WorldWideScience

Sample records for three-dimensional graphical user

  1. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  2. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  3. Neurosurgical simulation and navigation with three-dimensional computer graphics.

    Science.gov (United States)

    Hayashi, N; Endo, S; Shibata, T; Ikeda, H; Takaku, A

    1999-01-01

    We developed a pre-operative simulation and intra-operative navigation system with three-dimensional computer graphics (3D-CG). Because the 3D-CG created by the present system enables visualization of lesions via semitransparent imaging of the scalp surface and brain, the expected operative field could be visualized on the computer display pre-operatively. We used two different configurative navigators. One is assembled by an arciform arm and a laser pointer. The arciform arm consists of 3 joints mounted with rotary encoders forming an iso-center system. The distal end of the arm has a laser pointer, which has a CCD for measurement of the distance between the outlet of the laser beam, and the position illuminated by the laser pointer. Using this navigator, surgeons could accurately estimate the trajectory to the target lesion, and the boundaries of the lesion. Because the other navigator has six degrees of freedom and an interchangeable probe shaped like a bayonet on its tip, it can be used in deep structures through narrow openings. Our system proved efficient and yielded an unobstructed view of deep structures during microscopic neurosurgical procedures.

  4. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker

  5. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    Science.gov (United States)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  6. [Application of three-dimensional computer graphics in oncology].

    Science.gov (United States)

    Joyeux, H; Jaeger, M; Briand, D; Servois, V; Masson, B; Borianne, P; de Reffye, P

    1996-01-01

    Accurate 3D tumoral volume evaluation is now possible through the combined use and progress of computer graphics technics (3D reconstruction and visualization) and medical imagery (helicoidal TDM scanner). Specific organ and pathology oriented softwares can help answer rapidly to problems posed by oncologic praticians. A new decision support for diagnosis, therapy and follow-up is emerging. First results in liver tumors and hepatic regeneration macroscopic biometrics are presented. Tumoral or organ volumic index will be usable in the follow-up. TNM staging, external conformal radiotherapy for prostatic or brain tumors, drugs cytolytic effects evaluation will take great advantage of these technologies. 3D visualization and matching CT and MRI imagery can help computed assisted surgery.

  7. A three-dimensional computer graphic imaging for neurosurgery

    International Nuclear Information System (INIS)

    Uchino, Masafumi; Onagi, Atsuo; Seiki, Yoshikatsu

    1987-01-01

    Information offered by conventional diagnostic tools for medical use, including X-ray films, CT, MRI, RI images and PET, are usually two-dimensional. However, the human body and pathological lesions are really extended in 3 dimensions. Interpreters have to reconstruct an imaginative, 3-dimensional configuration of lesions from 2-dimensional information on many films, according to their knowledge and experience. All this sometimes wastes a lot of time and gives rise to inconclusive discussion among interpreters. The advent and rapid progress of new computer graphic techniques, however, makes it possible to draw an apparent 3-dimensional image of a lesion on the basis of a 2-dimensional display; this is named a pseudo-3-dimensional image. After the region of interest of the CT-sliced image has been extracted by means of a semi-automatic contour extraction algorithm, multi-slice CT images are constructed by the voxel method. A 3-dimensional image is then generated by the use of the Z-buffer. Subsequently, transparent, semi-transparent, and color display are provided. This new method of display was used for CT-scan films of various intracerebral pathological lesions, including tumors, hematomas, and congenital anomalies: The benefits, prospects, and technical limits of this imaging technique for clinical use were discussed. (author)

  8. Three dimensional analysis of coelacanth body structure by computer graphics and X-ray CT images

    International Nuclear Information System (INIS)

    Suzuki, Naoki; Hamada, Takashi.

    1990-01-01

    Three dimensional imaging processes were applied for the structural and functional analyses of the modern coelacanth (Latimeria chalumnae). Visualization of the obtained images is performed with computer graphics on the basis of serial images by an X-ray CT scanning method. Reconstruction of three dimensional images of the body structure of coelacanth using the volume rendering and surface rendering methods provides us various information about external and internal shapes of this exquisite fish. (author)

  9. Three-dimensional computer graphics for surgical procedure learning: Web three-dimensional application for cleft lip repair.

    Science.gov (United States)

    Kobayashi, Masahiro; Nakajima, Tatsuo; Mori, Ayako; Tanaka, Daigo; Fujino, Toyomi; Chiyokura, Hiroaki

    2006-05-01

    In surgical procedures for cleft lip, surgeons attempt to use various skin incisions and small flaps to achieve a better and more natural shape postoperatively. They must understand the three-dimensional (3D) structure of the lips. However, they may have difficulty learning the surgical procedures precisely from normal textbooks with two-dimensional illustrations. Recent developments in 3D computed tomography (3D-CT) and laser stereolithography have enabled surgeons to visualize the structures of cleft lips from desired viewpoints. However, this method cannot reflect the advantages offered by specific surgical procedures. To solve this problem, we used the benefits offered by 3D computer graphics (3D-CG) and 3D animation. By using scanning 3D-CT image data of patients with cleft lips, 3D-CG models of the cleft lips were created. Several animations for surgical procedures such as incision designs, rotation of small skin flaps, and sutures were made. This system can recognize the details of an operation procedure clearly from any viewpoint, which cannot be acquired from the usual textbook illustrations. This animation system can be used for developing new skin-flap design, understanding the operational procedure, and using tools in case presentations. The 3D animations can also be uploaded to the World Wide Web for use in teleconferencing.

  10. THE CAPABILITIES USING OF THREE-DIMENSIONAL MODELING SYSTEM AUTOCAD IN TEACHING TO PERFORM GRAPHICS TASKS

    Directory of Open Access Journals (Sweden)

    A. V. Krasnyuk

    2008-03-01

    Full Text Available Three-dimensional design possibilities of the AutoCAD system for performing graphic tasks are presented in the article. On the basis of the studies conducted the features of application of computer-aided design system are noted and the methods allowing to decrease considerably the quantity of errors at making the drawings are offered.

  11. Three-dimensional demonstration of liver and spleen by computer graphics technique

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Azuma, Masayoshi; Katayama, Kazuhiro; Yoshioka, Hiroaki; Ishizu, Hiromi; Mitsutani, Natsuki; Koizumi, Takao; Takayama, Ichiro

    1987-01-01

    Three-dimensional demonstration system of the liver and spleen has been developed using computer graphics technique. Three-dimensional models were constructed from CT images of the organ surface. The three-dimensional images were displayed as wire-frame and/or solid models on the color CRT. The anatomical surface of the liver and spleen was realistically viewed from any direction. In liver cirrhosis, atrophy of the right lobe, hypertrophy of the left lobe and splenomegaly were displayed vividly. The liver and hepatoma were displayed as wire-frame and solid models respectively on the same image. This combined display clarified the intrahepatic location of hepatoma together with configuration of liver and hepatoma. Furthermore, superimposed display of three dimensional models and celiac angiogram enabled us to understand the location and configuration of lesions more easily than the original CT data or angiogram alone. Therefore, it is expected that this system is clinically useful for noninvasive evaluation of patho-morphological changes of the liver and spleen. (author)

  12. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Takashi; Tateno, Satoko (Tokyo Univ. (Japan). Coll. of Arts and Sciences); Suzuki, Naoki

    1991-12-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author).

  13. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    International Nuclear Information System (INIS)

    Hamada, Takashi; Tateno, Satoko; Suzuki, Naoki.

    1991-01-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author)

  14. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    Science.gov (United States)

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  15. Hypertext and three-dimensional computer graphics in an all digital PC-based CAI workstation.

    Science.gov (United States)

    Schwarz, D. L.; Wind, G. G.

    1991-01-01

    In the past several years there has been an enormous increase in the number of computer-assisted instructional (CAI) applications. Many medical educators and physicians have recognized the power and utility of hypertext. Some developers have incorporated simple diagrams, scanned monochrome graphics or still frame photographs from a laser disc or CD-ROM into their hypertext applications. These technologies have greatly increased the role of the microcomputer in education and training. There still remain numerous applications for these tools which are yet to be explored. One of these exciting areas involves the use of three-dimensional computer graphics. An all digital platform increases application portability. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1807767

  16. Three-dimensional range data compression using computer graphics rendering pipeline.

    Science.gov (United States)

    Zhang, Song

    2012-06-20

    This paper presents the idea of naturally encoding three-dimensional (3D) range data into regular two-dimensional (2D) images utilizing computer graphics rendering pipeline. The computer graphics pipeline provides a means to sample 3D geometry data into regular 2D images, and also to retrieve the depth information for each sampled pixel. The depth information for each pixel is further encoded into red, green, and blue color channels of regular 2D images. The 2D images can further be compressed with existing 2D image compression techniques. By this novel means, 3D geometry data obtained by 3D range scanners can be instantaneously compressed into 2D images, providing a novel way of storing 3D range data into its 2D counterparts. We will present experimental results to verify the performance of this proposed technique.

  17. GRAFFITI: a 'menu-driven' graphics package for the manipulation of three-dimensional solids

    International Nuclear Information System (INIS)

    Lander, P.A.

    1985-01-01

    GRAFFITI was originally developed as an alternative method of geometry input for the discrete Monte Carlo code MONTY (1). The package enables users to create and manipulate three-dimensional objects, either as individual solids or as groups of solids. By filling in menus, users can quickly and easily build complex geometries, which in turn can be used as the geometry input for the MONTY program. GRAFFITI is written in the high-level 'structured' language C and is designed to run under the INIX operating system. The package was developed on a WICAT 150-3WS desk top microprocessor computer system. (author)

  18. Three dimensional reconstruction of computed tomographic images by computer graphics method

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Kimura, Kazufumi.

    1986-01-01

    A three dimensional computer reconstruction system for CT images has been developed in a commonly used radionuclide data processing system using a computer graphics technique. The three dimensional model was constructed from organ surface information of CT images (slice thickness: 5 or 10 mm). Surface contours of the organs were extracted manually from a set of parallel transverse CT slices in serial order and stored in the computer memory. Interpolation was made between a set of the extracted contours by cubic spline functions, then three dimensional models were reconstructed. The three dimensional images were displayed as a wire-frame and/or solid models on the color CRT. Solid model images were obtained as follows. The organ surface constructed from contours was divided into many triangular patches. The intensity of light to each patch was calculated from the direction of incident light, eye position and the normal to the triangular patch. Firstly, this system was applied to the liver phantom. Reconstructed images of the liver phantom were coincident with the actual object. This system also has been applied to human various organs such as brain, lung, liver, etc. The anatomical organ surface was realistically viewed from any direction. The images made us more easily understand the location and configuration of organs in vivo than original CT images. Furthermore, spacial relationship among organs and/or lesions was clearly obtained by superimposition of wire-frame and/or different colored solid models. Therefore, it is expected that this system is clinically useful for evaluating the patho-morphological changes in broad perspective. (author)

  19. THREE-DIMENSIONAL MODELING TOOLS IN THE PROCESS OF FORMATION OF GRAPHIC COMPETENCE OF THE FUTURE BACHELOR OF COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2017-12-01

    Full Text Available The article is devoted to some aspects of the formation of future bachelor's graphic competence in computer sciences while teaching the fundamentals for working with three-dimensional modelling means. The analysis, classification and systematization of three-dimensional modelling means are given. The aim of research consists in investigating the set of instruments and classification of three-dimensional modelling means and correlation of skills, which are being formed, concerning inquired ones at the labour market in order to use them further in the process of forming graphic competence during training future bachelors in computer sciences. The peculiarities of the process of forming future bachelor's graphic competence in computer sciences by means of revealing, analyzing and systematizing three-dimensional modelling means and types of three-dimensional graphics at present stage of the development of informational technologies are traced a line round. The result of the research is a soft-ware choice in three-dimensional modelling for the process of training future bachelors in computer sciences.

  20. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  1. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  2. Computerized three-dimensional treatment planning system utilizing interactive colour graphics

    Energy Technology Data Exchange (ETDEWEB)

    McShan, D L; Silverman, A; Lanza, D M; Reinstein, L E; Glicksman, A S [Rhode Island Hospital (US). Dept. of Radiation Oncology

    1979-06-01

    A new computerized radiation treatment planning system has been developed to aid in three-dimensional treatment planning. Using interactive colour graphics in conjunction with a PDP 11/45 computer, the system can take multiple transverse contours and construct a perspective display of the treatment region showing organ surfaces as well as cross-sectional contours. With interactively selected orientations, the display allows easy perception of the relative positioning of the treatment volume and the neighbouring anatomy. For external beam treatment planning, interactive computer simulation is used to select diaphragm sizes which best conform to the target area while avoiding sensitive structures. Dose calculations for the selected beams are carried out on multiple transverse planes. The calculational planes and surfaces are displayed in perspective with radiation dosage displayed in an interactively manipulated colour display. Altogether the system provides an easy assessment of the volume to be irradiated, interactive selection of optimal arrangements of treatment fields and a means of visualizing and evaluating the resulting dose distributions.

  3. Three-dimensional display by computer graphics method of hepatocellular carcinoma using seen with the hepatic arteriogram

    International Nuclear Information System (INIS)

    Itsubo, Mariko; Kameda, Haruo; Suzuki, Naoki; Okamura, Tetsuo

    1989-01-01

    The method of three-dimensional display of hepatocellular carcinoma using conventional hepatic arteriogram by computer graphics method was newly exploited and applied in clinical use. Three-dimensional models were reconstructed from contour lines of tumors demonstrated as hypervascular lesions by hepatic arteriography. Although objects were limited by angiographic images in which tumors need to be demonstrated as nodules with hypervascularity, this method of three-dimensional display was not worse on accuracy than that using computed tomographic images. According to this method property of the tumor expressed by vascularity was demonstrated clear and in addition volume of the tumor was calculated easily. When the tumor arose in necrotic changes in which demonstrated as a vascular lesion by hepatic arteriography with reduction of size in usual by conservative treatment such as transcathter arterial embolization therapy, this three-dimensional display was able to demonstrate such changes clear. This preliminary study demonstrates the feasibility and clinical usefulness of three-dimensional display of hepatocellular carcinoma using hepatic arteriogram by computer graphics method. (author)

  4. Three-dimensional reconstruction of colorectal tumors from serial tissue sections by computer graphics: a preliminary study.

    Science.gov (United States)

    Kikuchi, S; Matsuzaki, H; Kondo, K; Ohtani, Y; Ihara, A; Hiki, Y; Kakita, A; Kuwao, S

    2000-01-01

    We present herein the three-dimensional reconstruction of colorectal tumors, with particular reference to growth pattern into each layer of the colorectal wall, and measurement of tumor volume and surface area. Conventional tissue section images of colorectal tumors were analyzed using a computer graphics analysis program. The two-dimensional extent of invasion by each tumor into each layer of intestinal wall were determined from the images of each section. Based on data from multiple sections, tumor and surrounding normal tissue layers were reconstructed three-dimensionally, and volume and surface area of the tumors were determined. Using this technique, three-dimensional morphology of tumor and tumor progression into colorectal wall could be determined. Volume and surface area of the colon tumor were 4871 mm3 and 1741 mm2, respectively. Volume and surface area of the rectal tumor were 1090 mm3 and 877 mm2, respectively. This technique may provide a new approach for pathological analysis of colorectal carcinoma.

  5. Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging.

    Science.gov (United States)

    Nakajima, H; Minabe, T; Imanishi, N

    1998-09-01

    To develop new types of surgical flaps that utilize portions of the skin and subcutaneous tissue (e.g., a thin flap or an adipofascial flap), three-dimensional investigation of the vasculature in the skin and subcutaneous tissue has been anticipated. In the present study, total-body arterial injection and three-dimensional imaging of the arteries by computer graphics were performed. The full-thickness skin and subcutaneous adipofascial tissue samples, which were obtained from fresh human cadavers injected with radio-opaque medium, were divided into three distinct layers. Angiograms of each layer were introduced into a personal computer to construct three-dimensional images. On a computer monitor, each artery was shown color-coded according to the three portions: the deep adipofascial layer, superficial adipofascial layer, and dermis. Three-dimensional computerized images of each artery in the skin and subcutaneous tissue revealed the components of each vascular plexus and permitted their classification into six types. The distribution of types in the body correlated with the tissue mobility of each area. Clinically, appreciation of the three-dimensional structure of the arteries allowed the development of several new kinds of flaps.

  6. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    Science.gov (United States)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  7. Graphic system for the analysis of representation of a complex three-dimensional configuration for radiation shield calculation

    International Nuclear Information System (INIS)

    Berezhkov, A.B.; Gordeeva, E.K.; Mazanov, V.L.; Solov'ev, V.Yu.; Ryabov, A.V.; Khokhlov, V.F.; Shejno, I.N.

    1987-01-01

    Programs for obtaining phantom images when calculating the radiation shield structure for nuclear-engineering plants, using computer graphics, are developed. Programs are designed to accompany calculational investigations using the SUPER2/RRI3-PICSCH program and ZAMOK-TOMOGRAF program comutering complexes. Design geometry techniques, allowing to present three-dimensional object in the form of two-dimensional perspective projection to the screen plane, are realized in the programs

  8. Experimental Evidence for Improved Neuroimaging Interpretation Using Three-Dimensional Graphic Models

    Science.gov (United States)

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…

  9. Software Graphical User Interface For Analysis Of Images

    Science.gov (United States)

    Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn

    1992-01-01

    CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.

  10. Overview of Graphical User Interfaces.

    Science.gov (United States)

    Hulser, Richard P.

    1993-01-01

    Discussion of graphical user interfaces for online public access catalogs (OPACs) covers the history of OPACs; OPAC front-end design, including examples from Indiana University and the University of Illinois; and planning and implementation of a user interface. (10 references) (EA)

  11. Graphical user interfaces and visually disabled users

    NARCIS (Netherlands)

    Poll, L.H.D.; Waterham, R.P.

    1995-01-01

    From February 1992 until the end of 1993, the authors ((IPO) Institute for Perception Research) participated in a European ((TIDE) Technology Initiative for Disabled and Elderly) project which addressed the problem arising for visually disabled computer-users from the growing use of Graphical User

  12. Graphical User Interfaces for Volume Rendering Applications in Medical Imaging

    OpenAIRE

    Lindfors, Lisa; Lindmark, Hanna

    2002-01-01

    Volume rendering applications are used in medical imaging in order to facilitate the analysis of three-dimensional image data. This study focuses on how to improve the usability of graphical user interfaces of these systems, by gathering user requirements. This is achieved by evaluations of existing systems, together with interviews and observations at clinics in Sweden that use volume rendering to some extent. The usability of the applications of today is not sufficient, according to the use...

  13. Nuclear plant operations, maintenance, and configuration management using three-dimensional computer graphics and databases

    International Nuclear Information System (INIS)

    Tutos, N.C.; Reinschmidt, K.F.

    1987-01-01

    Stone and Webster Engineering Corporation has developed the Plant Digital Model concept as a new approach to Configuration Mnagement of nuclear power plants. The Plant Digital Model development is a step-by-step process, based on existing manual procedures and computer applications, and is fully controllable by the plant managers and engineers. The Plant Digital Model is based on IBM computer graphics and relational database management systems, and therefore can be easily integrated with existing plant databases and corporate management-information systems

  14. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning.

    Science.gov (United States)

    Kuo, Chien-Chung; Lu, Hsuan-Lun; Leardini, Alberto; Lu, Tung-Wu; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2014-05-01

    Morphometry of the bones of the ankle joint is important for the design of joint replacements and their surgical implantations. However, very little three-dimensional (3D) data are available and not a single study has addressed the Chinese population. Fifty-eight fresh frozen Chinese cadaveric ankle specimens, 26 females, and 32 males, were CT-scanned in the neutral position and their 3D computer graphics-based models were reconstructed. The 3D morphology of the distal tibia/fibula segment and the full talus was analyzed by measuring 31 parameters, defining the relevant dimensions, areas, and volumes from the models. The measurements were compared statistically between sexes and with previously reported data from Caucasian subjects. The results showed that, within a general similarity of ankle morphology between the current Chinese and previous Caucasian subjects groups, there were significant differences in 9 out of the 31 parameters analyzed. From a quantitative comparison with available prostheses designed for the Caucasian population, few of these designs have both tibial and talar components suitable in dimension for the Chinese population. The current data will be helpful for the sizing, design, and surgical positioning of ankle replacements and for surgical instruments, especially for the Chinese population. Copyright © 2013 Wiley Periodicals, Inc.

  15. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  16. WASAT. A graphical user interface for visualization of wave spectrograms

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, R

    1996-12-01

    The report describes a technique for the decoding and visualization of sounding rocket data sets. A specific application for the visualization of three dimensional wave HF FFT spectra obtained from the SCIFER sounding rocket launched January 25, 1995, is made. The data set was decoded from its original data format which was the NASA DITES I/II format. A graphical user interface, WASAT (WAve Spectrogram Analysis Tool), using the Interactive Data Language was created. The data set was visualized using IDL image tools overlayed with contour routines. The user interface was based on the IDL widget concept. 9 refs., 7 figs.

  17. WASAT. A graphical user interface for visualization of wave spectrograms

    International Nuclear Information System (INIS)

    Joergensen, R.

    1996-12-01

    The report describes a technique for the decoding and visualization of sounding rocket data sets. A specific application for the visualization of three dimensional wave HF FFT spectra obtained from the SCIFER sounding rocket launched January 25, 1995, is made. The data set was decoded from its original data format which was the NASA DITES I/II format. A graphical user interface, WASAT (WAve Spectrogram Analysis Tool), using the Interactive Data Language was created. The data set was visualized using IDL image tools overlayed with contour routines. The user interface was based on the IDL widget concept. 9 refs., 7 figs

  18. The HEASARC graphical user interface

    Science.gov (United States)

    White, N.; Barrett, P.; Jacobs, P.; Oneel, B.

    1992-01-01

    An OSF/Motif-based graphical user interface has been developed to facilitate the use of the database and data analysis software packages available from the High Energy Astrophysics Science Archive Research Center (HEASARC). It can also be used as an interface to other, similar, routines. A small number of tables are constructed to specify the possible commands and command parameters for a given set of analysis routines. These tables can be modified by a designer to affect the appearance of the interface screens. They can also be dynamically changed in response to parameter adjustments made while the underlying program is running. Additionally, a communication protocol has been designed so that the interface can operate locally or across a network. It is intended that this software be able to run on a variety of workstations and X terminals.

  19. Telehealth in Schools Using a Systematic Educational Model Based on Fiction Screenplays, Interactive Documentaries, and Three-Dimensional Computer Graphics.

    Science.gov (United States)

    Miranda, Diogo Julien; Chao, Lung Wen

    2018-03-01

    Preliminary studies suggest the need of a global vision in academic reform, leading to education re-invention. This would include problem-based education using transversal topics, developing of thinking skills, social interaction, and information-processing skills. We aimed to develop a new educational model in health with modular components to be broadcast and applied as a tele-education course. We developed a systematic model based on a "Skills and Goals Matrix" to adapt scientific contents on fictional screenplays, three-dimensional (3D) computer graphics of the human body, and interactive documentaries. We selected 13 topics based on youth vulnerabilities in Brazil to be disseminated through a television show with 15 episodes. We developed scientific content for each theme, naturally inserting it into screenplays, together with 3D sequences and interactive documentaries. The modular structure was then adapted to a distance-learning course. The television show was broadcast on national television for two consecutive years to an estimated audience of 30 million homes, and ever since on an Internet Protocol Television (IPTV) channel. It was also reorganized as a tele-education course for 2 years, reaching 1,180 subscriptions from all 27 Brazilian states, resulting in 240 graduates. Positive results indicate the feasibility, acceptability, and effectiveness of a model of modular entertainment audio-visual productions using health and education integrated concepts. This structure also allowed the model to be interconnected with other sources and applied as tele-education course, educating, informing, and stimulating the behavior change. Future works should reinforce this joint structure of telehealth, communication, and education.

  20. Graphical User Interface in Art

    Science.gov (United States)

    Gwilt, Ian

    This essay discusses the use of the Graphical User Interface (GUI) as a site of creative practice. By creatively repositioning the GUI as a work of art it is possible to challenge our understanding and expectations of the conventional computer interface wherein the icons and navigational architecture of the GUI no longer function as a technological tool. These artistic recontextualizations are often used to question our engagement with technology and to highlight the pivotal place that the domestic computer has taken in our everyday social, cultural and (increasingly), creative domains. Through these works the media specificity of the screen-based GUI can broken by dramatic changes in scale, form and configuration. This can be seen through the work of new media artists who have re-imagined the GUI in a number of creative forms both, within the digital, as image, animation, net and interactive art, and in the analogue, as print, painting, sculpture, installation and performative event. Furthermore as a creative work, the GUI can also be utilized as a visual way-finder to explore the relationship between the dynamic potentials of the digital and the concretized qualities of the material artifact.

  1. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented

  2. The Rise of the Graphical User Interface.

    Science.gov (United States)

    Edwards, Alastair D. N.

    1996-01-01

    Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…

  3. ShelXle: a Qt graphical user interface for SHELXL.

    Science.gov (United States)

    Hübschle, Christian B; Sheldrick, George M; Dittrich, Birger

    2011-12-01

    ShelXle is a graphical user interface for SHELXL [Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122], currently the most widely used program for small-molecule structure refinement. It combines an editor with syntax highlighting for the SHELXL-associated .ins (input) and .res (output) files with an interactive graphical display for visualization of a three-dimensional structure including the electron density (F(o)) and difference density (F(o)-F(c)) maps. Special features of ShelXle include intuitive atom (re-)naming, a strongly coupled editor, structure visualization in various mono and stereo modes, and a novel way of displaying disorder extending over special positions. ShelXle is completely compatible with all features of SHELXL and is written entirely in C++ using the Qt4 and FFTW libraries. It is available at no cost for Windows, Linux and Mac-OS X and as source code.

  4. Graphic user interface for COSMOS code

    International Nuclear Information System (INIS)

    Oh, Je Yong; Koo, Yang Hyun; Lee, Byung Ho; Cheon, Jin Sik; Sohn, Dong Seong

    2003-06-01

    The Graphic User Interface (GUI) - which consisted of graphical elements such as windows, menu, button, icon, and so on - made it possible that the computer could be easily used for common users. Hence, the GUI was introduced to improve the efficiency to input parameters in COSMOS code. The functions to output graphs on the screen and postscript files were also added. And the graph library can be applied to the other codes. The details of principles of GUI and graphic library were described in the report

  5. TEK11 graphics user's guide

    International Nuclear Information System (INIS)

    Stewart, C.R. Jr.; Joubert, W.D.; Overbey, D.R.; Stewart, K.A.

    1978-10-01

    The TEK11 graphics library was written for use on PDP-11 minicomputers running the RT-11 operating system to drive Tektronix 4010 graphics display terminals. Library subroutines are coded in FORTRAN and assembly language. The library includes routines to draw axes, either linear or semilog, to plot data in terms of logical values without first scaling to screen coordinates, to label graphs, and to plot in a maximum of four regions on the screen. Modes of plotting may be point plot with any character at the point, vector plot, or bar plot. Two features, automatic scaling and windowing, permit the researcher to use computer graphics without spending time first to learn about scaling or ''Tek points'' and preparing long parameter lists for subroutines. Regions on the screen are defined by specifying minima and maxima logical coordinates, i.e., 0 K or milliseconds, and a region number. After definition, a region may be activated for plotting by calling REGN with the region number as an argument

  6. Disjoint forms in graphical user interfaces

    NARCIS (Netherlands)

    Evers, S.; Achten, P.M.; Plasmeijer, M.J.; Loidl, H.W.

