Three-dimensional group manifold reductions of gravity
Linares, Román
2005-04-01
We review the three-dimensional group manifold reductions of pure Einstein gravity and we exhibit a new consistent group manifold reduction of gravity when the compactification group manifold is S3. The new reduction leads to a lower dimensional theory whose gauge group is SU(2).
Lie groups and Lie algebras for physicists
Das, Ashok
2015-01-01
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
Hsiang, Wu-Yi
2017-01-01
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartans' theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie t...
Functional renormalization group for three-dimensional quantum magnetism
Iqbal, Yasir; Thomale, Ronny; Parisen Toldin, Francesco; Rachel, Stephan; Reuther, Johannes
2016-10-01
We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum Heisenberg antiferromagnet, and benchmark it against other approaches, if available.
Lie groups and algebraic groups
Indian Academy of Sciences (India)
. These fields are interrelated and each of these fields contributes to the other. 2. Examples and classification. We first give some examples of Lie groups. The most frequently occurring ones are the linear classical groups GLn(R), GLn(C), ...
Lie groups and algebraic groups
Indian Academy of Sciences (India)
M S RAGHUNATHAN and T N VENKATARAMANA. ∗. School of Mathematics, Tata Institute of Fundamental ... linear classical groups GLn(R), GLn(C), SOn(R),. SOn(C), Spn(R) and Spn(C). Let us call a con- nected Lie ..... split groups due respectively to C C Moore and. V Deodhar. B Sury solved the congruence subgroup ...
Lipkin, Harry J
2002-01-01
According to the author of this concise, high-level study, physicists often shy away from group theory, perhaps because they are unsure which parts of the subject belong to the physicist and which belong to the mathematician. However, it is possible for physicists to understand and use many techniques which have a group theoretical basis without necessarily understanding all of group theory. This book is designed to familiarize physicists with those techniques. Specifically, the author aims to show how the well-known methods of angular momentum algebra can be extended to treat other Lie group
CSIR Research Space (South Africa)
Fisher, JT
2015-07-01
Full Text Available Vegetation Science What lies beneath: detecting sub-canopy changes in savanna woodlands using a three-dimensional classification method Jolene T. Fisher, Ed T.F. Witkowski, Barend F.N. Erasmus, Penelope J. Mograbi, Gregory P. Asner, Jan A.N. van...
Three-dimensional spatial grouping affects estimates of the illuminant.
Perkins, Kenneth R; Schirillo, James A
2003-12-01
The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be approximately 33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to approximately 8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.
Group discussion improves lie detection.
Klein, Nadav; Epley, Nicholas
2015-06-16
Groups of individuals can sometimes make more accurate judgments than the average individual could make alone. We tested whether this group advantage extends to lie detection, an exceptionally challenging judgment with accuracy rates rarely exceeding chance. In four experiments, we find that groups are consistently more accurate than individuals in distinguishing truths from lies, an effect that comes primarily from an increased ability to correctly identify when a person is lying. These experiments demonstrate that the group advantage in lie detection comes through the process of group discussion, and is not a product of aggregating individual opinions (a "wisdom-of-crowds" effect) or of altering response biases (such as reducing the "truth bias"). Interventions to improve lie detection typically focus on improving individual judgment, a costly and generally ineffective endeavor. Our findings suggest a cheap and simple synergistic approach of enabling group discussion before rendering a judgment.
Lie group analysis : Classical Heritage
Ibragimov, Nail H.
2004-01-01
Classical works in Lie group analysis, e.g. important papers of S.Lie and A.V.Bäcklund are written in old German and somewhat old fashioned mathematical language. The present volume comprises translation into English of fundamental papers of S. Lie, A.V.Bäcklund and L.V. Ovsyannikov. I have selected here some of my favorite papers containing profound results significant for modern group analysis. The first paper imparts not only Lie's interesting view on the development of the general th...
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
String Topology for Lie Groups
DEFF Research Database (Denmark)
A. Hepworth, Richard
2010-01-01
In 1999 Chas and Sullivan showed that the homology of the free loop space of an oriented manifold admits the structure of a Batalin-Vilkovisky algebra. In this paper we give a direct description of this Batalin-Vilkovisky algebra in the case that the manifold is a compact Lie group G. Our answer ...
Probability on compact Lie groups
Applebaum, David
2014-01-01
Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures, and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, s...
Transformation groups and Lie algebras
Ibragimov, Nail H
2013-01-01
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
Algebraic K-theory of crystallographic groups the three-dimensional splitting case
Farley, Daniel Scott
2014-01-01
The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.
The Group Evacuation Behavior Based on Fire Effect in the Complicated Three-Dimensional Space
Directory of Open Access Journals (Sweden)
Jun Hu
2014-01-01
Full Text Available In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.
Fast three-dimensional core optimization based on modified one-group model
International Nuclear Information System (INIS)
Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da
2009-01-01
The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)
Fast three-dimensional core optimization based on modified one-group model
Energy Technology Data Exchange (ETDEWEB)
Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br
2009-07-01
The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)
Integrable systems on semidirect product Lie groups
Capriotti, S.; Montani, H.
2014-05-01
We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler-Kostant-Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson-Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.
Three dimensional modeling of laterally loaded pile groups resting in sand
Directory of Open Access Journals (Sweden)
Amr Farouk Elhakim
2016-04-01
Full Text Available Many structures often carry lateral loads due to earth pressure, wind, earthquakes, wave action and ship impact. The accurate predictions of the load–displacement response of the pile group as well as the straining actions are needed for a safe and economic design. Most research focused on the behavior of laterally loaded single piles though piles are most frequently used in groups. Soil is modeled as an elastic-perfectly plastic model using the Mohr–Coulomb constitutive model. The three-dimensional Plaxis model is validated using load–displacement results from centrifuge tests of laterally loaded piles embedded in sand. This study utilizes three dimensional finite element modeling to better understand the main parameters that affect the response of laterally loaded pile groups (2 × 2 and 3 × 3 pile configurations including sand relative density, pile spacing (s = 2.5 D, 5 D and 8 D and pile location within the group. The fixity of the pile head affects its load–displacement under lateral loading. Typically, the pile head may be unrestrained (free head as the pile head is allowed to rotate, or restrained (fixed head condition where no pile head rotation is permitted. The analyses were performed for both free and fixed head conditions.
Differential Geometry and Lie Groups for Physicists
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
The structure of complex Lie groups
Lee, Dong Hoon
2001-01-01
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects.The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups.The differences between complex algebraic groups and complex Lie groups are sometimes subtle ...
Elementary construction of graded lie groups
International Nuclear Information System (INIS)
Scheunert, M.; Rittenberg, V.
1977-06-01
We show how the definitions of the classical Lie groups have to be modified in the case where Grassmann variables are present. In particular, we construct the general linear, the special linear and the orthosymplectic graded Lie groups. Special attention is paid to the question of how to formulate an adequate 'unitarity condition'. (orig.) [de
The path group construction of Lie group extensions
Vizman, Cornelia
2007-01-01
We present an explicit realization of abelian extensions of infinite dimensional Lie groups using abelian extensions of path groups, by generalizing Mickelsson's approach to loop groups and the approach of Losev-Moore-Nekrasov-Shatashvili to current groups. We apply our method to coupled cocycles on current Lie algebras and to Lichnerowicz cocycles on the Lie algebra of divergence free vector fields.
BASHAN: A few-group three-dimensional diffusion code with burnup and fuel management features
International Nuclear Information System (INIS)
Pearce, D.F.
1970-12-01
The diffusion equation for a two or three-dimensional, two-group or multi-group downscatter problem is solved by conventional finite difference techniques. An x-y-z geometry is assumed with an 'in-channel' mesh point representation. Options are available which allow representation of a soluble poison dispersed throughout the reactor, and also absorber rods in specified channels. The power distribution and multiplication factor k eff are calculated and a point rating map is used to advance the irradiation at each mesh point by a specified time-step so that burnup is followed. Fuel changes may be made so that radial shuffling and axial shuffling fuel management schemes can be studies. The code has been written in FORTRAN S2 for an IBM 7030 (STRETCH) computer which, with a fast store of 80,000 locations, allows problems of up to 15,000 mesh points to be dealt with. Conversion to FORTRAN IV for IBM 360 has now been completed. (author)
Functional renormalization group approach to interacting three-dimensional Weyl semimetals
Sharma, Anand; Scammell, Arthur; Krieg, Jan; Kopietz, Peter
2018-03-01
We investigate the effect of long-range Coulomb interaction on the quasiparticle properties and the dielectric function of clean three-dimensional Weyl semimetals at zero temperature using a functional renormalization group (FRG) approach. The Coulomb interaction is represented via a bosonic Hubbard-Stratonovich field which couples to the fermionic density. We derive truncated FRG flow equations for the fermionic and bosonic self-energies and for the three-legged vertices with two fermionic and one bosonic external legs. We consider two different cutoff schemes—cutoff in fermionic or bosonic propagators—in order to calculate the renormalized quasiparticle velocity and the dielectric function for an arbitrary number of Weyl nodes and the interaction strength. If we approximate the dielectric function by its static limit, our results for the velocity and the dielectric function are in good agreement with that of A. A. Abrikosov and S. D. Beneslavskiĭ [Sov. Phys. JETP 32, 699 (1971)] exhibiting slowly varying logarithmic momentum dependence for small momenta. We extend their result for an arbitrary number of Weyl nodes and finite frequency by evaluating the renormalized velocity in the presence of dynamic screening and calculate the wave function renormalization.
Lie groups and grand unified theories
International Nuclear Information System (INIS)
Gubitoso, M.D.
1987-01-01
This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt
Scaling up Three-Dimensional Science Learning through Teacher-Led Study Groups across a State
Reiser, Brian J.; Michaels, Sarah; Moon, Jean; Bell, Tara; Dyer, Elizabeth; Edwards, Kelsey D.; McGill, Tara A. W.; Novak, Michael; Park, Aimee
2017-01-01
The vision for science teaching in the Framework for K-12 Science Education and the Next Generation Science Standards requires a radical departure from traditional science teaching. Science literacy is defined as three-dimensional (3D), in which students engage in science and engineering practices to develop and apply science disciplinary ideas…
Learning the Lie groups of visual invariance.
Miao, Xu; Rao, Rajesh P N
2007-10-01
A fundamental problem in biological and machine vision is visual invariance: How are objects perceived to be the same despite transformations such as translations, rotations, and scaling? In this letter, we describe a new, unsupervised approach to learning invariances based on Lie group theory. Unlike traditional approaches that sacrifice information about transformations to achieve invariance, the Lie group approach explicitly models the effects of transformations in images. As a result, estimates of transformations are available for other purposes, such as pose estimation and visuomotor control. Previous approaches based on first-order Taylor series expansions of images can be regarded as special cases of the Lie group approach, which utilizes a matrix-exponential-based generative model of images and can handle arbitrarily large transformations. We present an unsupervised expectation-maximization algorithm for learning Lie transformation operators directly from image data containing examples of transformations. Our experimental results show that the Lie operators learned by the algorithm from an artificial data set containing six types of affine transformations closely match the analytically predicted affine operators. We then demonstrate that the algorithm can also recover novel transformation operators from natural image sequences. We conclude by showing that the learned operators can be used to both generate and estimate transformations in images, thereby providing a basis for achieving visual invariance.
Jacobi–Lie symmetry and Jacobi–Lie T-dual sigma models on group manifolds
Directory of Open Access Journals (Sweden)
A. Rezaei-Aghdam
2018-01-01
Full Text Available Using the concept of Jacobi–Lie group and Jacobi–Lie bialgebra, we generalize the definition of Poisson–Lie symmetry to Jacobi–Lie symmetry. In this regard, we generalize the concept of Poisson–Lie T-duality to Jacobi–Lie T-duality and present Jacobi–Lie T-dual sigma models on Lie groups, which have Jacobi–Lie symmetry. Using this symmetry, new cases of duality appear and some examples are given. This generalization may provide insights to understand the quantum features of Poisson–Lie T-duality, in a more satisfactory way.
Fractional superLie algebras and groups
Energy Technology Data Exchange (ETDEWEB)
Ahmedov, H. [Feza Gursey Institute, Cengelkoy, Istanbul (Turkey)]. E-mail: hagi@gursey.gov.tr; Yildiz, A. [ Feza Gursey Institute, Cengelkoy, Istanbul (Turkey); Ucan, Y. [Yildiz Technical University, Department of Mathematics, Besiktas, Istanbul (Turkey)
2001-08-24
The nth root of a Lie algebra and its dual (that is the fractional supergroup) based on the permutation group S{sub n} invariant forms is formulated in the Hopf algebra formalism. Detailed discussion of S{sub 3}-graded sl(2) algebras is performed. (author)
Analytic factorization of Lie group representations
DEFF Research Database (Denmark)
Gimperlein, Heiko; Krötz, Bernhard; Lienau, Christoph
2012-01-01
For every moderate growth representation (p,E)(p,E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E¿E¿. There exists a natural algebra of superexponentially decreasing analytic functions A(G)A(G), such that E...
Simple Lie groups without the approximation property
DEFF Research Database (Denmark)
Haagerup, Uffe; de Laat, Tim
2013-01-01
For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...... and real rank greater than or equal to two do not have the AP. This naturally gives rise to many examples of exact discrete groups without the AP....
Dimensional-duality and Its Lie Groups
Sinha, Nilotpal
2009-01-01
For a claim to a dimensional duality, we consider here that, the relativity is depending on a "double-fold" complex number for locally dense fourth axis within an enveloping 3D-space. This dimensional duality has been made here for locally dense m-dimensional geometry within n-space, for m > n, if every axis of m-space is dimensional-dual to its enveloping n-space. This locally dense m-dimensional geometry describes a reflexive complex function, viz., "transfusion" transformation, which establishes that, Lie group U(2) is the simply connected 1 to 2 enveloping group of SO(3, 1) within D-dual spaces only. Again, using the weight vectors, it is found that, there exists a SU(4) group, which may be a symmetry group for gravitons.
Uncertainty relations on nilpotent Lie groups.
Ruzhansky, Michael; Suragan, Durvudkhan
2017-05-01
We give relations between main operators of quantum mechanics on one of most general classes of nilpotent Lie groups. Namely, we show relations between momentum and position operators as well as Euler and Coulomb potential operators on homogeneous groups. Homogeneous group analogues of some well-known inequalities such as Hardy's inequality, Heisenberg-Kennard type and Heisenberg-Pauli-Weyl type uncertainty inequalities, as well as Caffarelli-Kohn-Nirenberg inequality are derived, with best constants. The obtained relations yield new results already in the setting of both isotropic and anisotropic [Formula: see text], and of the Heisenberg group. The proof demonstrates that the method of establishing equalities in sharper versions of such inequalities works well in both isotropic and anisotropic settings.
Construction of Difference Equations Using Lie Groups
International Nuclear Information System (INIS)
Axford, R.A.
1998-01-01
The theory of prolongations of the generators of groups of point transformations to the grid point values of dependent variables and grid spacings is developed and applied to the construction of group invariant numerical algorithms. The concepts of invariant difference operators and generalized discrete sources are introduced for the discretization of systems of inhomogeneous differential equations and shown to produce exact difference equations. Invariant numerical flux functions are constructed from the general solutions of first order partial differential equations that come out of the evaluation of the Lie derivatives of conservation forms of difference schemes. It is demonstrated that invariant numerical flux functions with invariant flux or slope limiters can be determined to yield high resolution difference schemes. The introduction of an invariant flux or slope limiter can be done so as not to break the symmetry properties of a numerical flux-function
Essays in the history of Lie groups and algebraic groups
Borel, Armand
2001-01-01
Lie groups and algebraic groups are important in many major areas of mathematics and mathematical physics. We find them in diverse roles, notably as groups of automorphisms of geometric structures, as symmetries of differential systems, or as basic tools in the theory of automorphic forms. The author looks at their development, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. Starting from Lie's theory of local analytic transformation groups and early work on Lie algebras, he follows the process of globalization in its two main frameworks: differential geometry and topology on one hand, algebraic geometry on the other. Chapters II to IV are devoted to the former, Chapters V to VIII, to the latter. The essays in the first part of the book survey various proofs of the full reducibility of linear representations of \\mathbf{SL}_2{(\\mathbb{C})}, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and con...
Uncertainty Principles on Two Step Nilpotent Lie Groups
Indian Academy of Sciences (India)
Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.
Uncertainty principles on two step nilpotent Lie groups
Indian Academy of Sciences (India)
Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.
Renormalization group flows and continual Lie algebras
International Nuclear Information System (INIS)
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)
On Lie Group-Lie Algebra Correspondences of Unitary Groups in Finite Von Neumann Algebras
Ando, Hiroshi; Ojima, Izumi; Matsuzawa, Yasumichi
2011-01-01
This article is a summary of our talk in QBIC2010. We give an affirmative answer to the question whether there exist Lie algebras for suitable closed subgroups of the unitary group U( {H}) in a Hilbert space {H} with U( {H}) equipped with the strong operator topology. More precisely, for any strongly closed subgroup G of the unitary group U( {M}) in a finite von Neumann algebra {M}, we show that the set of all generators of strongly continuous one-parameter subgroups of G forms a complete topological Lie algebra with respect to the strong resolvent topology. We also characterize the algebra /line {M} of all densely defined closed operators affiliated with {M} from the viewpoint of a tensor category.
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
Enveloping algebras of Lie groups with descrete series
International Nuclear Information System (INIS)
Nguyen huu Anh; Vuong manh Son
1990-09-01
In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki; Sasaki, Makoto.
1988-11-01
We have developed a group of computer codes to realize the accurate transport calculation by using the multi-group double-differential form cross section. This type of cross section can correctly take account of the energy-angle correlated reaction kinematics. Accordingly, the transport phenomena in materials with highly anisotropic scattering are accurately calculated by using this cross section. They include the following four codes or code systems: PROF-DD : a code system to generate the multi-group double-differential form cross section library by processing basic nuclear data file compiled in the ENDF / B-IV or -V format, ANISN-DD : a one-dimensional transport code based on the discrete ordinate method, DOT-DD : a two-dimensional transport code based on the discrete ordinate method, MORSE-DD : a three-dimensional transport code based on the Monte Carlo method. In addition to these codes, several auxiliary codes have been developed to process calculated results. This report describes the calculation algorithm employed in these codes and how to use them. (author)
Kjer, Vanje Rebni
2017-01-01
The objective of this thesis is to study numerical integrators and their application to solving ordinary differential equations arising from mechanical systems. Many mechanical problems are naturally formulated on Lie groups or on the groups tangent or cotangent bundle, especially those where the equations of motion are derived from variational principles. The bundles inherit the structure of the original Lie group and can be considered Lie groups themselves. Often these systems are highly c...
Evangelista, Dennis J; Ray, Dylan D; Raja, Sathish K; Hedrick, Tyson L
2017-02-22
Chimney swifts ( Chaetura pelagica ) are highly manoeuvrable birds notable for roosting overnight in chimneys, in groups of hundreds or thousands of birds, before and during their autumn migration. At dusk, birds gather in large numbers from surrounding areas near a roost site. The whole flock then employs an orderly, but dynamic, circling approach pattern before rapidly entering a small aperture en masse We recorded the three-dimensional trajectories of ≈1 800 individual birds during a 30 min period encompassing flock formation, circling, and landing, and used these trajectories to test several hypotheses relating to flock or group behaviour. Specifically, we investigated whether the swifts use local interaction rules based on topological distance (e.g. the n nearest neighbours, regardless of their distance) rather than physical distance (e.g. neighbours within x m, regardless of number) to guide interactions, whether the chimney entry zone is more or less cooperative than the surrounding flock, and whether the characteristic subgroup size is constant or varies with flock density. We found that the swift flock is structured around local rules based on physical distance, that subgroup size increases with density, and that there exist regions of the flock that are less cooperative than others, in particular the chimney entry zone. © 2017 The Authors.
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... The notion of approximation of Lie groups by discrete subgroups was introduced by Tôyama in Kodai Math. Sem. Rep. 1 (1949) 36–37 and investigated in detail by Kuranishi in Nagoya Math. J. 2 (1951) 63–71. It is known as a theorem of Tôyama that any connected Lie group approximated by discrete ...
Renormalization group flows and continual Lie algebras
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches...
S7 without any construction of Lie group
International Nuclear Information System (INIS)
Zhou Jian; Xu Senlin.
1988-12-01
It was proved that the sphere S n is a parallelizable manifold if and only if n = 1,3 or 7, and that S n is an H-space if and only if n = 0,1,3 or 7. Because a Lie group must necessarily be a parallelizable manifold and also an H-space, naturally one asks that S n is a Lie group for n = 0, 1,3 or 7? In this paper we prove that S 7 is not a Lie group, and it is not even a topological group. Therefore, S n is a Lie group (or a topological group) if and only if n = 0,1,3. (author). 11 refs
Quantum algebras as quantizations of dual Poisson–Lie groups
International Nuclear Information System (INIS)
Ballesteros, Ángel; Musso, Fabio
2013-01-01
A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)
Intrinsic Optimal Control for Mechanical Systems on Lie Group
Directory of Open Access Journals (Sweden)
Chao Liu
2017-01-01
Full Text Available The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3, the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.
Path integral and quasiclassical asymptotics of the Lie group
International Nuclear Information System (INIS)
Karasev, M.V.
1977-01-01
Solution of the Cauchy problem for the right-invariant differential operator on the Lie group is represented as a formal path integral. Finite-dimensional approximations of this integral and its quasiclassical asymptotics are written down
On E-functions of semisimple Lie groups
Energy Technology Data Exchange (ETDEWEB)
Hrivnak, JirI; Patera, JirI [Centre de Recherches Mathematiques, Universite de Montreal, C P 6128 - Centre Ville, Montreal, H3C 3J7 Quebec (Canada); Kashuba, Iryna, E-mail: patera@crm.umontreal.ca, E-mail: kashuba@ime.usp.br, E-mail: jiri.hrivnak@fjfi.cvut.cz [Departamento de Matematica, Instituto de Matematica e EstatIstica, Universidade de Sao Paulo, Rua do Matao 1010, CEP 05508-090, Sao Paulo (Brazil)
2011-08-12
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.
