and negative DEP particles always attracted each other, and formed particle chains consisting of alternately arranged positive and negative DEP particles. The particle chain patterns can be randomly multitudinous depending on the initial particle distribution, the electric properties of particles/fluid, the particle sizes and the number of particles. It is also found that the particle chain patterns can be effectively manipulated via tuning the frequency of the AC field and an almost uniform distribution of particles in a bounded plane chip can be achieved when all of the particles are similar, which may have potential applications in the particle manipulation of microfluidics.

  7. The external magnetic field environment

    Science.gov (United States)

    1977-01-01

    Calculations were made to predict magnetic field intensities surrounding an aircraft following a lightning strike. Aircraft design and aircraft structural geometry were considered in the computations. A wire grid aircraft model was used to aid in magnetic flux estimation.

  8. Indirect boundary element method for three dimensional problems. Analytical solution for contribution to wave field by triangular element; Sanjigen kansetsu kyokai yosoho. Sankakukei yoso no kiyo no kaisekikai

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, T. [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F. [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria

    1997-05-27

    Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.

  9. Three-dimensional inversion of magnetotelluric data from the Coso Geothermal Field, based on a finite difference Gauss-Newton method parallelized on a multicore workstation

    Science.gov (United States)

    Maris, Virginie

    An existing 3-D magnetotelluric (MT) inversion program written for a single processor personal computer (PC) has been modified and parallelized using OpenMP, in order to run the program efficiently on a multicore workstation. The program uses the Gauss-Newton inversion algorithm based on a staggered-grid finite-difference forward problem, requiring explicit calculation of the Frechet derivatives. The most time-consuming tasks are calculating the derivatives and determining the model parameters at each iteration. Forward modeling and derivative calculations are parallelized by assigning the calculations for each frequency to separate threads, which execute concurrently. Model parameters are obtained by factoring the Hessian using the LDLT method, implemented using a block-cyclic algorithm and compact storage. MT data from 102 tensor stations over the East Flank of the Coso Geothermal Field, California are inverted. Less than three days are required to invert the dataset for ˜ 55,000 inversion parameters on a 2.66 GHz 8-CPU PC with 16 GB of RAM. Inversion results, recovered from a halfspace rather than initial 2-D inversions, qualitatively resemble models from massively parallel 3-D inversion by other researchers and overall, exhibit an improved fit. A steeply west-dipping conductor under the western East Flank is tentatively correlated with a zone of high-temperature ionic fluids based on known well production and lost circulation intervals. Beneath the Main Field, vertical and north-trending shallow conductors are correlated with geothermal producing intervals as well.

  10. Mean-field and Monte Carlo calculations of the three-dimensional structure factor for YBa2Cu3O6+x