    Forms are parts of a graphical user interface (GUI) that show a set of values and allow the user to update them. The declarative form construction library FunctionalForms is extended with disjoint form combinators to capture some common patterns in which the form structure expresses a choice. We

  7. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    Science.gov (United States)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  8. Reasoning about Users' Actions in a Graphical User Interface.

    Science.gov (United States)

    Virvou, Maria; Kabassi, Katerina

    2002-01-01

    Describes a graphical user interface called IFM (Intelligent File Manipulator) that provides intelligent help to users. Explains two underlying reasoning mechanisms, one an adaptation of human plausible reasoning and one that performs goal recognition based on the effects of users' commands; and presents results of an empirical study that…

  9. Development of INFRA graphic user interface

    International Nuclear Information System (INIS)

    Yang, Y. S.; Lee, C. B.; Kim, Y. M.; Kim, D. H.; Kim, S. K.

    2004-01-01

    GUI(Graphic User Interface) has been developed for high burnup fuel performance code INFRA. Based upon FORTRAN program language, INFRA was developed by COMPAQ Visual FORTRAN 6.5. Graphic user input and output interface have been developed by using Visual Basic and MDB which are the most widely used program language and database for windows application development. Various input parameters, which are required for INFRA calculation, can be input more conveniently by newly developed input interface. Without any additional data handling, INFRA calculation results can be investigated intuitively by 2D or 3D graphs on screen and animation function

  10. GoPhast: a graphical user interface for PHAST

    Science.gov (United States)

    Winston, Richard B.

    2006-01-01

    GoPhast is a graphical user interface (GUI) for the USGS model PHAST. PHAST simulates multicomponent, reactive solute transport in three-dimensional, saturated, ground-water flow systems. PHAST can model both equilibrium and kinetic geochemical reactions. PHAST is derived from HST3D (flow and transport) and PHREEQC (geochemical calculations). The flow and transport calculations are restricted to constant fluid density and constant temperature. The complexity of the input required by PHAST makes manual construction of its input files tedious and error-prone. GoPhast streamlines the creation of the input file and helps reduce errors. GoPhast allows the user to define the spatial input for the PHAST flow and transport data file by drawing points, lines, or polygons on top, front, and side views of the model domain. These objects can have up to two associated formulas that define their extent perpendicular to the view plane, allowing the objects to be three-dimensional. Formulas are also used to specify the values of spatial data (data sets) both globally and for individual objects. Objects can be used to specify the values of data sets independent of the spatial and temporal discretization of the model. Thus, the grid and simulation periods for the model can be changed without respecifying spatial data pertaining to the hydrogeologic framework and boundary conditions. This report describes the operation of GoPhast and demonstrates its use with examples. GoPhast runs on Windows 2000, Windows XP, and Linux operating systems.

  11. A user's manual for the three-dimensional Monte Carlo transport code SPARTAN

    International Nuclear Information System (INIS)

    Bending, R.C.; Heffer, P.J.H.

    1975-09-01

    SPARTAN is a general-purpose Monte Carlo particle transport code intended for neutron or gamma transport problems in reactor physics, health physics, shielding, and safety studies. The code used a very general geometry system enabling a complex layout to be described and allows the user to obtain physics data from a number of different types of source library. Special tracking and scoring techniques are used to improve the quality of the results obtained. To enable users to run SPARTAN, brief descriptions of the facilities available in the code are given and full details of data input and job control language, as well as examples of complete calculations, are included. It is anticipated that changes may be made to SPARTAN from time to time, particularly in those parts of the code which deal with physics data processing. The load module is identified by a version number and implementation date, and updates of sections of this manual will be issued when significant changes are made to the code. (author)

  12. Development of graphical user interface for EGS

    International Nuclear Information System (INIS)

    Jin Gang; Liu Liye; Li Junli; Cheng Jianping

    2002-01-01

    In order to make it more convenient for the engineers to use EGS, explored a new type of procedure under the utility of the VC ++ , this procedure which is named of EGS Win can run under the Windows system. This procedure consists of graphical user interface. Through this procedure, the user have to input the simple and intuitionistic geometric entity for getting the definition of the region. This procedure greatly improves the efficiency of EGS

  13. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    Science.gov (United States)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  14. Graphical User Interfaces and Library Systems: End-User Reactions.

    Science.gov (United States)

    Zorn, Margaret; Marshall, Lucy

    1995-01-01

    Describes a study by Parke-Davis Pharmaceutical Research Library to determine user satisfaction with the graphical user interface-based (GUI) Dynix Marquis compared with the text-based Dynix Classic Online Public Access Catalog (OPAC). Results show that the GUI-based OPAC was preferred by endusers over the text-based OPAC. (eight references) (DGM)

  15. Graphics processing unit accelerated three-dimensional model for the simulation of pulsed low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, Andrew, E-mail: andrew.fierro@ttu.edu; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-12-15

    A 3-dimensional particle-in-cell/Monte Carlo collision simulation that is fully implemented on a graphics processing unit (GPU) is described and used to determine low-temperature plasma characteristics at high reduced electric field, E/n, in nitrogen gas. Details of implementation on the GPU using the NVIDIA Compute Unified Device Architecture framework are discussed with respect to efficient code execution. The software is capable of tracking around 10 × 10{sup 6} particles with dynamic weighting and a total mesh size larger than 10{sup 8} cells. Verification of the simulation is performed by comparing the electron energy distribution function and plasma transport parameters to known Boltzmann Equation (BE) solvers. Under the assumption of a uniform electric field and neglecting the build-up of positive ion space charge, the simulation agrees well with the BE solvers. The model is utilized to calculate plasma characteristics of a pulsed, parallel plate discharge. A photoionization model provides the simulation with additional electrons after the initial seeded electron density has drifted towards the anode. Comparison of the performance benefits between the GPU-implementation versus a CPU-implementation is considered, and a speed-up factor of 13 for a 3D relaxation Poisson solver is obtained. Furthermore, a factor 60 speed-up is realized for parallelization of the electron processes.

  16. Ptosis as partial oculomotor nerve palsy due to compression by infundibular dilatation of posterior communicating artery, visualized with three-dimensional computer graphics: case report.

    Science.gov (United States)

    Fukushima, Yuta; Imai, Hideaki; Yoshino, Masanori; Kin, Taichi; Takasago, Megumi; Saito, Kuniaki; Nakatomi, Hirofumi; Saito, Nobuhito

    2014-01-01

    Oculomotor nerve palsy (ONP) due to internal carotid-posterior communicating artery (PcomA) aneurysm generally manifests as partial nerve palsy including pupillary dysfunction. In contrast, infundibular dilatation (ID) of the PcomA has no pathogenic significance, and mechanical compression of the cranial nerve is extremely rare. We describe a 60-year-old woman who presented with progressive ptosis due to mechanical compression of the oculomotor nerve by an ID of the PcomA. Three-dimensional computer graphics (3DCG) accurately visualized the mechanical compression by the ID, and her ptosis was improved after clipping of the ID. ID of the PcomA may cause ONP by mechanical compression and is treatable surgically. 3DCG are effective for the diagnosis and preoperative simulation.

  17. Graphical user interface development for the MARS code

    International Nuclear Information System (INIS)

    Jeong, J.-J.; Hwang, M.; Lee, Y.J.; Kim, K.D.; Chung, B.D.

    2003-01-01

    KAERI has developed the best-estimate thermal-hydraulic system code MARS using the RELAP5/MOD3 and COBRA-TF codes. To exploit the excellent features of the two codes, we consolidated the two codes. Then, to improve the readability, maintainability, and portability of the consolidated code, all the subroutines were completely restructured by employing a modular data structure. At present, a major part of the MARS code development program is underway to improve the existing capabilities. The code couplings with three-dimensional neutron kinetics, containment analysis, and transient critical heat flux calculations have also been carried out. At the same time, graphical user interface (GUI) tools have been developed for user friendliness. This paper presents the main features of the MARS GUI. The primary objective of the GUI development was to provide a valuable aid for all levels of MARS users in their output interpretation and interactive controls. Especially, an interactive control function was designed to allow operator actions during simulation so that users can utilize the MARS code like conventional nuclear plant analyzers (NPAs). (author)

  18. A graphical automated detection system to locate hardwood log surface defects using high-resolution three-dimensional laser scan data

    Science.gov (United States)

    Liya Thomas; R. Edward. Thomas

    2011-01-01

    We have developed an automated defect detection system and a state-of-the-art Graphic User Interface (GUI) for hardwood logs. The algorithm identifies defects at least 0.5 inch high and at least 3 inches in diameter on barked hardwood log and stem surfaces. To summarize defect features and to build a knowledge base, hundreds of defects were measured, photographed, and...

  19. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  20. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user's manual

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User's Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code's capabilities and limitations; Chapter 2 describes the code's structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs

  1. Programming Graphical User Interfaces in R

    CERN Document Server

    Verzani, John

    2012-01-01

    Programming Graphical User Interfaces with R introduces each of the major R packages for GUI programming: RGtk2, qtbase, Tcl/Tk, and gWidgets. With examples woven through the text as well as stand-alone demonstrations of simple yet reasonably complete applications, the book features topics especially relevant to statisticians who aim to provide a practical interface to functionality implemented in R. The book offers: A how-to guide for developing GUIs within R The fundamentals for users with limited knowledge of programming within R and other languages GUI design for specific functions or as l

  2. New ROOT Graphical User Interfaces for fitting

    International Nuclear Information System (INIS)

    Maline, D Gonzalez; Moneta, L; Antcheva, I

    2010-01-01

    ROOT, as a scientific data analysis framework, provides extensive capabilities via Graphical User Interfaces (GUI) for performing interactive analysis and visualizing data objects like histograms and graphs. A new interface for fitting has been developed for performing, exploring and comparing fits on data point sets such as histograms, multi-dimensional graphs or trees. With this new interface, users can build interactively the fit model function, set parameter values and constraints and select fit and minimization methods with their options. Functionality for visualizing the fit results is as well provided, with the possibility of drawing residuals or confidence intervals. Furthermore, the new fit panel reacts as a standalone application and it does not prevent users from interacting with other windows. We will describe in great detail the functionality of this user interface, covering as well new capabilities provided by the new fitting and minimization tools introduced recently in the ROOT framework.

  3. The missing graphical user interface for genomics.

    Science.gov (United States)

    Schatz, Michael C

    2010-01-01

    The Galaxy package empowers regular users to perform rich DNA sequence analysis through a much-needed and user-friendly graphical web interface. See research article http://genomebiology.com/2010/11/8/R86 RESEARCH HIGHLIGHT: With the advent of affordable and high-throughput DNA sequencing, sequencing is becoming an essential component in nearly every genetics lab. These data are being generated to probe sequence variations, to understand transcribed, regulated or methylated DNA elements, and to explore a host of other biological features across the tree of life and across a range of environments and conditions. Given this deluge of data, novices and experts alike are facing the daunting challenge of trying to analyze the raw sequence data computationally. With so many tools available and so many assays to analyze, how can one be expected to stay current with the state of the art? How can one be expected to learn to use each tool and construct robust end-to-end analysis pipelines, all while ensuring that input formats, command-line options, sequence databases and program libraries are set correctly? Finally, once the analysis is complete, how does one ensure the results are reproducible and transparent for others to scrutinize and study?In an article published in Genome Biology, Jeremy Goecks, Anton Nekrutenko, James Taylor and the rest of the Galaxy Team (Goecks et al. 1) make a great advance towards resolving these critical questions with the latest update to their Galaxy Project. The ambitious goal of Galaxy is to empower regular users to carry out their own computational analysis without having to be an expert in computational biology or computer science. Galaxy adds a desperately needed graphical user interface to genomics research, making data analysis universally accessible in a web browser, and freeing users from the minutiae of archaic command-line parameters, data formats and scripting languages. Data inputs and computational steps are selected from

  4. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    Science.gov (United States)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  5. Advanced graphical user interface for multi-physics simulations using AMST

    Science.gov (United States)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  6. Three-dimensional computer graphic animations for studying social approach behaviour in medaka fish: Effects of systematic manipulation of morphological and motion cues.

    Science.gov (United States)

    Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji

    2017-01-01

    We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.

  7. Use of force feedback to enhance graphical user interfaces

    Science.gov (United States)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  8. User interface graphically improves generator AL diagnostics

    International Nuclear Information System (INIS)

    Gray, R.F.; King, I.J.

    1991-01-01

    In April of 1990, the recently developed Diagnostic Graphical User Interface (DGUI) was installed at a large nuclear power plant in the midwestern United States. Since 1988, the power plant has been using the Generator Artificial Intelligence Diagnostics (GenAID) System, which provides online diagnostic capability for the generator and generator auxiliaries through a plant data center (PDC) and communication link to the diagnostic operations center (DOC) in Orlando, Florida. The enhanced system provides the power plant control room operator with a comprehensive tool to understand and better utilize the information provided by the existing knowledge bases. This paper represents a significant improvement over existing technology by providing the power plant control room operator with the capability of interacting directly with the diagnostic system

  9. PAMLX: a graphical user interface for PAML.

    Science.gov (United States)

    Xu, Bo; Yang, Ziheng

    2013-12-01

    This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.

  10. Simulation Control Graphical User Interface Logging Report

    Science.gov (United States)

    Hewling, Karl B., Jr.

    2012-01-01

    One of the many tasks of my project was to revise the code of the Simulation Control Graphical User Interface (SIM GUI) to enable logging functionality to a file. I was also tasked with developing a script that directed the startup and initialization flow of the various LCS software components. This makes sure that a software component will not spin up until all the appropriate dependencies have been configured properly. Also I was able to assist hardware modelers in verifying the configuration of models after they have been upgraded to a new software version. I developed some code that analyzes the MDL files to determine if any error were generated due to the upgrade process. Another one of the projects assigned to me was supporting the End-to-End Hardware/Software Daily Tag-up meeting.

  11. Representing Graphical User Interfaces with Sound: A Review of Approaches

    Science.gov (United States)

    Ratanasit, Dan; Moore, Melody M.

    2005-01-01

    The inability of computer users who are visually impaired to access graphical user interfaces (GUIs) has led researchers to propose approaches for adapting GUIs to auditory interfaces, with the goal of providing access for visually impaired people. This article outlines the issues involved in nonvisual access to graphical user interfaces, reviews…

  12. Graphical User Interface Programming in Introductory Computer Science.

    Science.gov (United States)

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  13. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  14. Contributions to the integrated graphical user interface

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.

    2003-01-01

    The Online Software is part of the distributed Data Acquisition System (DAQ) for the ATLAS experiment that will start taking data in 2007 at the Large Hadron Collider at CERN. The Online Software system is responsible for overall experiment control, including run control, configuration and monitoring of Trigger and Data Acquisition System (TDAQ) and management of data-taking partitions. The system encompasses all the software dealing with configuring, controlling and monitoring the data acquisition system but excludes anything dealing with the management, processing or transportation of physics data. In other words, the Online Software is supposed to act as the 'glue' to a quantity of heterogeneous sub-system, providing not only a uniform control interface, but also the possibility of easily abstracting the specificities of those subsystems in order to provide them with control services. The component model architecture has been adopted for the system, each component being developed as an individual package. All the hardware and software configurations of the data taking partitions are stored in configuration databases. The Process Manager component performs the basic job control of the software components. The Integrated Graphical User Interface (IGUI) is one of the integration components of the Online Software, allowing the operator to control and monitor the status of the current data taking run in terms of its main parameters, detector configuration, trigger rate, buffer occupancy and state of the subsystems. The component has been designed as a Java application, having defined some specialized panels for allowing the user to send the main DAQ commands and displaying messages, state or run specific parameters of the whole system or related to all the other components (Run Control, Run Parameters, DAQ Supervisor, Process Manager, Message Reporting, Monitoring or Data Flow). The design of this component allows the users to develop their own panel to be displayed

  15. The Graphical User Interface: Crisis, Danger, and Opportunity.

    Science.gov (United States)

    Boyd, L. H.; And Others

    1990-01-01

    This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)

  16. Graphics server and action language interpreter greatly simplify the composition of a graphical user interface

    International Nuclear Information System (INIS)

    Mueller, R.

    1992-01-01

    A new control system based on a distributed computing environment is gradually installed at BESSY, a 800 MeV storage ring dedicated to the generation of synchrotron light in the VUV and soft X-ray region. The new operator consoles are large high resolution, bitmap oriented color graphic screens with mouse and keyboard. A new graphical user interface has been developed with a user interface management system. A graphics server encapsulates completely representational aspects, mediates between user interactions and application variables and takes care of a consistent state of graphical and applicational objects. Graphical representations, semantics of user interactions and interpreter instructions are defined in a database written in a simple and comprehensible user interface definition language. (R.P.) 7 refs.; 5 figs

  17. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow

  18. FGB: A Graphical and Haptic User Interface for Creating Graphical, Haptic User Interfaces

    International Nuclear Information System (INIS)

    ANDERSON, THOMAS G.; BRECKENRIDGE, ARTHURINE; DAVIDSON, GEORGE S.

    1999-01-01

    The emerging field of haptics represents a fundamental change in human-computer interaction (HCI), and presents solutions to problems that are difficult or impossible to solve with a two-dimensional, mouse-based interface. To take advantage of the potential of haptics, however, innovative interaction techniques and programming environments are needed. This paper describes FGB (FLIGHT GHUI Builder), a programming tool that can be used to create an application specific graphical and haptic user interface (GHUI). FGB is itself a graphical and haptic user interface with which a programmer can intuitively create and manipulate components of a GHUI in real time in a graphical environment through the use of a haptic device. The programmer can create a GHUI without writing any programming code. After a user interface is created, FGB writes the appropriate programming code to a file, using the FLIGHT API, to recreate what the programmer created in the FGB interface. FGB saves programming time and increases productivity, because a programmer can see the end result as it is created, and FGB does much of the programming itself. Interestingly, as FGB was created, it was used to help build itself. The further FGB was in its development, the more easily and quickly it could be used to create additional functionality and improve its own design. As a finished product, FGB can be used to recreate itself in much less time than it originally required, and with much less programming. This paper describes FGB's GHUI components, the techniques used in the interface, how the output code is created, where programming additions and modifications should be placed, and how it can be compared to and integrated with existing API's such as MFC and Visual C++, OpenGL, and GHOST

  19. User-Extensible Graphics Using Abstract Structure,

    Science.gov (United States)

    1987-08-01

    Flex 6 The Algol68 model of the graphical abstract structure 5 The creation of a PictureDefinition 6 The making of a picture from a PictureDefinition 7...data together with the operations that can be performed on that data. i 7! ś I _ § 4, The Alqol68 model of the graphical abstract structure Every

  20. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    International Nuclear Information System (INIS)

    Imura, K; Fujibuchi, T; Hirata, H; Kaneko, K; Hamada, E

    2016-01-01

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performance by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to

  1. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    Energy Technology Data Exchange (ETDEWEB)

    Imura, K [Division of Quantum Radiation Science, Department of Health Science, Graduate School of Medical Science, Kyushu University, Fukuoka (Japan); Fujibuchi, T; Hirata, H [Department of Health Science, Graduate School of Medical Science, Kyushu University, Fukuoka (Japan); Kaneko, K [Innovation Center for Educational Resource, Kyushu University, Fukuoka (Japan); Hamada, E [Cancer Treatment Center, Tobata Kyoritsu Hospital, Kitakyushu (Japan)

    2016-06-15

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performance by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to

  2. Graphical User Interface Development for Representing Air Flow Patterns

    Science.gov (United States)

    Chaudhary, Nilika

    2004-01-01

    Java, a language that is portable among platforms, because it can run on different operating systems such as Windows and Unix without having to be rewritten. I had no prior experience of programming in Java at the start of my internship; I am continuously learning as I create the program. I have written the part of the program that enables a user to draw several zones, edit them, and store their locations. The next phase of my project is to allow the user to click on the side of a zone and create a boundary condition for it. A previous intern wrote a program that allows the user to input boundary conditions. I can integrate the two programs to create a larger, more usable program. After that, I will develop a way for the user to save the graph for future reference. Another eventual goal is to make the GUI capable of creating three-dimensional zones as well. Researchers such as my mentor, Dr. David Ashpis, need a quick, user-friendly

  3. The Graphical User Interface Crisis: Danger and Opportunity.

    Science.gov (United States)

    Boyd, Lawrence H.; And Others

    This paper examines graphic computing environments, identifies potential problems in providing access to blind people, and describes programs and strategies being developed to provide this access. The paper begins with an explanation of how graphic user interfaces differ from character-based systems in their use of pixels, visual metaphors such as…

  4. Open|SpeedShop Graphical User Interface Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to create a new graphical user interface (GUI) for an existing parallel application performance and profiling tool, Open|SpeedShop. The current GUI has...

  5. User's manual for the CORTES GRAPHICS PACKAGE GRFPAK

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides necessary user information to implement and use a graphics package for the CORTES finite-element computer programs. Complete input instructions are provided. Sample input and output are given

  6. Common Graphics Library (CGL). Volume 1: LEZ user's guide

    Science.gov (United States)

    Taylor, Nancy L.; Hammond, Dana P.; Hofler, Alicia S.; Miner, David L.

    1988-01-01

    Users are introduced to and instructed in the use of the Langley Easy (LEZ) routines of the Common Graphics Library (CGL). The LEZ routines form an application independent graphics package which enables the user community to view data quickly and easily, while providing a means of generating scientific charts conforming to the publication and/or viewgraph process. A distinct advantage for using the LEZ routines is that the underlying graphics package may be replaced or modified without requiring the users to change their application programs. The library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine independent, providing support for centralized and/or distributed computer systems.

  7. A Functional Programming Technique for Forms in Graphical User Interfaces

    NARCIS (Netherlands)

    Evers, S.; Kuper, Jan; Achten, P.M.; Grelck, G.; Huch, F.; Michaelson, G.; Trinder, Ph.W.

    2005-01-01

    This paper presents FunctionalForms, a new combinator library for constructing fully functioning forms in a concise and flexible way. A form is a part of a graphical user interface (GUI) restricted to displaying a value and allowing the user to modify it. The library is built on top of the

  8. The graphical user interface for CRISTAL V1

    International Nuclear Information System (INIS)

    Heulers, L.; Courtois, G.; Fernex, F.; Gomit, J.M.; Letang, E.

    2003-01-01

    This paper deals with the new Graphical User Interface (GUI) of the CRISTAL V1 package devoted to criticality studies including burn up calculations. The aim of this GUI is to offer users a high level of user-friendliness and flexibility in the data description and the results analysis of codes of the package. The three main components of the GUI (CIGAIES, EJM and OPOSSUM) are presented. The different functionalities of the tools are explained through some applications. (author)

  9. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  10. A general graphical user interface for automatic reliability modeling

    Science.gov (United States)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  11. User's manual for the two-dimensional transputer graphics toolkit

    Science.gov (United States)

    Ellis, Graham K.

    1988-01-01

    The user manual for the 2-D graphics toolkit for a transputer based parallel processor is presented. The toolkit consists of a package of 2-D display routines that can be used for the simulation visualizations. It supports multiple windows, double buffered screens for animations, and simple graphics transformations such as translation, rotation, and scaling. The display routines are written in occam to take advantage of the multiprocessing features available on transputers. The package is designed to run on a transputer separate from the graphics board.

  12. Reservation system with graphical user interface

    KAUST Repository

    Mohamed, Mahmoud A. Abdelhamid

    2012-01-05

    Techniques for providing a reservation system are provided. The techniques include displaying a scalable visualization object, wherein the scalable visualization object comprises an expanded view element of the reservation system depicting information in connection with a selected interval of time and a compressed view element of the reservation system depicting information in connection with one or more additional intervals of time, maintaining a visual context between the expanded view and the compressed view within the visualization object, and enabling a user to switch between the expanded view and the compressed view to facilitate use of the reservation system.

  13. A Graphical User Interface to Generalized Linear Models in MATLAB

    Directory of Open Access Journals (Sweden)

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  14. Integrating user studies into computer graphics-related courses.

    Science.gov (United States)

    Santos, B S; Dias, P; Silva, S; Ferreira, C; Madeira, J

    2011-01-01

    This paper presents computer graphics. Computer graphics and visualization are essentially about producing images for a target audience, be it the millions watching a new CG-animated movie or the small group of researchers trying to gain insight into the large amount of numerical data resulting from a scientific experiment. To ascertain the final images' effectiveness for their intended audience or the designed visualizations' accuracy and expressiveness, formal user studies are often essential. In human-computer interaction (HCI), such user studies play a similar fundamental role in evaluating the usability and applicability of interaction methods and metaphors for the various devices and software systems we use.

  15. Three-dimensional geometric model of the middle segment of the thoracic spine based on graphical images for finite element analysis

    Directory of Open Access Journals (Sweden)

    Rozilene Maria Cota Aroeira

    2017-05-01

    Full Text Available Abstract Introduction: Biomedical studies involve complex anatomical structures, which require specific methodology to generate their geometric models. The middle segment of the thoracic spine (T5-T10 is the site of the highest incidence of vertebral deformity in adolescents. Traditionally, its geometries are derived from computed tomography or magnetic resonance imaging data. However, this approach may restrict certain studies. The study aimed to generate two 3D geometric model of the T5-T10 thoracic spine segment, obtained from graphical images, and to create mesh for finite element studies. Methods A 3D geometric model of T5-T10 was generated using two anatomical images of T6 vertebra (side and top. The geometric model was created in Autodesk® Maya® 3D 2013, and the mesh process in HiperMesh and MeshMixer (v11.0.544 Autodesk. Results The T5-T10 thoracic segment model is presented with its passive components, bones, intervertebral discs and flavum, intertransverse and supraspinous ligaments, in different views, as well as the volumetric mesh. Conclusion The 3D geometric model generated from graphical images is suitable for application in non-patient-specific finite element model studies or, with restrictions, in the use of computed tomography or magnetic resonance imaging. This model may be useful for biomechanical studies related to the middle thoracic spine, the most vulnerable site for vertebral deformations.

  16. Pemrograman Graphical User Interface (GUI) Dengan Matlab Untuk Mendesain Alat Bantu Opersai Matematika

    OpenAIRE

    Butar Butar, Ronisah Putra

    2011-01-01

    Graphical User Interface ( GUI) is a application program orient visual which woke up with graphical obyek in the place of comand of text for the user interaction. Graphical User Interface ( GUI) in MATLAB embraced in a application of GUIDE ( Graphical User Interface Builder). In this paper will be discuss about how disagning a appliance assist mathematics operation with program of Graphical User Interface ( GUI) with MATLAB with aim to as one of the appliance alternative assist...