Anti-Kählerian Geometry on Lie Groups
Fernández-Culma, Edison Alberto; Godoy, Yamile
2018-03-01
Let G be a Lie group of even dimension and let ( g, J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure ( g, J) where J is abelian then the Lie algebra of G is unimodular and ( G, g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple ( G, g, J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor 𝜃 on its Lie algebra and prove that such structure is anti-Kähler if and only if 𝜃 is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).
Application of Lie group analysis in geophysical fluid dynamics
Ibragimov, Ranis
2011-01-01
This is the first monograph dealing with the applications of the Lie group analysis to the modeling equations governing internal wave propagation in the deep ocean. A new approach to describe the nonlinear interactions of internal waves in the ocean is presented. While the central idea of the book is to investigate oceanic internal waves through the prism of Lie group analysis, it is also shown for the first time that internal wave beams, representing exact solutions to the equation of motion of stratified fluid, can be found by solving the given model as invariant solutions of nonlinear equat
Controllability of linear vector fields on Lie groups
International Nuclear Information System (INIS)
Ayala, V.; Tirao, J.
1994-11-01
In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
1991 Mathematics Subject Classification. 22E40. 1. Introduction and statement of results ... In 1951, Kuranishi proved the following remarkable theorem (Corollary, page 64 of [13]). Theorem 1.4. Let G be a Lie group ... have the following result of Kuranishi (Theorem 2 of [13]). Theorem 1.6 (The approximation theorem).
Exceptional Lie groups, E-infinity theory and Higgs Boson
International Nuclear Information System (INIS)
El-Okaby, Ayman A.
2008-01-01
In this paper we study the correlation between El-Naschie's exceptional Lie groups hierarchies and his transfinite E-infinity space-time theory. Subsequently this correlation is used to calculate the number of elementary particles in the standard model, mass of the Higgs Bosons and some coupling constants
Cluster X-varieties, amalgamation, and Poisson-Lie groups
DEFF Research Database (Denmark)
Fock, V. V.; Goncharov, A. B.
2006-01-01
In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...
Group formalism of Lie transformations to time-fractional partial ...
Indian Academy of Sciences (India)
physics pp. 849–860. Group formalism of Lie transformations to time-fractional partial differential equations. T BAKKYARAJ and R SAHADEVAN∗. Ramanujan .... Basic definitions. To be self-contained, we briefly provide some basic definitions of fractional calculus below. (i) Riemann–Liouville fractional integral. It is well ...
Beis, Konstantinos; Collins, Richard F; Ford, Robert C; Kamis, Alhaji B; Whitfield, Chris; Naismith, James H
2004-07-02
Wza is a highly conserved multimeric outer membrane protein complex required for the surface expression of the serotype K30 group 1 capsular polysaccharide in Escherichia coli. Here we present the first three-dimensional structure of this type of polysaccharide exporter at a 15.5-A resolution obtained using single particle averaging on a dataset of cryo-negatively stained protein. Previous structural studies on purified Wza have revealed a homo-oligomeric ring structure that is most probably composed of eight subunits. Symmetry analysis of the three-dimensional structure combined with biochemical two- and three-dimensional crystallographic data strongly suggest that Wza is an octameric complex with a C4 quasi-rotational symmetry and is organized as a tetramer of dimeric subunits. Wza is best described as a stack of two 4-A high rings with differing diameters providing a mushroom-like aspect from the side. The larger ring has a distinctive square shape with a diameter of 115 A, whereas the smaller is almost circular with a diameter of 90 A. In the center of the complex and enclosed by the four symmetrical arms is a small elliptical cagelike cavity of approximately 40 A in diameter. The central cavity is effectively sealed at the top and bottom of the complex but has small inter-arm holes when viewed from the side. We discuss the structure of this complex and implications in the surface translocation of cell-surface polysaccharide.
Expansion in finite simple groups of Lie type
Tao, Terence
2015-01-01
Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.
A representation independent propagator. Pt. 1. Compact Lie groups
International Nuclear Information System (INIS)
Tome, W.A.
1995-01-01
Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)
Three-dimensional neuroimaging
International Nuclear Information System (INIS)
Toga, A.W.
1990-01-01
This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function
Correlation functions from a unified variational principle: Trial Lie groups
Energy Technology Data Exchange (ETDEWEB)
Balian, R., E-mail: roger.balian@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Vénéroni, M. [Institut de Physique Nucléaire, Université Paris-Sud and IN2P3-CNRS, F-91406 Orsay cedex (France)
2015-11-15
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill
Three-dimensional echocardiography
International Nuclear Information System (INIS)
Buck, Thomas
2011-01-01
Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.
Similarity analysis of differential equations by Lie group.
Na, T. Y.; Hansen, A. G.
1971-01-01
Methods for transforming partial differential equations into forms more suitable for analysis and solution are investigated. The idea of Lie's infinitesimal contact transformation group is introduced to develop a systematic method which involves mostly algebraic manipulations. A thorough presentation of the application of this general method to the problem of similarity analysis in a broader sense - namely, the similarity between partial and ordinary differential equations, boundary value and initial value problems, and nonlinear and linear equations - is given with new and very general methods evolved for deriving the possible groups of transformations.
The Higgs mass derived from the U(3) Lie group
DEFF Research Database (Denmark)
Trinhammer, Ole; Bohr, Henrik; Jensen, Mogens O Stibius
2015-01-01
The Higgs mass value is derived from a Hamiltonian on the Lie group U(3) where we relate strong and electroweak energy scales. The baryon states of nucleon and delta resonances originate in specific Bloch wave degrees of freedom coupled to a Higgs mechanism which also gives rise to the usual gauge...... in scattering cross-sections for negative pions on protons, in photoproduction on neutrons, in neutron diffraction dissociation experiments and in invariant mass spectra of protons and negative pions in B-decays. The fundamental predictions are based on just one length scale and the fine structure constant...
A topological Maslov index for 3-graded Lie groups
DEFF Research Database (Denmark)
Neeb, K.-H.; Ørsted, Bent
2005-01-01
Motivated by the generalization of the Maslov index to tube domains and by numerous applications of related index function in infinite-dimensional situations, we describe in this paper a topologically oriented approach to an index function generalizing the Maslov index for bounded symmetric domai...... of tube type to a variety of infinite-dimensional situations containing in particular the class of all bounded symmetric domains of tube type in Banach spaces. The framework is that of 3-graded Banach-Lie groups and corresponding Jordan triple systems....
On Spaces of Commuting Elements in Lie Groups
2014-02-25
Yang - Mills theory. Further work was done by V. Kac and A. Smilga [23]. Work of A. Borel, R. Friedman and J. Morgan [11] addressed the special cases of...points of the Weyl group W acting naturally on H∗(G/T )⊗ T∗[V ], where T∗[V ] denotes the dual of the tensor algebra T[V ] generated by the 4 FREDERICK R...cohomology, the R- dual of ∧k1Rn ⊗ · · · ⊗ ∧kmRn lies in homological degree j = k1 + · · ·+ km of T∗[Ẽ] as well as tensor degree m > 0. The special case with
Lie groups, differential equations, and geometry advances and surveys
2017-01-01
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
International Workshop "Groups, Rings, Lie and Hopf Algebras"
2003-01-01
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
Klamroth-Marganska, Verena; Blanco, Javier; Campen, Katrin; Curt, Armin; Dietz, Volker; Ettlin, Thierry; Felder, Morena; Fellinghauer, Bernd; Guidali, Marco; Kollmar, Anja; Luft, Andreas; Nef, Tobias; Schuster-Amft, Corina; Stahel, Werner; Riener, Robert
2014-02-01
Arm hemiparesis secondary to stroke is common and disabling. We aimed to assess whether robotic training of an affected arm with ARMin--an exoskeleton robot that allows task-specific training in three dimensions-reduces motor impairment more effectively than does conventional therapy. In a prospective, multicentre, parallel-group randomised trial, we enrolled patients who had had motor impairment for more than 6 months and moderate-to-severe arm paresis after a cerebrovascular accident who met our eligibility criteria from four centres in Switzerland. Eligible patients were randomly assigned (1:1) to receive robotic or conventional therapy using a centre-stratified randomisation procedure. For both groups, therapy was given for at least 45 min three times a week for 8 weeks (total 24 sessions). The primary outcome was change in score on the arm (upper extremity) section of the Fugl-Meyer assessment (FMA-UE). Assessors tested patients immediately before therapy, after 4 weeks of therapy, at the end of therapy, and 16 weeks and 34 weeks after start of therapy. Assessors were masked to treatment allocation, but patients, therapists, and data analysts were unmasked. Analyses were by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT00719433. Between May 4, 2009, and Sept 3, 2012, 143 individuals were tested for eligibility, of whom 77 were eligible and agreed to participate. 38 patients assigned to robotic therapy and 35 assigned to conventional therapy were included in analyses. Patients assigned to robotic therapy had significantly greater improvements in motor function in the affected arm over the course of the study as measured by FMA-UE than did those assigned to conventional therapy (F=4.1, p=0.041; mean difference in score 0.78 points, 95% CI 0.03-1.53). No serious adverse events related to the study occurred. Neurorehabilitation therapy including task-oriented training with an exoskeleton robot can enhance improvement of
International Nuclear Information System (INIS)
Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.
2004-01-01
The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)
Energy Technology Data Exchange (ETDEWEB)
Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico
2014-12-15
In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.
Three dimensional system integration
Papanikolaou, Antonis; Radojcic, Riko
2010-01-01
Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi
Three-dimensional metamaterials
Burckel, David Bruce [Albuquerque, NM
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Araujo, Vitor; Viana, Marcelo
2010-01-01
In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated
Dual Solutions for Nonlinear Flow Using Lie Group Analysis.
Directory of Open Access Journals (Sweden)
Muhammad Awais
Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.
Parallelization method for three dimensional MOC calculation
International Nuclear Information System (INIS)
Zhang Zhizhu; Li Qing; Wang Kan
2013-01-01
A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance. (authors)
Lie group structures on automorphism groups of real-analytic CR manifolds
ZAITSEV, DMITRI
2008-01-01
PUBLISHED Given any real-analytic CR manifold M, we provide general conditions on M guar- anteeing that the group of all its global real-analytic CR automorphisms AutCR(M) is a Lie group (in an appropriate topology). In particular, we obtain a Lie group structure for AutCR(M) when M is an arbitrary compact real-analytic hypersurface embedded in some Stein manifold. The first author was supported by the Austrian Science Fund FWF, Project P17111 and Project P19667. The second ...
A direct link between the Lie group SU(3) and the singular ...
Indian Academy of Sciences (India)
connection between the Lie groups SU(3) and a singular curve in 3 is thus established. The key step needed to do this was to treat the Lie group as a quantum system and determine its phase space. Keywords. Lie groups; singularities; classical phase space. PACS Nos 02.20.Qs; 45.20.-d. 1. Introduction. It has long been ...
Three dimensional energy profile:
International Nuclear Information System (INIS)
Kowsari, Reza; Zerriffi, Hisham
2011-01-01
The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.
van der Noort, V.
2009-01-01
This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations
Three-dimensional ICT reconstruction
International Nuclear Information System (INIS)
Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia
2005-01-01
The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)
Three-dimensional ICT reconstruction
International Nuclear Information System (INIS)
Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia
2004-01-01
The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)
6th Hilbert's problem and S.Lie's infinite groups
International Nuclear Information System (INIS)
Konopleva, N.P.
1999-01-01
The progress in Hilbert's sixth problem solving is demonstrated. That became possible thanks to the gauge field theory in physics and to the geometrical treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is the best basis for solution of the problem being discussed. This talk has been reported at the International Seminar '100 Years after Sophus Lie' (Leipzig, Germany)
Zhang, Yi; Liu, Xiaolin; Zhong, Yingchun; Tang, Ping; Zhou, Jiaming; Qi, Jian; He, Caifeng
2010-03-01
To explore and solve the key technologies of the three dimensional (3D) visualization reconstruction of functional fascicular groups inside long segmented peripheral nerve. A 20 cm ulnar nerve from upper arm of fresh adult dead body was embedded by OCT with four pieces of woman's hair which was used as locating material, then the samples were serially horizontally sliced into 400 slices with 15 microm thickness and 0.5 mm interval. All slices were stained with acetylcholinesterase (AchE) histochemical staining. After that, the 2D panorama images of the same slice were obtained with Olympus stereomicroscope and MSHOT MD90 micro figure image device before and after AchE staining. Using the layer processing technique of Photoshop image processing software, the decomposition images including complete 4 location pots were obtained, based on which the algorithm of optimized least square support vector machine (Optimized LS-SVM) and space transformation method was used to fulfill automatic registration. Finally, with artificial assistant outline obtaining, the 3D visualization reconstruction model of functional fascicular groups of 20 cm ulnar nerve was made using Amira 4.1, and the effects of reverse reduction and the suitability of 3D reconstruction software were evaluated. The two-time imaging technique based on the layer process of Photoshop image processing software had the advantages: the image outline had high goodness of fit; the locating pots of merging image was accurate; and the whole procedure was simple and fast. The algorithm of Optimized LS-SVM had high degree of accuracy, and the error rate was only 8.250%. The 3D reconstruction could display the changes of the chiastopic fusion of different nerve functional fascicular groups directly. It could extract alone, merge and combine arbitrarily, and revolve at any angles. Furthermore, the reverse reduction on arbitrarily level dissection of the 3D model was very accurately. Based on the two-time imaging
Three dimensional moire pattern alignment
Juday, Richard D. (Inventor)
1991-01-01
An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.
Davis, Daniel R.
1997-01-01
Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…
't Hooft's solution for arbitrary semisimple Lie group
International Nuclear Information System (INIS)
Leznov, A.N.; Mukhtarov, M.A.
1990-07-01
The generalization of the 't Hooft's A 1 solution for every semisimple Lie algebra is found. The solution depends on r-independent chains of linear self-dual systems (Δ s α ) z = (Δ s+1 α ) y -bar, (Δ s α ) y -bar = -(Δ s+1 α ) z (1 ≤ α ≤ r); the length of α chain is equal to 2ω α + 1, where ω α are the indexes of the semisimple algebra and r is its rank. In the special case the O(4)-invariant solutions with instanton number equal to one arises. (author). 6 refs
Solutions and laws of conservation for coupled nonlinear Schrödinger equations: Lie group analysis
Pulov, V. I.; Uzunov, I. M.; Chacarov, E. J.
1998-03-01
A set of two coupled nonlinear Schrödinger equations is systematically analyzed by means of Lie group technique. The physical situations under consideration include nonlinear propagation in strongly birefringent and multimode optical fibers. The most general Lie group of point symmetries, its Lie algebra, and a group of adjoint representations that correspond to the Lie algebra are identified. As a result, a complete list of group-invariant exact solutions is obtained and compared with earlier results. The corresponding laws of conservation are derived employing Noether's theorem.
Orthogonal polynomials of compact simple Lie groups: branching rules for polynomials
International Nuclear Information System (INIS)
Nesterenko, M; Patera, J; Szajewska, M; Tereszkiewicz, A
2010-01-01
Polynomials in this paper are defined starting from a compact semisimple Lie group. A known classification of maximal, semisimple subgroups of simple Lie groups is used to select the cases to be considered here. A general method is presented and all the cases of rank ≤3 are explicitly studied. We derive the polynomials of simple Lie groups B 3 and C 3 as they are not available elsewhere. The results point to far reaching Lie theoretical connections to the theory of multivariable orthogonal polynomials.
International Nuclear Information System (INIS)
Dobrev, V.K.
1986-11-01
Let G be a real linear connected semisimple Lie group. We present a canonical construction of the differential operators intertwining elementary (≡ generalized principal series) representations of G. The results are easily extended to real linear reductive Lie groups. (author). 20 refs
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
voila.fr; salah.suissi@yahoo.fr. MS received 11 August 2012; revised 27 January 2013. Abstract. A locally compact group G is said to be approximated by discrete sub- groups (in the sense of Tôyama) if there is a sequence of discrete subgroups ...
Some quantum optical states as realizations of Lie groups
Directory of Open Access Journals (Sweden)
Abdel-Shafy Fahmy Obada
2011-04-01
Full Text Available We start with the Heisenberg–Weyl algebra and after the definitions of the Fock states we give the definition of the coherent state of this group. This is followed by the exposition of the SU(2 and SU(1,1 algebras and their coherent states. From there we go on describing the binomial state and its extensions as realizations of the SU(2 group. This is followed by considering the negative binomial states, and some squeezed states as realizations of the SU(1,1 group. Generation schemes based on physical systems are mentioned for some of these states.
Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction
Directory of Open Access Journals (Sweden)
Andrea Bonfiglioli
2014-12-01
Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
Energy Technology Data Exchange (ETDEWEB)
Larouche, M [Departement de Mathematiques et Statistique, Universite de Montreal, 2920 chemin de la Tour, Montreal, Quebec H3T 1J4 (Canada); Lemire, F W [Department of Mathematics, University of Windsor, Windsor, Ontario (Canada); Patera, J, E-mail: larouche@dms.umontreal.ca, E-mail: lemire@uwindsor.ca, E-mail: patera@crm.umontreal.ca [Centre de Recherches Mathematiques, Universite de Montreal, CP 6128-Centre ville, Montreal, Quebec H3C 3J7 (Canada)
2011-10-14
In this paper, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. The centralizer is either a direct product of finite cyclic groups, a continuous group of rank 1, or a product, not necessarily direct, of a continuous group of rank 1 with a finite cyclic group. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given. (paper)
Statistics on Lie groups: A need to go beyond the pseudo-Riemannian framework
Miolane, Nina; Pennec, Xavier
2015-01-01
Lie groups appear in many fields from Medical Imaging to Robotics. In Medical Imaging and particularly in Computational Anatomy, an organ's shape is often modeled as the deformation of a reference shape, in other words: as an element of a Lie group. In this framework, if one wants to model the variability of the human anatomy, e.g. in order to help diagnosis of diseases, one needs to perform statistics on Lie groups. A Lie group G is a manifold that carries an additional group structure. Statistics on Riemannian manifolds have been well studied with the pioneer work of Fréchet, Karcher and Kendall [1, 2, 3, 4] followed by others [5, 6, 7, 8, 9]. In order to use such a Riemannian structure for statistics on Lie groups, one needs to define a Riemannian metric that is compatible with the group structure, i.e a bi-invariant metric. However, it is well known that general Lie groups which cannot be decomposed into the direct product of compact and abelian groups do not admit a bi-invariant metric. One may wonder if removing the positivity of the metric, thus asking only for a bi-invariant pseudo-Riemannian metric, would be sufficient for most of the groups used in Computational Anatomy. In this paper, we provide an algorithmic procedure that constructs bi-invariant pseudo-metrics on a given Lie group G. The procedure relies on a classification theorem of Medina and Revoy. However in doing so, we prove that most Lie groups do not admit any bi-invariant (pseudo-) metric. We conclude that the (pseudo-) Riemannian setting is not the richest setting if one wants to perform statistics on Lie groups. One may have to rely on another framework, such as affine connection space.
A direct link between the Lie group SU (3) and the singular ...
Indian Academy of Sciences (India)
A classical phase space with a suitable symplectic structure is constructed together with functions which have Poisson brackets algebraically identical to the Lie algebra structure of the Lie group SU(3). It is shown that in this phase space there are two spheres which intersect at one point. Such a system has a representation ...
Chen, Cheng; Jiang, Yao-Lin
2017-09-01
On the basis of Lie group theory, (1 + N)-dimensional time-fractional partial differential equations are studied and the expression of {η }α 0 is given. As applications, two special forms of nonlinear time-fractional diffusion-convection equations are investigated by Lie group analysis method. Then the equations are reduced into fractional ordinary differential equations under group transformations. Therefore, the invariant solutions and some exact solutions are obtained.
International Nuclear Information System (INIS)
Ursino, Stefano; Morganti, Riccardo; Cristaudo, Agostino; Paiar, Fabiola; D'Angelo, Elisa; Lohr, Frank; Mazzola, Rosario; Merlotti, Anna; Russi, Elvio Grazioso; Musio, Daniela; Alterio, Daniela; Bacigalupo, Almalina
2017-01-01
Dysphagia is one of the most important treatment-related side effects in head and neck cancer (HNC), as it can lead to severe life-threating complications such as aspiration pneumonia and malnutrition. Intensity-modulated radiotherapy (IMRT) could reduce swallowing dysfunction by producing a concave dose distribution and reducing doses to the swallowing-related organs at risk (SWOARs). The aim of this study was to review the current literature in order to compare swallowing outcomes between IMRT and three-dimensional conformal radiotherapy (3DCRT). A search was conducted in the PubMed and Embase databases to identify studies on swallowing outcomes, both clinically and/or instrumentally assessed, after 3DCRT and IMRT. Dysphagia-specific quality of life and objective instrumental data are summarized and discussed. A total of 262 papers were retrieved from the searched databases. An additional 23 papers were retrieved by hand-searching the reference lists. Ultimately, 22 papers were identified which discussed swallowing outcomes after 3DCRT and IMRT for HNC. No outcomes from randomized trials were identified. Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing. (orig.) [de
Jia, JingYu; Li, LianYong; Zhang, LiJun; Zhao, Qun; Liu, XiJuan
2012-01-01
At present, the indications for femoral derotational osteotomy remain controversial due to the inconsistent findings in femoral neck anteversion in developmental dysplasia of the hip (DDH). Moreover, combined anteversion is not assessed in unilateral DDH using three dimensional-CT. Therefore, the purposes of our study were to observe whether the femoral neck anteversion (FA), acetabular anteversion (AA) and combined anteversion (CA) on the dislocated hips were universally presented in unilateral DDH according to the classification system of Tönnis. Sixty-two patients with unilateral dislocation of hip were involved in the study, including 54 females and eight males with a mean age of 21.63 months (range, 18-48 months). The FA, AA and CA were measured and compared between the dislocated hips and the unaffected hips. Although no significant difference was observed in FA between the dislocated hips and the unaffected hips (P = 0.067, 0.132, respectively) in Tönnis II and III type, FA was obviously increased on the dislocated hips compared with the unaffected hips in Tönnis IV type. Increased AA on the dislocated hips was a universal finding in Tönnis II, III and IV types. Meanwhile, a wide safe range of CA from 24° to 62° was demonstrated on the unaffected hips. Femoral derotational osteotomy seems not to be necessary in Tönnis II and III types in unilateral DDH. Femoral derotational osteotomy should be considered in DDH, especially in Tönnis IV type, if the CA is still above 62° and the hip joints present instability in operation after abnormal acetabular anteversion, acetabular index and acetabular coverage of the femoral head are recovered to normal range through pelvic osteotomy.
Geometric actions for three-dimensional gravity
Barnich, G.; González, H. A.; Salgado-Rebolledo, P.
2018-01-01
The solution space of three-dimensional asymptotically anti-de Sitter or flat Einstein gravity is given by the coadjoint representation of two copies of the Virasoro group in the former and the centrally extended BMS3 group in the latter case. Dynamical actions that control these solution spaces are usually constructed by starting from the Chern–Simons formulation and imposing all boundary conditions. In this note, an alternative route is followed. We study in detail how to derive these actions from a group-theoretical viewpoint by constructing geometric actions for each of the coadjoint orbits, including the appropriate Hamiltonians. We briefly sketch relevant generalizations and potential applications beyond three-dimensional gravity.
Equilibrium: three-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6
Energy Technology Data Exchange (ETDEWEB)
Ursino, Stefano; Morganti, Riccardo; Cristaudo, Agostino; Paiar, Fabiola [University Hospital S. Chiara, Radiation Oncology, Pisa (Italy); D' Angelo, Elisa; Lohr, Frank [University Hospital, Radiation Oncology, Modena (Italy); Mazzola, Rosario [Sacro Cuore-Don Calabria Cancer Care Center, Radiation Oncology, Negrar-Verona (Italy); Merlotti, Anna; Russi, Elvio Grazioso [S. Croce e Carle Hospital, Radiation Oncology, Cuneo (Italy); Musio, Daniela [University Hospital La Sapienza, Radiation Oncology, Roma (Italy); Alterio, Daniela [European Institute of Oncology, Radiation Oncology, Advanced Radiotherapy Center, Milan (Italy); Bacigalupo, Almalina [AOU IRCCS San Martino - IST National Cancer Research Institute and University, Radiation Oncology, Genoa (Italy)
2017-11-15
Dysphagia is one of the most important treatment-related side effects in head and neck cancer (HNC), as it can lead to severe life-threating complications such as aspiration pneumonia and malnutrition. Intensity-modulated radiotherapy (IMRT) could reduce swallowing dysfunction by producing a concave dose distribution and reducing doses to the swallowing-related organs at risk (SWOARs). The aim of this study was to review the current literature in order to compare swallowing outcomes between IMRT and three-dimensional conformal radiotherapy (3DCRT). A search was conducted in the PubMed and Embase databases to identify studies on swallowing outcomes, both clinically and/or instrumentally assessed, after 3DCRT and IMRT. Dysphagia-specific quality of life and objective instrumental data are summarized and discussed. A total of 262 papers were retrieved from the searched databases. An additional 23 papers were retrieved by hand-searching the reference lists. Ultimately, 22 papers were identified which discussed swallowing outcomes after 3DCRT and IMRT for HNC. No outcomes from randomized trials were identified. Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing. (orig.) [German] Dysphagie ist eine der wichtigsten Nebenwirkungen bei der Behandlung von Kopf-Hals-Tumoren (HNC), da sie zu lebensbedrohlichen Komplikationen wie Aspirationspneumonien und Mangelernaehrung fuehren kann. Durch Erzeugung konkaver Dosisverteilungen und durch die Reduzierung der Dosis an schluckrelevanten Strukturen (SWOAR) kann die IMRT Schluckstoerungen moeglicherweise vermindern. Ziel dieser Studie war es, die gegenwaertige Literaturlage hinsichtlich der Schluckfunktion nach IMRT und konformaler dreidimensionaler Strahlentherapie (3DCRT) systematisch zu ueberpruefen. Studien, die die
SNAP - a three dimensional neutron diffusion code
International Nuclear Information System (INIS)
McCallien, C.W.J.
1993-02-01
This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)
Mapping Spaces, Centralizers, and p-Local Finite Groups of Lie Type
DEFF Research Database (Denmark)
Laude, Isabelle
We study the space of maps from the classifying space of a finite p-group to theBorel construction of a finite group of Lie type G in characteristic p acting on itsbuilding. The first main result is a description of the homology with Fp-coefficients,showing that the mapping space, up to p...... between a finite p-group and theuncompleted classifying space of the p-local finite group coming from a finite groupof Lie type in characteristic p, providing some of the first results in this uncompletedsetting....
Real three-dimensional biquadrics
Energy Technology Data Exchange (ETDEWEB)
Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)
2010-09-07
We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.
Three-Dimensional Audio Client Library
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
International Nuclear Information System (INIS)
Masahiro, Tatsumi; Akio, Yamamoto
2003-01-01
A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)
Directory of Open Access Journals (Sweden)
Stefan Bengtson
2017-03-01
Full Text Available The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae. The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, "cell fountains," and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.
Lie Group Solutions of Magnetohydrodynamics Equations and Their Well-Posedness
Directory of Open Access Journals (Sweden)
Fu-zhi Li
2016-01-01
Full Text Available Based on classical Lie Group method, we construct a class of explicit solutions of two-dimensional ideal incompressible magnetohydrodynamics (MHD equation by its infinitesimal generator. Via these explicit solutions we study the uniqueness and stability of initial-boundary problem on MHD.
A density matrix renormalization group study of low-lying excitations ...
Indian Academy of Sciences (India)
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...
Control algorithms along relative equilibria of underactuated Lagrangian systems on Lie groups
DEFF Research Database (Denmark)
Nordkvist, Nikolaj; Bullo, Francesco
2007-01-01
We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...
Control Algorithms Along Relative Equilibria of Underactuated Lagrangian Systems on Lie Groups
DEFF Research Database (Denmark)
Nordkvist, Nikolaj; Bullo, F.
2008-01-01
We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...
Bismut's way of the Malliavin calculus for large order generators on a Lie group
Léandre, Rémi
2018-01-01
We adapt Bismut's mechanism of the Malliavin Calculus to right invariant big order generator on a Lie group. We use deeply the symmetry in order to avoid the use of the Malliavin matrix. As an application, we deduce logarithmic estimates in small time of the heat kernel.
International Nuclear Information System (INIS)
Beckert, C.
2007-01-01
Conventionally the data preparation of the neutron cross sections for reactor-core calculations pursues with 2D cell codes. Aim of this thesis was, to develop a 3D cell code, to study with this code 3D effects, and to evaluate the necessarity of a 3D data preparation of the neutron cross sections. For the calculation of the neutron transport the method of the first-collision probabilities, which are calculated with the ray-tracing method, was chosen. The mathematical algorithms were implemented in the 2D/3D cell code TransRay. For the geometry part of the program the geometry module of a Monte Carlo code was used.The ray tracing in 3D was parallelized because of the high computational time. The program TransRay was verified on 2D test problems. For a reference pressured-water reactor following 3D problems were studied: A partly immersed control rod and void (vacuum or steam) around a fuel rod as model of a steam void. All problems were for comparison calculated also with the programs HELIOS(2D) and MCNP(3D). The dependence of the multiplication factor and the averaged two-group cross section on the immersion depth of the control rod respectively of the height of the steam void were studied. The 3D-calculated two-group cross sections were compared with three conventional approximations: Linear interpolation, interpolation with flux weighting, and homogenization, At the 3D problem of the control rod it was shown that the interpolation with flux weighting is a good approximation. Therefore here a 3D data preparation is not necessary. At the test case of the single control rod, which is surrounded by the void, the three approximation for the two-group cross sections were proved as unsufficient. Therefore a 3D data preparation is necessary. The single fuel-rod cell with void can be considered as the limiting case of a reactor, in which a phase interface has been formed [de
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin
2018-03-01
We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
Directory of Open Access Journals (Sweden)
Meer Ashwinkumar
2018-03-01
Full Text Available We study the ground states and left-excited states of the Ak−1 N=(2,0 little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU(k. The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
FORMATION CONTROL OF MULTIPLE UNICYCLE-TYPE ROBOTS USING LIE GROUP
Directory of Open Access Journals (Sweden)
Youwei Dong
2016-02-01
Full Text Available In this paper the formation control of a multi-robots system is investigated. The proposed control law, based on Lie group theory, is applied to control the formation of a group of unicycle-type robots. The communication topology is supposed to be a rooted directed acyclic graph and fixed. Some numerical simulations using Matlab are made to validate our results.
Yao, Ruo-Xia; Lou, Sen-Yue
2008-06-01
Armed with the computer algebra system Maple, using a direct algebraic substitution method, we obtain Lie point symmetries, Lie symmetry groups and the corresponding symmetry reductions of one component nonlinear integrable and nonintegrable equations only by clicking the 'Enter' key. Abundant (1+1)-dimensional nonlinear mathematical physical systems are analysed effectively by using a Maple package LieSYMGRP proposed by us.
International Nuclear Information System (INIS)
Ton-That, Tuong
2005-01-01
In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-08-22
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three-Dimensional Laser Microvision
Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo
2001-04-01
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.
Three dimensional imaging of otoliths
International Nuclear Information System (INIS)
Barry, B.; Markwitz, A.; David, B.
2008-01-01
Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)
Three dimensional magnetic abacus memory
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
An isomorphism for algebra of distributions with compact support on Lie groups
International Nuclear Information System (INIS)
El-Hussein, K.
1991-08-01
Let (H, H 0 ,...,H L L is an element of IN) be a finite sequence of abelian connected Lie Groups, G L = H, G 1 G i+1 χ ρi+1 H i+1 (0 ≤ i ≤ L - 1) and G = G 0 χ ρo H 0 the Lie groups which are the semi-direct product of G i by H-i (0 ≤ i ≤ L), where ρ i : H i → Aut(G i ) is a group homomorphism (0 ≤ i ≤ L). Let G-tilde = H x H L x...xH 0 be the Lie group of the direct product of H, H L ,..., and H 0 and let ε'(G-tilde) the Topological vector space of all distributions with compact support on G-tilde. In this paper, we prove that there is a structure of algebra on ε'(G-tilde) such that the algebra (convolution) of all distributions with compact support on G is isomorphic onto ε'(G-tilde). (author). 7 refs
Quantum spaces, central extensions of Lie groups and related quantum field theories
Poulain, Timothé; Wallet, Jean-Christophe
2018-02-01
Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.
Lie Group Classification of a Generalized Lane-Emden Type System in Two Dimensions
Directory of Open Access Journals (Sweden)
Motlatsi Molati
2012-01-01
Full Text Available The aim of this work is to perform a complete Lie symmetry classification of a generalized Lane-Emden type system in two dimensions which models many physical phenomena in biological and physical sciences. The classical approach of group classification is employed for classification. We show that several cases arise in classifying the arbitrary parameters, the forms of which include amongst others the power law nonlinearity, and exponential and quadratic forms.
Lie group analysis of flow and heat transfer of non-Newtonian ...
Indian Academy of Sciences (India)
2017-01-09
Jan 9, 2017 ... Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number. Keywords. Lie group analysis; boundary layer; nanofluid; non-Newtonian power-law fluid; variable viscosity; convective boundary conditions. PACS Nos 44.20.+b; 65.80.−g; 02.20.−a; 47.50.−d. 1.
Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group
International Nuclear Information System (INIS)
Morariu, B.
1997-01-01
The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin
Computer-assisted hip resurfacing planning using Lie group shape models.
Hefny, Mohamed S; Rudan, John F; Ellis, Randy E
2015-06-01
Hip resurfacing is a surgical option for osteoarthritis young and active patients. Early failures has been reported due to improper implant placement. Computer-assisted surgery is a promising avenue for more successful procedures. This paper presents a novel automatic surgical planning for computer-assisted hip resurfacing procedures. The plan defined the femoral head axis that was used to place the implant. The automatic planning was based on a Lie group statistical shape model. A statistical shape model was constructed using 50 femurs from osteoarthritis patients who underwent computer-assisted hip resurfacing. The model was constructed using product Lie groups representation of shapes and nonlinear analysis on the manifold of shapes. A surgical plan was drawn for the derived base shape. The base shape was transformed to 14 femurs with known manual plans. The transformed base plan was used as the computed plan for each femur. Both actual and computed plans were compared. The method showed a success by computing plans that differ from the actual plans within the surgical admissible ranges. The minimum crossing distance between the two plans had a mean of 0.75 mm with a standard deviation of 0.54 mm. The angular difference between the two plans had the mean of 5.94° with a standard deviation of 2.145.94°. Product Lie groups shape models were proved to be successful in automatic planning for hip resurfacing computer-assisted surgeries. The method can be extended to other orthopedic and general surgeries.
International Nuclear Information System (INIS)
El-Hussein, K.
1991-08-01
Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation ρ. Let G=V x p K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs
Majid, S.
1997-01-01
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of Lie bialgebras is a braided-Lie bialgebra. The Kirillov-Kostant Lie cobracket provides a natural bra...
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. © Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Berezin, F.A.
1977-01-01
Generalization of the Laplace-Casimir operator theory on the Lie supergroups is considered. The main result is the formula for radial parts of the Laplace operators under some general assumptions about the Lie supergroup. In particular these assumptions are valid for the Lie suppergroups U(p,g) and C (m,n). The first one is the analogue of the unitary group, the second one is the analogue of the linear group of canonical transformations
International Nuclear Information System (INIS)
Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio
2012-01-01
This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)
Three-dimensional detectors for neutron imaging
Mendicino, R.; Dalla Betta, G.-F.
2018-01-01
Solid-state sensors fabricated with 3D technologies and coupled to different neutron converter materials have been developed by several groups as direct replacement of 3 He gas detectors, mainly for homeland security applications. Results so far achieved in terms of detection efficiency are quite good (up to ≃50%) and, combined with the intrinsic excellent position resolution of silicon sensors, could lead to high performance neutron imaging systems. In this paper, we review the state of the art in three-dimensional silicon sensors for thermal-neutron detection, addressing the most promising solutions for neutron imaging. Moreover, selected results from the developments at the University of Trento on 3D pixelated detectors having relatively low fabrication complexity and expected high neutron detection efficiency up to 30% will be reported.
Elastocapillary fabrication of three-dimensional microstructures
van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof
2010-01-01
We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since
Ullah, Zakir; Zaman, Gul
2017-11-01
In this paper, we studied MHD two dimensional flow of an incompressible tangent hyperbolic fluid flow and heat transfer towards a stretching sheet with velocity and thermal slip. Lie group analysis is used to develop new similarity transformation, using these similarity transformation the governing nonlinear partial differential equation are reduced into a system of coupled nonlinear ordinary differential equation. The obtained system is solved numerically by applying shooting method. Effects of pertinent parameters on the velocity and temperature profiles, skin friction, local Nusselt number are graphically presented and discussed. Comparison between the present and previous results are shown in special cases.
Directory of Open Access Journals (Sweden)
Zakir Ullah
2017-11-01
Full Text Available In this paper, we studied MHD two dimensional flow of an incompressible tangent hyperbolic fluid flow and heat transfer towards a stretching sheet with velocity and thermal slip. Lie group analysis is used to develop new similarity transformation, using these similarity transformation the governing nonlinear partial differential equation are reduced into a system of coupled nonlinear ordinary differential equation. The obtained system is solved numerically by applying shooting method. Effects of pertinent parameters on the velocity and temperature profiles, skin friction, local Nusselt number are graphically presented and discussed. Comparison between the present and previous results are shown in special cases. Keywords: Applied mathematics, Mechanics
Commutators associated with Schrödinger operators on the nilpotent Lie group.
Ni, Tianzhen; Liu, Yu
2017-01-01
Assume that G is a nilpotent Lie group. Denote by [Formula: see text] the Schrödinger operator on G , where Δ is the sub-Laplacian, the nonnegative potential W belongs to the reverse Hölder class [Formula: see text] for some [Formula: see text] and D is the dimension at infinity of G . Let [Formula: see text] be the Riesz transform associated with L . In this paper we obtain some estimates for the commutator [Formula: see text] for [Formula: see text], where [Formula: see text] is a function space which is larger than the classical Lipschitz space.
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
International Nuclear Information System (INIS)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Energy Technology Data Exchange (ETDEWEB)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies
International Nuclear Information System (INIS)
Elokaby, Ayman
2009-01-01
The present short note points out a most interesting and quite unexpected connection between the number of distinct knot as a function of their crossing number and exceptional Lie groups and Stein space hierarchies. It is found that the crossing number 7 plays the role of threshold similar to 4 and 5 in E-infinity theory and for the 11 crossing the number of distinct knots is very close to 4α-bar 0 +1=548+1=549, where α-bar 0 =137 is the inverse integer electromagnetic fine structure constant. This is particularly intriguing in view of a similar relation pertinent to the 17 two and three Stein spaces where the total dimension is Σ 1 17 Stein=5α-bar 0 +1=685+1=686, as well as the sum of the eight exceptional Lie symmetry groups Σ i=1 8 |E i |=4α-bar 0 =548. The slight discrepancy of one is explained in both cases by the inclusion of El Naschie's transfinite corrections leading to Σ i=1 8 |E i |=(4)(137+k 0 )=548.328157 and Σ i=1 17 Stein=(5)(137+k 0 )=685.41097, where k o = φ 5 (1 - φ 5 ) and φ=(√(5)-1)/2.
Microlaser-based three-dimensional display
Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.
1999-08-01
Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.
Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E 8 E 8 of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings
Bidirectional composition on lie groups for gradient-based image alignment.
Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick
2010-09-01
In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.
Three-dimensional effects in fracture mechanics
International Nuclear Information System (INIS)
Benitez, F.G.
1991-01-01
An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)
A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications
International Nuclear Information System (INIS)
Zhang Yu-Feng; Rui Wen-Juan; Wu Li-Xin
2015-01-01
With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. (paper)
International Nuclear Information System (INIS)
Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.
1985-01-01
By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases
Sweet, Monica A.; Heyman, Gail D.; Fu, Genyue; Lee, Kang
2010-01-01
This study explored the effects of collectivism on lying to conceal a group transgression. Seven-, 9-, and 11-year-old US and Chinese children (N = 374) were asked to evaluate stories in which protagonists either lied or told the truth about their group’s transgression and were then asked about either the protagonist’s motivations or justification for their own evaluations. Previous research suggests that children in collectivist societies such as China find lying for one’s group to be more acceptable than do children from individualistic societies such as the United States. The current study provides evidence that this is not always the case: Chinese children in this study viewed lies told to conceal a group’s transgressions less favourably than did US children. An examination of children’s reasoning about protagonists’ motivations for lying indicated that children in both countries focused on an impact to self when discussing motivations for protagonists to lie for their group. Overall, results suggest that children living in collectivist societies do not always focus on the needs of the group. PMID:20953286
Towards three-dimensional optical metamaterials
Tanaka, Takuo; Ishikawa, Atsushi
2017-12-01
Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.
Towards three-dimensional optical metamaterials.
Tanaka, Takuo; Ishikawa, Atsushi
2017-01-01
Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.
Development of three dimensional solid modeler
International Nuclear Information System (INIS)
Zahoor, R.M.A.
1999-01-01
The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)
Three-dimensional imaging utilizing energy discrimination
International Nuclear Information System (INIS)
Gunter, D.L.; Hoffman, K.R.; Beck, R.N.
1990-01-01
An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction
Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups
DEFF Research Database (Denmark)
Hilgert, Joachim; Kobayashi, Toshiyuki; Möllers, Jan
2012-01-01
For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g......_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which...... intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function....
Directory of Open Access Journals (Sweden)
Jen-Cheng Wang
Full Text Available Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2 matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.
Wang, Jen-Cheng; Wang, Pei-Yu; Chen, Hung-Ing; Wu, Kai-Ling; Pai, Li-Mei; Nee, Tzer-En
2013-01-01
Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2) matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.
Imaging unsteady three-dimensional transport phenomena
Indian Academy of Sciences (India)
2014-01-05
Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...
Three-Dimensional Printing Surgical Applications.
AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E
2015-01-01
Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.
Imaging unsteady three-dimensional transport phenomena
Indian Academy of Sciences (India)
2014-01-05
Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...
Three-dimensional chiral photonic superlattices.
Thiel, M; Fischer, H; von Freymann, G; Wegener, M
2010-01-15
We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.
Three dimensional electrochemical system for neurobiological studies
DEFF Research Database (Denmark)
Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith
2009-01-01
In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...
Electron crystallography of three dimensional protein crystals
Georgieva, Dilyana
2008-01-01
This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for
Three-dimensional patterning methods and related devices
Energy Technology Data Exchange (ETDEWEB)
Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.
2016-12-27
Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.
Directory of Open Access Journals (Sweden)
Dilovan S. Cati
2017-05-01
Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.
Approximate Lie group analysis and solutions of 2D nonlinear diffusion-convection equations
Bagderina, Y Y
2003-01-01
Approximate Lie symmetries of the (2+1)-dimensional nonlinear diffusion equation with a small convection are completely classified. It is known that the invariance principle furnishes a systematic method of solving initial-value problems. The solutions of instantaneous source type of the 2D diffusion-convection equation are obtained for the case of power-law diffusivity, using a symmetry reduction.
Representation of a Lie Group G(0,1) and Incomplete 2D Hermite ...
African Journals Online (AJOL)
In this paper we derive some generating relations involving Incomplete 2D Hermite polynomials (I2DHP) ( , ; ) , h x y ô m n , of two-variable ,two index and one parameter using Lie-theoretic approach .Certain (known or new) generating relations for the polynomials related to I2DHP are also obtained as special cases.