  17. An SML Driven Graphical User Interface and Application Management Toolkit

    International Nuclear Information System (INIS)

    White, Greg R

    2002-01-01

    In the past, the features of a user interface were limited by those available in the existing graphical widgets it used. Now, improvements in processor speed have fostered the emergence of interpreted languages, in which the appropriate method to render a given data object can be loaded at runtime. XML can be used to precisely describe the association of data types with their graphical handling (beans), and Java provides an especially rich environment for programming the graphics. We present a graphical user interface builder based on Java Beans and XML, in which the graphical screens are described textually (in files or a database) in terms of their screen components. Each component may be a simple text read back, or a complex plot. The programming model provides for dynamic data pertaining to a component to be forwarded synchronously or asynchronously, to the appropriate handler, which may be a built-in method, or a complex applet. This work was initially motivated by the need to move the legacy VMS display interface of the SLAC Control Program to another platform while preserving all of its existing functionality. However the model allows us a powerful and generic system for adding new kinds of graphics, such as Matlab, data sources, such as EPICS, middleware, such as AIDA[1], and transport, such as XML and SOAP. The system will also include a management console, which will be able to report on the present usage of the system, for instance who is running it where and connected to which channels

  18. TmoleX--a graphical user interface for TURBOMOLE.

    Science.gov (United States)

    Steffen, Claudia; Thomas, Klaus; Huniar, Uwe; Hellweg, Arnim; Rubner, Oliver; Schroer, Alexander

    2010-12-01

    We herein present the graphical user interface (GUI) TmoleX for the quantum chemical program package TURBOMOLE. TmoleX allows users to execute the complete workflow of a quantum chemical investigation from the initial building of a structure to the visualization of the results in a user friendly graphical front end. The purpose of TmoleX is to make TURBOMOLE easy to use and to provide a high degree of flexibility. Hence, it should be a valuable tool for most users from beginners to experts. The program is developed in Java and runs on Linux, Windows, and Mac platforms. It can be used to run calculations on local desktops as well as on remote computers. © 2010 Wiley Periodicals, Inc.

  19. DEBUGGER: Developing a graphical user interface to debug FPGAs

    CERN Document Server

    AUTHOR|(SzGeCERN)773309

    2015-01-01

    As part of the summer student projects, an FPGA debugger was designed using Qt- framework. The aim of this project is to help Data Acquisition System (DAQ) experts of COMPASS experiment to easily monitor the state of each FPGA being used. It is needful to continually monitor their state. A Graphical User Interface (GUI) has then been designed to aid experts to do so. Via IP-Bus, the content of the FPGA under investigation is displayed to the user.

  20. Helping Students Test Programs That Have Graphical User Interfaces

    Directory of Open Access Journals (Sweden)

    Matthew Thornton

    2008-08-01

    Full Text Available Within computer science education, many educators are incorporating software testing activities into regular programming assignments. Tools like JUnit and its relatives make software testing tasks much easier, bringing them into the realm of even introductory students. At the same time, many introductory programming courses are now including graphical interfaces as part of student assignments to improve student interest and engagement. Unfortunately, writing software tests for programs that have significant graphical user interfaces is beyond the skills of typical students (and many educators. This paper presents initial work at combining educationally oriented and open-source tools to create an infrastructure for writing tests for Java programs that have graphical user interfaces. Critically, these tools are intended to be appropriate for introductory (CS1/CS2 student use, and to dovetail with current teaching approaches that incorporate software testing in programming assignments. We also include in our findings our proposed approach to evaluating our techniques.

  1. Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction.

    Science.gov (United States)

    Goo, Hyun Woo; Park, Sang-Hyub

    2015-12-01

    To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8 years, range 5 days-33 years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n = 22) and/or end-diastolic (n = 28) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV.

  2. Applying Minimal Manual Principles for Documentation of Graphical User Interfaces.

    Science.gov (United States)

    Nowaczyk, Ronald H.; James, E. Christopher

    1993-01-01

    Investigates the need to include computer screens in documentation for software using a graphical user interface. Describes the uses and purposes of "minimal manuals" and their principles. Studies student reaction to their use of one of three on-screen manuals: screens, icon, and button. Finds some benefit for including icon and button…

  3. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    Science.gov (United States)

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  4. EPICS-QT based graphical user interface for accelerator control

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.K.; Rosily, Sherry; Bhagwat, P.V.

    2016-01-01

    Particle accelerators and many industrial complex systems, require a robust and efficient control for its proper operation to achieve required beam quality, safety of its sub component and all working personnel. This control is executed via a graphical user interface through which an operator interacts with the accelerator to achieve the desired state of the machine and its output. Experimental Physics and Industrial Control System (EPICS) is a widely used control system framework in the field of accelerator control. It acts as a middle layer between field devices and graphic user interface used by the operator. Field devices can also be made EPICS compliant by using EPICS based software in that. On the other hand Qt is a C++ framework which is widely used for creating very professional looking and user friendly graphical component. In Low Energy High Intensity Proton Accelerator (LEHIPA), which is the first stage of the three stage Accelerator Driven System (ADS) program taken by Bhabha Atomic Research Centre (BARC), it is decided that EPICS will be used for controlling the accelerator and Qt will be used for developing the various Graphic User Interface (GUI) for operation and diagnostics. This paper discuss the work carried out to achieve this goal in LEHIPA

  5. Computer-Based Tools for Evaluating Graphical User Interfaces

    Science.gov (United States)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  6. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  7. Size and asymmetry of the planum temporale. A new three-dimensional method for analysis of the supratemporal plane using MR imaging and computer-aided graphics

    International Nuclear Information System (INIS)

    Utsunomiya, H.; Nawata, M.; Ogasawara, T.; Okazaki, M.; Miyoshi, M.

    1996-01-01

    The planum temporale of the supratemporal plane is important for language function and shows left-right asymmetry in most brains. To estimate the size and allow side comparison of the planum temporale, we developed a new technique for 3-D MR analysis of the supratemporal plane using a personal computer and computer-aided graphics. The temporal lobes of 5 human cadavers were imaged by MR in the sagittal plane, at a slice thickness of 3 mm. The images of the supratemporal plane were entered into a personal computer using the original software to determine the positions of anatomic landmarks and the size of the planum temporale. The data were then transferred to a supercomputer to reconstruct the 3-D surface image of the supratemporal plane. Computer images of the spuratemporal plane agreed with macroscopic observations. The positions of anatomic landmarks and the size of the planum temporale also agreed with macroscopic measurements. Thus, the persent technique provides valuable anatomic data on the spuratemporal plane which should be useful for further clarification of the anatomic basis of language function. (orig.)

  8. VAGUE: a graphical user interface for the Velvet assembler.

    Science.gov (United States)

    Powell, David R; Seemann, Torsten

    2013-01-15

    Velvet is a popular open-source de novo genome assembly software tool, which is run from the Unix command line. Most of the problems experienced by new users of Velvet revolve around constructing syntactically and semantically correct command lines, getting input files into acceptable formats and assessing the output. Here, we present Velvet Assembler Graphical User Environment (VAGUE), a multi-platform graphical front-end for Velvet. VAGUE aims to make sequence assembly accessible to a wider audience and to facilitate better usage amongst existing users of Velvet. VAGUE is implemented in JRuby and targets the Java Virtual Machine. It is available under an open-source GPLv2 licence from http://www.vicbioinformatics.com/. torsten.seemann@monash.edu.

  9. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  10. [A psychopathological study on three-dimensional computer graphics (3DCGs): special reference to pictures made by a schizophrenic patient before and after the onset].

    Science.gov (United States)

    Ashizawa, Yuko; Tachikawa, Hirokazu; Hori, Masashi; Hori, Takafumi; Mizukami, Katsuyoshi; Asada, Takashi

    2004-01-01

    A patient with catatonic type schizophrenia drawing 3-dimensional computer graphics (3DCGs) before and after the onset is reported. His 3DCGs are discussed from the view of psychopathology. A 21-year-old male was admitted to our hospital. He was an art student. For three months before admission, he had been absorbed in drawing 3DCGs. When he was asked to draw handmade pictures by his teacher, he experienced a bizarre mood and took an overdose of aspirin. At the time of admission, he was in a stupor state, and was diagnosed with catatonic type schizophrenia. After admission, he exhibited excitement and disorganized speech. These symptoms disappeared after administration of neuroleptics, and he was discharged. The 3DCGs he drew before and after the onset revealed several special characteristics. First, the compositions of his pictures were too geometric and too precise. Secondly, the themes of his pictures changed from romantic before the onset to symbolic after it, and the styles changed from realistic to abstractive after the onset. Finally, histograms of the 3DCGs revealed many colors before onset, which converged to simple colors after. Therefore, it was suggested that the latent pathological process at the beginning of schizophrenia might be reflected in his 3DCGs. 3DCGs are a new type of fine art. They can express beautiful and cool images more simply than handmade pictures. Due to these features, artists can create images of their innerworld, with less effort and talent than picture drawings, by computer assistance. This case suggests that the geometric working space, change-free viewpoints, and computer assistance, which are characteristics of the methods in making 3DCGs may be suitable for schizophrenic artists to create images of their innerworld. However, being absorbed in making 3DCGs could also promote the latent schizophrenic process to the onset.

  11. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  12. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  13. Development of a graphical user interface and graphics display for the WIND system

    International Nuclear Information System (INIS)

    O'Steen, B.L.; Fast, J.D.; Suire, B.S.

    1992-01-01

    An advanced graphical user interface (GUI) and improved graphics for transport calculations have been developed for the Weather Information and Display System (WINDS). Two WINDS transport codes, Area Evac and 2DPUF, have been ported from their original VAX/VMS environment to a UNIX operating system and reconfigured to take advantage of the new graphics capability. A developmental prototype of this software is now available on a UNIX based IBM 340 workstation in the Dose Assessment Center (DAC). Automatic transfer of meteorological data from the WINDS VAX computers to the IBM workstation in the DAC has been implemented. This includes both regional National Weather Service (NWS) data and SRS tower data. The above developments fulfill a FY 1993 DOE milestone

  14. COMMIX-1A: a three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume I: users manual

    International Nuclear Information System (INIS)

    Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Shah, V.L.

    1983-12-01

    The COMMIX-1A computer program is an updated and improved version of COMMIX-1 designed to analyze steady-state/transient, single-phase, three-dimensional fluid flow with heat transfer in reactor components and multicomponent systems. A new porous-media formulation via local volume averaging has been derived and employed in the COMMIX code. The concepts of volume porosity, directional surface permeability, distributed resistance, and distributed heat source or sink is used in the new porous-media formulation to model a flow domain with stationary structures. The concept of directional surface permeability is new and greatly facilitates modeling of velocity and temperature fields in anisotropic media. The new porous-media formulation represents the first unified approach to thermal-hydraulic analysis. It is now possible to perform a multidimensional thermal-hydraulic simulation of either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components. The conservation equations of mass, momentum, and energy based on the new porous-media formulation are solved as a boundary-value problem in space and an initial-value problem in time. Two other unique features provided in the COMMIX-1A code are (1) two solution procedures - a semi-implicit procedure modified from ICE and a fully-implicit procedure, named SIMPLEST-ANL, similar to the SIMPLE/SIMPLER algorithms - available a user's option and (2) a geometrical package capable of approximating many geometries. This report (Volume I) describes in detail the basic equations, formulations, solution procedures, flow charts, rebalancing scheme for faster convergence, options available to users, models to describe the auxiliary phenomena, input instructions, and two sample problems. The Volume II assembles and summarizes the results of many simulations that have been performed with COMMIX-1A computer program

  15. Three-dimensional representations of complex carbohydrates and polysaccharides--SweetUnityMol: a video game-based computer graphic software.

    Science.gov (United States)

    Pérez, Serge; Tubiana, Thibault; Imberty, Anne; Baaden, Marc

    2015-05-01

    A molecular visualization program tailored to deal with the range of 3D structures of complex carbohydrates and polysaccharides, either alone or in their interactions with other biomacromolecules, has been developed using advanced technologies elaborated by the video games industry. All the specific structural features displayed by the simplest to the most complex carbohydrate molecules have been considered and can be depicted. This concerns the monosaccharide identification and classification, conformations, location in single or multiple branched chains, depiction of secondary structural elements and the essential constituting elements in very complex structures. Particular attention was given to cope with the accepted nomenclature and pictorial representation used in glycoscience. This achievement provides a continuum between the most popular ways to depict the primary structures of complex carbohydrates to visualizing their 3D structures while giving the users many options to select the most appropriate modes of representations including new features such as those provided by the use of textures to depict some molecular properties. These developments are incorporated in a stand-alone viewer capable of displaying molecular structures, biomacromolecule surfaces and complex interactions of biomacromolecules, with powerful, artistic and illustrative rendering methods. They result in an open source software compatible with multiple platforms, i.e., Windows, MacOS and Linux operating systems, web pages, and producing publication-quality figures. The algorithms and visualization enhancements are demonstrated using a variety of carbohydrate molecules, from glycan determinants to glycoproteins and complex protein-carbohydrate interactions, as well as very complex mega-oligosaccharides and bacterial polysaccharides and multi-stranded polysaccharide architectures. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e

  16. A graphical user-interface control system at SRRC

    International Nuclear Information System (INIS)

    Chen, J.S.; Wang, C.J.; Chen, S.J.; Jan, G.J.

    1993-01-01

    A graphical user interface control system of 1.3 GeV synchrotron radiation light source was designed and implemented for the beam transport line (BTL) and storage ring (SR). A modern control technique has been used to implement and control the third generation synchrotron light source. Two level computer hardware configuration, that includes process and console computers as a top level and VME based intelligent local controller as a bottom level, was setup and tested. Both level computers are linked by high speed Ethernet data communication network. A database includes static and dynamic databases as well as access routines were developed. In order to commission and operate the machine friendly, the graphical man machine interface was designed and coded. The graphical user interface (GUI) software was installed on VAX workstations for the BTL and SR at the Synchrotron Radiation Research Center (SRRC). The over all performance has been evaluated at 10Hz update rate. The results showed that the graphical operator interface control system is versatile system and can be implemented into the control system of the accelerator. It will provide the tool to control and monitor the equipments of the radiation light source especially for machine commissioning and operation

  17. ModelMate - A graphical user interface for model analysis

    Science.gov (United States)

    Banta, Edward R.

    2011-01-01

    ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.

  18. A New Layout Method for Graphical User Interfaces

    OpenAIRE

    Scoditti , Adriano; Stuerzlinger , Wolfgang

    2010-01-01

    International audience; The layout mechanisms for many GUI toolkits are hard to understand, the associated tools and API's often difficult to use. This work investigates new, easy-to-understand layout mechanisms and evaluates its implementation. We will analyze the requirements for the definition of layouts of a graphical user interface. Part of the issue is that several aspects need to be considered simultaneously while laying-out a component: the alignment with other components as well as i...

  19. Inventions on expressing emotions In Graphical User Interface

    OpenAIRE

    Mishra, Umakant

    2014-01-01

    The conventional GUI is more mechanical and does not recognize or communicate emotions. The modern GUIs are trying to infer the likely emotional state and personality of the user and communicate through a corresponding emotional state. Emotions are expressed in graphical icons, sounds, pictures and other means. The emotions are found to be useful in especially in communication software, interactive learning systems, robotics and other adaptive environments. Various mechanisms have been develo...

  20. SUIS: An Online Graphical Signature-Based User Identification System

    OpenAIRE

    Alam, Shahid

    2016-01-01

    Humans possess a large amount of, and almost limitless, visual memory, that assists them to remember pictures far better than words. This phenomenon has recently motivated the computer security researchers' in academia and industry to design and develop graphical user identification systems (GUISs). Cognometric GUISs are more memorable than drawmetric GUISs, but takes more time to authenticate. None of the previously proposed GUISs combines the advantages of both cognometric and drawmetric sy...

  1. Development of a Graphical User Interface to Visualize Surface Observations

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  2. Implementation of graphical user interfaces in nuclear applications

    International Nuclear Information System (INIS)

    Barmsnes, K.A.; Johnsen, T.; Sundling, C.-V.

    1997-01-01

    During recent years a demand has formed for systems that support design and implementation of graphical user interfaces (GUIs) in the control rooms of nuclear power plants. Picasso-3 is a user interface management system supporting object oriented definition of GUIs in a distributed computing environment. The system is currently being used in a number of different application areas within the nuclear industry, such as retrofitting of display systems in simulators and control rooms, education and training applications, etc. Some examples are given of nuclear applications where the Picasso-3 system has been used

  3. Non-invasive method to determine target and dose distribution of gamma thalamotomy for tremor. Using a personal computer-assisted three-dimensional variable graphic model of the thalamus

    International Nuclear Information System (INIS)

    Horikoshi, Toru; Nagaseki, Yoshishige; Omata, Tomohiro; Ueno, Takehiko; Asari, Yasuhiro; Nukui, Hideaki

    1996-01-01

    To evaluate the accuracy of a computer-assisted three-dimensional variable graphic map of the thalamus, which consists of seven coronal contours of the thalamus and its substructure, each slice was compared with the corresponding MR coronal image of 13 adults who had no organic intracranial lesions. The graphics were based on the atlas or Schaltenbrand and Bailey, and were magnified linearly in proportion to two parameters. These were intercommisural distance, and distance between the posterior commisure and the lateral margin of the thalamus, measured on a horizontal MR image. The mean error of the slices on the medial margin was less than 1 mm in 10 cases, on the lateral margin of 10, as well as on the upper margin in six cases. This margin of error was pronounced among individuals with dilated ventricles. The additional capacity of the software to draw voluntary concentric circles of ovals on the thalamus image made it easy to recognize the optimal position and size of the figures that cover the target nucleus. The system described will lead to precise targeting of the thalamus nucleus, and will enhance the effectiveness and safety of radiosurgery for involuntary movement disorders, after properly establishing the modifications so as to fit to patients with dilated ventricles. (author)

  4. NLEdit: A generic graphical user interface for Fortran programs

    Science.gov (United States)

    Curlett, Brian P.

    1994-01-01

    NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input files. The interface consists of a menu system, a message window, a help system, and data entry forms. A form is generated for each namelist. The form has an input field for each namelist variable along with a one-line description of that variable. Detailed help information, default values, and minimum and maximum allowable values can all be displayed via menu picks. Inputs are processed through a scientific calculator program that allows complex equations to be used instead of simple numeric inputs. A custom user interface is generated simply by entering information about the namelist input variables into an ASCII file. There is no need to learn a new graphics system or programming language. NLEdit can be used as a stand-alone program or as part of a larger graphical user interface. Although NLEdit is intended for files using namelist format, it can be easily modified to handle other file formats.

  5. CTG Analyzer: A graphical user interface for cardiotocography.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Burattini, Luca; Morettini, Micaela; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2017-07-01

    Cardiotocography (CTG) is the most commonly used test for establishing the good health of the fetus during pregnancy and labor. CTG consists in the recording of fetal heart rate (FHR; bpm) and maternal uterine contractions (UC; mmHg). FHR is characterized by baseline, baseline variability, tachycardia, bradycardia, acceleration and decelerations. Instead, UC signal is characterized by presence of contractions and contractions period. Such parameters are usually evaluated by visual inspection. However, visual analysis of CTG recordings has a well-demonstrated poor reproducibility, due to the complexity of physiological phenomena affecting fetal heart rhythm and being related to clinician's experience. Computerized tools in support of clinicians represents a possible solution for improving correctness in CTG interpretation. This paper proposes CTG Analyzer as a graphical tool for automatic and objective analysis of CTG tracings. CTG Analyzer was developed under MATLAB®; it is a very intuitive and user friendly graphical user interface. FHR time series and UC signal are represented one under the other, on a grid with reference lines, as usually done for CTG reports printed on paper. Colors help identification of FHR and UC features. Automatic analysis is based on some unchangeable features definitions provided by the FIGO guidelines, and other arbitrary settings whose default values can be changed by the user. Eventually, CTG Analyzer provides a report file listing all the quantitative results of the analysis. Thus, CTG Analyzer represents a potentially useful graphical tool for automatic and objective analysis of CTG tracings.

  6. Gromita: a fully integrated graphical user interface to gromacs 4.

    Science.gov (United States)

    Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia

    2009-09-07

    Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.

  7. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  8. Graphical user interface concepts for tactical augmented reality

    Science.gov (United States)

    Argenta, Chris; Murphy, Anne; Hinton, Jeremy; Cook, James; Sherrill, Todd; Snarski, Steve

    2010-04-01

    Applied Research Associates and BAE Systems are working together to develop a wearable augmented reality system under the DARPA ULTRA-Vis program†. Our approach to achieve the objectives of ULTRAVis, called iLeader, incorporates a full color 40° field of view (FOV) see-thru holographic waveguide integrated with sensors for full position and head tracking to provide an unobtrusive information system for operational maneuvers. iLeader will enable warfighters to mark-up the 3D battle-space with symbologic identification of graphical control measures, friendly force positions and enemy/target locations. Our augmented reality display provides dynamic real-time painting of symbols on real objects, a pose-sensitive 360° representation of relevant object positions, and visual feedback for a variety of system activities. The iLeader user interface and situational awareness graphical representations are highly intuitive, nondisruptive, and always tactically relevant. We used best human-factors practices, system engineering expertise, and cognitive task analysis to design effective strategies for presenting real-time situational awareness to the military user without distorting their natural senses and perception. We present requirements identified for presenting information within a see-through display in combat environments, challenges in designing suitable visualization capabilities, and solutions that enable us to bring real-time iconic command and control to the tactical user community.

  9. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  10. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  11. Graphical user interface prototyping for distributed requirements engineering

    CERN Document Server

    Scheibmayr, Sven

    2014-01-01

    Finding and understanding the right requirements is essential for every software project. This book deals with the challenge to improve requirements engineering in distributed software projects. The use of graphical user interface (GUI) prototypes can help stakeholders in such projects to elicit and specify high quality requirements. The research objective of this study is to develop a method and a software artifact to support the activities in the early requirements engineering phase in order to overcome some of the difficulties and improve the quality of the requirements, which should eventu

  12. Graphical user interface for wireless sensor networks simulator

    Science.gov (United States)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  13. A graphical user-interface for propulsion system analysis

    Science.gov (United States)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  14. Graphical user interfaces for McClellan Nuclear Radiation Center

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Power, M.; Forsmann, H.

    1998-01-01

    The control console of the TRIGA reactor at McClellan's Nuclear Radiation Center (MNRC) is in the process of being replaced because of spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and by incorporating human factors during all stages of the graphical user interface (GUI) development and control console design. This paper gives a brief description of some of the guidelines used in developing the MNRC's GUIs as continuous, real-time displays

  15. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  16. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    Science.gov (United States)

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  17. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    Science.gov (United States)

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  18. Knowledge-based critiquing of graphical user interfaces with CHIMES

    Science.gov (United States)

    Jiang, Jianping; Murphy, Elizabeth D.; Carter, Leslie E.; Truszkowski, Walter F.

    1994-01-01

    CHIMES is a critiquing tool that automates the process of checking graphical user interface (GUI) designs for compliance with human factors design guidelines and toolkit style guides. The current prototype identifies instances of non-compliance and presents problem statements, advice, and tips to the GUI designer. Changes requested by the designer are made automatically, and the revised GUI is re-evaluated. A case study conducted at NASA-Goddard showed that CHIMES has the potential for dramatically reducing the time formerly spent in hands-on consistency checking. Capabilities recently added to CHIMES include exception handling and rule building. CHIMES is intended for use prior to usability testing as a means, for example, of catching and correcting syntactic inconsistencies in a larger user interface.

  19. NASA Access Mechanism - Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy F.; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  20. NASA access mechanism: Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  1. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  2. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  3. A Prototype Graphical User Interface for Co-op: A Group Decision Support System.

    Science.gov (United States)

    1992-03-01

    achieve their potential to communicate. Information-oriented, systematic graphic design is the use of typography , symbols, color, and other static and...apphcuittin by reducig Uber ellurt anid enhuncizig Iliteracti. ’Iliis thesis designs and de% elupht Itrututylle Graphical User Interface iGUl i fui Cu f...ORGANIZATION.... .. .. ............ II. INTERFACE DESIGN PRINCIPLES. .............. 7 A. GRAPHICAL USER INTERFACES.............7 1. Design Principles

  4. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    Science.gov (United States)

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  5. [Preliminary construction of three-dimensional visual educational system for clinical dentistry based on world wide web webpage].

    Science.gov (United States)

    Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning

    2009-09-01

    To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.

  6. Flair: A powerful but user friendly graphical interface for FLUKA

    International Nuclear Information System (INIS)

    Vlachoudis, V.

    2009-01-01

    FLAIR is an advanced user graphical interface for FLUKA, to enable the user to start and control FLUKA jobs completely from a GUI environment without the need for command-line interactions. It is written entirely with python and Tkinter allowing easier portability across various operating systems and great programming flexibility with focus to be used as an Application Programming Interface (API) for FLUKA. FLAIR is an integrated development environment (IDE) for FLUKA, it does not only provide means for the post processing of the output but a big emphasis has been set on the creation and checking of error free input files. It contains a fully featured editor for editing the input files in a human readable way with syntax highlighting, without hiding the inner functionality of FLUKA from the users. It provides also means for building the executable, debugging the geometry, running the code, monitoring the status of one or many runs, inspection of the output files, post processing of the binary files (data merging) and interface to plotting utilities like gnuplot and PovRay for high quality plots or photo-realistic images. The program includes also a database of selected properties of all known nuclides and their known isotopic composition as well a reference database of ∼ 300 predefined materials together with their Sterheimer parameters. (authors)

  7. siGnum: graphical user interface for EMG signal analysis.

    Science.gov (United States)

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  8. RGtk2: A Graphical User Interface Toolkit for R

    Directory of Open Access Journals (Sweden)

    Duncan Temple Lang

    2011-01-01

    Full Text Available Graphical user interfaces (GUIs are growing in popularity as a complement or alternative to the traditional command line interfaces to R. RGtk2 is an R package for creating GUIs in R. The package provides programmatic access to GTK+ 2.0, an open-source GUI toolkit written in C. To construct a GUI, the R programmer calls RGtk2 functions that map to functions in the underlying GTK+ library. This paper introduces the basic concepts underlying GTK+ and explains how to use RGtk2 to construct GUIs from R. The tutorial is based on simple and pratical programming examples. We also provide more complex examples illustrating the advanced features of the package. The design of the RGtk2 API and the low-level interface from R to GTK+ are discussed at length. We compare RGtk2 to alternative GUI toolkits for R.