Three-dimensional imaging modalities in endodontics
International Nuclear Information System (INIS)
Mao, Teresa; Neelakantan, Prasanna
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome
Three-dimensional Imaging, Visualization, and Display
Javidi, Bahram; Son, Jung-Young
2009-01-01
Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...
Arching in three-dimensional clogging
Directory of Open Access Journals (Sweden)
Török János
2017-01-01
Full Text Available Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based. The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.
Three dimensional digital imaging of environmental data
International Nuclear Information System (INIS)
Nichols, R.L.; Eddy, C.A.
1991-01-01
The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site
Arching in three-dimensional clogging
Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás
2017-06-01
Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.
Three dimensional contact/impact methodology
International Nuclear Information System (INIS)
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper
THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY
Directory of Open Access Journals (Sweden)
Vineet V. Kumar
2014-03-01
Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.
Three-dimensional imaging modalities in endodontics
Energy Technology Data Exchange (ETDEWEB)
Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)
2014-09-15
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Analysis of three-dimensional transonic compressors
Bourgeade, A.
1984-01-01
A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional simulation of vortex breakdown
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
Three-Dimensional Dynamic Loading of Sand
2011-02-01
oading conditions exist at the bulk scale, and exam ples include planetary impact and crater formation, tectonic plate movement , ballistic im pact and...found further way from an impact event, where the bulk material does not necessarily experience uniform loading in excess of the Hugoniot elastic li...either as a collection of quartz spheres in a three-dimensional rectilinear dom ain for t he mesoscale simulations or as a single representative material
Three-dimensional broadband tunable terahertz metamaterials
DEFF Research Database (Denmark)
Fan, Kebin; Strikwerda, Andrew; Zhang, Xin
2013-01-01
We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....
Three-Dimensional Ocean Noise Modeling
2015-03-01
realistic and complex three-dimensional bathymetry. This is achieved by using a parabolic equation [PE) propagation model and the reciprocity principle...explain the horizontal noise directionality observed in the Tonga Trench [Barclay, 2014], which was found not to be a 3D effect, but rather due to...modeled noise arriving on the axis of the canyon has significantly perturbed zero-crossings when compared to the equivalent Nx2D result. Theoretical
Three-dimensional accelerating electromagnetic waves.
Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai
2013-06-17
We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.
Three-Dimensional Reconstruction of Sandpile Interiors
Seidler, G. T.
2001-03-01
The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.
Multiparallel Three-Dimensional Optical Microscopy
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Three dimensional illustrating - three-dimensional vision and deception of sensibility
Directory of Open Access Journals (Sweden)
Anita Gánóczy
2009-03-01
Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
International Nuclear Information System (INIS)
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu
1989-01-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
Energy Technology Data Exchange (ETDEWEB)
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)
1989-08-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).
Three dimensional monocular human motion analysis in end-effector space
DEFF Research Database (Denmark)
Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol
2009-01-01
In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinematics...
Micro-Mirrors for Nanoscale Three-Dimensional Microscopy
Seale, Kevin; Janetopoulos, Chris; Wikswo, John
2013-01-01
A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167
Three-dimensional Modeling of Type Ia Supernova Explosions
Khokhlov, Alexei
2001-06-01
A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.
SNAP-3D: a three-dimensional neutron diffusion code
International Nuclear Information System (INIS)
McCallien, C.W.J.
1975-10-01
A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)
Three-dimensional Microarchitecture of Adolescent Cancellous Bone
DEFF Research Database (Denmark)
Ding, Ming; Hvid, I; Overgaard, Søren
regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... during development and growth. We hypothesized that adolescent cancellous bone differed significantly from adult cancellous bone in their microarchitecture and mechanical properties. METHODS: Twenty-three human proximal tibiae were harvested and divided into 3 groups according to their ages: adolescence...... of Orthopaedics & Traumatology and Institute of Forensic Medicine, Odense and Aarhus University Hospitals, Denmark. RESULTS: Three-dimensional reconstructions of cancellous bone from micro-CT imaging are shown in Figure 1. Our data showed that trabecular separation was significantly greater in the adolescence...
Three-dimensional positioning with optofluidic microscope
DEFF Research Database (Denmark)
Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric
2010-01-01
This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...... a conventional fluorescence microscope as readout. The size separated microspheres are detected by OFM with an accuracy of ≤ 0.92 μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4 μm and 0.08 mm/s respectively. Throughout...
Three Dimensional Double Layers in Magnetized Plasmas
DEFF Research Database (Denmark)
Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul
1982-01-01
Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
Three-dimensional teletherapy treatment planning
International Nuclear Information System (INIS)
Panthaleon van Eck, R.B. van.
1986-01-01
This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)
Creating three-dimensional thermal maps
CSIR Research Space (South Africa)
Price
2011-11-01
Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...
Three-dimensional cooling of muons
Vsevolozhskaya, T A
2000-01-01
The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.
Three-dimensional radiation treatment planning
International Nuclear Information System (INIS)
Mohan, R.
1989-01-01
A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs
Three dimensional animated images of anorectal malformations
International Nuclear Information System (INIS)
Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.
1996-01-01
Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)
The Three-Dimensional Universe with Gaia
Turon, C.; O'Flaherty, K. S.; Perryman, M. A. C.
2005-01-01
"The Three-Dimensional Universe with Gaia" symposium was hosted by the Observatoire de Paris (Meudon), France, from 4 to 7 October 2004. The date chosen for this symposium corresponded to the end of the definition phase of Gaia, a cornerstone mission of the European Space Agency. The purposes of this symposium were: (1) to present to the scientific community the design chosen for the mission, the final characteristics and performances, and to update the resulting scientific case; (2) to bring to the attention of the scientific community the extraordinary potential of Gaia and to share with the younger generation of scientists the expertise acquired during the preparation phases of the Gaia mission, and during all phases of the Hipparcos mission; (3) to organise the next phase of scientific preparation of the mission, in particular the data reduction which constitutes a major challenge with a petabyte of interconnected data which has to be treated in a global and iterative manner, and to prepare for the scientific exploitation of the data. The symposium was open to scientists working on the preparation of Gaia and to the large community interested in using the data from the mission. The proceedings of the symposium are published by the European Space Agency as ESA SP-576: "The Three-Dimensional Universe with Gaia". These proceedings contain invited and contributed papers for six sessions covering technical and scientific aspects of the mission.
Three-dimensional electrical impedance tomography
Metherall, P.; Barber, D. C.; Smallwood, R. H.; Brown, B. H.
1996-04-01
THE electrical resistivity of mammalian tissues varies widely1-5 and is correlated with physiological function6-8. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body9-11. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem10,12. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane13. A few studies have attempted three-dimensional EIT image reconstruction14,15, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening8.
Three-dimensional turbopump flowfield analysis
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Reduction by Lie Group Symmetries in Diffeomorphic Image Registration and Deformation Modelling
Directory of Open Access Journals (Sweden)
Stefan Sommer
2015-05-01
Full Text Available We survey the role of reduction by symmetry in the large deformation diffeomorphic metric mapping framework for registration of a variety of data types (landmarks, curves, surfaces, images and higher-order derivative data. Particle relabelling symmetry allows the equations of motion to be reduced to the Lie algebra allowing the equations to be written purely in terms of the Eulerian velocity field. As a second use of symmetry, the infinite dimensional problem of finding correspondences between objects can be reduced for a range of concrete data types, resulting in compact representations of shape and spatial structure. Using reduction by symmetry, we describe these models in a common theoretical framework that draws on links between the registration problem and geometric mechanics. We outline these constructions and further cases where reduction by symmetry promises new approaches to the registration of complex data types.
Tang, Xiao-yan; Qian, Xian-min; Lin, Ji; Lou, S. Y.
2004-06-01
The classical and nonclassical Lie group approaches are extended and applied to construct new conditional similarity reductions for nonlinear systems. The application of the method to a simple (2+1)-dimensional KdV equation results in not only the known conditional similarity reductions obtained by the modified Clarkson and Kruskal’s direct method but also a great diversity of classical and nonclassical conditional similarity reductions.
On a Three Dimensional Vision Based Collision Avoidance Model
Parzani, Céline; Filbet, Francis
2017-08-01
This paper presents a three dimensional collision avoidance approach for aerial vehicles inspired by coordinated behaviors in biological groups. The proposed strategy aims to enable a group of vehicles to converge to a common destination point avoiding collisions with each other and with moving obstacles in their environment. The interaction rules lead the agents to adapt their velocity vectors through a modification of the relative bearing angle and the relative elevation. Moreover the model satisfies the limited field of view constraints resulting from individual perception sensitivity. From the proposed individual based model, a mean-field kinetic model is derived. Simulations are performed to show the effectiveness of the proposed model.
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
AAOGlimpse: Three-dimensional Data Viewer
Shortridge, Keith
2011-10-01
AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.
THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.
Energy Technology Data Exchange (ETDEWEB)
KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.
2003-05-04
BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.
Entanglement entropy in three dimensional gravity
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Henry [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom)
2015-04-07
The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS{sub 3}, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ{sup 2} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Electron in three-dimensional momentum space
Bacchetta, Alessandro; Mantovani, Luca; Pasquini, Barbara
2016-01-01
We study the electron as a system composed of an electron and a photon, using lowest-order perturbation theory. We derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of the light-front wave function overlap representation and the diagrammatic approach. We perform the calculations both in light-cone gauge and Feynman gauge, and we present a detailed discussion of the role of the Wilson lines to obtain gauge-independent results. We provide numerical results and plots for many of the computed distributions.
Towards microscale electrohydrodynamic three-dimensional printing
International Nuclear Information System (INIS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-01-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)
An Introduction of Three-dimensional Grammar
Directory of Open Access Journals (Sweden)
Fan Xiao
2017-12-01
Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.
Three-dimensional echocardiography in valve disease
Directory of Open Access Journals (Sweden)
Cesare Fiorentini
2009-08-01
Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41
Three dimensional thrust chamber life prediction
Armstrong, W. H.; Brogren, E. W.
1976-01-01
A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.
Method for Parametric Design of Three-Dimensional Shapes
National Research Council Canada - National Science Library
Dick, James L
2006-01-01
The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...
Three-dimensional (3D) analysis of the temporomandibular joint
DEFF Research Database (Denmark)
Kitai, N.; Kreiborg, S.; Murakami, S.
Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...
Study on three dimensional seismic isolation system
International Nuclear Information System (INIS)
Morishita, Masaki; Kitamura, Seiji
2003-01-01
Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic
Primary and Secondary Three Dimensional Microbatteries
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
Multimodal three-dimensional dynamic signature
Directory of Open Access Journals (Sweden)
Yury E. Kozlov
2017-11-01
Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.
Three-dimensional supersonic vortex breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1993-01-01
Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.
Three dimensional characterization and archiving system
International Nuclear Information System (INIS)
Sebastian, R.L.; Clark, R.; Gallman, P.
1996-01-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate
Three dimensional characterization and archiving system
International Nuclear Information System (INIS)
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-01-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations
Three-dimensional endoscopy in sinus surgery.
Singh, Ameet; Saraiya, Rupali
2013-02-01
Surgical endoscopy revolutionized the management of disease in nearly every surgical field, including rhinology. Endoscopy offered several advantages for the surgical management of rhinologic disease. However, it had a distinct disadvantage compared to direct vision, namely loss of binocular vision. Two-dimensional (2D) endoscopy limited depth perception, widely regarded as an important parameter for accurate and efficient movements during surgery. Three-dimensional (3D) endoscopic visualization has been actively pursued for decades by endoscopic surgeons in multiple surgical specialties. However, its clinical role has been limited due to technical limitations as well as successful adaptation by endoscopic surgeons to monocular cues offered by 2D technology. Until recently, stereoscopic technology included variations of dual channel video, dual chip-on-the-tip, and shutter mechanism, as well as various 3D displays. Over the past decade a novel 3D endoscopic technology was introduced. This technology used a lenticular array of lenses in front of a single video chip at the distal end of an endoscope to generate a stereoscopic view of the surgical field. Also known as the 'insect eye' technology since it mimics the compound eye of arthropods, this endoscope has reinvigorated the field of 3D endoscopic surgery. Recent developments in 3D endoscopy hold much promise for all surgical subspecialties, particularly endoscopic sinus and skull-base surgery.
Three-dimensional laparoscopy: Principles and practice
Directory of Open Access Journals (Sweden)
Rakesh Y Sinha
2017-01-01
Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.
Three dimensional characterization and archiving system
Energy Technology Data Exchange (ETDEWEB)
Sebastian, R.L.; Clark, R.; Gallman, P. [and others
1995-12-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.
Nanoscale three-dimensional single particle tracking.
Dupont, Aurélie; Lamb, Don C
2011-11-01
Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.
THREE-DIMENSIONAL ULTRASOUND IN GYNECOLOGIC ONCOLOGY
Directory of Open Access Journals (Sweden)
Iztok Takač
2003-12-01
Full Text Available Background. Although three-dimensional ultrasound (3D US imaging has been used for a decade, debate continues about its potential clinical aplications in gynecology. The same is true for the field of gynecologic oncology. Also, reports regarding usfulness of 3D US in gynecologic oncology are limited. A few potentially useful clinical applications have been described and some of these are now gaining general acceptance. In this paper, the usfulness of 3D US in the main areas of its application is demonstrated: diagnostics of cervical, endometrial, ovarian and breast cancer.Conclusions. An important advantage of 3D US over conventional two-dimensional imaging is the ability to reconstruct and display any arbitrarily chosen section within the volume dataset as well as ability to measure the volume of pelvic organs regardless of their shape. 3D US also allows the realtime analysis of the acquired image data to be conducted at a later time when the patient is off the examination table.
Three-Dimensional Printed Thermal Regulation Textiles.
Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing
2017-11-28
Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.
Three-Dimensional Printed Graphene Foams.
Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M
2017-07-25
An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.
A method for fabricating a three-dimensional carbon structure
DEFF Research Database (Denmark)
2017-01-01
A method for fabricating a three-dimensional carbon structure (4) is disclosed. A mould (1) defining a three-dimensional shape is provided, and natural protein containing fibres are packed in the mould (1) at a predetermined packing density. The packed natural protein containing fibre structure (3......) undergoes pyrolysis, either while still in the mould (1) or after having been removed from the mould (1). Thereby a three-dimensional porous and electrically conducting carbon structure (4) having a three-dimensional shape defined by the three-dimensional shape of the mould (1) and a porosity defined...
Lie groups and symmetric spaces in memory of F. I. Karpelevich
Gindikin, S G
2003-01-01
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician F. I. Karpelevich (1927-2000).
Panoramic three-dimensional CT imaging
International Nuclear Information System (INIS)
Kawamata, Akitoshi; Fujishita, Masami
1998-01-01
Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)
Measurements using three-dimensional product imaging
Directory of Open Access Journals (Sweden)
A. Sioma
2010-07-01
Full Text Available This article discusses a method of creating a three-dimensional cast model using vision systems and how that model can be used in thequality assessment process carried out directly on the assembly line. The technology of active vision, consisting in illumination of theobject with a laser beam, was used to create the model. Appropriate configuration of camera position geometry and laser light allows thecollection of height profiles and construction of a 3D model of the product on their basis. The article discusses problems connected with the resolution of the vision system, resolution of the laser beam analysis, and resolution connected with the application of the successive height profiles on sample cast planes. On the basis of the model, measurements allowing assessment of dimension parameters and surface defects of a given cast are presented. On the basis of tests and analyses of such a threedimensional cast model, a range of checks which are possible to conduct using 3D vision systems is indicated.Testing casts using that technology allows rapid assessment of selected parameters. Construction of the product’s model and dimensional assessment take a few seconds, which significantly reduces the duration of checks in the technological process. Depending on the product, a few checks may be carried out simultaneously on the product’s model.The possibility of controlling all outgoing products, and creating and modifying the product parameter control program, makes the solutionhighly flexible, which is confirmed by pilot industrial implementations. The technology will be developed in terms of detection andidentification of surface defects. It is important due to the possibility of using such information for the purposes of selecting technologicalprocess parameters and observing the effect of changes in selected parameters on the cast parameter controlled in a vision system.
Long, Feng-Shan; Karnbanjong, Adisak; Suriyawichitseranee, Amornrat; Grigoriev, Yurii N.; Meleshko, Sergey V.
2017-07-01
This paper proposes an algorithm for group classification of a nonhomogeneous equation using the group analysis provided for the corresponding homogeneous equation. The approach is illustrated by a partial differential equation, an integro-differential equation, and a delay partial differential equation.
Hyperfunction solutions of the zero rest mass equations and representations of LIE groups
Energy Technology Data Exchange (ETDEWEB)
Dunne, E.G.
1984-01-01
Recently, hyperfunctions have arisen in an essential way in separate results in mathematical physics and in representation theory. In the setting of the twistor program, Wells, with others, has extended the Penrose transform to hyperfunction solutions of the zero rest mass equations, showing that the fundamental isomorphisms hold for this larger space. Meanwhile, Schmid has shown the existence of a canonical globalization of a Harish-Chandra module, V, to a representation of the group. This maximal globalization may be realized as the completion of V in a locally convex vector space in the hyperfunction topology. This thesis shows that the former is a particular case of the latter where the globalization can be done by hand. This explicit globalization is then carried out for a more general case of the Radon transform on homogeneous spaces.
Three-dimensional magnetic properties of soft magnetic composite materials
International Nuclear Information System (INIS)
Lin, Z.W.; Zhu, J.G.
2007-01-01
A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses
Magnetic properties of three-dimensional Hubbard-sigma model
International Nuclear Information System (INIS)
Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.
1989-11-01
It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)
DEFF Research Database (Denmark)
Trinhammer, Ole
flavour singlet resonances are predicted and may show up around 4500 MeV in neutron diffraction dissociation experiments above the threshold in the free charm system SigmaCplus(2455)Dminus. They should also be visible in photoproduction of pPiMinus on neutrons and lower lying singlets may show up in p......PiMinus invariant mass in B decays. We give a controversial prediction of the relative neutron to proton mass difference 0.138 % as originating in period doublings of certain parametric states. The group space dynamics communicates with real space via the exterior derivative which projects out quark and gluon...... fields from the allospatial state. The allostate in turn is excited from space by the momentum operators which act as toroidal generators on the group manifold. Such generators can be used to trace out parton distribution functions and examples are shown to mimic the valence quark content of the proton....
[Precision of three-dimensional printed brackets].
Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J
2017-08-18
This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and
Airway branching morphogenesis in three dimensional culture
Directory of Open Access Journals (Sweden)
Gudjonsson Thorarinn
2010-11-01
Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to
An infinite lie group of symmetry of one-dimensional gas flow, for a class of entropy distributions
Gaffet, B.
1984-06-01
We have shown in earlier works the existence of three previously unknown symmetries of the equations of one-dimensional gas dynamics, with arbitrary entropy distribution and arbitrary polytropic index γ. These symmetries are seen here to form a group whenever the equation of state is of the form P = ϱ3( a0 + a1M + a2M2) -2 where M = ∝ ϱd r is the Lagrangian mass coordinate. Introducing the remaining symmetry of space-translation enlarges the group into a Lie group of symmetry of infinite order, from which an infinite number of conservation laws can be deduced by application of Noether's theorem. The Lie group has a finite sub-algebra of order eight, which has SU3 structure; the list of associated conservation laws includes each of the six ones that are derivable from general physical principles, namely: the energy, momentum and the center-of-mass integrals, two integrals expressing scale invariance, and one associated with the virial theorem; the remaining two integrals of the octet are of a new type. Such a situation reminds us of the case of the Korteweg-de Vries equation in the soliton problem, where the symmetries and infinite number of conservation laws arise as a result of the possibility to linearize through the inverse-scattering method. Thus the question is raised of whether the inverse-scattering method also applies to gas-dynamical equations (with the above equation of state), or else whether another method of linearization may be found.
Cati, Dilovan S; Stoeckli-Evans, Helen
2017-05-01
The complete mol-ecules of the title compounds, N 2 , N 5 -bis-(pyridin-2-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (I), 3,6-dimethyl- N 2 , N 5 -bis-(pyridin-2-yl-meth-yl)pyrazine-2,5-dicarboxamide, C 20 H 20 N 6 O 2 (II), and N 2 , N 5 -bis-(pyridin-4-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol-ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol-ecules are linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (II), mol-ecules are also linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (III), mol-ecules are again linked by N-H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π-π inter-actions [inter-centroid distance = 3.739 (1) Å]. The sheets are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. Compound (I) crystallizes in the monoclinic space group P 2 1 / c . Another monoclinic polymorph, space group C 2/ c , has been reported on by Cockriel et al. [ Inorg. Chem. Commun. (2008), 11 , 1-4]. The mol-ecular structures of the two polymorphs are compared.
The Three-dimensional Digital Factory for Shipbuilding Technology Research
Directory of Open Access Journals (Sweden)
Xu Wei
2016-01-01
Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.
Diffusion equation three-dimensional solution in rectangular subcritical assemblies
International Nuclear Information System (INIS)
Barroso, Dalton E.G.; Carvalho Vital, Helio de; Oliveira Vellozo, Sergio de; Paixao, Sergio Barros
1997-01-01
This work describes a three-dimensional diffusion code developed for neutron flux and current calculations in rectangular subcritical assemblies (loaded with fuel or not) with arbitrary point source distributions in their bases. The two-group analytical solution, expressed as Fourier's double series expansion, is calculated for each source. A summation is then performed over all sources to evaluate the total flux distributions. The input includes positions and activities of the external neutron sources, besides the effective two-group macroscopic cross sections. The code can also provide the individual contributions of the harmonics to the thermal and fast neutron flux and current. Calculation-to-Experiment comparisons for the thermal flux in a exponential pile have shown agreement within experimental errors. 11 refs., 3 figs., 3 tabs
Anomalous dimension in three-dimensional semiclassical gravity
International Nuclear Information System (INIS)
Alesci, Emanuele; Arzano, Michele
2012-01-01
The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales.
Directory of Open Access Journals (Sweden)
Pescarini Massimo
2016-01-01
Full Text Available The PCA-Replica 12/13 (H2O/Fe neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1 and BUGENDF70.BOLIB (ENDF/B-VII.0 libraries and the ORNL BUGLE-96 (ENDF/B-VI.3 library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n′Rh-103 m, In-115(n,n′In-115m and S-32(n,pP-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.
International Nuclear Information System (INIS)
Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo
1995-01-01
In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
Energy Technology Data Exchange (ETDEWEB)
Beckert, C.
2007-12-19
Conventionally the data preparation of the neutron cross sections for reactor-core calculations pursues with 2D cell codes. Aim of this thesis was, to develop a 3D cell code, to study with this code 3D effects, and to evaluate the necessarity of a 3D data preparation of the neutron cross sections. For the calculation of the neutron transport the method of the first-collision probabilities, which are calculated with the ray-tracing method, was chosen. The mathematical algorithms were implemented in the 2D/3D cell code TransRay. For the geometry part of the program the geometry module of a Monte Carlo code was used.The ray tracing in 3D was parallelized because of the high computational time. The program TransRay was verified on 2D test problems. For a reference pressured-water reactor following 3D problems were studied: A partly immersed control rod and void (vacuum or steam) around a fuel rod as model of a steam void. All problems were for comparison calculated also with the programs HELIOS(2D) and MCNP(3D). The dependence of the multiplication factor and the averaged two-group cross section on the immersion depth of the control rod respectively of the height of the steam void were studied. The 3D-calculated two-group cross sections were compared with three conventional approximations: Linear interpolation, interpolation with flux weighting, and homogenization, At the 3D problem of the control rod it was shown that the interpolation with flux weighting is a good approximation. Therefore here a 3D data preparation is not necessary. At the test case of the single control rod, which is surrounded by the void, the three approximation for the two-group cross sections were proved as unsufficient. Therefore a 3D data preparation is necessary. The single fuel-rod cell with void can be considered as the limiting case of a reactor, in which a phase interface has been formed. [German] Standardmaessig erfolgt die Datenaufbereitung der Neutronenwirkungsquerschnitte fuer
Energy Technology Data Exchange (ETDEWEB)
Yamasaki, Ryohei; Bacon, B. (Univ. of California, San Francisco (USA) Veterans Administration Medical Center, San Francisco, CA (USA))
1991-01-22
The solution conformations of the group B polysaccharide of Neisseria meningitidis were analyzed by DQF-COSY and pure absorption 2D NOE NMR with three mixing times. The pyranose ring of the sialic acid residue was found to be in the {sup 2}C{sub 5} conformation. The DQF-COSY analysis indicated that the orientations of H6 and H7 and of H7 and H8 are both gauche. In order to overcome the difficulties in analyzing the NOE data due to the two sets of proton overlaps, molecular modeling of {alpha}-2,8-linked sialic acid oligomers was carried out to investigate possible conformers, and theoretical NOE calculations were performed by using CORMA (complete relaxation matrix analysis). The analysis suggests that the polysaccharide adopts helical structures for which the {phi} (defined by O6-C2-O8-C8) and {psi} (C2-O8-C8-C7) angles are in the following ranges: {phi}-60 to 0{degree}, {psi} 115-175{degree} or {phi} 90-120{degree}, {psi}55-175{degree}. The weak affinity of anti-B antibodies for smaller {alpha}-2,8-linked oligosaccharides may be due to the fact that such oligomers are more flexible and may not form an ordered structure as the poly(sialic acid) does.
The three-dimensional origin of the classifying algebra
International Nuclear Information System (INIS)
Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl
2010-01-01
It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.
Orthodontics and Dental Anatomy: Three-dimensional Scanner Contribution.
Nabbout, Fidele; Baron, Pascal
2017-01-01
The objective of this article is to focus on the dental anatomy, its influence on therapeutic choices, and decision in orthodontics. A sample of 80 subjects was selected and analyzed. Through the usage of the three-dimensional scanner with the C2000-Cepha and Cepha3DT software, it is now possible to calculate the volume and the dimensions of both crown and root of each tooth and compare them to the literature. Data were collected and statistically evaluated with the StatView software (version 5.0). These references values were compared with those known in the literature redefining our approaches to treatment in orthodontics. The individual anatomical data either unique or in a group of teeth give new insights on the orthodontic therapeutic options.
Kashy, D A; DePaulo, B M
1996-05-01
Seventy-seven undergraduates and 70 demographically diverse members of the community completed 12 individual differences measures hypothesized to predict lie-telling in everyday life and then kept a diary every day for a week of all of their social interactions and all of the lies that they told during those interactions. Consistent with predictions, the people who told more lies were more manipulative, more concerned with self-presentation, and more sociable. People who told fewer lies were more highly socialized and reported higher quality same-sex relationships. Manipulative people, less highly socialized people, and people with less gratifying same-sex relationships also told especially more self-serving lies, whereas people with higher quality same-sex relationships told relatively more other oriented lies.
Cheng, Jieyu; Chen, Yimin; Yu, Yanyan; Chiu, Bernard
2018-03-01
Total plaque volume (TPV) measured from 3D carotid ultrasound has been shown to be able to predict cardiovascular events and is sensitive in detecting treatment effects. Manual plaque segmentation was performed in previous studies to quantify TPV, but is tedious, requires long training times and is prone to observer variability. This article introduces the first 3D direct volume-based level-set algorithm to segment plaques from 3D carotid ultrasound images. The plaque surfaces were first initialized based on the lumen and outer wall boundaries generated by a previously described semi-automatic algorithm and then deformed by a direct three-dimensional sparse field level-set algorithm, which enforced the longitudinal continuity of the segmented plaque surfaces. This is a marked advantage as compared to a previously proposed 2D slice-by-slice plaque segmentation method. In plaque boundary initialization, the previous technique performed a search on lines connecting corresponding point pairs of the outer wall and lumen boundaries. A limitation of this initialization strategy was that an inaccurate initial plaque boundary would be generated if the plaque was not enclosed entirely by the wall and lumen boundaries. A mechanism is proposed to extend the search range in order to capture the entire plaque if the outer wall boundary lies on a weak edge in the 3D ultrasound image. The proposed method was compared with the previously described 2D slice-by-slice plaque segmentation method in 26 three-dimensional carotid ultrasound images containing 27 plaques with volumes ranging from 12.5 to 450.0 mm 3 . The manually segmented plaque boundaries serve as the surrogate gold standard. Segmentation accuracy was quantified by volume-, area- and distance-based metrics, including absolute plaque volume difference (|ΔPV|), Dice similarity coefficient (DSC), mean and maximum absolute distance (MAD and MAXD). The proposed direct 3D plaque segmentation algorithm was associated with a
Magnetic resonance imaging of three-dimensional cervical anatomy in the second and third trimester.
House, Michael; Bhadelia, Rafeeque A; Myers, Kristin; Socrate, Simona
2009-05-01
Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to (1) construct three-dimensional anatomic models during normal pregnancy and (2) use the models to compare cervical anatomy in the second and third trimester. A cross-sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. Fourteen patients were imaged and divided into two groups according to gestational age: 20-24 weeks (n=7)) and 31-36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These three-dimensional changes were associated with a cervix that appeared shorter in the third trimester. We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment.
Lara-Domínguez, Maria D; López-Jiménez, Araceli; Grabowski, Jacek P; Arjona-Berral, Jose E; Zapardiel, Ignacio
2017-03-01
To compare perioperative details among patients who underwent gynecologic surgery between traditional laparoscopy and three-dimensional laparoscopy. The present prospective non-randomized study enrolled all consecutive patients diagnosed with gynecologic pathology who underwent laparoscopic surgery at Reina Sofia Hospital, Cordoba, Spain between January 1 and April 30, 2014. Perioperative data, adverse events, and patient satisfaction were compared between patients who underwent treatment with two-dimensional and three-dimensional laparoscopic surgery techniques. The study enrolled 60 consecutive patients; 31 (52%) patients who underwent three-dimensional surgery and 29 (48%) who underwent traditional two-dimensional surgery. No significant differences were observed in the adverse-event rate, operating time, or perioperative parameters. A higher use of sealing devices was recorded among patients who underwent three-dimensional laparoscopy (P=0.021). No difference was recorded in patient satisfaction between the two patient groups. Although there was no impact on surgical outcomes, three-dimensional surgery could give a more accurate view of the surgical field. Performing three-dimensional surgery could be beneficial for more complex procedures although further comparative studies are required to investigate this hypothesis. © 2016 International Federation of Gynecology and Obstetrics.
Papi, Paolo; Advances in Lie Superalgebras
2014-01-01
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.
Three-dimensional low-energy topological invariants
International Nuclear Information System (INIS)
Bakalarska, M.; Broda, B.
2000-01-01
A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)
Collapse in a forced three-dimensional nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Lushnikov, P.M.; Saffman, M.
2000-01-01
We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....
Three dimensional reductions of four-dimensional quasilinear systems
Pavlov, Maxim V.; Stoilov, Nikola M.
2017-11-01
In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.
Pathogen propagation in cultured three-dimensional tissue mass
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Three-dimensional plasma equilibrium near a separatrix
International Nuclear Information System (INIS)
Reiman, A.H.; Pomphrey, N.; Boozer, A.H.
1988-08-01
The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs
Three dimensional periodic foundations for base seismic isolation
International Nuclear Information System (INIS)
Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y
2015-01-01
Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)
Three-dimensional Magnetic Resonance Imaging of fossils across taxa
Directory of Open Access Journals (Sweden)
D. Mietchen
2008-01-01
Full Text Available The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether ^{1}H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as ^{1}H and ^{13}C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.
Naroura, Ismaël; Hidalgo Diaz, Juan José; Xavier, Fred; Baldairon, Florent; Favreau, Henri; Clavert, Philippe; Liverneaux, Philippe
2018-01-01
In order to facilitate the learning of distal radius shortening osteotomy by junior surgeons, the main assumption was that using a three-dimensional procedural simulator was better than a bone procedural simulator. After viewing a video, ten junior surgeons performed a distal radius shortening osteotomy: five with a bone procedural simulator (Group 1) and five with a three-dimensional procedural simulator (Group 2). All subsequently performed the same surgery on fresh cadaveric bones. The duration of the procedure, shortening of the radius, and the level of osteotomy were significantly better in Group 2. The three-dimensional procedural simulator seems to teach distal radius osteotomy better than a bone model and could be useful in teaching and learning bone surgery of the wrist.
Three-dimensional optical techniques using Dammann gratings
Zhou, Changhe; Yu, Junjie; Wang, Shaoqing; Wei, Shengbin
2012-11-01
This paper summarized our work on three-dimensional optical technologies using Dammann gratings, e.g., threedimnensional Dammann gratings, three dimensional imaging using a Dammann grating, etc.. We developed threedimensional Dammann grating which can produce three-dimensional array with equal distance and equal intensity with a high-numerical-aperture lens. As we know, a lens usually has a single focal point. Fresnel zone plate can generate several axial focal points, but the intensity between them is unequal. By introducing the concept of Dammann grating into the circular phase plate, we invented Dammann zone plate(DZP) which can produce a series of axial focal points with equal intensity. Combining DZP with a Dammann grating, three-dimensional Dammann array will be generated, which is highly interesting for various applications. We also built a three-dimensional measuring system using a Dammann grating, with two cameras as the right eye and right eye, respectively. We used a 64×64 Dammann grating for generation of a square array of light spots for parallel capturing the three-dimensional profile of an object. The two cameras and the illuminating part are packaged together. After scanning the object, its three-dimensional profile will be obtained. Experimental results demonstrated the effectiveness of this technique.
Cylindrical Three-Dimensional Porous Anodic Alumina Networks
Directory of Open Access Journals (Sweden)
Pedro M. Resende
2016-11-01
Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.
Directory of Open Access Journals (Sweden)
M.J. Uddin
2016-09-01
Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.
Directory of Open Access Journals (Sweden)
M. M. Rashidi
2014-01-01
Full Text Available The optimal homotopy analysis method (OHAM is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth order method. The effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. This close agreement supports our analysis and the accuracy of the numerical computations. This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.
Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography
International Nuclear Information System (INIS)
Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham
2008-01-01
Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)
Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.
Directory of Open Access Journals (Sweden)
Jae Won Park
Full Text Available A three-dimensional (3D-printed customized bolus (3D bolus can be used for radiotherapy application to irregular surfaces. However, bolus fabrication based on computed tomography (CT scans is complicated and also delivers unwanted irradiation. Consequently, we fabricated a bolus using a 3D scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a 3D scanner. The 3D surface data were exported and reconstructed with Geomagic Design X software. A 3D bolus of 5-mm thickness designed to fit onto the nose was printed with the use of rubber-like printing material, and a radiotherapy plan was developed. We successfully fabricated the customized 3D bolus, and further, a CT simulation indicated an acceptable fit of the 3D bolus to the nose. There was no air gap between the bolus and the phantom surface. The percent depth dose (PDD curve of the phantom with the 3D bolus showed an enhanced surface dose when compared with that of the phantom without the bolus. The PDD of the 3D bolus was comparable with that of a commercial superflab bolus. The radiotherapy plan considering the 3D bolus showed improved target coverage when compared with that without the bolus. Thus, we successfully fabricated a customized 3D bolus for an irregular surface using a 3D scanner instead of a CT scanner.
Path Planning in Three Dimensional Environment Using Feedback Linearization (Preprint)
National Research Council Canada - National Science Library
Schumacher, Corey J; Kanchanavally, Shreecharan; Ordonez, Raul
2006-01-01
This paper presents a control scheme via feedback linearization for three-dimensional cooperative path planning of a class of interconnected systems in general, and unmanned aerial vehicles (UAVs) in particular...
Magnetic structure of two- and three-dimensional supramolecular compounds
Energy Technology Data Exchange (ETDEWEB)
Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)
1997-09-01
Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.
Direct Linear Transformation Method for Three-Dimensional Cinematography
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Three dimensional QSAR: applications in pharmacology and toxicology
National Research Council Canada - National Science Library
Doucet, Jean-Pierre; Panaye, Annick
2010-01-01
... networks and support vector machines. Three-Dimensional QSAR addresses the scope and limitations of different modeling techniques using case studies from pharmacology, toxicology, and ecotoxicology to demonstrate the utility of each...
Three-dimensional anthropometry of the adult face.
1978-03-01
This study describes a new three-dimensional anatomical axis system based on four conventional anthropometrical face landmarks. Coincident as a coordinate (orthogonal) axis system, this reference system was developed to provide convenient orientation...
Utility of three-dimensional method for diagnosing meniscal lesions
International Nuclear Information System (INIS)
Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro
1998-01-01
MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)
Analysis and validation of carbohydrate three-dimensional structures
International Nuclear Information System (INIS)
Lütteke, Thomas
2009-01-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures
Analysis of three-dimensional transient seepage into ditch drains ...
Indian Academy of Sciences (India)
Ratan Sarmah
dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...
Three Dimensional Cancellous Bone Structure in Hypoparathyroidism
Rubin, Mishaela R.; Dempster, David W.; Kohler, Thomas; Stauber, Martin; Zhou, Hua; Shane, Elizabeth; Nickolas, Thomas; Stein, Emily; Sliney, James; Silverberg, Shonni J.; Bilezikian, John P.; Müller, Ralph
2009-01-01
By conventional 2-dimensional histomorphometric analysis, we have shown that cancellous bone architecture is markedly altered in hypoparathyroidism. We have now extended these observations to a 3-dimensional analysis using microcomputed tomography. Percutaneous iliac crest bone biopsies were analyzed by high-resolution microcomputed tomography from the following 25 subjects with hypoparathyroidism: 5 postmenopausal women, 13 premenopausal women and 7 men. Thirteen living premenopausal healthy controls and 12 cadaver subjects without bone disease served as matched controls. Hypoparathyroid subjects had significantly greater bone surface density (BS/TV: 5.74 ± 4.7 vs. 3.73 ± 1.01 mm2/mm3 [mean ± SD]; p=0.04), trabecular thickness (Tb.Th: 0.25 ± 0.19 vs. 0.17 ± 0.04 mm; p=0.04), trabecular number (Tb.N: 2.99 ± 3.4 vs. 1.62 ± 0.39 mm−1; p=0.05) and connectivity density (Conn.D: 16.63 ± 18.7 vs. 8.39 ± 5.8 mm3; p=0.04) in comparison to matched controls. When an additional 8 hypoparathyorid (total n= 33) and 24 cadaver (total cadaver n= 36) subjects were added to the groups for an unmatched analysis, hypoparathyroid subjects had significantly greater cancellous bone volume (BV/TV: 26.98 ± 10 vs. 15.39 ± 4%; phypoparathyroid subjects, as assessed by microcomputed tomography, were highly correlated with those assessed by conventional histomorphometry. We conclude that cancellous bone in hypoparathyroidism is abnormal, suggesting that parathyroid hormone is required to maintain normal trabecular structure. The effect of these structural changes on bone strength remains to be determined. PMID:19782782
Simulation on three dimensional bubble formation using MARS
International Nuclear Information System (INIS)
Kunugi, Tomoaki
1997-01-01
This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)
Computational study of three-dimensional wake structure
International Nuclear Information System (INIS)
Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.
1986-01-01
Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down
Alignment-free three-dimensional optical metamaterials.
Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea
2014-03-05
Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of two three-dimensional cephalometric analysis computer software
Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek
2014-01-01
Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...
Three-dimensional study of the multi-cavity FEL
Energy Technology Data Exchange (ETDEWEB)
Krishnagopal, S.; Kumar, V. [Centre for Advanced Technology, Indore (India)
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Three-dimensional reconstruction of functional brain images
International Nuclear Information System (INIS)
Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao
1999-01-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Three-dimensional stellarator equilibrium as an ohmic steady state
International Nuclear Information System (INIS)
Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.
1985-07-01
A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations
MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS
2017-09-01
MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS ECBC-TR-1459 James D. Wright Jr. Mary...REPORT DATE (DD-MM-YYYY) XX-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2016 – Dec 2016 4. TITLE AND SUBTITLE Materials ...Compatibility Study for Three-Dimensional Printer Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wright
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
Some Remarks on the Three Dimensionality of Hydrofoil Cavitation
Directory of Open Access Journals (Sweden)
Mehmet Salih KARAALİOĞLU
2017-12-01
Full Text Available As it is well-known that cavitation is a very important physical phenomenon that affects significantly the performance of three-dimensional hydrofoils. Prediction of cavitation on three-dimensional hydrofoils is very important in the design stage. In this study, some approaches have been verified for hydrofoil cavitation. The main aim of this paper is to compare the mid-section pressure distribution of three-dimensional cavitating rectangular hydrofoil for increasing aspect ratios, with the pressure distribution of two-dimensional cavitating hydrofoil having the same section geometry as in the three-dimensional hydrofoil. In this study, a boundary element (panel method (BEM has been applied to investigate the hydrofoil cavitation for both two- and three-dimensional cases. Two-dimensional analytical solution in case of cavitating flat-plate has also been applied for comparison. It has been shown that the pressure distributions on the mid-section of three-dimensional cavitating and non-cavitating hydrofoil for increasing aspect ratios have converged to the solutions in two-dimensional case.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
Parallelization characteristics of a three-dimensional whole-core code DeCART
International Nuclear Information System (INIS)
Cho, J. Y.; Joo, H.K.; Kim, H. Y.; Lee, J. C.; Jang, M. H.
2003-01-01
Neutron transport calculation for three-dimensional amount of computing time but also huge memory. Therefore, whole-core codes such as DeCART need both also parallel computation and distributed memory capabilities. This paper is to implement such parallel capabilities based on MPI grouping and memory distribution on the DeCART code, and then to evaluate the performance by solving the C5G7 three-dimensional benchmark and a simplified three-dimensional SMART core problem. In C5G7 problem with 24 CPUs, a speedup of maximum 22 is obtained on IBM regatta machine and 21 on a LINUX cluster for the MOC kernel, which indicates good parallel performance of the DeCART code. The simplified SMART problem which need about 11 GBytes memory with one processors requires about 940 MBytes, which means that the DeCART code can now solve large core problems on affordable LINUX clusters
Roy, Sharmili; Brown, Michael S.; Shih, George L.
2013-01-01
This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
Three-dimensional facial morphometry of attractive Italian women.
Sforza, Chiarella; Laino, Alberto; D'Alessio, Raoul; Grandi, Gaia; Dellavia, Claudia; Tartaglia, Gianluca M; Ferrario, Virgilio Ferruccio
2007-01-01
To identify reference standards and possible esthetic features in facial proportion and form of Italian adult women. A three-dimensional electromagnetic digitizer was used to collect the coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw, ears) in 71 healthy, reference women (18-30 years old) and in 48 "attractive" women selected during a beauty competition; soft tissue facial angles, distances and volumes were computed. Attractive women had wider faces with a relatively larger upper facial third (forehead); a larger facial width relative to facial height. The mouth was larger, and lips were more prominent; the interlabial angle was reduced. Overall, the soft-tissue profile was more prominent, with a larger maxillary prominence relative to the mandible. Faces in the attractive women were more flat in the horizontal plane. For several of the analyzed measurements, similar patterns were observed for the 36 women participants to the semi-final stage of the beauty competition, the 12 finalists, and the winner. The winner of the beauty competition deviated from the reference women more than the other two groups of attractive women. Esthetic reference values were determined for a population of 18-30 year olds that reflect contemporary society.
Three-dimensional ultrasound palmprint recognition using curvature methods
Iula, Antonio; Nardiello, Donatella
2016-05-01
Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.
Simplified two and three dimensional HTTR benchmark problems
International Nuclear Information System (INIS)
Zhang Zhan; Rahnema, Farzad; Zhang Dingkang; Pounders, Justin M.; Ougouag, Abderrafi M.
2011-01-01
To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems.
Development of an interactive anatomical three-dimensional eye model.
Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D
2015-01-01
The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.
A three dimensional model of a vane rheometer
International Nuclear Information System (INIS)
Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas
2013-01-01
Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results
Three-dimensional cephalometric analysis in orthodontics: a systematic review.