  9. Java graphical user interface for the supervision of Tore Supra

    International Nuclear Information System (INIS)

    Utzel, Nadine; Guillerminet, Bernard; Leluyer, Mireille; Moulin, Daniele

    2002-01-01

    The graphical user interface (GUI) for the supervision of Tore Supra is intended to supervise the start-up and the shut-down of the installation, to control general state (state of all diagnostics, state of the system and network) and to follow the pulse sequence. Implementation of a new multi-platform, modular GUI for Tore Supra is in progress. This provides not only a simpler, more structured view for the non-specialist user, but also is open-ended and adaptable to a wide variety of uses. The actual implementation of a GUI is a question of user-ergonomics. Hence, a user-directed study in 2000 produced a specification for the interface. The information is treated with a hierarchical order. At the top level, only the global state of the supervised elements appears, i.e. the general state of every diagnostics, the pulse sequence, the safety systems. If a problem occurs, the operator has access to the lower level detailed state of the concerned element, simply with a double-click. An event log also helps the operator to analyse the chronology of the alarms arising during the pulse. Although the GUI is mainly used in the control room on X terminals under Unix, it should also be accessible via a portable PC for the purpose of maintenance, or directly from any office to see how the physics program is progressing. The choice of Java, multi-platform object programming language was thus adopted with access via any web browser. The modularity of the GUI is made possible by a distributed architecture (remote method invocation) between the graphic client and different servers: one for the diagnostics and the sequence, one for the system and the network and one for the configuration database. All the components interact with each other in a very simple and standard way. This distributed architecture allows the progressive set up of the new interface. The first step, being produced for mid-2001 is the GUI for the supervision of diagnostics. This prototype will help us to

  10. Java graphical user interface for the supervision of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Utzel, Nadine E-mail: nutzel@cea.fr; Guillerminet, Bernard; Leluyer, Mireille; Moulin, Daniele

    2002-06-01

    The graphical user interface (GUI) for the supervision of Tore Supra is intended to supervise the start-up and the shut-down of the installation, to control general state (state of all diagnostics, state of the system and network) and to follow the pulse sequence. Implementation of a new multi-platform, modular GUI for Tore Supra is in progress. This provides not only a simpler, more structured view for the non-specialist user, but also is open-ended and adaptable to a wide variety of uses. The actual implementation of a GUI is a question of user-ergonomics. Hence, a user-directed study in 2000 produced a specification for the interface. The information is treated with a hierarchical order. At the top level, only the global state of the supervised elements appears, i.e. the general state of every diagnostics, the pulse sequence, the safety systems. If a problem occurs, the operator has access to the lower level detailed state of the concerned element, simply with a double-click. An event log also helps the operator to analyse the chronology of the alarms arising during the pulse. Although the GUI is mainly used in the control room on X terminals under Unix, it should also be accessible via a portable PC for the purpose of maintenance, or directly from any office to see how the physics program is progressing. The choice of Java, multi-platform object programming language was thus adopted with access via any web browser. The modularity of the GUI is made possible by a distributed architecture (remote method invocation) between the graphic client and different servers: one for the diagnostics and the sequence, one for the system and the network and one for the configuration database. All the components interact with each other in a very simple and standard way. This distributed architecture allows the progressive set up of the new interface. The first step, being produced for mid-2001 is the GUI for the supervision of diagnostics. This prototype will help us to

  11. Some computer graphical user interfaces in radiation therapy.

    Science.gov (United States)

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  12. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  13. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  14. A graphical user interface for infant ERP analysis.

    Science.gov (United States)

    Kaatiala, Jussi; Yrttiaho, Santeri; Forssman, Linda; Perdue, Katherine; Leppänen, Jukka

    2014-09-01

    Recording of event-related potentials (ERPs) is one of the best-suited technologies for examining brain function in human infants. Yet the existing software packages are not optimized for the unique requirements of analyzing artifact-prone ERP data from infants. We developed a new graphical user interface that enables an efficient implementation of a two-stage approach to the analysis of infant ERPs. In the first stage, video records of infant behavior are synchronized with ERPs at the level of individual trials to reject epochs with noncompliant behavior and other artifacts. In the second stage, the interface calls MATLAB and EEGLAB (Delorme & Makeig, Journal of Neuroscience Methods 134(1):9-21, 2004) functions for further preprocessing of the ERP signal itself (i.e., filtering, artifact removal, interpolation, and rereferencing). Finally, methods are included for data visualization and analysis by using bootstrapped group averages. Analyses of simulated and real EEG data demonstrated that the proposed approach can be effectively used to establish task compliance, remove various types of artifacts, and perform representative visualizations and statistical comparisons of ERPs. The interface is available for download from http://www.uta.fi/med/icl/methods/eeg.html in a format that is widely applicable to ERP studies with special populations and open for further editing by users.

  15. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  16. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  17. User's manual for the HYPGEN hyperbolic grid generator and the HGUI graphical user interface

    Science.gov (United States)

    Chan, William M.; Chiu, Ing-Tsau; Buning, Pieter G.

    1993-01-01

    The HYPGEN program is used to generate a 3-D volume grid over a user-supplied single-block surface grid. This is accomplished by solving the 3-D hyperbolic grid generation equations consisting of two orthogonality relations and one cell volume constraint. In this user manual, the required input files and parameters and output files are described. Guidelines on how to select the input parameters are given. Illustrated examples are provided showing a variety of topologies and geometries that can be treated. HYPGEN can be used in stand-alone mode as a batch program or it can be called from within a graphical user interface HGUI that runs on Silicon Graphics workstations. This user manual provides a description of the menus, buttons, sliders, and typein fields in HGUI for users to enter the parameters needed to run HYPGEN. Instructions are given on how to configure the interface to allow HYPGEN to run either locally or on a faster remote machine through the use of shell scripts on UNIX operating systems. The volume grid generated is copied back to the local machine for visualization using a built-in hook to PLOT3D.

  18. SPIKY: a graphical user interface for monitoring spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa

    2015-05-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.

  19. A Model-Driven Approach to Graphical User Interface Runtime Adaptation

    OpenAIRE

    Criado, Javier; Vicente Chicote, Cristina; Iribarne, Luis; Padilla, Nicolás

    2010-01-01

    Graphical user interfaces play a key role in human-computer interaction, as they link the system with its end-users, allowing information exchange and improving communication. Nowadays, users increasingly demand applications with adaptive interfaces that dynamically evolve in response to their specific needs. Thus, providing graphical user interfaces with runtime adaptation capabilities is becoming more and more an important issue. To address this problem, this paper proposes a componen...

  20. Three dimensional MEMS supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei

    2011-10-15

    The overall objective of this research is to achieve compact supercapacitors with high capacitance, large power density, and long cycle life for using as micro power sources to drive low power devices and sensors. The main shortcoming of supercapacitors as a power source is that its energy density typically is about 1/10 of that of batteries. To achieve compact supercapacitors of large energy density, supercapacitors must be developed with high capacitance and power density which are mainly depended on the effective surface area of the electrodes of the supercapacitors. Many studies have been done to increase the effective surface area by modifying the electrode materials, however, much less investigations are focus on machining the electrodes. In my thesis work, micro- and nano-technologies are applied as technology approaches for machining the electrodes with three dimensional (3D) microstructures. More specific, Micro-electro-mechanical system (MEMS) fabrication process flow, which integrates the key process such as LIGA-like (German acronym for Lithographie, Galvanoformung, Abformung, which mean Lithography, Electroplating and Molding) technology or DRIE (deep reactive ion etching), has been developed to enable innovative designs of 3D MEMS supercapacitors which own the electrodes of significantly increased geometric area. Two types of 3D MEMS supercapcitors, based on LIGA-like and DRIE technology respectively, were designed and successfully created. The LIGA-like based 3D MEMS supercapacitor is with an interdigital 3D structure, and consists of silicon substrate, two electroplated nickel current collectors, two PPy (poly pyrrole) electrodes, and solid state electrolyte. The fabrication process flow developed includes the flowing key processes, SU-8 lithography, nickel electroplating, PPy polymerization and solid state electrolyte coating. Electrochemical tests showed that the single electrode of the supercapacitor has the specific capacitance of 0.058 F cm-2

  1. Optoelectronic polarimeter controlled by a graphical user interface of Matlab

    International Nuclear Information System (INIS)

    Vilardy, J M; Torres, R; Jimenez, C J

    2017-01-01

    We show the design and implementation of an optical polarimeter using electronic control. The polarimeter has a software with a graphical user interface (GUI) that controls the optoelectronic setup and captures the optical intensity measurement, and finally, this software evaluates the Stokes vector of a state of polarization (SOP) by means of the synchronous detection of optical waves. The proposed optoelectronic polarimeter can determine the Stokes vector of a SOP in a rapid and efficient way. Using the polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the SOP when the optical waves pass through to the linear polarizers and retarder waves plates. The polarimeter prototype could be used as a main tool for the students in order to learn the theory and experimental aspects of the SOP for optical waves via the Stokes vector measurement. The proposed polarimeter controlled by a GUI of Matlab is more attractive and suitable to teach and to learn the polarization of optical waves. (paper)

  2. GCL – An Easy Way for Creating Graphical User Interfaces

    Directory of Open Access Journals (Sweden)

    Mariusz Trzaska

    2011-02-01

    Full Text Available Graphical User Interfaces (GUI can be created using several approaches. Beside using visual editors or a manually written source code, it is possible to employ a declarative method. Such a solution usually allows working on a higher abstraction level which saves the developers' time and reduces errors. The approach can follow many ideas. One of them is based on utilizing a Domain Specific Language (DSL. In this paper we present the results of our research concerning a DSL language called GCL (GUI Creating Language. The prototype is implemented as a library for Java with an API emulating the syntax and semantics of a DSL language. A programmer, using a few keywords, is able to create different types of GUIs, including forms, panels, dialogs, etc. The widgets of the GUI are built automatically during the run-time phase based on a given data instance (an ordinary Java object and optionally are to be customized by the programmer. The main contribution of our work is delivering a working library for a popular platform. The library could be easily ported for other programming languages such the MS C#.

  3. LTCP 2D Graphical User Interface. Application Description and User's Guide

    Science.gov (United States)

    Ball, Robert; Navaz, Homayun K.

    1996-01-01

    A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.

  4. Short report on the evaluation of a graphical user interface for radiation therapy planning systems

    International Nuclear Information System (INIS)

    Martin, M.B.

    1993-01-01

    Since their introduction graphical user interfaces for computing applications have generally appealed more to users than command-line or menu interfaces. Benefits from using a graphical interface include ease-of-use, ease-of-under-standing and increased productivity. For a radiation therapy planning application, an additional potential benefit is that the user regards the planning activity as a closer simulation of the real world situation. A prototype radiation therapy planning system incorporating a graphical user interface was developed on an Apple Macintosh microcomputer. Its graphic interface was then evaluated by twenty-six participants. The results showed markedly that the features associated with a graphic user interface were preferred. 6 refs., 3 figs., 1 tab

  5. Extending Graphic Statics for User-Controlled Structural Morphogenesis

    OpenAIRE

    Fivet, Corentin; Zastavni, Denis; Cap, Jean-François; Structural Morphology Group International Seminar 2011

    2011-01-01

    The first geometrical definitions of any structure are of primary importance when considering pertinence and efficiency in structural design processes. Engineering history has taught us how graphic statics can be a very powerful tool since it allows the designer to take shapes and forces into account simultaneously. However, current and past graphic statics methods are more suitable for analysis than structural morphogenesis. This contribution introduces new graphical methods that can supp...

  6. Inventions on presenting textual items in Graphical User Interface

    OpenAIRE

    Mishra, Umakant

    2014-01-01

    Although a GUI largely replaces textual descriptions by graphical icons, the textual items are not completely removed. The textual items are inevitably used in window titles, message boxes, help items, menu items and popup items. Textual items are necessary for communicating messages that are beyond the limitation of graphical messages. However, it is necessary to harness the textual items on the graphical interface in such a way that they complement each other to produce the best effect. One...

  7. A Graphical User Interface for the Computational Fluid Dynamics Software OpenFOAM

    OpenAIRE

    Melbø, Henrik Kaald

    2014-01-01

    A graphical user interface for the computational fluid dynamics software OpenFOAM has been constructed. OpenFOAM is a open source and powerful numerical software, but has much to be wanted in the field of user friendliness. In this thesis the basic operation of OpenFOAM will be introduced and the thesis will emerge in a graphical user interface written in PyQt. The graphical user interface will make the use of OpenFOAM simpler, and hopefully make this powerful tool more available for the gene...

  8. Graphical User Interface for Simulink Integrated Performance Analysis Model

    Science.gov (United States)

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  9. TaskMaster: a prototype graphical user interface to a schedule optimization model

    OpenAIRE

    Banham, Stephen R.

    1990-01-01

    Approved for public release, distribution is unlimited This thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces to Operations Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who possesses limited OR experience. The feasibility and validity of building an interface for this kind of user is demonstrated in the development of a prototype graphical user interface called TaskMa...

  10. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    Science.gov (United States)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  11. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  12. Three dimensional visualization breakthrough in analysis and communication of technical information for nuclear waste management

    International Nuclear Information System (INIS)

    Alexander, D.H.; Cerny, B.A.; Hill, E.R.; Krupka, K.M.; Smoot, J.L.; Smith, D.R.; Waldo, K.

    1990-11-01

    Computer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning. A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: (1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and (2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest. 12 refs., 4 figs

  13. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  14. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    Science.gov (United States)

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  15. An Enhanced Graphical User Interface for Analyzing the Vulnerability of Electrical Power Systems to Terrorist Attacks

    National Research Council Canada - National Science Library

    Stathakos, Dimitrios

    2003-01-01

    ...) Conforming to Windows standards, the new OD GUI incorporates advanced graphical features, which help the user visualize the model and understand the consequences of interdiction The new ODs also...

  16. Responsive Graphical User Interface (ReGUI) and its Implementation in MATLAB

    OpenAIRE

    Mikulszky, Matej; Pocsova, Jana; Mojzisova, Andrea; Podlubny, Igor

    2017-01-01

    In this paper we introduce the responsive graphical user interface (ReGUI) approach to creating applications, and demonstrate how this approach can be implemented in MATLAB. The same general technique can be used in other programming languages.

  17. Graphical User Interface Tool Kit for Path-Based Network Policy Language

    National Research Council Canada - National Science Library

    Ekin, Tufan

    2002-01-01

    .... Two of the changes are related to the semantics of the language. A graphical user interface tool kit for creating, validating, archiving and compiling policies represented in PPL has been developed...

  18. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  19. Enhancement of graphic user interface data acquisition of small angle neutron scattering

    International Nuclear Information System (INIS)

    Abd Aziz Muhammad; Abd Jalil Abd Hamid

    2004-01-01

    This paper discusses the activities of the development of data acquisition software for PC, which capable of controlling instrument via IEEE-488 and graphic visualization for small angle neutron scattering (SANS) runs in DOS mode. With the help of outstanding free ware graphic library for DOS, this software has enhanced the efficiency of graphic visualization for SANSLab data acquisition. Featuring easy-to-use graphical user interface (GUI) and several other built-in tools for convenience, this software can be manipulated with the mouse or the keyboard. This software can be converted into an inexpensive data acquisition system for SANS. (Author)

  20. fgui: A Method for Automatically Creating Graphical User Interfaces for Command-Line R Packages

    Science.gov (United States)

    Hoffmann, Thomas J.; Laird, Nan M.

    2009-01-01

    The fgui R package is designed for developers of R packages, to help rapidly, and sometimes fully automatically, create a graphical user interface for a command line R package. The interface is built upon the Tcl/Tk graphical interface included in R. The package further facilitates the developer by loading in the help files from the command line functions to provide context sensitive help to the user with no additional effort from the developer. Passing a function as the argument to the routines in the fgui package creates a graphical interface for the function, and further options are available to tweak this interface for those who want more flexibility. PMID:21625291

  1. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Common Graphics Library (CGL). Volume 2: Low-level user's guide

    Science.gov (United States)

    Taylor, Nancy L.; Hammond, Dana P.; Theophilos, Pauline M.

    1989-01-01

    The intent is to instruct the users of the Low-Level routines of the Common Graphics Library (CGL). The Low-Level routines form an application-independent graphics package enabling the user community to construct and design scientific charts conforming to the publication and/or viewgraph process. The Low-Level routines allow the user to design unique or unusual report-quality charts from a set of graphics utilities. The features of these routines can be used stand-alone or in conjunction with other packages to enhance or augment their capabilities. This library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine-independent, providing support for centralized and/or distributed computer systems.

  3. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    International Nuclear Information System (INIS)

    EMAM, M; Eldib, A; Lin, M; Li, J; Chibani, O; Ma, C

    2014-01-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process

  4. Integrative shell of the program complex MARS (Version 1.0) radiation transfer in three-dimensional geometries

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Lokhovitskij, A.E.; Maslov, M.A.; Yazynin, I.A.

    1994-01-01

    The first version of integrative shell of the program complex MARS is written for calculating radiation transfer in the three-dimensional geometries. The integrative shell allows the user to work in convenient form with complex MARS, creat input files data and get graphic visualization of calculated functions. Version 1.0 is adapted for personal computers of types IBM-286,386,486 with operative size memory not smaller than 500K. 5 refs

  5. Model-driven Instrumentation of graphical user interfaces.

    OpenAIRE

    Funk, M.; Hoyer, P.; Link, S.

    2009-01-01

    In today's continuously changing markets newly developed products often do not meet the demands and expectations of customers. Research on this problem identified a large gap between developer and user expectations. Approaches to bridge this gap are to provide the developers with better information on product usage and to create a fast feedback cycle that helps tackling usage problems. Therefore, the user interface of the product, the central point of human-computer interaction, has to be ins...

  6. Generating Graphical User Interfaces from Precise Domain Specifications

    OpenAIRE

    Kamil Rybiński; Norbert Jarzębowski; Michał Śmiałek; Wiktor Nowakowski; Lucyna Skrzypek; Piotr Łabęcki

    2014-01-01

    Turning requirements into working systems is the essence of software engineering. This paper proposes automation of one of the aspects of this vast problem: generating user interfaces directly from requirements models. It presents syntax and semantics of a comprehensible yet precise domain specification language. For this language, the paper presents the process of generating code for the user interface elements. This includes model transformation procedures to generate window initiation code...

  7. A graphical user interface (gui) matlab program Synthetic_Ves For ...

    African Journals Online (AJOL)

    An interactive and robust computer program for 1D forward modeling of Schlumberger Vertical Electrical Sounding (VES) curves for multilayered earth models is presented. The Graphical User Interface (GUI) enabled software, written in MATLAB v.7.12.0.635 (R2011a), accepts user-defined geologic model parameters (i.e. ...

  8. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP

    NARCIS (Netherlands)

    Snellenburg, J.J.; Laptenok, S.; Seger, R.; Mullen, K.M.; van Stokkum, I.H.M.

    2012-01-01

    In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the

  9. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    Science.gov (United States)

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  10. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  11. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  12. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  13. Model-driven Instrumentation of graphical user interfaces.

    NARCIS (Netherlands)

    Funk, M.; Hoyer, P.; Link, S.

    2009-01-01

    In today's continuously changing markets newly developed products often do not meet the demands and expectations of customers. Research on this problem identified a large gap between developer and user expectations. Approaches to bridge this gap are to provide the developers with better information

  14. A three-dimensional natural resource damage assessment and coupled geographical information system

    International Nuclear Information System (INIS)

    Reed, M.; French, D.; Feng, S.S.; Knauss, W.

    1991-01-01

    In this paper a numerical model for natural resource damage assessments is discussed. The model addresses a wide range of spatial and temporal scales. The transport equations for both pollutant and biota are solved with a three-dimensional Lagrangian particle methodology. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic interface gives the user complete and facile control of the dynamic transport and biological submodels, as ell as the ability to display elements of the underlying geographical information system (GIS) data base. The model is being implemented on a 386 PC

  15. mcaGUI: microbial community analysis R-Graphical User Interface (GUI)

    OpenAIRE

    Copeland, Wade K.; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A.; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M.E.; Zhou, Xia; Williams, Christopher J.; Forney, Larry J.; Abdo, Zaid

    2012-01-01

    Summary: Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance ...

  16. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  17. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  18. Comparison of Automated Graphical User Interface Testing Tools

    OpenAIRE

    Gaber, Domen

    2018-01-01

    The thesis presents the analysis of modern tools for automated testing of various web based user interfaces. The purpose of the work is to compare specific test automation solutions and point out the most suitable test automation tool amongst them. One of the main goals of test automation is to gain faster execution when compared to manual testing and overall cost deduction. There are multiple test automation solutions available on the market, which differ in complexity of use, type of o...

  19. Simulated breeding with QU-GENE graphical user interface.

    Science.gov (United States)

    Hathorn, Adrian; Chapman, Scott; Dieters, Mark

    2014-01-01

    Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.

  20. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    Directory of Open Access Journals (Sweden)

    Ling-Hong Hung

    Full Text Available Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11 graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  1. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    Science.gov (United States)

    Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  2. Java-based Graphical User Interface for MAVERIC-II

    Science.gov (United States)

    Seo, Suk Jai

    2005-01-01

    A computer program entitled "Marshall Aerospace Vehicle Representation in C II, (MAVERIC-II)" is a vehicle flight simulation program written primarily in the C programming language. It is written by James W. McCarter at NASA/Marshall Space Flight Center. The goal of the MAVERIC-II development effort is to provide a simulation tool that facilitates the rapid development of high-fidelity flight simulations for launch, orbital, and reentry vehicles of any user-defined configuration for all phases of flight. MAVERIC-II has been found invaluable in performing flight simulations for various Space Transportation Systems. The flexibility provided by MAVERIC-II has allowed several different launch vehicles, including the Saturn V, a Space Launch Initiative Two-Stage-to-Orbit concept and a Shuttle-derived launch vehicle, to be simulated during ascent and portions of on-orbit flight in an extremely efficient manner. It was found that MAVERIC-II provided the high fidelity vehicle and flight environment models as well as the program modularity to allow efficient integration, modification and testing of advanced guidance and control algorithms. In addition to serving as an analysis tool for techno logy development, many researchers have found MAVERIC-II to be an efficient, powerful analysis tool that evaluates guidance, navigation, and control designs, vehicle robustness, and requirements. MAVERIC-II is currently designed to execute in a UNIX environment. The input to the program is composed of three segments: 1) the vehicle models such as propulsion, aerodynamics, and guidance, navigation, and control 2) the environment models such as atmosphere and gravity, and 3) a simulation framework which is responsible for executing the vehicle and environment models and propagating the vehicle s states forward in time and handling user input/output. MAVERIC users prepare data files for the above models and run the simulation program. They can see the output on screen and/or store in

  3. Graphical user interface for image acquisition and processing

    Science.gov (United States)

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  4. User's manual for the Graphical Constituent Loading Analysis System (GCLAS)

    Science.gov (United States)

    Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.

    2006-01-01

    This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats

  5. Developing a Graphical User Interface for the ALSS Crop Planning Tool

    Science.gov (United States)

    Koehlert, Erik

    1997-01-01

    The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.

  6. Three-dimensional touch interface for medical education.

    Science.gov (United States)

    Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert

    2007-05-01

    We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.

  7. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    Science.gov (United States)

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  8. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics.

    Science.gov (United States)

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-03-15

    RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .

  9. Three-dimensional aromatic networks.

    Science.gov (United States)

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  10. Guidance from the Graphical User Interface (GUI) Experience: What GUI Teaches about Technology Access.

    Science.gov (United States)

    National Council on Disability, Washington, DC.

    This report investigates the use of the graphical user interface (GUI) in computer programs, the problems it creates for individuals with visual impairments or blindness, and advocacy efforts concerning this issue, which have been targeted primarily at Microsoft, producer of Windows. The report highlights the concerns of individuals with visual…

  11. What you see is what you feel : on the simulation of touch in graphical user interfaces

    NARCIS (Netherlands)

    Mensvoort, van K.M.

    2009-01-01

    This study introduces a novel method of simulating touch with merely visual means. Interactive animations are used to create an optical illusion that evokes haptic percepts like stickiness, stiffness and mass, within a standard graphical user interface. The technique, called optically simulated

  12. The Design of a Graphical User Interface for an Electronic Classroom.

    Science.gov (United States)

    Cahalan, Kathleen J.; Levin, Jacques

    2000-01-01

    Describes the design of a prototype for the graphical user interface component of an electronic classroom (ECR) application that supports real-time lectures and question-and-answer sessions between an instructor and students. Based on requirements analysis and an analysis of competing products, a Web-based ECR prototype was produced. Findings show…

  13. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    Science.gov (United States)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  14. A Monthly Water-Balance Model Driven By a Graphical User Interface

    Science.gov (United States)

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  15. A Graphical User Interface (GUI) for Automated Classification of Bradley Fighting Vehicle Shock Absorbers

    National Research Council Canada - National Science Library

    Sincebaugh, Patrick

    1998-01-01

    .... We then explain the design and capabilities of the SSATS graphical user interface (GUI), which includes the integration of a neural network classification scheme. We finish by discussing recent results of utilizing the system to test and evaluate Bradley armored vehicle shock absorbers.

  16. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  17. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  18. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    Science.gov (United States)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  19. Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON.

    Science.gov (United States)

    Mattioni, Michele; Cohen, Uri; Le Novère, Nicolas

    2012-01-01

    The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

  20. Spatial issues in user interface design from a graphic design perspective

    Science.gov (United States)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  1. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  2. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  3. Three-Dimensional Rebar Graphene.

    Science.gov (United States)

    Sha, Junwei; Salvatierra, Rodrigo V; Dong, Pei; Li, Yilun; Lee, Seoung-Ki; Wang, Tuo; Zhang, Chenhao; Zhang, Jibo; Ji, Yongsung; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-03-01

    Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm -1 ) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg -1 . After 500 cycles of testing at a high current density of 6.50 mA cm -2 , the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.

  4. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  5. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    Science.gov (United States)

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  6. Neuronvisio: a Graphical User Interface with 3D capabilities for NEURON

    Directory of Open Access Journals (Sweden)

    Michele eMattioni

    2012-06-01

    Full Text Available The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://mattions.github.com/neuronvisio/ aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model.Neuronvisio also facilitates access to previously published models, allowing usersto browse, download and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

  7. Profex: a graphical user interface for the Rietveld refinement program BGMN.

    Science.gov (United States)

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-10-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.

  8. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.

    Science.gov (United States)

    Grapov, Dmitry; Newman, John W

    2012-09-01

    Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).

  9. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 2, User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-{var_epsilon} model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  10. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    Science.gov (United States)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the

  11. Upgrade to MODFLOW-GUI; addition of MODPATH, ZONEBDGT, and additional MODFLOW packages to the U.S. Geological Survey MODFLOW-96 Graphical-User Interface

    Science.gov (United States)

    Winston, R.B.

    1999-01-01

    This report describes enhancements to a Graphical-User Interface (GUI) for MODFLOW-96, the U.S. Geological Survey (USGS) modular, three-dimensional, finitedifference ground-water flow model, and MOC3D, the USGS three-dimensional, method-ofcharacteristics solute-transport model. The GUI is a plug-in extension (PIE) for the commercial program Argus ONEe. The GUI has been modified to support MODPATH (a particle tracking post-processing package for MODFLOW), ZONEBDGT (a computer program for calculating subregional water budgets), and the Stream, Horizontal-Flow Barrier, and Flow and Head Boundary packages in MODFLOW. Context-sensitive help has been added to make the GUI easier to use and to understand. In large part, the help consists of quotations from the relevant sections of this report and its predecessors. The revised interface includes automatic creation of geospatial information layers required for the added programs and packages, and menus and dialog boxes for input of parameters for simulation control. The GUI creates formatted ASCII files that can be read by MODFLOW-96, MOC3D, MODPATH, and ZONEBDGT. All four programs can be executed within the Argus ONEe application (Argus Interware, Inc., 1997). Spatial results of MODFLOW-96, MOC3D, and MODPATH can be visualized within Argus ONEe. Results from ZONEBDGT can be visualized in an independent program that can also be used to view budget data from MODFLOW, MOC3D, and SUTRA. Another independent program extracts hydrographs of head or drawdown at individual cells from formatted MODFLOW head and drawdown files. A web-based tutorial on the use of MODFLOW with Argus ONE has also been updated. The internal structure of the GUI has been modified to make it possible for advanced users to easily customize the GUI. Two additional, independent PIE?s were developed to allow users to edit the positions of nodes and to facilitate exporting the grid geometry to external programs.

  12. Design and validation of an improved graphical user interface with the 'Tool ball'.

    Science.gov (United States)

    Lee, Kuo-Wei; Lee, Ying-Chu

    2012-01-01

    The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. AutoAssemblyD: a graphical user interface system for several genome assemblers.

    Science.gov (United States)

    Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá

    2013-01-01

    Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.

  14. A development of user-friendly graphical interface for a blanket simulator

    International Nuclear Information System (INIS)

    Lee, Young-Seok; Yoon, Seok-Heun; Han, Jung-Hoon

    2010-01-01

    A web-based user-friendly graphical interface (GUI) system, named GUMBIS (Graphical User-friendly Monte-Carlo-Application Blanket-Design Interface System), was developed to cut down the efforts of the researchers and practitioners who study tokamak blanket designs with the Monte Carlo MCNP/MCNPX codes. GUMBIS was also aimed at supporting them to use the codes for their study without having through understanding on the complex menus and commands of the codes. Developed on the web-based environment, GUMBIS provides task sharing capability on a network. GUMBIS, applicable for both blanket design and neutronics analysis, could facilitate not only advanced blanket R and D but also the education and training of the researchers in the R and D.

  15. Teaching Photovoltaic Array Modelling and Characterization Using a Graphical User Interface and a Flash Solar Simulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....

  16. Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC)

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S. A.

    1998-01-01

    McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design

  17. Graphical User Interface for an Observing Control System for the UK Infrared Telescope

    Science.gov (United States)

    Tan, M.; Bridger, A.; Wright, G. S.; Adamson, A. J.; Currie, M. J.; Economou, F.

    A Graphical user interface for the observing control system of UK Infrared Telescope has been developed as a part of the ORAC (Observatory Reduction and Acquisition Control) Project. We analyzed and designed the system using the Unified Modelling Language (UML) with the CASE tool Rational Rose 98. The system has been implemented in a modular way with Java packages using Swing and RMI. This system is component-based with pluggability. Object orientation concepts and UML notations have been applied throughout the development.

  18. Profex: a graphical user interface for the Rietveld refinement program BGMN

    OpenAIRE

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-01-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN. Its interface focuses on preserving BGMN’s powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal str...

  19. Fast and Efficient Radiological Interventions via a Graphical User Interface Commanded Magnetic Resonance Compatible Robotic Device

    Science.gov (United States)

    Özcan, Alpay; Christoforou, Eftychios; Brown, Daniel; Tsekos, Nikolaos

    2011-01-01

    The graphical user interface for an MR compatible robotic device has the capability of displaying oblique MR slices in 2D and a 3D virtual environment along with the representation of the robotic arm in order to swiftly complete the intervention. Using the advantages of the MR modality the device saves time and effort, is safer for the medical staff and is more comfortable for the patient. PMID:17946067

  20. Design of Flight Control Panel Layout using Graphical User Interface in MATLAB

    Science.gov (United States)

    Wirawan, A.; Indriyanto, T.

    2018-04-01

    This paper introduces the design of Flight Control Panel (FCP) Layout using Graphical User Interface in MATLAB. The FCP is the interface to give the command to the simulation and to monitor model variables while the simulation is running. The command accommodates by the FCP are altitude command, the angle of sideslip command, heading command, and setting command for turbulence model. The FCP was also designed to monitor the flight parameter while the simulation is running.

  1. pix2code: Generating Code from a Graphical User Interface Screenshot

    OpenAIRE

    Beltramelli, Tony

    2017-01-01

    Transforming a graphical user interface screenshot created by a designer into computer code is a typical task conducted by a developer in order to build customized software, websites, and mobile applications. In this paper, we show that deep learning methods can be leveraged to train a model end-to-end to automatically generate code from a single input image with over 77% of accuracy for three different platforms (i.e. iOS, Android and web-based technologies).

  2. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics

    OpenAIRE

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-01-01

    Abstract Objective RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId’s core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goa...

  3. An Evaluation and Redesign of the Conflict Prediction and Trial Planning Planview Graphical User Interface

    Science.gov (United States)

    Laudeman, Irene V.; Brasil, Connie L.; Stassart, Philippe

    1998-01-01

    The Planview Graphical User Interface (PGUI) is the primary display of air traffic for the Conflict Prediction and Trial Planning, function of the Center TRACON Automation System. The PGUI displays air traffic information that assists the user in making decisions related to conflict detection, conflict resolution, and traffic flow management. The intent of this document is to outline the human factors issues related to the design of the conflict prediction and trial planning portions of the PGUI, document all human factors related design changes made to the PGUI from December 1996 to September 1997, and outline future plans for the ongoing PGUI design.

  4. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data.

    Science.gov (United States)

    Robertson, Charles E; Harris, J Kirk; Wagner, Brandie D; Granger, David; Browne, Kathy; Tatem, Beth; Feazel, Leah M; Park, Kristin; Pace, Norman R; Frank, Daniel N

    2013-12-01

    Studies of the human microbiome, and microbial community ecology in general, have blossomed of late and are now a burgeoning source of exciting research findings. Along with the advent of next-generation sequencing platforms, which have dramatically increased the scope of microbiome-related projects, several high-performance sequence analysis pipelines (e.g. QIIME, MOTHUR, VAMPS) are now available to investigators for microbiome analysis. The subject of our manuscript, the graphical user interface-based Explicet software package, fills a previously unmet need for a robust, yet intuitive means of integrating the outputs of the software pipelines with user-specified metadata and then visualizing the combined data.

  5. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1993-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.

  6. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP

    Directory of Open Access Journals (Sweden)

    Katharine M. Mullen

    2012-06-01

    Full Text Available In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the specification of models and viewing of analysis results. Instead, Glotaran provides a graphical user interface which features interactive and dynamic data inspection, easier -- assisted by the user interface -- model specification and interactive viewing of results. The interactivity component is especially helpful when working with large, multi-dimensional datasets as often result from time-resolved spectroscopy measurements, allowing the user to easily pre-select and manipulate data before analysis and to quickly zoom in to regions of interest in the analysis results. Glotaran has been developed on top of the NetBeans rich client platform and communicates with R through the Java-to-R interface Rserve. The background and the functionality of the application are described here. In addition, the design, development and implementation process of Glotaran is documented in a generic way.

  7. MuSim, a Graphical User Interface for Multiple Simulation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Thomas [MUONS Inc., Batavia; Cummings, Mary Anne [MUONS Inc., Batavia; Johnson, Rolland [MUONS Inc., Batavia; Neuffer, David [Fermilab

    2016-06-01

    MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X, and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.

  8. Implementation of three dimensional treatment planning system for external radiotherapy

    International Nuclear Information System (INIS)

    Major, Tibor; Kurup, P.G.G.; Stumpf, Janos

    1997-01-01

    A three dimensional (3D) treatment planning system was installed at Apollo Cancer Hospital, Chennai, India in 1995. This paper gives a short description of the system including hardware components, calculation algorithm, measured data requirements and specific three dimensional features. The concept and the structure of the system are shortly described. The first impressions along with critical opinions and the experiences are gained during the data acquisition are mentioned. Some improvements in the user interface are suggested. It is emphasized that although a 3D system offers more detailed and accurate dose distributions compared to a 2D system, it also introduces a greatly increased workload for the planning staff. (author)

  9. Development of a graphical user interface for the TRAC plant/safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-09-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness.

  10. Development of a graphical user interface for the TRAC plant/safety analysis code

    International Nuclear Information System (INIS)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-01-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness

  11. Receiver Operator Characteristic Tools Graphic User Interface Extension for R Commander

    Directory of Open Access Journals (Sweden)

    Daniel Corneliu LEUCUŢA

    2015-12-01

    Full Text Available Background: Receiver Operator Characteristic (ROC curve, is a graphical plot which presents the performance of a binary classifier when the discrimination cutoff is varied. The aim of this work was to create an extension for R Commander that offers a graphical user interface for Receiver Operator Characteristic tools provided by several existing command line accessible packages like pROC and ROCR. Material and Methods: The extension was built and tested with R version 3.2.0 and R Commander 2.1-7. Results: We built an extension called RcmdrPlugin.ROC that we uploaded on the CRAN servers. The extension adds a new menu called ROC, along with two submenus pROC and ROCR that broadly corresponds to commands available to access the functions of these packages. The pROC menu offers several commands: to plot a ROC curve for a dataset or for a logistic regression model, to compare paired and unpaired ROC curves, each providing the following tabs: General (to select the variables for the analysis, and options for switching cases with controls; Smoothing (allowing the user to select different types of smoothing – binominal, density, distributions like normal, lognormal, ...; AUC (to specify the partial area under the curve (AUC options, CI (to select the options of confidence intervals (CI – the level, computing method: DeLong, bootstrap, ...; Plot (for the plotting options. The ROCR dialogue window offers more options in choosing the performance measures for the plot. Conclusion: The RcmdrPlugin.ROC extension helps less advanced users of R accessing ROC tools in a friendly graphical user interface.

  12. Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code

    Science.gov (United States)

    Lavelle, Thomas M.; Curlett, Brian P.

    1994-01-01

    XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.

  13. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  14. Practical experience with graphical user interfaces and object-oriented design in the clinical laboratory.

    Science.gov (United States)

    Wells, I G; Cartwright, R Y; Farnan, L P

    1993-12-15

    The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.

  15. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    Science.gov (United States)

    Grapov, Dmitry; Newman, John W.

    2012-01-01

    Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358

  16. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  17. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  18. A MATLAB Graphical User Interface Dedicated to the Optimal Design of the High Power Induction Motor with Heavy Starting Conditions

    Directory of Open Access Journals (Sweden)

    Maria Brojboiu

    2014-09-01

    Full Text Available In this paper, a Matlab graphical user interface dedicated to the optimal design of the high power induction motor with heavy starting conditions is presented. This graphical user interface allows to input the rated parameters, the selection of the induction motor type and the optimization criterion of the induction motor design also. For the squirrel cage induction motor the graphical user interface allows the selection of the rotor bar geometry, the material of the rotor bar as well as the fastening technology of the shorting ring on the rotor bar. The Matlab graphical user interface is developed and applied to the general optimal design program of the induction motor described in [1], [2].

  19. Graphical User Interface (GUI) for the Warfighter Physiological Status Monitoring (WPSM) System - U.S. Army Medic Recommendations

    National Research Council Canada - National Science Library

    Tharion, William J; Kaushik, Sangeeta

    2006-01-01

    .... This information is sent wirelessly to a personal digital assistant (PDA) held by the medic. The primary purpose of this study was to determine what features should be included in the graphical user interface (GUI...

  20. Implementation of a graphical user interface for the virtual multifrequency spectrometer: The VMS-Draw tool.

    Science.gov (United States)

    Licari, Daniele; Baiardi, Alberto; Biczysko, Malgorzata; Egidi, Franco; Latouche, Camille; Barone, Vincenzo

    2015-02-15

    This article presents the setup and implementation of a graphical user interface (VMS-Draw) for a virtual multifrequency spectrometer. Special attention is paid to ease of use, generality and robustness for a panel of spectroscopic techniques and quantum mechanical approaches. Depending on the kind of data to be analyzed, VMS-Draw produces different types of graphical representations, including two-dimensional or three-dimesional (3D) plots, bar charts, or heat maps. Among other integrated features, one may quote the convolution of stick spectra to obtain realistic line-shapes. It is also possible to analyze and visualize, together with the structure, the molecular orbitals and/or the vibrational motions of molecular systems thanks to 3D interactive tools. On these grounds, VMS-Draw could represent a useful additional tool for spectroscopic studies integrating measurements and computer simulations. Copyright © 2014 Wiley Periodicals, Inc.

  1. mcaGUI: microbial community analysis R-Graphical User Interface (GUI).

    Science.gov (United States)

    Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid

    2012-08-15

    Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html

  2. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    Science.gov (United States)

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical

  3. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  4. User guide for the farm process (FMP1) for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, MODFLOW-2000

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, R.T.; Maddock, Thomas; Leake, S.A.

    2006-01-01

    There is a need to estimate dynamically integrated supply-and-demand components of irrigated agriculture as part of the simulation of surface-water and ground-water flow. To meet this need, a computer program called the Farm Process (FMP1) was developed for the U.S. Geological Survey three-dimensional finite-difference modular ground-water flow model, MODFLOW- 2000 (MF2K). The FMP1 allows MF2K users to simulate conjunctive use of surface- and ground water for irrigated agriculture for historical and future simulations, water-rights issues and operational decisions, nondrought and drought scenarios. By dynamically integrating farm delivery requirement, surface- and ground-water delivery, as well as irrigation-return flow, the FMP1 allows for the estimation of supplemental well pumpage. While farm delivery requirement and irrigation return flow are simulated by the FMP1, the surface-water delivery to the farm can be simulated optionally by coupling the FMP1 with the Streamflow Routing Package (SFR1) and the farm well pumping can be simulated optionally by coupling the FMP1 to the Multi-Node Well (MNW) Package. In addition, semi-routed deliveries can be specified that are associated with points of diversion in the SFR1 stream network. Nonrouted surface-water deliveries can be specified independently of any stream network. The FMP1 maintains a dual mass balance of a farm budget and as part of the ground-water budget. Irrigation demand, supply, and return flow are in part subject to head-dependent sources and sinks such as evapotranspiration from ground water and leakage between the conveyance system and the aquifer. Farm well discharge and farm net recharge are source/sink terms in the FMP1, which depend on transpiration uptake from ground water and other head dependent consumptive use components. For heads rising above the bottom of the root zone, the actual transpiration is taken to vary proportionally with the depth of the active root zone, which can be restricted

  5. An X window based graphics user interface for radiation information processing system developed with object-oriented programming technology

    International Nuclear Information System (INIS)

    Gao Wenhuan; Fu Changqing; Kang Kejun

    1993-01-01

    X Window is a network-oriented and network transparent windowing system, and now dominant in the Unix domain. The object-oriented programming technology can be used to change the extensibility of a software system remarkably. An introduction to graphics user interface is given. And how to develop a graphics user interface for radiation information processing system with object-oriented programming technology, which is based on X Window and independent of application is described briefly

  6. User Manual for Graphical User Interface Version 2.4 with Fire and Smoke Simulation Model (FSSIM) Version 1.2

    National Research Council Canada - National Science Library

    Haupt, Tomasz A; Henley, Greg; Sura, Bhargavi; Kirkland, Robert; Floyd, Jason; Scheffey, Joseph; Tatem, Patricia A; Williams, Frederick W

    2006-01-01

    The collaborative work of Hughes Associates, Inc., the Naval Research Laboratory, and a group at Mississippi State University resulted in development of a simulation system including a Graphical User Interface (GUI...

  7. Advancement of G T-SCALE and the construction of a graphical user interface

    International Nuclear Information System (INIS)

    Postma, Todd A.; Vujic, Jasmina

    1997-01-01

    The issue of advanced reactor concepts with complex core geometries and advanced fuel compositions is being addressed through the development of a new computational methodology based on the coupling of two existing state-of-the-art methodologies - GTRAN2 and SCALE 4.3. The resulting methodology encompasses advanced features in analyzing new designs and in simplifying user-code interactions. The advanced nuclear features include an exact 2 D representation of a complete fuel assembly (or several assemblies), while preserving the heterogeneity of each of its pin cells, flexibility in the energy group structure, a comprehensive cross-section library and material data base, and accurate burnup calculations. A complex graphical user interface along with a graphical presentation of output data make up the user-interaction features of G T-SCALE. Extensive benchmarking of the G T-SCALE is under way, and some results and comparison with other code systems are presented in this paper. (author). 5 refs., 1 fig., 4 tabs

  8. Three dimensional image alignment, registration and fusion

    International Nuclear Information System (INIS)

    Treves, S.T.; Mitchell, K.D.; Habboush, I.H.

    1998-01-01

    Combined assessment of three dimensional anatomical and functional images (SPECT, PET, MRI, CT) is useful to determine the nature and extent of lesions in many parts of the body. Physicians principally rely on their spatial sense of mentally re-orient and overlap images obtained with different imaging modalities. Objective methods that enable easy and intuitive image registration can help the physician arrive at more optimal diagnoses and better treatment decisions. This review describes a simple, intuitive and robust image registration approach developed in our laboratory. It differs from most other registration techniques in that it allows the user to incorporate all of the available information within the images in the registration process. This method takes full advantage of the ability of knowledgeable operators to achieve image registration and fusion using an intuitive interactive visual approach. It can register images accurately and quickly without the use of elaborate mathematical modeling or optimization techniques. The method provides the operator with tools to manipulate images in three dimensions, including visual feedback techniques to assess the accuracy of registration (grids, overlays, masks, and fusion of images in different colors). Its application is not limited to brain imaging and can be applied to images from any region in the body. The overall effect is a registration algorithm that is easy to implement and can achieve accuracy on the order of one pixel

  9. Computer communications and graphics for clinical radiology

    International Nuclear Information System (INIS)

    Rhodes, M.L.; Azzawi, Y.; Tivattanasuk, E.S.; Pang, A.T.; Ly, K.; Panicker, H.

    1985-01-01

    Computer graphics has many forms. When applied in medicine, it can range from simple two dimensional charts and graphs to rendering of three-dimensional scenes. Computer graphic displays of molecular or large anatomic structures have been used to great advantage by numerous medical researchers. In addition, graphic presentations can be dynamic where displays are controlled by physician-user commands, or the presentations can be static, where views are recorded in discrete frames for later distribution or permanent archival. In medicine both interactive and static forms of computer graphics have their proper place in the effective delivery of health care. Computer graphics, however, changes constantly in the area of software techniques, hardware improvements and its clinical application. What may be medically appropriate today in the use of computer graphics can soon become inadequate and well behind the new advances that so quickly follow. In this paper the key feature of computer communication is discussed that aids in the clinical utility of computer graphics in medicine. It is distribution. Distribution in terms of instantaneous computer graphic software updates and more importantly, distribution of meaningful three-dimensional presentations to referring physicians. Physicians who, working in their private offices, have no routine access to medical work stations. In this environment three dimensional presentations of anatomy are static in nature, but must deliver realistic views of critical structures. This paper outlines how computer communication provides the essential ingredient to the provision of this service. As an illustration, the electronic distribution of software to generate three dimensional views of complex anatomoic structures is discussed. Sample views are included

  10. SraTailor: graphical user interface software for processing and visualizing ChIP-seq data.

    Science.gov (United States)

    Oki, Shinya; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Meno, Chikara

    2014-12-01

    Raw data from ChIP-seq (chromatin immunoprecipitation combined with massively parallel DNA sequencing) experiments are deposited in public databases as SRAs (Sequence Read Archives) that are publically available to all researchers. However, to graphically visualize ChIP-seq data of interest, the corresponding SRAs must be downloaded and converted into BigWig format, a process that involves complicated command-line processing. This task requires users to possess skill with script languages and sequence data processing, a requirement that prevents a wide range of biologists from exploiting SRAs. To address these challenges, we developed SraTailor, a GUI (Graphical User Interface) software package that automatically converts an SRA into a BigWig-formatted file. Simplicity of use is one of the most notable features of SraTailor: entering an accession number of an SRA and clicking the mouse are the only steps required to obtain BigWig-formatted files and to graphically visualize the extents of reads at given loci. SraTailor is also able to make peak calls, generate files of other formats, process users' own data, and accept various command-line-like options. Therefore, this software makes ChIP-seq data fully exploitable by a wide range of biologists. SraTailor is freely available at http://www.devbio.med.kyushu-u.ac.jp/sra_tailor/, and runs on both Mac and Windows machines. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  11. XNWLUP, Graphical user interface to plot WIMS-D library multigroup cross sections

    International Nuclear Information System (INIS)

    Ganesan, S.; Jagannathan, V.; Thiyagarajan, T.K.

    2005-01-01

    1 - Description of program or function: XnWlup is a computer program with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualisation of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. IAEA1395/05: New features of version 3.0: - Plotting absorption and fission cross sections of resonant nuclide after applying the self-shielding cross section. - Plotting the data of Resonant Integral table, as a function of dilution cross section for a selected temperature and for a given energy group. - Plotting the data of Resonant Integral table, as a function of temperature for a selected background dilution cross section and for a given energy group. - Clearing all the graphs except one graph from the display screen is easily done by using a tool bar button. - Displaying the coordinate of the cursor point with appropriate units. 2 - Methods: XnWlup helps to obtain histogram plots of the values of cross section data of an element/isotope available as 69-group WIMS-D library as a function of energy bins. The software XnWlup is developed with this graphical user interface in order to help those users who frequently refer to the WIMS-D library cross section data of neutron-nuclear reactions. The software also helps to produce handbook of WIMS-D cross sections

  12. A graphical user interface for diagnostic radiology dosimetry using Monte Carlo (MCNP) simulation

    International Nuclear Information System (INIS)

    Collins, P.J.; Gorbatkov, D.; Schultz, F.W.

    2000-01-01

    Monte Carlo methods (for example, MCNP, EGGS4) are the 'gold standard' for both external and internal dosimetry in humans. These powerful simulation tools are, however, general-purpose codes and consequently do not provide a simple user interface for specific dosimetry tasks. We have developed a graphical user interface, for external radiation dosimetry (diagnostic radiology) using MCNP and an anthropomorphic mathematical phantom (Adam/Eva), which enables convenient modification and processing of the MCNP input and output files. The input form displays a colour coded, 3D representation of the phantom with a superimposed 'beam' for the required x-ray projection. The phantom can be rotated through 360 degrees and a transverse section at the level of the mid-point of the beam is also displayed. Text fields enable entry of input data (beam dimensions, source position, kVp, total filtration, focus-to-skin distance). A pull-down menu enables the user to select from 22 standard radiographic views. A standard projection can be modified, or new projection data entered if required. The input program modifies the MCNP input file and initiates processing. An output form displays the organ doses, normalised to unit skin entrance dose (with backscatter) (SED). The user can also enter the SED (calculated or measured) for a particular machine, to obtain the effective dose. To validate the program, the results for a PA Chest study (80 kVp, 2.5 mm Al total filtration) were compared with NRPB data (Jones and Wall, 1985). In conclusion, a convenient and reliable graphical user interface has been developed for MCNP, which enables dosimetry calculation for a full range of diagnostic radiological studies. (author)

  13. Easy GROMACS: A Graphical User Interface for GROMACS Molecular Dynamics Simulation Package

    Science.gov (United States)

    Dizkirici, Ayten; Tekpinar, Mustafa

    2015-03-01

    GROMACS is a widely used molecular dynamics simulation package. Since it is a command driven program, it is difficult to use this program for molecular biologists, biochemists, new graduate students and undergraduate researchers who are interested in molecular dynamics simulations. To alleviate the problem for those researchers, we wrote a graphical user interface that simplifies protein preparation for a classical molecular dynamics simulation. Our program can work with various GROMACS versions and it can perform essential analyses of GROMACS trajectories as well as protein preparation. We named our open source program `Easy GROMACS'. Easy GROMACS can give researchers more time for scientific research instead of dealing with technical intricacies.

  14. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    Science.gov (United States)

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  15. A standard format and a graphical user interface for spin system specification.

    Science.gov (United States)

    Biternas, A G; Charnock, G T P; Kuprov, Ilya

    2014-03-01

    We introduce a simple and general XML format for spin system description that is the result of extensive consultations within Magnetic Resonance community and unifies under one roof all major existing spin interaction specification conventions. The format is human-readable, easy to edit and easy to parse using standard XML libraries. We also describe a graphical user interface that was designed to facilitate construction and visualization of complicated spin systems. The interface is capable of generating input files for several popular spin dynamics simulation packages. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite.

    Science.gov (United States)

    Adolf-Bryfogle, Jared; Dunbrack, Roland L

    2013-01-01

    The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for scientists with little computational or programming experience. To that end, we have created a Graphical User Interface (GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.

  17. Three-dimensional magnetic engineering: The programs magnus and epilog

    Science.gov (United States)

    Fan, Mingwu; Pissanetzky, Sergio

    1988-10-01

    We present the post-processor EPILOG for the well established finite element program MAGNUS for three-dimensional magnetic engineering. MAGNUS solves problems of magnetostatics with nonlinear magnetic materials, permanent magnets and electric currents, for any 3-D geometry. The two-scalar-potentials formulation of magnetostatics used by MAGNUS combines numerical accuracy and computational efficiency, and is considered state of the art. The well known program KUBIK is used as a pre-processor to describe the geometry and finite element mesh. KUBIK is highly interactive and allows the user to effectively control all geometric details. The needs of magnetic engineers, however, go far beyond the simple availability of a mathematical solution. Once the solution has been obtained by MAGNUS in the form of a continuous magnetic scalar potential function defined at every point in the solution domain, those needs are met by EPILOG. EPILOG is command operated. Commands are independent of each other and can be used in any order, or not used at all. The purpose of each command is to use the solution for the calculation of a derived quantity or the production of a plot or table. The following derived quantities can be obtained: the magnetic energy in specific regions, the magnetic force on specified conductors in space, the magnetic torque on specified conductors, the magnetic flux across a given surface in space, the inductance of a circuit, and a variety of line integrals for specified lines in space. A useful facility is the automatic calculation of harmonic multipoles averaged along the beam direction for accelerator magnets, essential for end analysis and the integral effect of the magnetic field on the beam. Graphical facilities include color plots of the shapes of the conductors, the geometry, field lines and surfaces of constant magnetic scalar potential in specified regions of space. EPILOG produces a device independent graphical metafile, which can be seen on any device

  18. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  19. FIRINPC and FIRACPC graphics post-processor support user's guide and programmer's reference

    International Nuclear Information System (INIS)

    Hensel, E.

    1992-03-01

    FIRIN is a computer program used by DOE fire protection engineers to simulate hypothetical fire accidents in compartments at DOE facilities. The FIRIN code is typically used in conjunction with a ventilation system code such as FIRAC, which models the impact of the fire compartment upon the rest of the system. The code described here, FIRINPC is a PC based implementation of the full mainframe code FIRIN. In addition, FIRINPC contains graphics support for monitoring the progress of the simulation during execution and for reviewing the complete results of the simulation upon completion of the run. This document describes how to install, test, and subsequently use the code FIRINPC, and addresses differences in usage between the PC version of the code and its mainframe predecessor. The PC version contains all of the modeling capabilities of the earlier version, with additional graphics support. This user's guide is a supplement to the original FIRIN report published by the NRC. FIRAC is a computer program used by DOE fire protection engineers to simulate the transient response of complete ventilation system to fire induced transients. FIRAC has the ability to use the FIRIN code as the driving function or source term for the ventilation system response. The current version of FIRAC does not contain interactive graphics capabilities. A third program, called POST, is made available for reviewing the results of a previous FIRIN or FIRAC simulation, without having to recompute the numerical simulation. POST uses the output data files created by FIRINPC and FIRACPC to avoid recomputation

  20. Design Program in Graphic User Interface Environment for Automobile ER Devices

    Science.gov (United States)

    Lim, S. C.; Park, J. S.; Sohn, J. W.; Choi, S. B.