Pittayapat, P; Limchaichana-Bolstad, N; Willems, G; Jacobs, R
2014-05-01
The scientific evidence of 3D cephalometry in orthodontics has not been well established. The aim of this systematic review was to evaluate the evidence for the diagnostic efficacy of 3D cephalometry in orthdontics, focusing on measurement accuracy and reproducibility of landmark identification. PubMed, EMBASE and the Cochrane library (from beginning to March 13, 2012) were searched. Search terms included: cone-beam computed tomography; tomography, spiral computed; imaging, three-dimensional; orthodontics. Two reviewers read the retrieved articles and selected relevant publications based on pre-established inclusion criteria. The selected publications had to elucidate the hierarchical model of the efficacy of diagnostic imaging systems by Fryback and Thornbury. The data was then extracted according to two protocols, which were based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. Next, levels of evidence were categorized into 3 groups: low, moderate and high evidence. 571 publications were found by database search strategies and 50 additional studies by hand search. A total of 35 publications were included in this review. Limited evidence for the diagnostic efficacy of 3D cephalometry was found. Only 6 studies met the criteria for a moderate level of evidence. Accordingly, this systematic review reveals that there is still need for methodologically standardized studies on 3D cephalometric analysis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vectorization of three-dimensional neutron diffusion code CITATION
International Nuclear Information System (INIS)
Harada, Hiroo; Ishiguro, Misako
1985-01-01
Three-dimensional multi-group neutron diffusion code CITATION has been widely used for reactor criticality calculations. The code is expected to be run at a high speed by using recent vector supercomputers, when it is appropriately vectorized. In this paper, vectorization methods and their effects are described for the CITATION code. Especially, calculation algorithms suited for vectorization of the inner-outer iterative calculations which spend most of the computing time are discussed. The SLOR method, which is used in the original CITATION code, and the SOR method, which is adopted in the revised code, are vectorized by odd-even mesh ordering. The vectorized CITATION code is executed on the FACOM VP-100 and VP-200 computers, and is found to run over six times faster than the original code for a practical-scale problem. The initial value of the relaxation factor and the number of inner-iterations given as input data are also investigated since the computing time depends on these values. (author)
Three-dimensional analysis of a postbuckled embedded delamination
Whitcomb, John D.
1989-01-01
Delamination growth caused by local buckling of a delaminated group of plies was investigated. Delamination growth was assumed to be governed by the strain energy release rates, G(1), G(2) and G(3). The strain energy release rates were calculated using a geometrically nonlinear three-dimensional finite element analysis. The program is described and several checks of the analysis are discussed. Based on a limited parametric study, the following conclusions were reached: (1) the problem is definitely mixed mode (in some cases G(1) is larger than G(2), for other cases the opposite is true); (2) in general, there is a large gradient in the strain energy release rates along the delamination front; (3) the locations of maximum G(1) and G(2) depend on the delamination shape and the applied strain; (4) the mode 3 component was negligible for all cases considered; and (5) the analysis predicted that parts of the delamination would overlap. The results presented did not impose contact constraints to prevent overlapping. Further work is needed to determine the effects of allowing the overlapping.
Accuracy of three-dimensional printing for manufacturing replica teeth.
Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung
2015-09-01
Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Instanton effects in three-dimensional supersymmetric gauge theories with matter
Dorey, N.; Tong, D.; Vandoren, S.
1998-01-01
Using standard field theory techniques we compute perturbative and instanton contributions to the Coulomb branch of three-dimensional supersymmetric QCD with N = 2 and N = 4 supersymmetry and gauge group SU(2). For the N = 4 theory with one massless flavor, we confirm the proposal of Seiberg and
Hoyek, Nady; Collet, Christian; Di Rienzo, Franck; De Almeida, Mickael; Guillot, Aymeric
2014-01-01
Three-dimensional (3D) digital animations were used to teach the human musculoskeletal system to first year kinesiology students. The purpose of this study was to assess the effectiveness of this method by comparing two groups from two different academic years during two of their official required anatomy examinations (trunk and upper limb…
Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R
Williams, Marian H.
2012-01-01
Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…
Selective SiO2 etching in three dimensional structures using parylene-C as mask
Veltkamp, Henk-Willem; Zhao, Yiyuan; de Boer, Meint J.; Wiegerink, Remco J.; Lötters, Joost Conrad
2017-01-01
This abstract describes an application of an easy and straightforward method for selective SiO2 etching in three dimensional structures, which is developed by our group. The application in this abstract is the protection of the buried-oxide (BOX) layer of a silicon-on-insulator (SOI) wafer against
Application of Lie transform perturbation method for ...
Indian Academy of Sciences (India)
Abstract. Three-dimensional non-Hermitian systems are investigated using classical perturba- tion theory based on Lie transformations. Analytic expressions for total energy in terms of action variables are derived. Both real and complex semiclassical eigenvalues are obtained by quantiz- ing the action variables.
Application of Lie transform perturbation method for ...
Indian Academy of Sciences (India)
Three-dimensional non-Hermitian systems are investigated using classical perturbation theory based on Lie transformations. Analytic expressions for total energy in terms of action variables are derived. Both real and complex semiclassical eigenvalues are obtained by quantizing the action variables. It was found that ...
Three-dimensional simulations of resistance spot welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William
2014-01-01
This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r....... The overall presentation is supported by numerical simulations of electrode misalignment caused by the flexibility of the welding machine arms and electrical shunting due to consecutive welds in the resistance spot welding of two sheets.......This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...
Robot vision based on three-dimensional model
International Nuclear Information System (INIS)
Shirai, Yoshiaki
1985-01-01
In order that robots recognize objects, the models of the objects are required. If there is not any constraint about an object scene, it is desirable that robot vision has the three-dimensional models of the things composing the scene. Since the preparation of three-dimensional models takes much time, here, the utilization of the geometrical models made by CAD is proposed. Besides, when the description of a scene and three-dimensional models are compared, to attempt the comparison with all attitudes of respective models is not efficient, therefore, stratum-wise comparison was proposed. As concrete examples, when input information is only in the direction of a part of surfaces such as lustrous bodies, when information can be obtained in all the directions of the surfaces of a body visible by a photometric stereo, and when complete three dimensional information is obtained by a distance-measuring instrument, the techniques of object recognition are described. In all cases, by carrying out the stratum-wise comparison based on three-dimensional models, the efficient and generalized object recognition was able to be achieved. (Kako, I.)
A plastic surgery application in evolution: three-dimensional printing.
Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J
2014-02-01
Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.
Three-dimensional magnetospheric equilibrium with isotropic pressure
International Nuclear Information System (INIS)
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section
Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics.
Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T; Wiinberg, Bo; Sato, Amy F; Rubio, Jose M A; McEvoy, Fintan J
2017-11-01
Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed tomographic pulmonary angiograms findings, dogs were divided in three groups: diseased with pulmonary thromboembolism (n = 7), diseased but without pulmonary thromboembolism (n = 21), and healthy (n = 6). An observer who was aware of group status created three-dimensional pulmonary artery vascular trees for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among the three groups taken together (P = 0.001), but not between the diseased dogs alone (P = 0.203). The principal component analysis showed a tendency of separation between healthy control and diseased groups, but not between groups of dogs with and without pulmonary thromboembolism. Findings indicated that computed tomographic pulmonary angiogram images can be used to reconstruct three-dimensional pulmonary arterial vascular trees in dogs and that fractal analysis of these three-dimensional vascular trees is a feasible method for quantifying the spatial relationships of pulmonary arteries. These methods could be applied in further research studies on pulmonary and vascular diseases in dogs. © 2017 American College of Veterinary Radiology.
A Higgs at 125.1 GeV and baryon mass spectra derived from a Common U(3) Lie group framework
DEFF Research Database (Denmark)
Trinhammer, Ole; Bohr, Henrik; Jensen, Mogens O Stibius
2015-01-01
Baryons are described by a Hamiltonian on an intrinsic U(3) Lie group configuration space with electroweak degrees of freedom originating in specific Bloch wave factors. By opening the Bloch degrees of freedom pairwise via a U(2) Higgs mechanism, the strong and electroweak energy scales become...
Sinkala, W.
2011-01-01
Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.
Three-dimensional imaging of rheumatoid hands with MR
International Nuclear Information System (INIS)
Phillips, J.J.; Fischer, H.; Hollister, A.; Myers, L.
1990-01-01
Quantitative evaluation of soft-tissue proliferation associated with rheumatoid disease provided an objective measure of the activity and pattern of joint pathology. This paper propose a three-dimensional model for this purpose. With use of a 1.5-T Picker MR imager and a stellar GS 2000 computer graphics workstation, hands from patients with rheumatoid arthritis and age-matched controls were imaged to measure the quantity and location of inflammatory tissues. Three-dimensional Fourier transform gradient-echo sequences were used, with 0.8-1.6-mm section thickness. The definition of soft-tissue abnormalities and normal structures was facilitated by image smoothing and edge-detection computer algorithms. Separation of joint components permitted volume measurements and three-dimensional graphic displays
On three-dimensional quiver gauge theories of type B
Dey, Anindya; Hanany, Amihay; Koroteev, Peter; Mekareeya, Noppadol
2017-09-01
We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine B N quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2 N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine B N quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine B N quiver.
Three-dimensional particle image velocimetry measurement technique
International Nuclear Information System (INIS)
Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.
2004-01-01
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)
Eustachian tube three-dimensional reconstruction of secretory otitis media
International Nuclear Information System (INIS)
Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin
2006-01-01
Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)
Computational methods for three-dimensional microscopy reconstruction
Frank, Joachim
2014-01-01
Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology. Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.
Three-dimensional, three-component wall-PIV
Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich
2010-06-01
This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.
Shape memory polymers: three-dimensional isotropic modeling
Balogun, Olaniyi; Mo, Changki
2014-04-01
This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.
Three-dimensional facial analyses of Indian and Malaysian women.
Kusugal, Preethi; Ruttonji, Zarir; Gowda, Roopa; Rajpurohit, Ladusingh; Lad, Pritam; Ritu
2015-01-01
Facial measurements serve as a valuable tool in the treatment planning of maxillofacial rehabilitation, orthodontic treatment, and orthognathic surgeries. The esthetic guidelines of face are still based on neoclassical canons, which were used in the ancient art. These canons are considered to be highly subjective, and there is ample evidence in the literature, which raises such questions as whether or not these canons can be applied for the modern population. This study was carried out to analyze the facial features of Indian and Malaysian women by using three-dimensional (3D) scanner and thus determine the prevalence of neoclassical facial esthetic canons in both the groups. The study was carried out on 60 women in the age range of 18-25 years, out of whom 30 were Indian and 30 Malaysian. As many as 16 facial measurements were taken by using a noncontact 3D scanner. Unpaired t-test was used for comparison of facial measurements between Indian and Malaysian females. Two-tailed Fisher exact test was used to determine the prevalence of neoclassical canons. Orbital Canon was prevalent in 80% of Malaysian women; the same was found only in 16% of Indian women (P = 0.00013). About 43% of Malaysian women exhibited orbitonasal canon (P = 0.0470) whereas nasoaural canon was prevalent in 73% of Malaysian and 33% of Indian women (P = 0.0068). Orbital, orbitonasal, and nasoaural canon were more prevalent in Malaysian women. Facial profile canon, nasooral, and nasofacial canons were not seen in either group. Though some canons provide guidelines in esthetic analyses of face, complete reliance on these canons is not justifiable.
Novel multipole Wien filter as three-dimensional spin manipulator
Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.
2014-04-01
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Novel multipole Wien filter as three-dimensional spin manipulator
Energy Technology Data Exchange (ETDEWEB)
Yasue, T., E-mail: yasue@isc.osakac.ac.jp; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)
2014-04-15
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Three Dimensional Analysis of Elastic Rocket and Launcher at Launching
Takeuchi, Shinsuke
In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
Weyl and Dirac semimetals in three-dimensional solids
Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin
2018-01-01
Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.
Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules
DEFF Research Database (Denmark)
Parigi, Dario; Pugnale, Alberto
2012-01-01
This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the oth......, causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011....
Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model
Energy Technology Data Exchange (ETDEWEB)
Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy
2007-09-01
A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low
Xie, X Z; Huo, X K
2015-10-01
To explore the diagnostic accuracy of three-dimensional CT reconstruction and cephalometry in lateral skull base tumors. Fifty-eight patients with lateral skull base tumors were randomly divided into control group (n = 29, examined with conventional diagnostic technique) or study group (n = 29, examined with three-dimensional CT reconstruction and cephalometry). The diagnostic accuracy, tumor distribution and image characteristics were compared between both patient groups. In control group, preoperative tumor diagnosis was consistent with intraoperative diagnosis in 20 patients, similar in 7 patients and discrepant in 2 patients. In study group, there were 24 consistent, 4 similar, and 1 discrepant diagnoses (p cephalometry provides accurate diagnosis of lateral skull base tumors, which is helpful for subsequent surgical treatment.
Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.
2006-03-01
Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.
Three-Dimensional Seismic Tomography Beneath Tangshan, China
Chang, J. C.; Keranen, K. M.; Keller, G.; Qu, G.; Harder, S. H.
2010-12-01
The 1976 earthquake in Tangshan, China ranks as the deadliest earthquake in modern times. Though the exact number of casualties remains disputed, it is widely accepted that at least a quarter of a million people died. The high casualty level is surprising since the earthquake was not unusually large (Mw 7.5). Amplification of ground motion by thick sediment fill in the basin underlying the city is a likely cause for the extensive destruction. However, the extent of the unconsolidated material and the broader subsurface geology beneath Tangshan and surrounding areas needs to be better-constrained to properly model predicted ground motion and mitigate the hazards of future earthquakes. From a broader perspective, the Tangshan area is at the northern edge of the Bohai Bay basin province that has experienced both Cenozoic extension and related strike-slip tectonism. In January 2010, our group conducted a three-dimensional seismic investigation centered on the city of Tangshan. In an area of approximately 40 km x 60 km, we deployed 500 REFTEK 125A (“Texan”) recorders at 500 m spacing. A number of different sources, 20 altogether, were recorded during the two-day listening window, which include our large shots, smaller explosive shots from a co-spatial reflection survey, blasts from nearby quarries, and a small (Mearthquake. Our preliminary analyses suggest that the sediment fill is, on average, less than 1 km thick. Sediment fill is thinner to the north, as evidenced by outcropping bedrock, and thickens to the south. Sediment seismic velocity is about 1.8 km/s. Upper crustal velocities are 5.2 to 6.6 km/s, and increase to 7.0 km/s at mid-crustal depths.
Sumner, J G; Fernández-Sánchez, J; Jarvis, P D
2012-04-07
Recent work has discussed the importance of multiplicative closure for the Markov models used in phylogenetics. For continuous-time Markov chains, a sufficient condition for multiplicative closure of a model class is ensured by demanding that the set of rate-matrices belonging to the model class form a Lie algebra. It is the case that some well-known Markov models do form Lie algebras and we refer to such models as "Lie Markov models". However it is also the case that some other well-known Markov models unequivocally do not form Lie algebras (GTR being the most conspicuous example). In this paper, we will discuss how to generate Lie Markov models by demanding that the models have certain symmetries under nucleotide permutations. We show that the Lie Markov models include, and hence provide a unifying concept for, "group-based" and "equivariant" models. For each of two and four character states, the full list of Lie Markov models with maximal symmetry is presented and shown to include interesting examples that are neither group-based nor equivariant. We also argue that our scheme is pleasing in the context of applied phylogenetics, as, for a given symmetry of nucleotide substitution, it provides a natural hierarchy of models with increasing number of parameters. We also note that our methods are applicable to any application of continuous-time Markov chains beyond the initial motivations we take from phylogenetics. Crown Copyright Â© 2011. Published by Elsevier Ltd. All rights reserved.
Signal processing of eddy current three-dimensional maps
International Nuclear Information System (INIS)
Birac, C.; David, D.; Lamant, D.
1987-01-01
Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes
Three-dimensional flow and turbulence structure in electrostatic precipitator
DEFF Research Database (Denmark)
Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay
2002-01-01
and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...
Two-and three-dimensional gravity modeling along western ...
Indian Academy of Sciences (India)
The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan ﬂood basalts. Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, ...
Kondo effect in three-dimensional Dirac and Weyl systems
Mitchell, Andrew K.; Fritz, Lars
2015-01-01
Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a
Rigid isotopy classification of real three-dimensional cubics
Energy Technology Data Exchange (ETDEWEB)
Krasnov, Vyacheslav A [Yaroslavl Demidov State University (Russian Federation)
2006-08-31
We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.
Three-dimensional fractal geometry for gas permeation in microchannels
Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han
2018-01-01
The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The
Monitoring the three-dimensional ionospheric electron density ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 116; Issue 3. Monitoring the three-dimensional ionospheric ... A numerical experiment is used to validate the reliability of the method and its advantages to the classical algebraic reconstruction technique (ART). This is then used to reconstruct the IED images using ...
A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning
Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.
2007-01-01
Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually…
Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology
Haberfehlner, H.; Maas, H.; Harlaar, J.; Becher, J.G.; Buizer, A.I.; Jaspers, R.T.
2016-01-01
In several neurological disorders and muscle injuries, morphological changes of the m. semitendinosus (ST) are presumed to contribute to movement limitations around the knee. Freehand three-dimensional (3D) ultrasound (US), using position tracking of two-dimensional US images to reconstruct a 3D
Quantum field between moving mirrors: A three dimensional example
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Three-dimensional reconstruction of the pigeon inner ear
Hofman, R.; Segenhout, J. M.; Wit, H. P.
2009-01-01
Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on
Three-dimensional structure of heat shock protein 90 from ...
Indian Academy of Sciences (India)
Madhu Sudhan
2007-04-02
Apr 2, 2007 ... Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory ... role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length .... PfHsp90 and for the development of small-molecule targets.
Three-dimensional reconstruction of the rat nephron
DEFF Research Database (Denmark)
Christensen, Erik Ilsø; Grann, Birgitte; Kristoffersen, Inger B.
2014-01-01
This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded...
Three dimensional reconstruction of tomographic images of the retina
International Nuclear Information System (INIS)
Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.
2007-01-01
The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de
hp Spectral element methods for three dimensional elliptic problems ...
Indian Academy of Sciences (India)
125, No. 3, August 2015, pp. 413–447. c Indian Academy of Sciences h-p Spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. P DUTT1, AKHLAQ HUSAIN2,∗, A S VASUDEVA MURTHY3 and C S UPADHYAY4. 1Department of Mathematics & Statistics ...
Three-dimensional echocardiographic assessment of the repaired mitral valve.
Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun
2014-02-01
This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.
Mathematical modeling of three-dimensional images in emission tomography
International Nuclear Information System (INIS)
Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.
2002-01-01
The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out
Analysis of three-dimensional transient seepage into ditch drains ...
Indian Academy of Sciences (India)
Ratan Sarmah
Abstract. An analytical solution in the form of infinite series is developed for predicting time-dependent three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size, the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level ...
Singularities at rims in three-dimensional fluid flow
Driesen, C.H.; Kuerten, Johannes G.M.
1999-01-01
Asymptotic solutions are presented for Stokes flow near circular rims in three-dimensional geometries. Using nonstandard toroidal coordinates, asymptotic analytical expressions are derived for different corner angles. In comparison to the two-dimensional case, an extra critical corner angle value is
and three-dimensional gravity modeling along western continental ...
Indian Academy of Sciences (India)
Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, maﬁc-ultramaﬁc type, elongated, roughly ellipsoidal body. It is approximately 12.0 ± 1.2 km thick with its upper surface at ...
Wave packet construction in three-dimensional quantum billiards ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 1. Wave packet construction in three-dimensional quantum billiards: Visualizing the closed orbit, collapse and revival of wave packets in the cubical billiard. Maninder Kaur Bindiya Arora Mahmood Mian. Volume 86 Issue 1 January 2016 pp 31-48 ...
Three-dimensional simulation of laser–plasma-based electron ...
Indian Academy of Sciences (India)
Abstract. A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out ...
Generation of a Desired Three-Dimensional Electromagnetic Field
DEFF Research Database (Denmark)
2005-01-01
The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...
Robust cylinder fitting in three-dimensional point cloud data
Nurunnabi, Abdul; Sadahiro, Yukio; Lindenbergh, R.C.
2017-01-01
This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete
The Importance of Three-Dimensionality in Children's Art
Heldmeyer, Karen
1978-01-01
Investigated young children's ability to represent three-dimensionality in their drawings. Preschool, kindergarten and first grade children and adults were asked to draw a cube, a house, and a ball presented in a plain form, a form differentially decorated on each side, and in both 2- and 3-dimensional forms. (JMB)
Three-Dimensional Extension of a Digital Library Service System
Xiao, Long
2010-01-01
Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…
Three dimensional simulated modelling of diffusion capacitance of ...
African Journals Online (AJOL)
A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...
Three-Dimensional Utah: 100 Years of Sculpture
Nora Eccles Harrison Museum of Art
1996-01-01
Three-Dimensional Utah: 100 Years of Sculpture began as a series of conversations about sculptors and sculpture nearly six years ago. Specific development of the exhibition began three years ago during the process of creating a national inventory of outdoor sculpture for a program called Save Outdoor Sculpture (SOS)! Utah is home to more than 200 pieces of outdoor sculpture.
Three-dimensional computer models of electrospinning systems
Directory of Open Access Journals (Sweden)
Smółka Krzysztof
2017-12-01
Full Text Available Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.
Molecular dynamics study of two- and three-dimensional classical ...
Indian Academy of Sciences (India)
Abstract. We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard–Jones, when parameters occurring in double Yukawa potential are chosen to fit ...
Resistive drift wave turbulence in a three-dimensional geometry
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
1999-01-01
The Hasegawa-Wakatani model describing resistive drift waves is investigated analytically and numerically in a three-dimensional periodic geometry. After an initial growth of the energy the drift waves couple nonlinearly to convective cells, which eventually dominate the system completely...
and three-dimensional models for analysis of optical absorption
Indian Academy of Sciences (India)
Unknown
Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.
Optical and thermal performance of a three-dimensional compound ...