    This work presents a design and analysis program for vehicle devices utilizing an electrorheological (ER) fluid. The program is operated in graphic user interface (GUI) environment and the initial window is consisted of four subprogram modules which are related to ER shock absorber, ER seat damper, ER engine mount, and ER anti-lock brake system (ABS), respectively. In order to execute each module, both material properties and design parameters are to be chosen by the user. Then, the output display window shows the field-dependent performance characteristics to be considered as design criteria. In addition, control performances of the vehicle system equipped with ER devices are displayed in time and frequency domain. In order to demonstrate the effectiveness of the proposed program, ER shock absorber and ER ABS are designed and manufactured and their performance characteristics are evaluated.

  1. Evaluation of cardiac signals using discrete wavelet transform with MATLAB graphical user interface.

    Science.gov (United States)

    John, Agnes Aruna; Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Sethuraman, Balasubramanian

    2015-01-01

    To process the electrocardiogram (ECG) signals using MATLAB-based graphical user interface (GUI) and to classify the signals based on heart rate. The subject condition was identified using R-peak detection based on discrete wavelet transform followed by a Bayes classifier that classifies the ECG signals. The GUI was designed to display the ECG signal plot. Obtained from MIT database 18 patients had normal heart rate and 9 patients had abnormal heart rate; 14.81% of the patients suffered from tachycardia and 18.52% of the patients have bradycardia. The proposed GUI display was found useful to analyze the digitized ECG signal by a non-technical user and may help in diagnostics. Further improvement can be done by employing field programmable gate array for the real time processing of cardiac signals. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  2. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  3. HIV Therapy Simulator: a graphical user interface for comparing the effectiveness of novel therapy regimens.

    Science.gov (United States)

    Lim, Huat Chye; Curlin, Marcel E; Mittler, John E

    2011-11-01

    Computer simulation models can be useful in exploring the efficacy of HIV therapy regimens in preventing the evolution of drug-resistant viruses. Current modeling programs, however, were designed by researchers with expertise in computational biology, limiting their accessibility to those who might lack such a background. We have developed a user-friendly graphical program, HIV Therapy Simulator (HIVSIM), that is accessible to non-technical users. The program allows clinicians and researchers to explore the effectiveness of various therapeutic strategies, such as structured treatment interruptions, booster therapies and induction-maintenance therapies. We anticipate that HIVSIM will be useful for evaluating novel drug-based treatment concepts in clinical research, and as an educational tool. HIV Therapy Simulator is freely available for Mac OS and Windows at http://sites.google.com/site/hivsimulator/. jmittler@uw.edu. Supplementary data are available at Bioinformatics online.

  4. Development of Point Kernel Shielding Analysis Computer Program Implementing Recent Nuclear Data and Graphic User Interfaces

    International Nuclear Information System (INIS)

    Kang, Sang Ho; Lee, Seung Gi; Chung, Chan Young; Lee, Choon Sik; Lee, Jai Ki

    2001-01-01

    In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShield utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc

  5. QE::GUI – A Graphical User Interface for Quality Estimation

    Directory of Open Access Journals (Sweden)

    Avramidis Eleftherios

    2017-10-01

    Full Text Available Despite its wide applicability, Quality Estimation (QE of Machine Translation (MT poses a difficult entry barrier since there are no open source tools with a graphical user interface (GUI. Here we present a tool in this direction by connecting the back-end of the QE decision-making mechanism with a web-based GUI. The interface allows the user to post requests to the QE engine and get a visual response with the results. Additionally we provide pre-trained QE models for easier launching of the app. The tool is written in Python so that it can leverage the rich natural language processing capabilities of the popular dynamic programming language, which is at the same time supported by top web-server environments.

  6. A distributed, graphical user interface based, computer control system for atomic physics experiments

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  7. Graphical user interface for input output characterization of single variable and multivariable highly nonlinear systems

    Directory of Open Access Journals (Sweden)

    Shahrukh Adnan Khan M. D.

    2017-01-01

    Full Text Available This paper presents a Graphical User Interface (GUI software utility for the input/output characterization of single variable and multivariable nonlinear systems by obtaining the sinusoidal input describing function (SIDF of the plant. The software utility is developed on MATLAB R2011a environment. The developed GUI holds no restriction on the nonlinearity type, arrangement and system order; provided that output(s of the system is obtainable either though simulation or experiments. An insight to the GUI and its features are presented in this paper and example problems from both single variable and multivariable cases are demonstrated. The formulation of input/output behavior of the system is discussed and the nucleus of the MATLAB command underlying the user interface has been outlined. Some of the industries that would benefit from this software utility includes but not limited to aerospace, defense technology, robotics and automotive.

  8. Theorema 2.0: A Graphical User Interface for a Mathematical Assistant System

    Directory of Open Access Journals (Sweden)

    Wolfgang Windsteiger

    2013-07-01

    Full Text Available Theorema 2.0 stands for a re-design including a complete re-implementation of the Theorema system, which was originally designed, developed, and implemented by Bruno Buchberger and his Theorema group at RISC. In this paper, we present the first prototype of a graphical user interface (GUI for the new system. It heavily relies on powerful interactive capabilities introduced in recent releases of the underlying Mathematica system, most importantly the possibility of having dynamic objects connected to interface elements like sliders, menus, check-boxes, radio-buttons and the like. All these features are fully integrated into the Mathematica programming environment and allow the implementation of a modern user interface.

  9. Graphical user interface for trace 3-D incorporating some expert system type features

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.

    1992-01-01

    A graphical user interface (GUI) has been developed for the beam transport program TRACE 3-D. The interface was developed on the Macintosh personal computer platform and emphasizes ease of initial problem setup and definition. Each of the sixteen types of transport elements (drifts, quadrupoles, etc.) available in TRACE 3-D, as well as the initial and final (for matching) beam emittance (Twiss) parameters, are represented by piece icons on a scrollable palette. The configuration of a beamline is set up visually by selecting and dragging (via mouse) the desired piece icons to a model window. Parameter values (drift lengths, quadrupole strengths, etc.) are entered into piece data windows for each element in the beam-line. Several expert system type rules are incorporated into the piece windows. The user can select any of several units for his input, including fixed units or dynamic scaled units. For example, any length parameter can be entered as millimeters, centimeters, meters, or fractions of βλ where β and λ are determined from the particle mass, initial beam energy and radiofrequency. All input parameters have built-in default values as well as lower and upper limits. The limits are soft (the user can input any value) but are used to alert the user visually when some of his input data may have impractical consequences. Examples of this include specifying a PMQ which requires an extremely high remnant field, or a RFQ cell with a very large Kilpatrick factor. Virtually all other input is set up graphically, including the selection of matching variables and coupling parameters. (author). 6 refs., 4 figs

  10. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  11. User perception and interpretation of tornado probabilistic hazard information: Comparison of four graphical designs.

    Science.gov (United States)

    Miran, Seyed M; Ling, Chen; James, Joseph J; Gerard, Alan; Rothfusz, Lans

    2017-11-01

    Effective design for presenting severe weather information is important to reduce devastating consequences of severe weather. The Probabilistic Hazard Information (PHI) system for severe weather is being developed by NOAA National Severe Storms Laboratory (NSSL) to communicate probabilistic hazardous weather information. This study investigates the effects of four PHI graphical designs for tornado threat, namely, "four-color"," red-scale", "grayscale" and "contour", on users' perception, interpretation, and reaction to threat information. PHI is presented on either a map background or a radar background. Analysis showed that the accuracy was significantly higher and response time faster when PHI was displayed on map background as compared to radar background due to better contrast. When displayed on a radar background, "grayscale" design resulted in a higher accuracy of responses. Possibly due to familiarity, participants reported four-color design as their favorite design, which also resulted in the fastest recognition of probability levels on both backgrounds. Our study shows the importance of using intuitive color-coding and sufficient contrast in conveying probabilistic threat information via graphical design. We also found that users follows a rational perceiving-judging-feeling-and acting approach in processing probabilistic hazard information for tornado. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  13. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  14. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  15. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    Science.gov (United States)

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  16. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm.

    Science.gov (United States)

    Powell, Harold R; Battye, T Geoff G; Kontogiannis, Luke; Johnson, Owen; Leslie, Andrew G W

    2017-07-01

    X-ray crystallography is the predominant source of structural information for biological macromolecules, providing fundamental insights into biological function. The availability of robust and user-friendly software to process the collected X-ray diffraction images makes the technique accessible to a wider range of scientists. iMosflm/MOSFLM (http://www.mrc-lmb.cam.ac.uk/harry/imosflm) is a software package designed to achieve this goal. The graphical user interface (GUI) version of MOSFLM (called iMosflm) is designed to guide inexperienced users through the steps of data integration, while retaining powerful features for more experienced users. Images from almost all commercially available X-ray detectors can be handled using this software. Although the program uses only 2D profile fitting, it can readily integrate data collected in the 'fine phi-slicing' mode (in which the rotation angle per image is less than the crystal mosaic spread by a factor of at least 2), which is commonly used with modern very fast readout detectors. The GUI provides real-time feedback on the success of the indexing step and the progress of data processing. This feedback includes the ability to monitor detector and crystal parameter refinement and to display the average spot shape in different regions of the detector. Data scaling and merging tasks can be initiated directly from the interface. Using this protocol, a data set of 360 images with ∼2,000 reflections per image can be processed in ∼4 min.

  17. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  18. AGUIA: autonomous graphical user interface assembly for clinical trials semantic data services

    Directory of Open Access Journals (Sweden)

    Hayashi Yuki

    2010-10-01

    Full Text Available Abstract Background AGUIA is a front-end web application originally developed to manage clinical, demographic and biomolecular patient data collected during clinical trials at MD Anderson Cancer Center. The diversity of methods involved in patient screening and sample processing generates a variety of data types that require a resource-oriented architecture to capture the associations between the heterogeneous data elements. AGUIA uses a semantic web formalism, resource description framework (RDF, and a bottom-up design of knowledge bases that employ the S3DB tool as the starting point for the client's interface assembly. Methods The data web service, S3DB, meets the necessary requirements of generating the RDF and of explicitly distinguishing the description of the domain from its instantiation, while allowing for continuous editing of both. Furthermore, it uses an HTTP-REST protocol, has a SPARQL endpoint, and has open source availability in the public domain, which facilitates the development and dissemination of this application. However, S3DB alone does not address the issue of representing content in a form that makes sense for domain experts. Results We identified an autonomous set of descriptors, the GBox, that provides user and domain specifications for the graphical user interface. This was achieved by identifying a formalism that makes use of an RDF schema to enable the automatic assembly of graphical user interfaces in a meaningful manner while using only resources native to the client web browser (JavaScript interpreter, document object model. We defined a generalized RDF model such that changes in the graphic descriptors are automatically and immediately (locally reflected into the configuration of the client's interface application. Conclusions The design patterns identified for the GBox benefit from and reflect the specific requirements of interacting with data generated by clinical trials, and they contain clues for a general

  19. AGUIA: autonomous graphical user interface assembly for clinical trials semantic data services.

    Science.gov (United States)

    Correa, Miria C; Deus, Helena F; Vasconcelos, Ana T; Hayashi, Yuki; Ajani, Jaffer A; Patnana, Srikrishna V; Almeida, Jonas S

    2010-10-26

    AGUIA is a front-end web application originally developed to manage clinical, demographic and biomolecular patient data collected during clinical trials at MD Anderson Cancer Center. The diversity of methods involved in patient screening and sample processing generates a variety of data types that require a resource-oriented architecture to capture the associations between the heterogeneous data elements. AGUIA uses a semantic web formalism, resource description framework (RDF), and a bottom-up design of knowledge bases that employ the S3DB tool as the starting point for the client's interface assembly. The data web service, S3DB, meets the necessary requirements of generating the RDF and of explicitly distinguishing the description of the domain from its instantiation, while allowing for continuous editing of both. Furthermore, it uses an HTTP-REST protocol, has a SPARQL endpoint, and has open source availability in the public domain, which facilitates the development and dissemination of this application. However, S3DB alone does not address the issue of representing content in a form that makes sense for domain experts. We identified an autonomous set of descriptors, the GBox, that provides user and domain specifications for the graphical user interface. This was achieved by identifying a formalism that makes use of an RDF schema to enable the automatic assembly of graphical user interfaces in a meaningful manner while using only resources native to the client web browser (JavaScript interpreter, document object model). We defined a generalized RDF model such that changes in the graphic descriptors are automatically and immediately (locally) reflected into the configuration of the client's interface application. The design patterns identified for the GBox benefit from and reflect the specific requirements of interacting with data generated by clinical trials, and they contain clues for a general purpose solution to the challenge of having interfaces

  20. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Science.gov (United States)

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  1. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  2. Teaching veterinary obstetrics using three-dimensional animation technology.

    Science.gov (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  3. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  4. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  5. COREMAP: Graphical user interface for displaying reactor core data in an interactive hexagon map

    International Nuclear Information System (INIS)

    Muscat, F.L.; Derstine, K.L.

    1995-01-01

    COREMAP is a Graphical User Interface (GUI) designed to assist users read and check reactor core data from multidimensional neutronic simulation models in color and/or as text in an interactive 2D planar grid of hexagonal subassemblies. COREMAP is a complete GEODST/RUNDESC viewing tool which enables the user to access multi data set files (e.g. planes, moments, energy groups ,... ) and display up to two data sets simultaneously, one as color and the other as text. The user (1) controls color scale characteristics such as type (linear or logarithmic) and range limits, (2) controls the text display based upon conditional statements on data spelling, and value. (3) chooses zoom features such as core map size, number of rings and surrounding subassemblies, and (4) specifies the data selection for supplied popup subwindows which display a selection of data currently off-screen for a selected cell, as a list of data and/or as a graph. COREMAP includes a RUNDESC file editing tool which creates ''proposed'' Run-description files by point and click revisions to subassembly assignments in an existing EBRII Run-description file. COREMAP includes a fully automated printing option which creates high quality PostScript color or greyscale images of the core map independent of the monitor used, e.g. color prints can be generated with a session from a color or monochrome monitor. The automated PostScript output is an alternative to the xgrabsc based printing option. COREMAP includes a plotting option which creates graphs related to a selected cell. The user specifies the X and Y coordinates types (planes, moment, group, flux ,... ) and a parameter, P, when displaying several curves for the specified (X, Y) pair COREMAP supports hexagonal geometry reactor core configurations specified by: the GEODST file and binary Standard Interface Files and the RUNDESC ordering

  6. visnormsc: A Graphical User Interface to Normalize Single-cell RNA Sequencing Data.

    Science.gov (United States)

    Tang, Lijun; Zhou, Nan

    2017-12-26

    Single-cell RNA sequencing (RNA-seq) allows the analysis of gene expression with high resolution. The intrinsic defects of this promising technology imports technical noise into the single-cell RNA-seq data, increasing the difficulty of accurate downstream inference. Normalization is a crucial step in single-cell RNA-seq data pre-processing. SCnorm is an accurate and efficient method that can be used for this purpose. An R implementation of this method is currently available. On one hand, the R package possesses many excellent features from R. On the other hand, R programming ability is required, which prevents the biologists who lack the skills from learning to use it quickly. To make this method more user-friendly, we developed a graphical user interface, visnormsc, for normalization of single-cell RNA-seq data. It is implemented in Python and is freely available at https://github.com/solo7773/visnormsc . Although visnormsc is based on the existing method, it contributes to this field by offering a user-friendly alternative. The out-of-the-box and cross-platform features make visnormsc easy to learn and to use. It is expected to serve biologists by simplifying single-cell RNA-seq normalization.

  7. A novel R-package graphic user interface for the analysis of metabonomic profiles

    Directory of Open Access Journals (Sweden)

    Villa Palmira

    2009-10-01

    Full Text Available Abstract Background Analysis of the plethora of metabolites found in the NMR spectra of biological fluids or tissues requires data complexity to be simplified. We present a graphical user interface (GUI for NMR-based metabonomic analysis. The "Metabonomic Package" has been developed for metabonomics research as open-source software and uses the R statistical libraries. Results The package offers the following options: Raw 1-dimensional spectra processing: phase, baseline correction and normalization. Importing processed spectra. Including/excluding spectral ranges, optional binning and bucketing, detection and alignment of peaks. Sorting of metabolites based on their ability to discriminate, metabolite selection, and outlier identification. Multivariate unsupervised analysis: principal components analysis (PCA. Multivariate supervised analysis: partial least squares (PLS, linear discriminant analysis (LDA, k-nearest neighbor classification. Neural networks. Visualization and overlapping of spectra. Plot values of the chemical shift position for different samples. Furthermore, the "Metabonomic" GUI includes a console to enable other kinds of analyses and to take advantage of all R statistical tools. Conclusion We made complex multivariate analysis user-friendly for both experienced and novice users, which could help to expand the use of NMR-based metabonomics.

  8. SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.

    Science.gov (United States)

    Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao

    2014-08-08

    Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.

  9. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    Science.gov (United States)

    Sanchez del Rio, Manuel; Dejus, Roger J.

    1997-11-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  10. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  11. XOP: A multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, Grenoble (France); Dejus, R.J. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-09-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the users to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  12. Integrated graphical user interface for the back-end software sub-system

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.

    2001-01-01

    The ATLAS data acquisition and Event Filter prototype '-1' project was intended to produce a prototype system for evaluating candidate technologies and architectures for the final ATLAS DAQ system on the LHC accelerator at CERN. Within the prototype project, the back-end sub-system encompasses the software for configuring, controlling and monitoring the data acquisition (DAQ). The back-end sub-system includes core components and detector integration components. One of the detector integration components is the Integrated Graphical User Interface (IGUI), which is intended to give a view of the status of the DAQ system and its sub-systems (Dataflow, Event Filter and Back-end) and to allow the user (general users, such as a shift operator at a test beam or experts, in order to control and debug the DAQ system) to control its operation. The IGUI is intended to be a Status Display and a Control Interface too, so there are three groups of functional requirements: display requirements (the information to be displayed); control requirements (the actions the IGUI shall perform on the DAQ components); general requirements, applying to the general functionality of the IGUI. The constraint requirements include requirements related to the access control (shift operator or expert user). The quality requirements are related to the portability on different platforms. The IGUI has to interact with many components in a distributed environment. The following design guidelines have been considered in order to fulfil the requirements: use a modular design with easy possibility to integrate different sub-systems; use Java language for portability and powerful graphical features; use CORBA interfaces for communication with other components. The actual implementation of Back-end software components use Inter-Language Unification (ILU) for inter-process communication. Different methods of access of Java applications to ILU C++ servers have been evaluated (native methods, ILU Java support

  13. C language program analysis system (CLAS) part 1: graphical user interface (GUI)

    International Nuclear Information System (INIS)

    Bhattacharjee, A.K.; Seby, A.; Sen, Gopa; Dhodapkar, S.D.

    1994-01-01

    CLAS (C Language Program Analysis System) is a reverse engineering tool intended for use in the verification and validation (V and V) phase of software programs developed in the ANSI C language. From the source code, CLAS generates data pertaining to two conceptual models of software programs viz., Entity-Relationship (E-R) model and Control Flow Graphs (CFG) model. Browsing tools within CLAS, make use of this data, to provide different graphical views of the project. Static analysis tools have been developed earlier for analysing assembly language programs. CLAS is a continuation of this work to provide automated support in analysis of ANSI C language programs. CLAS provides an integrated Graphical User Interface (GUI) based environment under which programs can be analysed into the above mentioned models and the analysed data can be viewed using the browsing tools. The GUI of CLAS is implemented using an OPEN LOOK compliant tool kit XVIEW on Sun SPARC IPC workstation running Sun OS 4.1.1 rev. B. This report describes the GUI of CLAS. CLAS is also expected to be useful in other contexts which may involve understanding architecture/structure of already developed C language programs. Such requirements can arise while carrying out activities like code modification, parallelising etc. (author). 5 refs., 13 figs., 1 appendix

  14. Supporting geoscience with graphical-user-interface Internet tools for the Macintosh

    Science.gov (United States)

    Robin, Bernard

    1995-07-01

    This paper describes a suite of Macintosh graphical-user-interface (GUI) software programs that can be used in conjunction with the Internet to support geoscience education. These software programs allow science educators to access and retrieve a large body of resources from an increasing number of network sites, taking advantage of the intuitive, simple-to-use Macintosh operating system. With these tools, educators easily can locate, download, and exchange not only text files but also sound resources, video movie clips, and software application files from their desktop computers. Another major advantage of these software tools is that they are available at no cost and may be distributed freely. The following GUI software tools are described including examples of how they can be used in an educational setting: ∗ Eudora—an e-mail program ∗ NewsWatcher—a newsreader ∗ TurboGopher—a Gopher program ∗ Fetch—a software application for easy File Transfer Protocol (FTP) ∗ NCSA Mosaic—a worldwide hypertext browsing program. An explosive growth of online archives currently is underway as new electronic sites are being added continuously to the Internet. Many of these resources may be of interest to science educators who learn they can share not only ASCII text files, but also graphic image files, sound resources, QuickTime movie clips, and hypermedia projects with colleagues from locations around the world. These powerful, yet simple to learn GUI software tools are providing a revolution in how knowledge can be accessed, retrieved, and shared.

  15. smRithm: Graphical user interface for heart rate variability analysis.

    Science.gov (United States)

    Nara, Sanjeev; Kaur, Manvinder; Datta, Saurav

    2015-01-01

    Over the past 25 years, Heart rate variability (HRV) has become a non-invasive research and clinical tool for indirectly carrying out investigation of both cardiac and autonomic system function in both healthy and diseased. It provides valuable information about a wide range of cardiovascular disorders, pulmonary diseases, neurological diseases, etc. Its primary purpose is to access the functioning of the nervous system. The source of information for HRV analysis is the continuous beat to beat measurement of inter-beat intervals. The electrocardiography (ECG or EKG) is considered as the best way to measure inter-beat intervals. This paper proposes an open source Graphical User Interface (GUI): smRithm developed in MATLAB for HRV analysis that will apply effective techniques on the raw ECG signals to process and decompose it in a simpler manner to obtain more useful information out of signals that can be utilized for more powerful and efficient applications in the near future related to HRV.

  16. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    Science.gov (United States)

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  17. XOP: A graphical user interface for spectral calculations and x-ray optics utilities

    International Nuclear Information System (INIS)

    Dejus, R.J.; Sanchez del Rio, M.

    1996-01-01

    A graphical user interface, using the Interactive Data Language (IDL) widget toolkit, for calculation of spectral properties of synchrotron radiation sources and for interaction of x-rays with optical elements has been developed. The interface runs presently on three different computer architectures under the Unix operating system endash the Sun-OS, the HP-UX, and the DEC-Unix operating systems. The point-and-click interface is used as a driver program for a variety of codes from different authors written in different computer languages. The execution of codes for calculating synchrotron radiation from undulators, wigglers, and bending magnets is summarized. The computation of optical properties of materials and the x-ray diffraction profiles from crystals in different geometries are also discussed. The interface largely simplifies the use of these codes and may be used without prior knowledge of how to run a particular program. copyright 1996 American Institute of Physics

  18. LiTrack A Fast longitudinal phase space tracking code with graphical user interface

    CERN Document Server

    Emma, Paul

    2005-01-01

    Many linear accelerators, such as linac-based light sources and linear colliders, apply longitudinal phase space manipulations in their design, including electron bunch compression and wakefield-induced energy spread control. Several computer codes handle such issues, but most require detailed information on the transverse focusing lattice. In fact, in most linear accelerators, the transverse distributions do not significantly affect the longitudinal, and can be ignored initially. This allows the use of a fast 2D code to study longitudinal aspects without time-consuming considerations of the transverse focusing. LiTrack is based on a 15-year old code (same name) originally written by one of us (KB), which is now a MATLAB-based code with additional features, such as a graphical user interface and output plotting. The single-bunch tracking includes RF acceleration, bunch compression to 3rd order, geometric and resistive wakefields, aperture limits, synchrotron radiation, and flexible output plotting. The code w...

  19. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  20. Graphic User Interface for Monte Carlo Simulation of Ferromagnetic/Antiferromagnetic Manganite Bilayers

    Directory of Open Access Journals (Sweden)

    Hector Barco-Ríos

    2011-06-01

    Full Text Available The manganites have been widely studied because of their important properties as colossal magnetoresistance and exchange bias that are important phenomena used in many technological applications. For this reason, in this work, a study of the exchange bias effect present in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3. This study was carried out by using the Monte Carlo method and the Metropolis Algorithm. In order to make easy this study, a graphic user interface was built alloying a friendly interaction. The interface permits to control the thickness of Ferromagnetic and Antiferromagnetic layer, temperatures the magnetic field, the number of Monte Carlo steps and the exchange parameters. Results obtained reflected the influence of all of these parameters on the exchange bias and coercive fields.

  1. CCP4i2: the new graphical user interface to the CCP4 program suite.

    Science.gov (United States)

    Potterton, Liz; Agirre, Jon; Ballard, Charles; Cowtan, Kevin; Dodson, Eleanor; Evans, Phil R; Jenkins, Huw T; Keegan, Ronan; Krissinel, Eugene; Stevenson, Kyle; Lebedev, Andrey; McNicholas, Stuart J; Nicholls, Robert A; Noble, Martin; Pannu, Navraj S; Roth, Christian; Sheldrick, George; Skubak, Pavol; Turkenburg, Johan; Uski, Ville; von Delft, Frank; Waterman, David; Wilson, Keith; Winn, Martyn; Wojdyr, Marcin

    2018-02-01

    The CCP4 (Collaborative Computational Project, Number 4) software suite for macromolecular structure determination by X-ray crystallography groups brings together many programs and libraries that, by means of well established conventions, interoperate effectively without adhering to strict design guidelines. Because of this inherent flexibility, users are often presented with diverse, even divergent, choices for solving every type of problem. Recently, CCP4 introduced CCP4i2, a modern graphical interface designed to help structural biologists to navigate the process of structure determination, with an emphasis on pipelining and the streamlined presentation of results. In addition, CCP4i2 provides a framework for writing structure-solution scripts that can be built up incrementally to create increasingly automatic procedures.

  2. USER-DEFINED CONTENT IN A MODERN LEARNING ENVIRONMENT FOR ENGINEERING GRAPHICS

    Directory of Open Access Journals (Sweden)

    DOLGA Lia

    2008-07-01

    Full Text Available New pedagogic methods are developed during the current “knowledge-based era”. They replace the “taught lesson” by collaboration, reflection and iteration; in this context, the internet should not remain only a convenient and cheep (if not free mechanism for delivering traditional materials online. As the amount of available information continues to enlarge and diversify, the skills needed to access and process this information become quickly outdated. The ability to use new technologies and a wide range of multimedia tools will define success. This paper outlines the important role played by the user-generated content in defining new pedagogical approaches to learning in the context of online communities. Graphical subjects, like “Computer Graphics” and “Computer Aided Design” require an active participation of the student. Students-led lessons and students generated content give consistency and aid value to the educational process. The term of “teaching” transforms in “studying”.