Indian Academy of Sciences (India)
The three-dimensional compound parabolic concentrator (3D CPC) was found to be more efﬁcient than 2D CPC because of the higher concentration ratio. In the present work a 3D CPC was fabricated with a half acceptance angle of 4° for a spherical absorber of radius 100 mm. UV stabilized aluminized polyester foil having ...
Wave packet construction in three-dimensional quantum billiards ...
Indian Academy of Sciences (India)
Keywords. Three-dimensional bound systems; revivals and collapses; quantum mechanics. PACS Nos 03.65.Ge; 03.65.Yz; 42.50.Md. 1. Introduction. The study of time evolution of the unbound and bound-state wave packet illuminates many features of the wave mechanics. These include both semiclassical features as well.
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty ...
Indian Academy of Sciences (India)
Kh. H. El-Shorbagy
yahoo.com. MS received 24 May 2017; accepted 26 September 2017; published online 27 November 2017. Abstract. In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-. Coulomb waves in an ...
Three-dimensional free vibration analysis of thick laminated circular ...
African Journals Online (AJOL)
Three-dimensional free vibration analysis of thick laminated circular plates. Sumit Khare, N.D. Mittal. Abstract. In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as well as simply-supported boundary conditions at outer edges of plates is presented.
and three-dimensional gravity modeling along western continental ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of ...
Three dimensional rigorous model for optical scattering problems
Wei, X.
2006-01-01
We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We
Stability analysis of non-axisymmetric three-dimensional finite ...
Indian Academy of Sciences (India)
In three-dimensional formulation one prefers a spinning frame for derivation of the govern- ing equations (Nandi & Neogy 2001). In this spinning frame, the orthotropic bearing stiffness becomes periodic. The governing equations thus become parametric in nature. A rotor cross- section is symmetric when the rotor has same ...
Three-dimensional simulations of viscoelastic instability in polymeric filaments
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
1999-01-01
The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...
Three-dimensional computer models of electrospinning systems
Smółka, Krzysztof; Firych-Nowacka, Anna; Lefik, Marcin
2017-12-01
Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.
Three dimensional internal electromagnetic pulse calculated by particle source method
International Nuclear Information System (INIS)
Wang Yuzhi; Wang Taichun
1986-01-01
The numerical results of the primary electric current and the internal electromagnetic pulse were obtained by particle method in the rectanglar cavity. The results obtained from this method is compared with three dimensional Euler-method. It is shown that two methods are in good agreement if the conditions are the same
Directory of Open Access Journals (Sweden)
Yanfei Zhao
2015-09-01
Full Text Available Three-dimensional topological Dirac semimetals have a linear dispersion in 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle-dependent magnetotransport on the newly revealed Cd_{3}As_{2} single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in the [112] or [441[over ¯
Police lie detection accuracy: the effect of lie scenario.
O'Sullivan, Maureen; Frank, Mark G; Hurley, Carolyn M; Tiwana, Jaspreet
2009-12-01
Although most people are not better than chance in detecting deception, some groups of police professionals have demonstrated significant lie detection accuracy. One reason for this difference may be that the types of lies police are asked to judge in scientific experiments often do not represent the types of lies they see in their profession. Across 23 studies, involving 31 different police groups in eight countries, police officers tested with lie detection scenarios using high stakes lies (i.e., the lie was personally involving and/or resulted in substantial rewards or punishments for the liar) were significantly more accurate than law enforcement officials tested with low stakes lies. Face validity and construct validity of various lie scenarios are differentiated.
Suzuki, Yoshiyuki
2004-12-01
Detection of natural selection operating at the amino acid sequence level is important in the study of molecular evolution. Single-site analysis and one-dimensional window analysis can be used to detect selection when the biological functions of amino acid sites are unknown. Single-site analysis is useful when selection operates more or less constantly over evolutionary time, but less so when selection operates temporarily. One-dimensional window analysis is more sensitive than single-site analysis when the functions of amino acid sites in close proximity in the linear sequence are similar, although this is not always the case. Here I present a three-dimensional window analysis method for detecting selection given the three-dimensional structure of the protein of interest. In the three-dimensional structure, the window is defined as the sphere centered on the alpha-carbon of an amino acid site. The window size is the radius of the sphere. The sites whose alpha-carbons are included in the window are grouped for the neutrality test. The window is moved within the three-dimensional structure by sequentially moving the central site along the primary amino acid sequence. To detect positive selection, it may also be useful to group the surface-exposed sites in the window separately. Three-dimensional window analysis appears not only to be more sensitive than single-site analysis and one-dimensional window analysis but also to provide similar specificity for inferring positive selection in the analyses of the hemagglutinin and neuraminidase genes of human influenza A viruses. This method, however, may fail to detect selection when it operates only on a particular site, in which case single-site analysis may be preferred, although a large number of sequences is required.
International Nuclear Information System (INIS)
Ganapol, B.D.; Kornreich, D.E.
1997-01-01
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green's function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade
Energy Technology Data Exchange (ETDEWEB)
Ganapol, B.D.; Kornreich, D.E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Nuclear Engineering
1997-07-01
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.
Informatics solutions for Three-dimensional visualization in real time
International Nuclear Information System (INIS)
Guzman Montoto, Jose Ignacio
2002-01-01
The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine
Three-dimensional MR imaging of congenital heart disease
International Nuclear Information System (INIS)
Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.
1987-01-01
Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging
Polarization singularity anarchy in three dimensional ellipse fields
Freund, Isaac
2004-11-01
Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.
Three-dimensional data visualization using DSP meshes
Liow, Yuh-Tay; Civanlar, Mehmet R.; Dzik, Steven C.
1990-08-01
This paper presents a parallel scheme for three dimensional data visualization at interactive rates. The scheme is particularly suitable for multiprocessor systems with distributed frame buffers and is currently implemented on an AT&T Pixel Machine, a parallel computer based on mesh connected digital signal processors with a distributed frame buffer. Nearly linear performance increase with the number of processors in the mesh is obtained by partitioning the original three dimensional data into sub-blocks and processing each sub-block in parallel. The approach is very flexible in implementing a variety of visualization techniques, such as volume compositing (translucent models), binary-class and percentage mixtures and surface based volume rendering.
Three-dimensional P velocity structure in Beijing area
Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De
2003-01-01
A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.
Ultrafast three-dimensional x-ray computed tomography
International Nuclear Information System (INIS)
Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg
2011-01-01
X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s -1 . Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.
Three-dimensional computerized tomography in mandibular condyle fractures
International Nuclear Information System (INIS)
Bermeo, Fausto; Salazar, Abad
2003-01-01
Now, car accidents are so commons, this associated to the high technology in produce automobiles make this type of accidents so serious and the consequences of mandibular condyle fractures are more commons and with more gravity, some of these patients, generally need a traqueostomy to be operated, that is why every second that we can save during the surgery is important. The normal exams as X rays and simple TAC give as an important idea but no complete, on the contrary the three-dimensional TAC permits to observe every damages and its exact location, this contribute to make a better surgery organization, the number and type of plates that we have to put and the better way to treat each case, that contribute to reduce time in operating theatre which is in benefit of the patient, diminishing risks in serious patients as they are, that is why we recommend the utilization of the three-dimensional TAC. (The author)
Canonical and symplectic analysis for three dimensional gravity without dynamics
International Nuclear Information System (INIS)
Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.
2017-01-01
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Canonical and symplectic analysis for three dimensional gravity without dynamics
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Handwriting: three-dimensional kinetic synergies in circle drawing movements.
Hooke, Alexander W; Karol, Sohit; Park, Jaebum; Kim, Yoon Hyuk; Shim, Jae Kun
2012-07-01
The purpose of this study was to investigate central nervous system (CNS) strategies for controlling multifinger forces during a circle-drawing task. Subjects drew 30 concentric, discontinuous clockwise and counter clockwise circles, at self and experimenter-set paces. The three-dimensional trajectory of the pen's center of mass and the three-dimensional forces and moments of force at each contact between the hand and the pen were recorded. Uncontrolled Manifold Analysis was used to quantify the synergies between pen-hand contact forces in radial, tangential and vertical directions. Results showed that synergies in the radial and tangential components were significantly stronger than in the vertical component. Synergies in the clockwise direction were significantly stronger than the counterclockwise direction in the radial and vertical components. Pace was found to be insignificant under any condition.
Secondary instability and transition in three-dimensional boundary layers
Energy Technology Data Exchange (ETDEWEB)
Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)
1999-01-01
Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)
Secondary instability and transition in three-dimensional boundary layers
Energy Technology Data Exchange (ETDEWEB)
Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik
1999-12-01
Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)
Two-dimensional turbulence in three-dimensional flows
Xia, H.; Francois, N.
2017-11-01
This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.
The thermoelectric performance of bulk three-dimensional graphene
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)
2016-11-01
The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.
Three-dimensional potential energy surface of Ar–CO
Energy Technology Data Exchange (ETDEWEB)
Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields
DEFF Research Database (Denmark)
Sales, Morten; Strobl, Markus; Shinohara, Takenao
2018-01-01
-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...
Three Dimensional Energy Transmitting Boundary in the Time Domain
Directory of Open Access Journals (Sweden)
Naohiro eNakamura
2015-11-01
Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.
Scattering and conductance quantization in three-dimensional metal nanocontacts
DEFF Research Database (Denmark)
Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1997-01-01
The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r......The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance...... is with respect to the scattering. We find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will. still be at integer positions. The effect...
Three-dimensional metamaterials fabricated using Proton Beam Writing
Energy Technology Data Exchange (ETDEWEB)
Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)
2013-07-01
Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.
Single florescent nanodiamond in a three dimensional ABEL trap
Kayci, Metin; Radenovic, Aleksandra
2015-01-01
Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890
Wang, Lie; Chen, Zhi-Yuan; Liu, Rong; Zeng, Hao
2017-08-01
To study the value and satisfaction of three-dimensional printing implant template and conventional implant template in multi-tooth dental implantation. Thirty cases (83 teeth) with missing teeth needing to be implanted were randomly divided into conventional implant template group (CIT group, 15 cases, 42 teeth) and 3D printing implant template group (TDPIT group, 15 cases, 41 teeth). Patients in CIT group were operated by using conventional implant template, while patients in TDPIT group were operated by using three-dimensional printing implant template. The differences of implant neck and tip deviation, implant angle deviation and angle satisfaction between the two groups were compared. The difference of probing depth and bone resorption of implant were compared 1 year after operation between the two groups. The difference of success rate and satisfaction of dental implantation were compared 1 year after operation between the two groups. SPSS19.0 software package was used for statistical analysis. The deviation direction of the neck and the tip in disto-mesial, bucco-palatal, vertical direction and angle of implants in disto-mesial and bucco-palatal direction in TDPIT group were significantly lower than in CIT group (P0.05). The difference of the cumulative success rate in dental implantation at 3 months and 6 months between the two groups were not significant (P>0.05), but the cumulative success rate of TDPIT group was significantly higher than CIT group at 9 months and 1 year (90.48% vs 100%,P=0.043). The patients' satisfaction rate of dental implantation in TDPIT group was significantly higher than in CIT group (86.67% vs 53.33%, P=0.046). Using three-dimensional printing implant template can obtain better accuracy of implant, higher implant success rate and better patients' satisfaction than using conventional implant template. It is suitable for clinical application.
Study of three-dimensional effects on vortex breakdown
Salas, M. D.; Kuruvila, G.
1988-01-01
The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.
A three-dimensional model of women's empowerment
Huis, Marloes A.; Hansen, Nina; Otten, Sabine; Lensink, Robert
2017-01-01
Women's empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women's empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women's empowerment. We propose a Three-Dimensional Model of Women's Empowerment to integrate previous findings and to gain a deeper un...
Isotropic three-dimensional left-handed meta-materials
Koschny, Th.; Zhang, L.; Soukoulis, C. M.
2005-01-01
We investigate three-dimensional left-handed and related meta-materials based on a fully symmetric multi-gap single-ring SRR design and crossing continuous wires. We demonstrate isotropic transmission properties of a SRR-only meta-material and the corresponding left-handed material which possesses a negative effective index of refraction due to simultaneously negative effective permeability and permittivity. Minor deviations from complete isotropy are due to the finite thickness of the meta-m...
Three Dimensional Unstructured Multigrid for the Euler Equations
1991-05-01
represents an algorithmic issue. While much work has been performed in two dimensions on direct [21, iterative implicit [3,4,51, and multigrid methods [6,7,8...methods, and many of the iterative implicit methods incur too large memory overheads to be practical for three-dimensional problems. Multigrid methods , on...the Third Copper Mountain Confer- ence on Multigrid Methods , Lecture Notes in Pure and Applied Mathematics, Ed S. F. McCormick, Marcel Dckker Inc
Three-dimensional discrete ordinates reactor assembly calculations on GPUs
Energy Technology Data Exchange (ETDEWEB)
Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL
2015-01-01
In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.
Three-dimensional transparent parabolic concentrator for photovoltaics
Huichuan Lin; Peng Xie; Yong Liu; Xiang Zhou; Baojun Li
2015-01-01
A three-dimensional transparent parabolic concentrator made of polymethylmethacrylate (PMMA) was designed and fabricated for photovoltaic applications. The measured maximum concentration ratio of the concentrator is 8.31, which means that for normal incident light, optical energy can be concentrated as high as 8.31 times by the concentrator. Even for oblique incident lights with an incident angle of between 5° and 15°, the concentrator maintains a concentration ratio of between 6.81 and 3.72....
Aerodynamics of Airfoils Subject to Three-Dimensional Periodic Gusts.
1983-08-31
and computational procedures to calculate the unsteady forces acting upon airfoils of arbitrary shape subject to three-dimensional gust disturbances...However the mathenatical formulation which has evolved from our analytical work can also be applied under certain conditions to study the changes in...check the validity of our computation scheme two sets of comparisons were carried out. First we considered a two-dimensional gust with transverse and
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
Energy Technology Data Exchange (ETDEWEB)
Onishi, Yasuo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Kevin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eyler, L. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Okumura, Masahiko [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-03-28
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Heat engine in the three-dimensional spacetime
International Nuclear Information System (INIS)
Mo, Jie-Xiong; Liang, Feng; Li, Gu-Qiang
2017-01-01
We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C V ≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r 0 .
Three dimensional Green's function for ship motion at forward speed
Directory of Open Access Journals (Sweden)
Matiur Rahman
1990-01-01
Full Text Available The Green's function formulation for ship motion at forward speed contains double integrals with singularities in the path of integrations with respect to the wave number. In this study, the double integrals have been replaced by single integrals with the use of complex exponential integrals. It has been found that this analysis provides an efficient way of computing the wave resistance for three dimensional potential problem of ship motion with forward speed.
Three dimensional refractive index imaging with differential interference contrast microscopy
Aung, Htet; Buckley, Jared; Kostyk, Piotr; Rodriguez, Braulio; Phelan, Shelley; Xu, M.
2012-03-01
We report here a new approach based on an extension of the transport of the intensity equation for three dimensional refractive index imaging of a weak phase object from a series of images recorded by a differential interference contrast microscope at different focus (z-stack). Our method is first validated by imaging polystyrene spheres. We then apply this method to monitor in vivo apoptosis of human breast MCF7 epithelial cells. The potential applications are discussed at the end.
Three-dimensional friction measurement during hip simulation.
Directory of Open Access Journals (Sweden)
Robert Sonntag
Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.
Three-dimensional reconstruction of the otosclerotic focus
DEFF Research Database (Denmark)
Bloch, Sune Land; Sørensen, Mads Sølvsten
2010-01-01
The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between norm...... and otosclerotic bone remodeling suggests that inner ear mechanisms in control of bone remodeling may have a pathogenetic role in otosclerosis....
Heat engine in the three-dimensional spacetime
Energy Technology Data Exchange (ETDEWEB)
Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)
2017-03-02
We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.
Three-dimensional, computer simulated navigation in endoscopic neurosurgery
Directory of Open Access Journals (Sweden)
Roberta K. Sefcik, BHA
2017-06-01
Conclusion: Three-dimensional, frameless neuronavigation systems are useful in endoscopic neurosurgery to assist in the pre-operative planning of potential trajectories and to help localize the pathology of interest. Neuronavigation appears to be accurate to <1–2 mm without issues related to brain shift. Further work is necessary in the investigation of the effect of neuronavigation on operative time, cost, and patient-centered outcomes.
Accuracy of three-dimensional printing for manufacturing replica teeth
Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung
2015-01-01
Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were sc...
Is a three-dimensional-printed tooth filling possible?
Muhammet Kerim Ayar
2016-01-01
Introduction: Three-dimensional (3-D) printing is seen as an innovative production process in many fields of dentistry and medicine. But implantation of this novel production process into the treatment of decayed teeth in dentistry remains lacking. Destruction of dental tissues as a result of dental caries is generally treated with dental resin composite fillings. However, a 3-D-printed tooth filling approach, which could be an alternative to traditional approaches, has a potential to reduce ...
Three-dimensional fluorescence characteristics of white chrysanthemum flowers
Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun
2014-09-01
White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.
Surface image of herniated disc on three-dimensional CT
Energy Technology Data Exchange (ETDEWEB)
Chung, Kyung Il; Jeon, Chang Hoon; Kim, Sun Yong; Kim, Ok Hwa; Suh, Jung Ho [Ajou Univ. College of Medicine, Suwon(Korea, Republic of)
1996-03-01
To evaluate surface configuration of herniated disc on three-dimensional CT. Three dimensional surface images reconstructed from CT scans(1 mm thick) of 24 surgically confirmed herniated discs in 23 patients were reviewed. Disc surface was classified into peripheral and central zones in contact with consecutive peripheral ring and central endplate. Surface irregularity was categorized into two types(local and general). The incidence, size, and extent of local irregularity were observed. General irregularity incidence and severity ranges in 4 grades, and peripheral width were evaluated. The findings were correlated with discography. Local irregularity compatible with anulus tear in discography was shown in all. It was large(13/24) and mainly peripheral tract extending to disc margin in protrusion(3/5) and sequestration(5/7), and cleft encompassing central zone to disc margin in extrusion(9/12). General irregularity was predominantly grade 3(15/22) and was shown in all except in 2 protrusions. Peripheral width was 0.56 of central radius. Extrusion in herniated disc shows characteristic cleft encompassing central zone to disc margin whereas sequestration or protrusion displays tract extending from peripheral zone to disc margin. Thus, three dimensional surface imaging may aid the diagnosis, follow-up, prediction, and treatment of herniated disc.
Comparison of two three-dimensional cephalometric analysis computer software.
Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek
2014-10-01
Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.
Space charge cartography by FLIMM: a three-dimensional approach
International Nuclear Information System (INIS)
Marty-Dessus, D; Berquez, L; Petre, A; Franceschi, J L
2002-01-01
A technique for three-dimensional cartography of space charges profiles inside polymer insulating samples is proposed. Called focused laser intensity modulation method (FLIMM), it is derived from the well-known LIMM method, with an additional possibility of being able to focus the laser spot on the surface of the sample to be studied. The processed data is a short-circuited pyrolectric current collected between the electrodes and induced by the interaction of the charges with the periodic variations of temperature produced by the laser source. The focused aspect of our method requires a good three-dimensional modelling of the spatial evolution of this thermal gradient. Under these conditions, the treatment of the equation of heat propagation is carried out using simultaneously a double Fourier transform and Green functions. In association with the numerical simulations of this solution, a two-dimensional scanning of the beam on polyethylene test sample surfaces shows that one can get three-dimensional representations of space charge shapes with a lateral resolution lower than 10 μm and for a depth of analysis typically included in the range 1-100 μm
Nonlinear three-dimensional trajectory following: simulation and application
Hines, George H.
In light of recent military requirements for unmanned and autonomous vehicles, research into methods of designing arbitrary three-dimensional trajectories and controlling aircraft along them has become vital. In this report, we explore two methods of nonlinear control for the purpose of following three-dimensional trajectories and paths. First, prior work on a dynamic feedback linearization exploiting the differential flatness of the ideal airplane is adapted with the intent of implementing it on a physical testbed in MIT's Realtime indoor Autonomous Vehicle test ENvironment (RAVEN), but poor behavior—both in simulation and in hardware—under moderate levels of joint parameter uncertainty thwarted attempts at implementation. Additionally, the differential flatness technique in its pure form follows trajectories, which are sometimes inferior intuitively and practically to paths. In the context of unmanned air vehicle (UAV) flight in gusty environments, this motivated the extension of prior work on two-dimensional path following to three-dimensions, and simulations are presented in which the fully nonlinear controller derived from differential flatness follows a trajectory that is generated dynamically from a path. The three-dimensional path-following logic is actually implemented in RAVEN, and results are presented that demonstrate good vertical rise time in response to a step input and centimeter accuracy in vertical and lateral tracking. Future directions are proposed.
Kikuchi, Ryogo; Toda, Masahiro; Wakahara, Sota; Fujiwara, Hirokazu; Jinzaki, Masahiro; Yoshida, Kazunari
2016-09-01
The medial opticocarotid recess (MOCR), which contains the lateral tubercular recess (LTR), is an important landmark for the cavernous internal carotid artery (ICA) and for accessing the parasellar and suprasellar regions. These microanatomic landmarks for endoscopic endonasal surgery can be observed using surgical simulation with three-dimensional images. The aim of this study was to analyze the MOCR in patients with pituitary macroadenoma using three-dimensional images. We constructed three-dimensional computed tomography images of 20 patients with pituitary macroadenoma and 20 patients with unruptured aneurysms as a control. Using these images, we measured the distance between the left and right LTR, the midline and the unilateral LTR, and the left and right ICA. The distance between the left and right LTR was statistically longer in the pituitary adenoma group versus the control group. Tumor volumes were multivariate parameters for the distance between the left and right LTR, which was significantly longer in the group with tumor volumes >5 cm(3) versus the other groups. This distance was also significantly correlated with the distance between the left and right ICA. Pituitary macroadenomas expand the distance between the left and right MOCR together with the distance between the left and right ICA. Copyright © 2016 Elsevier Inc. All rights reserved.
A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2013-01-01
Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.
Conformal Field Theories on K3 and Three-Dimensional Gauge Theories
Mayr, Peter
2000-01-01
According to a recent conjecture, the moduli space of the heterotic conformal field theory on a $G\\subset$ ADE singularity of an ALE space is equivalent to the moduli space of a pure $\\cx N=4$ supersymmetric three-dimensional gauge theory with gauge group G. We establish this relation using geometric engineering of heterotic strings and generalize it to theories with non-trivial matter content.
Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model
Moore, J. Keith; Doney, Scott C; Lindsay, Keith
2004-01-01
A global three-dimensional marine ecosystem model with several key phytoplankton functional groups, multiple limiting nutrients, explicit iron cycling, and a mineral ballast/organic matter parameterization is run within a global ocean circulation model. The coupled biogeochemistry/ecosystem/circulation (BEC) model reproduces known basin-scale patterns of primary and export production, biogenic silica production, calcification, chlorophyll, macronutrient and dissolved iron concentrations. The ...
Three-dimensional micro-electrode array for recording dissociated neuronal cultures.
Musick, Katherine; Khatami, David; Wheeler, Bruce C
2009-07-21
This work demonstrates the design, fabrication, packaging, characterization, and functionality of an electrically and fluidically active three-dimensional micro-electrode array (3D MEA) for use with neuronal cell cultures. The successful function of the device implies that this basic concept-construction of a 3D array with a layered approach-can be utilized as the basis for a new family of neural electrode arrays. The 3D MEA prototype consists of a stack of individually patterned thin films that form a cell chamber conducive to maintaining and recording the electrical activity of a long-term three-dimensional network of rat cortical neurons. Silicon electrode layers contain a polymer grid for neural branching, growth, and network formation. Along the walls of these electrode layers lie exposed gold electrodes which permit recording and stimulation of the neuronal electrical activity. Silicone elastomer micro-fluidic layers provide a means for loading dissociated neurons into the structure and serve as the artificial vasculature for nutrient supply and aeration. The fluidic layers also serve as insulation for the micro-electrodes. Cells have been shown to survive in the 3D MEA for up to 28 days, with spontaneous and evoked electrical recordings performed in that time. The micro-fluidic capability was demonstrated by flowing in the drug tetrotodoxin to influence the activity of the culture.
Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H
2009-06-01
Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.
[Application and outlook of three-dimensional printing in prosthetic dentistry].
Sun, Y C; Li, R; Zhou, Y S; Wang, Y
2017-06-09
At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.
Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics
DEFF Research Database (Denmark)
Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T
2017-01-01
Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...
Parallelization of a three-dimensional whole core transport code DeCART
Energy Technology Data Exchange (ETDEWEB)
Jin Young, Cho; Han Gyu, Joo; Ha Yong, Kim; Moon-Hee, Chang [Korea Atomic Energy Research Institute, Yuseong-gu, Daejon (Korea, Republic of)
2003-07-01
Parallelization of the DeCART (deterministic core analysis based on ray tracing) code is presented that reduces the computational burden of the tremendous computing time and memory required in three-dimensional whole core transport calculations. The parallelization employs the concept of MPI grouping and the MPI/OpenMP mixed scheme as well. Since most of the computing time and memory are used in MOC (method of characteristics) and the multi-group CMFD (coarse mesh finite difference) calculation in DeCART, variables and subroutines related to these two modules are the primary targets for parallelization. Specifically, the ray tracing module was parallelized using a planar domain decomposition scheme and an angular domain decomposition scheme. The parallel performance of the DeCART code is evaluated by solving a rodded variation of the C5G7MOX three dimensional benchmark problem and a simplified three-dimensional SMART PWR core problem. In C5G7MOX problem with 24 CPUs, a speedup of maximum 21 is obtained on an IBM Regatta machine and 22 on a LINUX Cluster in the MOC kernel, which indicates good parallel performance of the DeCART code. In the simplified SMART problem, the memory requirement of about 11 GBytes in the single processor cases reduces to 940 Mbytes with 24 processors, which means that the DeCART code can now solve large core problems with affordable LINUX clusters. (authors)
Directory of Open Access Journals (Sweden)
Xian-Jin Zhu
2015-01-01
Conclusions: Three-dimensional VISTA images enable detection of BA plaques not visualized by MRA. BA plaques could be found in both the IPI and non-IPI group. However, IPI group showed plaques more extensively in BA than the non-IPI group.
Directory of Open Access Journals (Sweden)
Fedriani Martel, Eugenio M.
2006-06-01
Full Text Available En la presente comunicación explicamos algunas de las herramientas de la Geometría Diferencial y, en concreto, de la Teoría de Lie con las que se trabaja actualmente en Economía. Se indican las condiciones que se exigen a las funciones de producción y la definición de un tipo de progreso técnico denominado de tipo Lie, consistente en exigir las tres propiedades que han de verificar los grupos de Lie. También se expone el uso del operador de Lie en interpretaciones económicas y en la cuantificación del impacto del progreso técnico. Dicho operador permite dar una respuesta a la Controversia Solow-Stigler. Por último, se indican varias aplicaciones de la Teoría de Lie en los estudios económicos, que permiten abrir futuras líneas de investigación,de las que se apuntan algunas. De este modo, nuestro objetivo principal es mostrar el uso, actual y futuro, de la Teoría de Lie en el campo de la Economía.
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-04
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.
Three-dimensional trajectory optimization in constrained airspace
Dai, Ran
This dissertation deals with the generation of three-dimensional optimized trajectory in constrained airspace. It expands the previously used two-dimensional aircraft model to a three-dimensional model and includes the consideration of complex airspace constraints not included in previous trajectory optimization studies. Two major branches of optimization methods, indirect and direct methods, are introduced and compared. Both of the methods are applied to solve a two-dimensional minimum-time-to-climb (MTTC) problem. The solution procedure is described in detail. Two traditional problems, the Brachistochrone problem and Zermelo's problem, are solved using the direct collocation and nonlinear programming method. Because analytical solutions to these problems are known. These solutions provide verification of the numerical methods. Three discretization methods, trapezoidal, Hermite-Simpson and Chebyshev Pseudospectral (CP) are introduced and applied to solve the Brachistochrone problem. The solutions obtained using these discretization methods are compared with the analytical results. An 3-D aircraft model with six state variables and two control variables are presented. Two primary trajectory optimization problems are considered using this model in the dissertation. One is to assume that the aircraft climbs up from sea level to a desired altitude in a square cross section cylinder of arbitrary height. Another is to intercept a constant velocity, constant altitude target in minimum time starting from sea level. Results of the optimal trajectories are compared with the results from the proportional navigation guidance law. Field of View constraint is finally considered in this interception problem. The CP discretization and nonlinear programming method is shown to have advantages over indirect methods in solving three-dimensional (3-D) trajectory optimization problems with multiple controls and complex constraints. Conclusions from both problems are presented and
Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices
Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.
2008-03-01
We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.
Photogrammetry: applications of a three-dimensional remote measurement technique
International Nuclear Information System (INIS)
Peak, K.
1988-01-01
Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)
Observation of three dimensional optical rogue waves through obstacles
Energy Technology Data Exchange (ETDEWEB)
Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (RM) (Italy); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185 Roma (Italy)
2015-06-22
We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.
Surgical accuracy of three-dimensional virtual planning
DEFF Research Database (Denmark)
Stokbro, Kasper; Aagaard, Esben; Torkov, Peter
2016-01-01
This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...
Quantum tunneling from three-dimensional black holes
International Nuclear Information System (INIS)
Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung
2013-01-01
We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry
Modified Three-Dimensional Multicarrier Optical Prime Codes
Directory of Open Access Journals (Sweden)
Rajesh Yadav
2016-01-01
Full Text Available We propose a mathematical model for novel three-dimensional multicarrier optical codes in terms of wavelength/time/space based on the prime sequence algorithm. The proposed model has been extensively simulated on MATLAB for prime numbers (P to analyze the performance of code in terms of autocorrelation and cross-correlation. The simulated outcome resembles the mathematical model and gives better results over other methods available in the literature as far as autocorrelation and cross-correlation are concerned. The proposed 3D optical codes are more efficient in terms of cardinality, improved security, and providing quality of services.
Three-dimensional display techniques: description and critique of methods
International Nuclear Information System (INIS)
Budinger, T.F.
1982-01-01
The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)
Impurity states in two and three dimensional disordered system S
International Nuclear Information System (INIS)
Silva, A.F. da; Fabbri, M.
1984-01-01
We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered system. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (author) [pt
Evaluation of solar energy over three dimensional objects
International Nuclear Information System (INIS)
Serposhan, S.; Yaghoubi, M.
2002-01-01
The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined
Three-dimensional analysis of two-pile caps
Directory of Open Access Journals (Sweden)
T.E.T. Buttignol
Full Text Available This paper compares the results between a non-linear three-dimensional numerical analysis of pile caps with two piles and the experimental study conducted by Delalibera. It is verified the load-carrying capacity, the crack pattern distribution, the principal stress in concrete and steel, the deflection and the fracture of the pile cap. The numerical analysis is executed with the finite-element software ATENA 3D, considering a perfect bond between concrete and steel. The numerical and experimental results are presented and have demonstrated a good approximation, reasserting the results of the experimental model and corroborating the theory.
Three-dimensional fractional topological insulators in coupled Rashba layers
Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena
2017-08-01
We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.
Single-camera, three-dimensional particle tracking velocimetry
Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V.
2012-01-01
This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-PIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algor...
Tag gas burnup based on three-dimensional FTR analysis
International Nuclear Information System (INIS)
Kidman, R.B.
1976-01-01
Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified
Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals
Sun, Po; Williams, John D.
2012-01-01
This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.
CATIA Core Tools Computer Aided Three-Dimensional Interactive Application
Michaud, Michel
2012-01-01
CATIA Core Tools: Computer-Aided Three-Dimensional Interactive Application explains how to use the essential features of this cutting-edge solution for product design and innovation. The book begins with the basics, such as launching the software, configuring the settings, and managing files. Next, you'll learn about sketching, modeling, drafting, and visualization tools and techniques. Easy-to-follow instructions along with detailed illustrations and screenshots help you get started using several CATIA workbenches right away. Reverse engineering--a valuable product development skill--is also covered in this practical resource.
Fracture of three-dimensional fuse networks with quenched disorder
Räisänen, V. I.; Alava, M. J.; Nieminen, Risto M.
1998-01-01
We study a fracture on a quasistatic time scale in a three-dimensional (3D) fuse network model with “strong” and “weak” disorder. These two cases differ noticeably in the development of the fracture. For strong disorder the damage scaling is very close to volumelike [number of broken bonds Nb∼L3/(lnL)0.3] unlike for weak disorder [Nb∼L2.4/(lnL)0.3]. With strong disorder global load sharing is only approximately valid. The size distribution of “avalanches” of broken fuses in the failure follow...
Three-dimensional characterization of stress corrosion cracks
DEFF Research Database (Denmark)
Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera
2011-01-01
the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...
Three-dimensional laser pulse intensity diagnostic for photoinjectors
Directory of Open Access Journals (Sweden)
Heng Li
2011-11-01
Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20 μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.
Teaching veterinary obstetrics using three-dimensional animation technology.
Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L
2010-01-01
In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.
Coherent states on horospheric three-dimensional Lobachevsky space
Energy Technology Data Exchange (ETDEWEB)
Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2016-08-15
In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Energy Technology Data Exchange (ETDEWEB)
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Field approach to three-dimensional gene expression pattern characterization
Costa, L. da F.; Travençolo, B. A. N.; Azeredo, A.; Beletti, M. E.; Müller, G. B.; Rasskin-Gutman, D.; Sternik, G.; Ibañes, M.; Izpisúa-Belmonte, J. C.
2005-04-01
We present a vector field method for obtaining the spatial organization of three-dimensional patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful framework to characterize the organization and dynamics of biological structures. We apply this methodology to analyze the expression pattern of the enhanced green fluorescent protein (EGFP) driven by the promoter of light chain myosin II during zebrafish heart formation.
Self-assembled three-dimensional chiral colloidal architecture
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.
2017-11-01
Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.
Wave field restoration using three-dimensional Fourier filtering method.
Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R
2001-11-01
A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.
Conoscopic holography: toward three-dimensional reconstructions of opaque objects.
Mugnier, L M
1995-03-10
Conoscopic holography is an interferometric technique that permits the recording of three-dimensional objects. A two-step scheme is presented to recover an opaque object's shape from its conoscopic hologram, consisting of a reconstruction algorithm to give a first estimate of the shape and an iterative restoration procedure that uses the object's support information to make the reconstruction more robust. The existence, uniqueness, and stability of the solution, as well as the convergence of the restoration algorithm, are studied. A preliminary experimental result is presented.
Three Dimensional Digital Image Processing using Edge Detectors
Directory of Open Access Journals (Sweden)
John Schmeelk
2005-11-01
Full Text Available This paper provides an introduction to three dimensional image edge detection and its relationship to partial derivatives, convolutions and wavelets. We are especially addressing the notion of edge detection because it has far reaching applications in all areas of research to include medical research. A patient can be diagnosed as having an aneurysm by studying an angiogram. An angiogram is the visual view of the blood vessels whereby the edges are highlighted through the implementation of edge detectors. This process is completed through convolution, wavelets and matrix techniques. Some illustrations included will be vertical, horizontal, Sobel and wavelet edge detectors.
Proton beam writing of three-dimensional microcavities
International Nuclear Information System (INIS)
Vanga, S.K.; Bettiol, A.A.
2013-01-01
Optical micro cavities exhibit high quality factors due to the circulation of resonant optical fields within the cavity. Polymers are good materials for the fabrication of micro cavities for practical applications due to the availability of various refractive indices and their low cost. Polymer micro cavities generally yield low Q-factors compared to semiconductor materials because of inherent material absorption losses, and their Q-factors are limited by the low index contrast between the polymer and the substrate material. In the present work, three dimensional micro cavities were fabricated in SU-8 using proton beam writing to enhance the index contrast by isolating the cavities from the substrate
Three-dimensional imaging techniques: A literature review
Karatas, Orhan Hakki; Toy, Ebubekir
2014-01-01
Imaging is one of the most important tools for orthodontists to evaluate and record size and form of craniofacial structures. Orthodontists routinely use 2-dimensional (2D) static imaging techniques, but deepness of structures cannot be obtained and localized with 2D imaging. Three-dimensional (3D) imaging has been developed in the early of 1990's and has gained a precious place in dentistry, especially in orthodontics. The aims of this literature review are to summarize the current state of the 3D imaging techniques and to evaluate the applications in orthodontics. PMID:24966761
Three-dimensional temporal reconstruction and analysis of plume images
Dhawan, Atam P.; Disimile, Peter J.; Peck, Charles, III
1992-01-01
An experiment with two subsonic jets generating a cross-flow was conducted as part of a study of the structural features of temporal reconstruction of plume images. The flow field structure was made visible using a direct injection flow visualization technique. It is shown that image analysis and temporal three-dimensional visualization can provide new information on the vortical structural dynamics of multiple jets in a cross-flow. It is expected that future developments in image analysis, quantification and interpretation, and flow visualization of rocket engine plume images may provide a tool for correlating the engine diagnostic features by interpreting the evolution of the structures in the plume.
The Electron in Three-Dimensional Momentum Space
Mantovani, L.; Bacchetta, A.; Pasquini, B.
2016-07-01
We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide
Three-Dimensional Bone Adaptation of the Proximal Femur
DEFF Research Database (Denmark)
Bagge, Mette
1998-01-01
The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...
Plenoptic Imaging of a Three Dimensional Cold Atom Cloud
Lott, Gordon
2017-04-01
A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system.Â This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.
Three-dimensional, subsurface imaging synthetic aperture radar
International Nuclear Information System (INIS)
Moussally, G.J.
1994-01-01
The objective of this applied research and devolpment project is to develop a system known as 3-D SISAR. This sytem consists of a gound penetrating radar with software algorithms designed for detection, location, and identification of buried objects in the underground hazardous waste environments found at US DOE storage sites. Three-dimensional maps can assist the development of remdiation strategies and characterization of the digface during remediation. The system should also be useful for monitoring hydrocarbon-based contaminant migration after remediation. 5 figs
Digital Simulation of Thunder from Three-Dimensional Lightning
Dunkin, James; Fleisch, Daniel
2010-04-01
The physics of lightning and its resultant thunder have been investigated by many people, but we still don't have a full understanding of the governing processes. In this study, we have constructed a three-dimensional model of lightning using MATLAB^ software, and used N-waves as postulated by Ribner and Roy to synthesize the resultant thunder signature. In addition, we have taken an FFT of the thunder signature, and compared the time-domain waveform and frequency spectrum to recordings of thunder taken over the summer of 2009. This analysis is done with the goal of further understanding the processes of thunder production.
Three dimensional magnetic solutions in massive gravity with (nonlinear field
Directory of Open Access Journals (Sweden)
S.H. Hendi
2017-12-01
Full Text Available The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.
Life is three-dimensional, and it begins with molecules.
Directory of Open Access Journals (Sweden)
Philip E Bourne
2017-03-01
Full Text Available The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.
Three-dimensional illumination procedure for photodynamic therapy of dermatology
Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya
2014-09-01
Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.
The three-dimensional crystal structure of cholera toxin
Energy Technology Data Exchange (ETDEWEB)
Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)
1996-02-01
The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.
A Three-dimensional Topological Model of Ternary Phase Diagram
International Nuclear Information System (INIS)
Mu, Yingxue; Bao, Hong
2017-01-01
In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)
Strongly interacting atom lasers in three-dimensional optical lattices.
Hen, Itay; Rigol, Marcos
2010-10-29
We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.
Analysis and visualization of complex unsteady three-dimensional flows
Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.
1989-01-01
Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.
Three-dimensional nonlinear waves under spatial confinement
Azhand, Arash
2016-01-01
The aim of my thesis is to study the evolution of scroll waves under spatial confinement both experimentally as well as numerically. Scroll waves represent three-dimensional (3D) analogs of spiral waves. In the simplest case, the central axis around which a scroll wave rotates is a straight line. The line is named the filament of the scroll wave, and each infinitesimal cross-section represents the core of a spiral wave. Two specific types of scroll waves are considered: (1) Straight scroll wa...
Three-dimensional integrated CAE system applying computer graphic technique
International Nuclear Information System (INIS)
Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.
1991-01-01
A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)
Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro
2017-09-28
The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.
Reference values for three-dimensional surface cephalometry in children aged 3-6 years.
Möller, M; Schaupp, E; Massumi-Möller, N; Zeyher, C; Godt, A; Berneburg, M
2012-05-01
This prospective cross-sectional study design was performed to define reference values for the facial surfaces of 3-6-year-old boys and girls using three-dimensional surface cephalometry. A total of 2290 standardized three-dimensional facial images from 3 to 6-year-old preschool children were separated by gender and assigned to four age categories. All children were Caucasian and revealed no evidence of dentofacial abnormalities. On each image, 31 cephalometric landmarks were marked, resulting in 35 (19 frontal, six lateral, 10 paired) distances and eight angles. Differences between age groups and genders were calculated and significances detected. A base table with reference values was compiled, which indicated that boys showed higher values than age-matched girls and that measured distances increased with age. The mean values from this study could be compiled as a reference table for three-dimensional facial analysis in Caucasian children aged 3-6 years. Such a reference table could be used in comparative studies with other populations or children with craniofacial malformations. © 2012 John Wiley & Sons A/S.
Chen, Gui; Qin, Yi-fei; Xu, Tian-min
2010-11-01
To investigate three-dimensional imaging registration and superimposition techniques in measuring the tip and torque change of upper canine, premolar and first molar after orthodontic treatment. Twenty-eight subjects (14 extraction cases and 14 non-extraction cases) with full records were randomly selected from the Department of Orthodontics, Peking University School and Hospital of Stomatology. The pre-and post-treatment upper dental casts were digitized with three-dimensional spot laser scanner and superimposed with reverse engineering software. The facial axis of the clinical crown (FACC) was transferred from post-treatment teeth to the pre-treatment teeth using three-dimensional imaging registration. The occlusal plane was constructed on the post-treatment upper digital cast and the tip and torque values were measured. In the non-extraction group, the tip of the second premolar decreased by 1.5° (P orthodontic treatment tended to tip the upper second premolar distally and increased the buccal crown torque of the upper premolars while extraction treatment increased the lingual crown torque of the upper canine.
Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2
Swisshelm, Julie M.
1989-01-01
A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.
Two-Dimensional and Three-Dimensional Cephalometry Using Cone Beam Computed Tomography Scans.
Cassetta, Michele; Michele, Cassetta; Altieri, Federica; Federica, Altieri; Di Giorgio, Roberto; Roberto, Di Giorgio; Silvestri, Alessandro; Alessandro, Silvestri
2015-06-01
Lateral cephalometric radiograph produces a two-dimensional image with several drawbacks. Cone beam computed tomography (CBCT) allows obtaining a three-dimensional representation of the craniofacial structures and seems to overcome the problems of superimposition and magnification, providing more precision than two-dimensional methods. The aim of the current study was to test the intraobserver and interobserver reliability of linear and angular measurements performed on two-dimensional conventional cephalometric images and CBCT-generated cephalograms, and to evaluate if there is a statistically significant difference between the 2 methods of measurements. The sample group consisted of 24 adolescents with a pretreatment digital lateral radiograph and a corresponding CBCT image. A total of 16 cephalometric landmarks were identified and 17 widely used measurements (9 angular and 8 linear) were recorded by 2 independent observers. Intraobserver and interobserver reliability were assessed by calculating Pearson correlation coefficient. Student t-test was used to compare the 2 methods. The threshold for significance was set at P ≤ 0.05.Concerning the intraobserver and interobserver reliability, data showed a statistically significant correlation between all two-dimensional and three-dimensional measurements. The linear and angular measurements of two-dimensional and three-dimensional cephalometry were not statistically different. The results of the current study showed the reliability of both conventional two-dimensional and three-dimensional cephalometry. Linear and angular measurements from CBCT were found also to be similar to conventional measurements. Considering that conventional images deliver the lowest radiation doses to patients, the use of CBCT for orthodontic purposes should be limited.