  3. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  4. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    Science.gov (United States)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  5. Open-Source Assisted Laboratory Automation through Graphical User Interfaces and 3D Printers: Application to Equipment Hyphenation for Higher-Order Data Generation.

    Science.gov (United States)

    Siano, Gabriel G; Montemurro, Milagros; Alcaráz, Mirta R; Goicoechea, Héctor C

    2017-10-17

    Higher-order data generation implies some automation challenges, which are mainly related to the hidden programming languages and electronic details of the equipment. When techniques and/or equipment hyphenation are the key to obtaining higher-order data, the required simultaneous control of them demands funds for new hardware, software, and licenses, in addition to very skilled operators. In this work, we present Design of Inputs-Outputs with Sikuli (DIOS), a free and open-source code program that provides a general framework for the design of automated experimental procedures without prior knowledge of programming or electronics. Basically, instruments and devices are considered as nodes in a network, and every node is associated both with physical and virtual inputs and outputs. Virtual components, such as graphical user interfaces (GUIs) of equipment, are handled by means of image recognition tools provided by Sikuli scripting language, while handling of their physical counterparts is achieved using an adapted open-source three-dimensional (3D) printer. Two previously reported experiments of our research group, related to fluorescence matrices derived from kinetics and high-performance liquid chromatography, were adapted to be carried out in a more automated fashion. Satisfactory results, in terms of analytical performance, were obtained. Similarly, advantages derived from open-source tools assistance could be appreciated, mainly in terms of lesser intervention of operators and cost savings.

  6. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  7. JaxoDraw: A graphical user interface for drawing Feynman diagrams

    Science.gov (United States)

    Binosi, D.; Theußl, L.

    2004-08-01

    JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used for later sessions. One of JaxoDraw's main features is the possibility to create ? code that may be used to generate graphics output, thus combining the powers of ? with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language. Program summaryTitle of program: JaxoDraw Catalogue identifier: ADUA Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar gzip file Operating system: Any Java-enabled platform, tested on Linux, Windows ME, XP, Mac OS X Programming language used: Java License: GPL Nature of problem: Existing methods for drawing Feynman diagrams usually require some 'hard-coding' in one or the other programming or scripting language. It is not very convenient and often time consuming, to generate relatively simple diagrams. Method of solution: A program is provided that allows for the interactive drawing of Feynman diagrams with a graphical user interface. The program is easy to learn and use, produces high quality output in several formats and runs on any operating system where a Java Runtime Environment is available. Number of bytes in distributed program, including test data: 2 117 863 Number of lines in distributed program, including test data: 60 000 Restrictions: Certain operations (like internal latex compilation, Postscript preview) require the execution of external commands that might not work on untested operating systems. Typical running time: As an interactive program, the running time depends on the complexity

  8. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  9. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  10. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  11. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  12. A Student-Friendly Graphical User Interface to Extract Data from Remote Sensing Level-2 Products.

    Science.gov (United States)

    Bernardello, R.

    2016-02-01

    Remote sensing era has provided an unprecedented amount of publicly available data. The United States National Aeronautics and Space Administration Goddard Space Flight Center (NASA-GSFC) has achieved remarkable results in the distribution of these data to the scientific community through the OceanColor web page (http://oceancolor.gsfc.nasa.gov/). However, the access to these data, is not straightforward and needs a certain investment of time in learning the use of existing software. Satellite sensors acquire raw data that are processed through several steps towards a format usable by the scientific community. These products are distributed in Hierarchical Data Format (HDF) which often represents the first obstacle for students, teachers and scientists not used to deal with extensive matrices. We present here SATellite data PROcessing (SATPRO) a newly developed Graphical User Interface (GUI) designed in MATLAB environment to provide an easy, immediate yet reliable way to select and extract Level-2 data from NASA SeaWIFS and MODIS-Aqua databases for oceanic surface temperature and chlorophyll. Since no previous experience with MATLAB is required, SATPRO allows the user to explore the available dataset without investing any software-learning time. SATPRO is an ideal tool to introduce undergraduate students to the use of remote sensing data in oceanography and can also be useful for research projects at the graduate level.

  13. FUMACS-G, a Graphical User Interface for FUMACS Code Package

    International Nuclear Information System (INIS)

    Trontl, K.; Gergeta, K.; Smuc, T.

    2002-01-01

    The FUMACS (FUel MAnagement Code System) code package has been developed at Rudjer Boskovic Institute in year 1991 with the aim to enable in-core fuel management analysis of the NPP Krsko core for nominal conditions. Due to modernization and uprating of the NPP Krsko core in year 2000 and the original 1991 FUMACS inadequacy in simulating NPP Krsko core in these uprated conditions, in the year 2001 a new version of FUMACS code package has been developed - FUMACS/FEEC 2001. The code package upgrading procedure consisted of two main aspects: modifications of master files, libraries and codes necessary for proper modeling of the uprated NPP Krsko core and development of the code package structure suitable for Windows-32 environment. The latter included upgrading the source of the code from FORTRAN F77 to F90 level and development of a graphical, user-friendly interface with fully integrated electronic help system. Since the original FUMACS code package has been developed as a DOS based application, running of the code package on a Windows operating system proved to be rather inefficient and lacking in advantages of a standard Windows application. Therefore, FUMACS-G has been developed as a user friendly environment for handling off all project input and output files, as well as for easier overall project management. The design of FUMACS-G shell has been based on Microsoft application design guidelines. (author)

  14. Visualization for Hyper-Heuristics. Front-End Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kroenung, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.

  15. Modeling three-dimensional interaction tasks for desktop virtual reality

    NARCIS (Netherlands)

    Liu, L.

    2011-01-01

    A virtual environment is an interactive, head-referenced computer display that gives a user the illusion of presence in real or imaginary worlds. Two most significant differences between a virtual environment and a more traditional interactive 3D computer graphics system are the extent of the user's

  16. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  17. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  18. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  19. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  20. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  1. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  2. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  3. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  4. Position and Orientation Tracking System graphical user interface. CRADA final report

    International Nuclear Information System (INIS)

    Barry, R.E.; Armstrong, G.A.; Burks, B.L.

    1997-01-01

    Under the Department of Energy's Robotics Technology Development Program (RTDP) Tank Waste Retrieval (TWR) program, a major effort is under way to develop technology for remediating the waste in underground storage tanks that contain radioactive and hazardous waste. A large part of the program's effort has gone towards development of remotely operable robotics equipment, including the Houdini Vehicle and the Position and Orientation Tracking System (POTS). Since planned operation of this equipment is to be completely remote, a significant effort is needed to ensure that operators have sufficient system information to operate the equipment efficiently and safely. ORNL developed POTS and RedZone Robotics, Inc. developed Houdini which can be operated together to provide both position and orientation descriptions of the Houdini vehicle, relative to a world reference frame, while operating inside an underground storage tank. The Houdini vehicle has been outfitted with an optical detection system that houses infrared detectors. The infrared detectors are part of the POTS tracking system. The sensors provide a set of timing pulses to the POTS control computer whenever a laser beam from one of the four POTS laser scanners strikes a detector. Using the pointing angle information from each POTS laser scanners, the POTS control computer is able to compute the pose of the Houdini vehicle at a rate of approximately 25 Hz. This information, along with the orientation of the Houdini's Schilling Titan II robot arm, is used to present the pose information to the operator in a 3-D graphical user interface using software that has been developed by this Cooperative Research and Development Agreement (CRADA). The graphical display presents the data to the operator in a format that is readily understood. The equipment operators are able to use the information in real-time to enhance the operator's ability to safely and efficiently control the remotely-operated vehicle

  5. Glenn Heat Transfer Simulation and Solver Graphical User Interface: Development and Testing

    Science.gov (United States)

    Kardamis, Joseph R.

    2004-01-01

    this process with a graphical user interface (GUI) that combines the functionality of all the executables along with adding some new functionality, such as residuals graphing and boundary conditions creation. Upon my beginning here at Glenn, many parts of the GUI, which was developed in Java, were nonfunctional. There were also issues with cross-platforming, as systems in the branch were transitioning from Silicon Graphics (SGI) machines to Linux machines. My goals this summer are to finish the parts of the GUI that are not yet completed, fix parts that did not work correctly, expand the functionality to include other useful features, such as grid surface highlighting, and make the system compatible with both Linux and SGI. I will also be heavily testing the system and providing sufficient documentation on how to use the GUI, as no such documentation existed previously.

  6. More than Just a Pretty (Inter) Face: The Role of the Graphical User Interface in Engaging Elearners.

    Science.gov (United States)

    Metros, Susan E.; Hedberg, John G.

    2002-01-01

    Examines the relationship between the graphical user interface (GUI) and the cognitive demands placed on the learner in eLearning (electronic learning) environments. Describes ways educators can design appropriate interfaces to facilitate meaningful interactions with educational content; and examines learner engagement and engagement theory using…

  7. An Evaluation of the Interactive Query Expansion in an Online Library Catalogue with a Graphical User Interface.

    Science.gov (United States)

    Hancock-Beaulieu, Micheline; And Others

    1995-01-01

    An online library catalog was used to evaluate an interactive query expansion facility based on relevance feedback for the Okapi, probabilistic, term weighting, retrieval system. A graphical user interface allowed searchers to select candidate terms extracted from relevant retrieved items to reformulate queries. Results suggested that the…

  8. The R Commander: A Basic-Statistics Graphical User Interface to R

    Directory of Open Access Journals (Sweden)

    John Fox

    2005-08-01

    Full Text Available Unlike S-PLUS, R does not incorporate a statistical graphical user interface (GUI, but it does include tools for building GUIs. Based on the tcltk package (which furnishes an interface to the Tcl/Tk GUI toolkit, the Rcmdr package provides a basic-statistics graphical user interface to R called the "R Commander." The design objectives of the R Commander were as follows: to support, through an easy-to-use, extensible, cross-platform GUI, the statistical functionality required for a basic-statistics course (though its current functionality has grown to include support for linear and generalized-linear models, and other more advanced features; to make it relatively difficult to do unreasonable things; and to render visible the relationship between choices made in the GUI and the R commands that they generate. The R Commander uses a simple and familiar menu/dialog-box interface. Top-level menus include File, Edit, Data, Statistics, Graphs, Models, Distributions, Tools, and Help, with the complete menu tree given in the paper. Each dialog box includes a Help button, which leads to a relevant help page. Menu and dialog-box selections generate R commands, which are recorded in a script window and are echoed, along with output, to an output window. The script window also provides the ability to edit, enter, and re-execute commands. Error messages, warnings, and some other information appear in a separate messages window. Data sets in the R Commander are simply R data frames, and can be read from attached packages or imported from files. Although several data frames may reside in memory, only one is "active" at any given time. There may also be an active statistical model (e.g., an R lm or glm ob ject. The purpose of this paper is to introduce and describe the use of the R Commander GUI; to describe the design and development of the R Commander; and to explain how the R Commander GUI can be extended. The second part of the paper (following a brief

  9. Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface

    Science.gov (United States)

    Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee

    2011-01-01

    The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission

  10. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  11. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  12. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  13. Three dimensional imaging in cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Torizuka, Kanji; Ishii, Yasushi; Yonekura, Yoshiharu; Yamamoto, Kazutaka; Tamaki, Takeyoshi

    1981-01-01

    Methods to obtain three dimensional images of the heart were reviewed. Gated three dimensional display reconstructed from images using bidirectional collimator, was a useful method to detect akinesis of the heart wall. Tomographic observation of the heart can be carried out by a pinhole collimator to image ischemia with high sensitivity. However the focusing plane must be carefully selected to prevent false positives. In the case of emission CT (ECT), utilization of positron emitters gave a quantitative image without correction, whereas single photon ECT needed the correction due to the absorption of γ-ray. Though the reliability of the images by ECT was high, the time required for data acquisition was much longer than that by a 7 pinhole or bidirectional collimator. (Nakanishi, T.)

  14. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  15. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  16. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  17. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  18. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  19. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  20. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  1. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  2. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  3. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).

    Science.gov (United States)

    Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).

  4. ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST

    Science.gov (United States)

    Winston, Richard B.

    2009-01-01

    ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.

  5. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  6. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  7. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  8. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  9. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  10. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  11. SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Winston, Richard B.; Voss, Clifford I.

    2004-01-01

    This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned

  12. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  13. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  14. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  15. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  16. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  17. Segmentation and analysis of mouse pituitary cells with graphic user interface (GUI)

    Science.gov (United States)

    González, Erika; Medina, Lucía.; Hautefeuille, Mathieu; Fiordelisio, Tatiana

    2018-02-01

    In this work we present a method to perform pituitary cell segmentation in image stacks acquired by fluorescence microscopy from pituitary slice preparations. Although there exist many procedures developed to achieve cell segmentation tasks, they are generally based on the edge detection and require high resolution images. However in the biological preparations that we worked on, the cells are not well defined as experts identify their intracellular calcium activity due to fluorescence intensity changes in different regions over time. This intensity changes were associated with time series over regions, and because they present a particular behavior they were used into a classification procedure in order to perform cell segmentation. Two logistic regression classifiers were implemented for the time series classification task using as features the area under the curve and skewness in the first classifier and skewness and kurtosis in the second classifier. Once we have found both decision boundaries in two different feature spaces by training using 120 time series, the decision boundaries were tested over 12 image stacks through a python graphical user interface (GUI), generating binary images where white pixels correspond to cells and the black ones to background. Results show that area-skewness classifier reduces the time an expert dedicates in locating cells by up to 75% in some stacks versus a 92% for the kurtosis-skewness classifier, this evaluated on the number of regions the method found. Due to the promising results, we expect that this method will be improved adding more relevant features to the classifier.

  18. Graphical user interfaces for teaching and design of GRIN lenses in optical interconnections

    International Nuclear Information System (INIS)

    Gómez-Varela, A I; Bao-Varela, C

    2015-01-01

    The use of graphical user interfaces (GUIs) enables the implementation of practical teaching methodologies to make the comprehension of a given subject easier. GUIs have become common tools in science and engineering education, where very often, the practical implementation of experiences in a laboratory involves much equipment and many people; they are an efficient and inexpensive solution to the lack of resources. The aim of this work is to provide primarily physics and engineering students with a series of GUIs to teach some configurations in optical communications using gradient-index (GRIN) lenses. The reported GUIs are intended to perform a complementary role in education as part of a ‘virtual lab’ to supplement theoretical and practical sessions and to reinforce the knowledge acquired by the students. In this regard, a series of GUIs to teach and research the implementation of GRIN lenses in optical communications applications (including a GRIN light deflector and a beam-size controller, a GRIN fibre lens for fibre-coupling purposes, planar interconnectors, and an anamorphic self-focusing lens to correct astigmatism in laser diodes) was designed using the environment GUIDE developed by MATLAB. Numerical examples using available commercial GRIN lens parameter values are presented. (paper)

  19. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations.

    Science.gov (United States)

    Franck, D; de Carlan, L; Pierrat, N; Broggio, D; Lamart, S

    2007-01-01

    Although great efforts have been made to improve the physical phantoms used to calibrate in vivo measurement systems, these phantoms represent a single average counting geometry and usually contain a uniform distribution of the radionuclide over the tissue substitute. As a matter of fact, significant corrections must be made to phantom-based calibration factors in order to obtain absolute calibration efficiencies applicable to a given individual. The importance of these corrections is particularly crucial when considering in vivo measurements of low energy photons emitted by radionuclides deposited in the lung such as actinides. Thus, it was desirable to develop a method for calibrating in vivo measurement systems that is more sensitive to these types of variability. Previous works have demonstrated the possibility of such a calibration using the Monte Carlo technique. Our research programme extended such investigations to the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography. New procedures based on a new graphical user interface (GUI) for development of computational phantoms for Monte Carlo calculations and data analysis are being developed to take advantage of recent progress in image-processing codes. This paper presents the principal features of this new GUI. Results of calculations and comparison with experimental data are also presented and discussed in this work.

  20. Graphical user interface for a robotic workstation in a surgical environment.

    Science.gov (United States)

    Bielski, A; Lohmann, C P; Maier, M; Zapp, D; Nasseri, M A

    2016-08-01

    Surgery using a robotic system has proven to have significant potential but is still a highly challenging task for the surgeon. An eye surgery assistant has been developed to eliminate the problem of tremor caused by human motions endangering the outcome of ophthalmic surgery. In order to exploit the full potential of the robot and improve the workflow of the surgeon, providing the ability to change control parameters live in the system as well as the ability to connect additional ancillary systems is necessary. Additionally the surgeon should always be able to get an overview over the status of all systems with a quick glance. Therefore a workstation has been built. The contribution of this paper is the design and the implementation of an intuitive graphical user interface for this workstation. The interface has been designed with feedback from surgeons and technical staff in order to ensure its usability in a surgical environment. Furthermore, the system was designed with the intent of supporting additional systems with minimal additional effort.

  1. MDTRA: a molecular dynamics trajectory analyzer with a graphical user interface.

    Science.gov (United States)

    Popov, Alexander V; Vorobjev, Yury N; Zharkov, Dmitry O

    2013-02-05

    Most of existing software for analysis of molecular dynamics (MD) simulation results is based on command-line, script-guided processes that require the researchers to have an idea about programming language constructions used, often applied to the one and only product. Here, we describe an open-source cross-platform program, MD Trajectory Reader and Analyzer (MDTRA), that performs a large number of MD analysis tasks assisted with a graphical user interface. The program has been developed to facilitate the process of search and visualization of results. MDTRA can handle trajectories as sets of protein data bank files and presents tools and guidelines to convert some other trajectory formats into such sets. The parameters analyzed by MDTRA include interatomic distances, angles, dihedral angles, angles between planes, one-dimensional and two-dimensional root-mean-square deviation, solvent-accessible area, and so on. As an example of using the program, we describe the application of MDTRA to analyze the MD of formamidopyrimidine-DNA glycosylase, a DNA repair enzyme from Escherichia coli. Copyright © 2012 Wiley Periodicals, Inc.

  2. Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Science.gov (United States)

    Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.

    2009-01-01

    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.

  3. Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  4. LiTrack: A Fast Longitudinal Phase Space Tracking Code with Graphical User Interface

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    2005-01-01

    Linac-based light sources and linear colliders typically apply longitudinal phase space manipulations in their design, including electron bunch compression and wakefield-induced energy spread control. Several computer codes handle such issues, but most also require detailed information on the transverse focusing lattice. In fact, in most linear accelerators, the transverse distributions do not significantly affect the longitudinal, and can be ignored initially. This allows the use of a fast 2D code to study longitudinal aspects without time-consuming considerations of the transverse focusing. LiTrack is based on a 15-year old code (same name) originally written by one of us (KB), which is now a Matlab [1] code with additional features, such as graphical user interface, prompt output plotting, and functional call within a script. This single-bunch tracking code includes RF acceleration, bunch compression to 3rd order, geometric and resistive short-range wakefields, aperture limits, synchrotron radiation, and flexible output plotting. The code was used to design both the LCLS [2] and the SPPS [3] projects at SLAC and typically runs 10 5 particles in < 1 minute. We describe the features, show some examples, and provide free access to the code

  5. Towards a responsive and interactive graphical user interface for neutron data reduction and visualization

    International Nuclear Information System (INIS)

    Chatterjee, Alok; Worlton, T.; Hammonds, J.; Loong, C.K.; Mikkelson, D.; Mikkelson, R.; Chen, D.

    2001-01-01

    An Integrated Spectral Analysis Workbench, ISAW has been developed at IPNS with the goal of providing a flexible and powerful tool to visualize and analyze neutron scattering time-of-flight data. The software, written in Java, is platform independent, object oriented and modular, making it easier to maintain and add features. The graphical user interface (GUI) for ISAW allows intuitive and interactive loading and manipulation of multiple spectra from different 'runs'. ISAW provides multiple displays of the spectra in a Runfile' and most of the functions can be performed through the GUI menu bar as well as through command scripts. All displays are simultaneously updated when the data is changed using the Observable-observer object-model pattern. All displays are observers of the Dataset (observable) and respond to changes or selections in it simultaneously. A 'tree' display of the spectra in run files is provided for a detailed view of detector elements and easy selection of spectra. The operations menu is instrument sensitive so that it displays the appropriate set of operators accordingly. Automatic menu generation is made possible by the ability of the DataSet objects to furnish a list of operations contained in the particular DataSet selected at the time the menu bar is accessed. The transformed and corrected data can be saved to a disk in different file formats for further analyses (e.g., GSAS for structure refinement). (author)

  6. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    Science.gov (United States)

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  7. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    Science.gov (United States)

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  8. SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface

    Science.gov (United States)

    Sebald, James; Macfarlane, Joseph; Golovkin, Igor

    2017-10-01

    SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.

  9. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    Science.gov (United States)

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  10. Three-Dimensional Computer Simulation as an Important Competence Based Aspect of a Modern Mining Professional

    Science.gov (United States)

    Aksenova, Olesya; Pachkina, Anna

    2017-11-01

    The article deals with the problem of necessity of educational process transformation to meet the requirements of modern miming industry; cooperative developing of new educational programs and implementation of educational process taking into account modern manufacturability. The paper proves the idea of introduction into mining professionals learning process studying of three-dimensional models of surface technological complex, ore reserves and underground digging complex as well as creating these models in different graphic editors and working with the information analysis model obtained on the basis of these three-dimensional models. The technological process of manless coal mining at the premises of the mine Polysaevskaya controlled by the information analysis models built on the basis of three-dimensional models of individual objects and technological process as a whole, and at the same time requiring the staff able to use the programs of three-dimensional positioning in the miners and equipment global frame of reference is covered.

  11. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  12. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  13. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  14. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation

    Science.gov (United States)

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline

  15. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline

  16. Three-dimensional viewing and dosimetric calculations of Au-198 implants of the prostate

    International Nuclear Information System (INIS)

    Avizonis, V.N.; Anderson, K.M.; Jani, S.K.; Hussey, D.H.

    1991-01-01

    Dose gradients for brachytherapy vary considerably in three dimensions, which complicates conventional two-dimensional dosimetry. Recent developments in computer graphics technology have enabled visualization of anatomy and radiation doses in three dimensions. The objective of this paper is to develop a three-dimensional viewing and dosimetry program for brachytherapy and to test this system in phantoms and in patients undergoing Au-198 implants in the prostate. Three-dimensional computer algorithms for the author's Silicon Graphics supercomputing workstation were developed, tested, and modified on the basis of studies in phantoms and patients. Studies were performed on phantoms of known dimensions and gold seeds in known locations to assess the accuracy of volume reconstruction, seed placement, and isodose distribution. Isodose curves generated with the three-dimensional system were compared with those generated by a Theratronics Treatment Planning Computer using conventional methods. Twenty patients with permanent Au-198 interstitial implants in the prostate were similarly studied

  17. Three-dimensional computer aided design system for plant layout

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kiguchi, Takashi; Tokumasu, Shinji; Kumamoto, Kenjiro.

    1986-01-01

    The CAD system for three-dimensional plant layout planning, with which the layout of pipings, cable trays, air conditioning ducts and so on in nuclear power plants can be planned and designed effectively in a short period is reported. This system comprises the automatic routing system by storing the rich experience and know-how of designers in a computer as the knowledge, and deciding the layout automatically following the predetermined sequence by using these, the interactive layout system for reviewing the routing results from higher level and modifying to the optimum layout, the layout evaluation system for synthetically evaluating the layout from the viewpoint of the operability such as checkup and maintenance, and the data base system which enables these effective planning and design. In this report, the total constitution of this system and the technical features and effects of the individual subsystems are outlined. In this CAD system for three-dimensional plant layout planning, knowledge engineering, CAD/CAM, computer graphics and other latest technology were introduced, accordingly by applying this system to plant design, the design can be performed quickly, various case studies can be carried out at planning stage, and systematic and optimum layout planning becomes possible. (Kako, I.)

  18. The Bio Bay Game: Three-Dimensional Learning of Biomagnification.

    Science.gov (United States)

    Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara

    2016-01-01

    Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.

  19. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    Science.gov (United States)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  20. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  1. Improvements in PIE-techniques at the IFE hot-laboratory. 'Neutron radiography, three dimensional profilometry and image compilation of PIE data for visualization in an image based user-interface'

    International Nuclear Information System (INIS)

    Jenssen, H.K.; Oberlaender, B.C.

    2002-01-01

    The PIE-techniques used at IFE are continuously improved through upgrading of equipment and methods, e.g. image handling techniques and components utilized in data acquisition and editing techniques. To improve the quality or spatial resolution of neutron radiographs the normal technique was complemented with another method, i.e. the dysprosium foil/X ray film technique is supplemented with a track-etch recorder consisting of a cellulose nitrate film. For further examination of the neutron radiographs the cellulose nitrate film can be digitized to allow electronic image treatment. Promising results were obtained with this technique on neutron radiographs, namely higher spatial resolution compared to the normal technique, high contrast and sharp neutron radiography images. The traditional uniaxial profilometry of fuel rods was modified so that diameter/bow measurements are possible at several angular orientations during one acquisition sequence. This extension is very useful in several ways, for instance the built-in data symmetry of the method is used to check the correctness of the measurement results. Diameter and bow measurements give information of cladding irregularities and fuel rod profiles. Implementation of electronic image handling techniques is particularly useful in PIE when data are collected and compiled in an image file. Inspection and examination of the file contents (examination results) are possible through an ideal user-interface, i.e. Adobe Photoshop software with navigator possibilities. Examples incorporating PIE data acquired from neutron radiography, visual inspection and ceramography are utilized for illustration of the user-interface and some of its possibilities. (author)

  2. Three-dimensional CT of the mandible

    International Nuclear Information System (INIS)

    Zinreich, S.J.; Price, J.C.; Wang, H.; Ahn, H.S.; Kashima, H.

    1988-01-01

    Seventeen patients with mandibular oblation for facial neoplasia, primary neoplasm, and trauma were evaluated with CT and three-dimensional CT. In eight of these patients, a computerized acrylic model was generated for preoperative planning and postoperative reconstruction. The ramus and body of the mandible were reconstructed with mirror image and fusion techniques. Reconstructions of the anterior mandible were generated from models including the midface, skull based, and residual mandibular fragments. The results are preliminary; however, the authors believe that these represent a powerful new tool and a significant advance in mandibular reconstructive technique, reduced anesthesia time, and the optimized restoration of dental alignment and facial contour

  3. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  4. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  5. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  6. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  7. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  8. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  9. R graphics

    CERN Document Server

    Murrell, Paul

    2005-01-01

    R is revolutionizing the world of statistical computing. Powerful, flexible, and best of all free, R is now the program of choice for tens of thousands of statisticians. Destined to become an instant classic, R Graphics presents the first complete, authoritative exposition on the R graphical system. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that takes nothing for granted and helps both neophyte and seasoned users master the intricacies of R graphics. After an introductory overview of R graphics facilities, the presentation first focuses

  10. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  11. Development of a graphical user interface for sgRNAcas9 and its application.

    Science.gov (United States)

    Zhao, Chang-zhi; Zhang, Yi; Li, Guang-lei; Chen, Ji-liang; Li, Jing-Jin; Ren, Rui-min; Ni, Pan; Zhao, Shu-hong; Xie, Sheng-song

    2015-10-01

    The CRISPR/Cas9 genome editing technique is a powerful tool for researchers. However, off-target effects of the Cas9 nuclease activity is a recurrent concern of the CRISPR system. Thus, designing sgRNA (single guide RNA) with minimal off-target effects is very important. sgRNAcas9 is a software package, which can be used to design sgRNA and to evaluate potential off-target cleavage sites. In this study, a graphical user interface for sgRNAcas9 was developed using the Java programming language. In addition, off-target effect for sgRNAs was evaluated according to mismatched number and "seed sequence" specification. Moreover, sgRNAcas9 software was used to design 34 124 sgRNAs, which can target 4691 microRNA (miRNA) precursors from human, mouse, rat, pig, and chicken. In particular, the off-target effect of a sgRNA targeting to human miR-206 precursor was analyzed, and the on/off-target activity of this sgRNA was validated by T7E1 assay in vitro. Taken together, these data showed that the interface can simplify the usage of the sgRNAcas9 program, which can be used to design sgRNAs for the majority of miRNA precursors. We also found that the GC% of those sgRNAs ranged from 40% to 60%. In summary, the sgRNAcas9 software can be easily used to design sgRNA with minimal off-target effects for any species. The software can be downloaded from BiooTools website (http://www.biootools.com/).

  12. Development of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this

  13. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  14. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface.

    Science.gov (United States)

    Berlin, Konstantin; Longhini, Andrew; Dayie, T Kwaku; Fushman, David

    2013-12-01

    To facilitate rigorous analysis of molecular motions in proteins, DNA, and RNA, we present a new version of ROTDIF, a program for determining the overall rotational diffusion tensor from single- or multiple-field nuclear magnetic resonance relaxation data. We introduce four major features that expand the program's versatility and usability. The first feature is the ability to analyze, separately or together, (13)C and/or (15)N relaxation data collected at a single or multiple fields. A significant improvement in the accuracy compared to direct analysis of R2/R1 ratios, especially critical for analysis of (13)C relaxation data, is achieved by subtracting high-frequency contributions to relaxation rates. The second new feature is an improved method for computing the rotational diffusion tensor in the presence of biased errors, such as large conformational exchange contributions, that significantly enhances the accuracy of the computation. The third new feature is the integration of the domain alignment and docking module for relaxation-based structure determination of multi-domain systems. Finally, to improve accessibility to all the program features, we introduced a graphical user interface that simplifies and speeds up the analysis of the data. Written in Java, the new ROTDIF can run on virtually any computer platform. In addition, the new ROTDIF achieves an order of magnitude speedup over the previous version by implementing a more efficient deterministic minimization algorithm. We not only demonstrate the improvement in accuracy and speed of the new algorithm for synthetic and experimental (13)C and (15)N relaxation data for several proteins and nucleic acids, but also show that careful analysis required especially for characterizing RNA dynamics allowed us to uncover subtle conformational changes in RNA as a function of temperature that were opaque to previous analysis.

  15. Abstract ID: 103 GAMOS: Implementation of a graphical user interface for dosimetry calculation in radiotherapy.

    Science.gov (United States)

    Abdalaoui Slimani, Faical Alaoui; Bentourkia, M'hamed

    2018-01-01

    There are several computer programs or combination of programs for radiation tracking and other information in tissues by using Monte Carlo simulation [1]. Among these are GEANT4 [2] programs provided as classes that can be incorporated in C++ codes to achieve different tasks in radiation interactions with matter. GEANT4 made the physics easier but requires often a long learning-curve that implies a good knowledge of C++ and the Geant4 architecture. GAMOS [3], the Geant4-based Architecture for Medicine-Oriented Simulations, facilitates the use of Geant4 by providing a script language that covers almost all the needs of a radiotherapy simulation but it is obviously out of reach of biological researchers. The aim of the present work was to report the design and development of a Graphical User Interface (GUI) for absorbed dose calculation and for particle tracking in humans, small animals and phantoms. The GUI is based on the open source GEANT4 for the physics of particle interactions, on the QT cross-platform application for combining programming commands and for display. The calculation of the absorbed dose can be performed based on 3D CT images in DICOM format, from images of phantoms or from solid volumes that can be made from any pure or composite material to be specified by its molecular formulas. The GUI has several menus relative to the emitting source which can have different shapes, positions, energy as mono- or poly-energy such as X-ray spectra; the types of particles and particle interactions; energy deposition and absorbed dose; and the output results as histograms. In conclusion, the GUI we developed can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely proposed as an open source. Copyright © 2017.

  16. Numerical methods to calculate solar radiation, validation through a new Graphic User Interface design

    International Nuclear Information System (INIS)

    Mesri, Mokhtaria

    2015-01-01

    Highlights: • Rare measuring networks in the developing world due to technical and fiscal reasons. • Insufficient attention is paid regarding to tools for solar energy systems design. • The new interface offers solutions to the insisting need for innovative decisions. • Comprehensive comparative studies are conducted using experimental measurements. • Results are with attractive margins of error in accordance with experimental data. - Abstract: The present paper is basically devoted to the estimation of solar radiation in order to provide data on the situation of solar applications in a given site; it also aims at contributing to the performance improvement of solar energy systems. I aim to show and evaluate the performance of the most appropriate models used to recover solar components at ground level, via confronting meteorological techniques to selected semi empirical methods. I have adopted an innovative approach to testing the theory through numerical simulation by providing a friendly user ergonomic Graphic User Interface ‘GUI’, carefully designed and that principally makes use of a large range of models for the calculation of solar components. In this article I may consider three numerical models namely: Lacis and Hansen, Atwater and Ball and Lui and Jordon, which are used here to elucidate the performance of such methods facing meteorological models such as those of Angstrom, Garg and Coppolino. I debate the advantages of these latest methods, and I argue that they are of big importance because the main variable that is used is sunshine duration. Some of them involve the water content in the atmosphere, a particularly important parameter which strongly absorbs solar radiation in the infrared region. They are also perfectly suited for locations where solar irradiance is not being measured by all hydrometeorological stations, and where only meteorological data are collected. I want to complete this paper by demonstrating the efficiency of the

  17. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  18. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  19. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui).

    Science.gov (United States)

    Magezi, David A

    2015-01-01

    Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).

  20. SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches.

    Science.gov (United States)

    Vaudel, Marc; Barsnes, Harald; Berven, Frode S; Sickmann, Albert; Martens, Lennart

    2011-03-01

    The identification of proteins by mass spectrometry is a standard technique in the field of proteomics, relying on search engines to perform the identifications of the acquired spectra. Here, we present a user-friendly, lightweight and open-source graphical user interface called SearchGUI (http://searchgui.googlecode.com), for configuring and running the freely available OMSSA (open mass spectrometry search algorithm) and X!Tandem search engines simultaneously. Freely available under the permissible Apache2 license, SearchGUI is supported on Windows, Linux and OSX. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Use of a graphical user interface approach for digital and physical simulation in power systems control education

    International Nuclear Information System (INIS)

    Shoults, R.R.; Barrera-Cardiel, E.

    1992-01-01

    This paper presents the design of a laboratory with software and hardware structures for digital and physical simulation in the area of Power Systems Control Education. The hardware structure includes a special man-machine interface designed with a graphical user interface approach. This interface allows the user full control over the simulation and provides facilities for the study of the response of the simulated system. This approach is illustrated with the design of a control system for a physically based HVDC transmission system model

  2. MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis

    Science.gov (United States)

    Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee

    2008-01-01

    We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698

  3. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    Science.gov (United States)

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-07

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  4. Mathematical structures for computer graphics

    CERN Document Server

    Janke, Steven J

    2014-01-01

    A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap

  5. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  6. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  7. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  8. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  9. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  10. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  11. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  12. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  13. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2017-12-01

    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  14. Three-dimensional function photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2017-11-01

    In this paper, the properties of the photonic band gaps (PBGs) of three-dimensional (3D) function photonic crystals (PCs) are theoretically investigated by a modified plane wave expansion (PWE) method, whose equations for computations are deduced. The configuration of 3D function PCs is the dielectric spheres inserted in the air background with simple-cubic (SC) lattices whose dielectric constants are the functions of space coordinates, which can be realized by the electro-optical or optical Kerr effect in the practice. The influences of the parameter for 3D function PCs on the PBGs also are discussed. The calculated results show that the bandwidths and number of PBGs can be tuned with different distributions of function dielectrics. Compared with the conventional 3D dielectric PCs with SC lattices, the larger and more PBGs can be obtained in the 3D function PCs. Those results provide a new way to design the novel practical devices.

  15. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  16. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  17. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  18. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  19. The Three-Dimensional EIT Wave

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  20. Graphics gems II

    CERN Document Server

    Arvo, James

    1991-01-01

    Graphics Gems II is a collection of articles shared by a diverse group of people that reflect ideas and approaches in graphics programming which can benefit other computer graphics programmers.This volume presents techniques for doing well-known graphics operations faster or easier. The book contains chapters devoted to topics on two-dimensional and three-dimensional geometry and algorithms, image processing, frame buffer techniques, and ray tracing techniques. The radiosity approach, matrix techniques, and numerical and programming techniques are likewise discussed.Graphics artists and comput

  1. Three-dimensional reconstruction of a radionuclide distribution within a medium of uniform coefficient of attenuation

    International Nuclear Information System (INIS)

    Diaz, J.E.

    1982-01-01

    The non-invasive, fully three-dimensional reconstruction of a radionuclide distribution is studied. The problem is considered in ideal form. Several solutions, ranging from the completely analytical to the completely graphical, are presented for both the non-attenuated and uniformly attenuated cases. A function is defined which, if enacted as a response to each detected photon, will yield, upon superposition, a faithful reconstruction of the radionuclide density. Two and three-dimensional forms of this functions are defined for both the non-attenuated and uniformly attenuated case

  2. Three dimensional plastic model of the skull from CT images by using photocurable polymer

    International Nuclear Information System (INIS)

    Goto, Masaaki; Katsuki, Takeshi; Uchida, Yuuki; Ihara, Kouichiro; Noguchi, Nobuhiro

    1992-01-01

    Three dimensional analysis in medicine is increasingly becoming a valuable tool in preoperative planning, educating to students, and explaining to patients. Recently three dimensional reconstruction technology has been coupled with computerized resin hardening processes to create acrylic models from the three dimensional reconstruction data. We have fabricated two anatomical models of the skull by the computer controlled resin hardening device. Three dimensional data were created by the three-dimensional reformation system (TRI). As data entry and storage process, contour of bone tissue is manually drawn from each serial CT photographic image of transverse skull sections. These traces are then input to the frame memory by way of the video camera. The computer stores the X, Y coordinates of points along an outline as it is traced. A depth value into the structure, assigned to each section, provides the Z coordinate, that is, the third dimension. Wire frame image is generated by using the storage data. The final image produced by hidden surface removal and shading is displayed on a full color graphic display monitor. Anatomical resin models were generated by a photo hardening device which is controlled by a minicomputer and three dimensional reconstruction data. He-Cd laser beam (wave length: 325 nm) conducted through the fibers scans the bottom of the monometer liquid surface according to the each CT contour data. The elevator moves up after the polymerization of the liquid has been performed in one slice. This device is suitable for the creation of human anatomical structure because the branched form and hollow model can be made easily. Three dimensional resin models are more useful for simulation surgery, education, and explanation than computer aided three-dimensional images. (author)

  3. Three dimensional visualization to support command and control

    International Nuclear Information System (INIS)

    Van Slambrook, G.A.

    1997-04-01

    Virtual reality concepts are changing the way one thinks about and with computers. The concepts have already proven their potential usefulness in a broad range of applications. This research was concerned with exploring and demonstrating the utility of virtual reality in robotics and satellite command and control applications. The robotics work addressed the need to quickly build accurate graphical models of physical environments by allowing a user to interactively build a model of a remote environment by superimposing stereo graphics onto live stereo video. The satellite work addressed the fusion of multiple data sets or models into one synergistic display for more effective training, design, and command and control of satellite systems

  4. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  5. AnthropMMD: An R package with a graphical user interface for the mean measure of divergence.

    Science.gov (United States)

    Santos, Frédéric

    2018-01-01

    The mean measure of divergence is a dissimilarity measure between groups of individuals described by dichotomous variables. It is well suited to datasets with many missing values, and it is generally used to compute distance matrices and represent phenograms. Although often used in biological anthropology and archaeozoology, this method suffers from a lack of implementation in common statistical software. A package for the R statistical software, AnthropMMD, is presented here. Offering a dynamic graphical user interface, it is the first one dedicated to Smith's mean measure of divergence. The package also provides facilities for graphical representations and the crucial step of trait selection, so that the entire analysis can be performed through the graphical user interface. Its use is demonstrated using an artificial dataset, and the impact of trait selection is discussed. Finally, AnthropMMD is compared to three other free tools available for calculating the mean measure of divergence, and is proven to be consistent with them. © 2017 Wiley Periodicals, Inc.

  6. Development of GIFT-PC: the software with multi-drawing functions of three dimensional geometries

    International Nuclear Information System (INIS)

    Tsuda, Shuichi; Yamaguchi, Yasuhiro

    2001-05-01

    The Combinatorial Geometry (CG) is a general-purpose geometry package used on radiation transport simulation codes. It is quite useful to illustrate the CG geometries on a simulation code because the visible information of the CG geometries used in a calculation can avoid some mistakes in the case of complicated data, and make it easier to understand the calculation models in the case of presentations. GIFT code (Geographic Information For Target) hsa been developed at Ballistic Research Laboratory, US, for the purpose of illustrating the components of a target from any point of view, calculating a projected area or volume and checking the correctness of the geometry description. Using the drawing functions of GIFT code, perspective or isometric views of a target can be obtained from various points of view. The present report describes the overview of GIFT code and the development of GIFT-PC. GIFT-PC, based on GIFT code, has been developed for easier drawings of three-dimensional geometries using the GUI (Graphical User Interface) system of personal computers, and can be used in various fields as a useful drawing tool for CG geometries. (author)

  7. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  8. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  9. Three-dimensional display of the pelvic viscera using multi-sliced MR images

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Suto, Yasuzo.

    1995-01-01

    Accurate reconstruction of the pelvic structure is the most important factor to obtain desirable results after anorectal surgery. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate the preoperative evaluation, three dimensional images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon two dimensional images obtained from MR-CT. Graphic data from MR images were transferred to a graphic work station. The anorectum, bladder and sphincter musculature were displayed three-dimensionally after segmenting these organs by (1) manually regioning the area containing the specific organ and (2) thresholding the area by the T 1 intensity level. The anatomy of each type of anomaly is easily recognized by the 3-D visualization of pelvic viscera and sphincter musculature with emphasis on position and shape of the musculature although there are some difficulties to visualize soft tissue organs. The advanced programs could show the graphic images from any desirable angle quickly enough to be helpful for the simulation of the surgery. Three-dimensional display can be very useful for better understanding of each anomaly and determining the operative method prior to surgery. (author)

  10. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  11. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  12. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  13. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  14. Bifurcation analysis of a three dimensional system

    Directory of Open Access Journals (Sweden)

    Yongwen WANG

    2018-04-01

    Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

  15. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.

    1977-06-01

    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  16. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.; Harlow, F.H.

    1978-01-01

    A three-dimensional finite difference numerical methodology has been developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high-speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric ellipsoids. For low thermal pressures, however, the collapsing cloud is unstable to perturbations. The resulting fragmentation of unstable protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to nonaxisymmetric perturbations. The detailed evolution of the fragmentation toroid depends upon a nondimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wave-lengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into corotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  17. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  18. MORPHOLOGICAL DESCRIPTIONS USING THREE-DIMENSIONAL WAVEFRONTS

    Directory of Open Access Journals (Sweden)

    Jean Serra

    2011-05-01

    Full Text Available The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious nor generally clearly visible. Our approach is illustrated through three examples taken from biological microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections. The cells are not numerous, but are characterized by long branches, hence they will be separated using a directional wavefront The two other objects are more complex and will be analysed by means of a spherical wavefront In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the branches, their extremities,and their spatial arrangement. The wavefront method enables us to define precisely branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth of the chicken shinbone. The central part of the bone (or shaft is structured as a series of nested cylinders following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is possible to separate the cylinders,and to extract and count the bridges that connect them.

  19. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2017-11-01

    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  20. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  1. Three-dimensional printing for craniomaxillofacial regeneration.

    Science.gov (United States)

    Gaviria, Laura; Pearson, Joseph J; Montelongo, Sergio A; Guda, Teja; Ong, Joo L

    2017-10-01

    Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

  2. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  3. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha

    2017-01-01

    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  4. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  5. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  6. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  7. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  8. Building Models in the Classroom: Taking Advantage of Sophisticated Geomorphic Numerical Tools Using a Simple Graphical User Interface

    Science.gov (United States)

    Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.

    2014-12-01

    Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.

  9. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  10. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  11. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  12. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  13. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    Science.gov (United States)

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  14. Influence of Learning Styles on Graphical User Interface Preferences for e-Learners

    Science.gov (United States)

    Dedic, Velimir; Markovic, Suzana

    2012-01-01

    Implementing Web-based educational environment requires not only developing appropriate architectures, but also incorporating human factors considerations. User interface becomes the major channel to convey information in e-learning context: a well-designed and friendly enough interface is thus the key element in helping users to get the best…

  15. Three-dimensional display and measurement of cardiac dynamic indexes from MR images

    International Nuclear Information System (INIS)

    Kono, M.; Matsuo, M.; Yamasaki, K.; Banno, T.; Toriwaki, J.; Yokoi, S.; Oshita, H.

    1986-01-01

    The cardiac dynamic index, to which such variables as cardiac output, ejection fraction, and wall motion contribute, is routinely determined using various modalities such as angiography, radionuclide imaging, US, and x-ray CT. Each of these modalities, however, has some disadvantages in regard to evaluating the cardiac dynamic index. The authors have obtained precise multidirectional projection images of the heart by means of computer graphics and reformatted data of cardiac MR images obtained with cardiac gating. The contiguous coronal MR images of the heart are made at an interimage distance of 5 mm. In each section, five or six cardiac images can be obtained, depending on the systolic or diastolic phase. These images are stored in a computer, and a three-dimensional display of the heart with biocular observation and with multiplex holograms is made possible with computer graphics. Three-dimensional measurement of the cardiac index is now being attempted, including cardiac output, ejection fraction, and wall motion

  16. Analysis of secondary coxarthrosis by three dimensional computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, Osamu [Keio Univ., Tokyo (Japan). School of Medicine

    1997-11-01

    The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan`s distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

  17. Analysis of secondary coxarthrosis by three dimensional computed tomography

    International Nuclear Information System (INIS)

    Hemmi, Osamu

    1997-01-01

    The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan's distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

  18. Clinical advantages of three dimensional cine cardiac images

    International Nuclear Information System (INIS)

    Kinosada, Yasutomi; Okuda, Yasuyuki; Nakagawa, Tsuyoshi; Itou, Takafumi; Hattori, Takao.

    1996-01-01

    We evaluated clinical advantages and the quantitativeness of computerized three-dimensional (3D) cinematic images of a human heart, which were produced with a set of magnetic resonance (MR) images by using the computer graphic technique. Many contiguous, multi-location and multi-phase short axis images were obtained with the ECG gated conventional and fast cardiac imaging sequences in normal volunteers and selected patients with myocardial infarction, hypertrophic cardiomyopathy, dilated cardiomyopathy and left ventricular dysfunction. Judging by visual impressions of the computerized 3D cinematic cardiac images, we could easily understand and evaluate the myocardial motions or the anatomic and volumetric changes of a heart according to the cardiac phases. These images were especially useful to compare the wall motion, the left ventricular ejection-fraction (LVEF), or other cardiac functions and conditions between before and after therapeutic procedures such as percutaneous transluminal coronary angioplasty for patients with myocardial infarction. A good correlation between the LVEF calculated from a set of computerized 3D cinematic images and the ultra sound examinations were found. The results of our study showed that computerized 3D cinematic cardiac images were clinically useful to understand the myocardial motions qualitatively and to evaluate cardiac functions such as the LVEF quantitatively. (author)

  19. The three-dimensional, discrete ordinates neutral particle transport code TORT: An overview

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    The centerpiece of the Discrete Ordinates Oak Ridge System (DOORS), the three-dimensional neutral particle transport code TORT is reviewed. Its most prominent features pertaining to large applications, such as adjustable problem parameters, memory management, and coarse mesh methods, are described. Advanced, state-of-the-art capabilities including acceleration and multiprocessing are summarized here. Future enhancement of existing graphics and visualization tools is briefly presented

  20. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Science.gov (United States)

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  1. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  2. [Precision of three-dimensional printed brackets].

    Science.gov (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  3. Design of a Graphical User Interface for Virtual Reality with Oculus Rift

    OpenAIRE

    Silverhav, Robin

    2015-01-01

    Virtual reality is a concept that has existed for some time but the recent advances in the performance of commercial computers has led the development of different commercial head mounted displays, for example the Oculus Rift. With this growing interest in virtual reality, it is important to evaluate existing techniques used when designing user interfaces. In addition, it is also important to develop new techniques to be able to give the user the best experience when using virtual reality app...

  4. 3D Graphical User Interface on Personal Computer using P5 Data Glove

    OpenAIRE

    Ms Khyati r. Nirmal

    2011-01-01

    This paper presents Essential Reality works on 3D HCI for changing 2D visual to 3D visual. The mouse is the critical interface to handle 3D graphical objects. Using data glove its possible to put it on like a normal glove and it then acts as an input device that senses finger movements and hand position and orientation (3 coordinates) in real time. The limitation of surface do not allow large no of windows and icons to be positioned on the screen. If more no of windows are forcibly open some ...

  5. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    Science.gov (United States)

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  6. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  7. Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree

    2006-01-01

    The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such

  8. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.

    Science.gov (United States)

    Schenkelberg, Christian D; Bystroff, Christopher

    2015-12-15

    Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. LiGRO: a graphical user interface for protein-ligand molecular dynamics.

    Science.gov (United States)

    Kagami, Luciano Porto; das Neves, Gustavo Machado; da Silva, Alan Wilter Sousa; Caceres, Rafael Andrade; Kawano, Daniel Fábio; Eifler-Lima, Vera Lucia

    2017-10-04

    To speed up the drug-discovery process, molecular dynamics (MD) calculations performed in GROMACS can be coupled to docking simulations for the post-screening analyses of large compound libraries. This requires generating the topology of the ligands in different software, some basic knowledge of Linux command lines, and a certain familiarity in handling the output files. LiGRO-the python-based graphical interface introduced here-was designed to overcome these protein-ligand parameterization challenges by allowing the graphical (non command line-based) control of GROMACS (MD and analysis), ACPYPE (ligand topology builder) and PLIP (protein-binder interactions monitor)-programs that can be used together to fully perform and analyze the outputs of complex MD simulations (including energy minimization and NVT/NPT equilibration). By allowing the calculation of linear interaction energies in a simple and quick fashion, LiGRO can be used in the drug-discovery pipeline to select compounds with a better protein-binding interaction profile. The design of LiGRO allows researchers to freely download and modify the software, with the source code being available under the terms of a GPLv3 license from http://www.ufrgs.br/lasomfarmacia/ligro/ .

  10. Three-dimensional interactive Molecular Dynamics program for the study of defect dynamics in crystals

    Science.gov (United States)

    Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.

    2007-01-01

    The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are

  11. MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.

    Science.gov (United States)

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N

    2012-03-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.

  12. Formal Model for Data Dependency Analysis between Controls and Actions of a Graphical User Interface

    Directory of Open Access Journals (Sweden)

    SKVORC, D.

    2012-02-01

    Full Text Available End-user development is an emerging computer science discipline that provides programming paradigms, techniques, and tools suitable for users not trained in software engineering. One of the techniques that allow ordinary computer users to develop their own applications without the need to learn a classic programming language is a GUI-level programming based on programming-by-demonstration. To build wizard-based tools that assist users in application development and to verify the correctness of user programs, a computer-supported method for GUI-level data dependency analysis is necessary. Therefore, formal model for GUI representation is needed. In this paper, we present a finite state machine for modeling the data dependencies between GUI controls and GUI actions. Furthermore, we present an algorithm for automatic construction of finite state machine for arbitrary GUI application. We show that proposed state aggregation scheme successfully manages state explosion in state machine construction algorithm, which makes the model applicable for applications with complex GUIs.

  13. A user-friendly, graphical interface for the Monte Carlo neutron optics code MCLIB

    International Nuclear Information System (INIS)

    Thelliez, T.; Daemen, L.; Hjelm, R.P.; Seeger, P.A.

    1995-01-01

    The authors describe a prototype of a new user interface for the Monte Carlo neutron optics simulation program MCLIB. At this point in its development the interface allows the user to define an instrument as a set of predefined instrument elements. The user can specify the intrinsic parameters of each element, its position and orientation. The interface then writes output to the MCLIB package and starts the simulation. The present prototype is an early development stage of a comprehensive Monte Carlo simulations package that will serve as a tool for the design, optimization and assessment of performance of new neutron scattering instruments. It will be an important tool for understanding the efficacy of new source designs in meeting the needs of these instruments

  14. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  15. Voludensitometry. Three dimensional display of medical objects

    International Nuclear Information System (INIS)

    Darier, P.; Garderet, P.; Grangeat, P.; Matte, P.; Tournier, E.; Villafana, R.

    1984-05-01

    In order to study the volumic cartography of material density (X-rays imaging), of proton density (RMN imaging) or of specific activity of a marker (γ or β + imaging) a set of calculation results (called voxels) is reconstructed from sensor data collection. Voxels are identified by a triplet of space coordinates and they represent a local estimation of the parameter to be studied. The concepts for representation there upon developed can be extended for any parameter for which additivity is meaningful. The operator has to govern a software in order to work out the documents leading himself to a mental representation of the object. On a display these documents will be either graphics, images or image sequences. The elementary process for elaboration of one image includes: - conditionning the volume: definition of absolute coordinates (geometrical transformations), interactive extraction (surgery) or automation extraction (segmentation) of sub-volumes, contextual organization (sub-volumes ordering, dissolution); - reduction to two dimensions of the information either by spatial integration (radiography), or by surface representation (morphoscopy). This contribution introduces these different concepts showing the way to the design of an interactive display console. Video recorded sequences that have been realised using an experimental software will illustrate the preliminary results [fr

  16. Reconstituted Three-Dimensional Interactive Imaging

    Science.gov (United States)

    Hamilton, Joseph; Foley, Theodore; Duncavage, Thomas; Mayes, Terrence

    2010-01-01

    A method combines two-dimensional images, enhancing the images as well as rendering a 3D, enhanced, interactive computer image or visual model. Any advanced compiler can be used in conjunction with any graphics library package for this method, which is intended to take digitized images and virtually stack them so that they can be interactively viewed as a set of slices. This innovation can take multiple image sources (film or digital) and create a "transparent" image with higher densities in the image being less transparent. The images are then stacked such that an apparent 3D object is created in virtual space for interactive review of the set of images. This innovation can be used with any application where 3D images are taken as slices of a larger object. These could include machines, materials for inspection, geological objects, or human scanning. Illuminous values were stacked into planes with different transparency levels of tissues. These transparency levels can use multiple energy levels, such as density of CT scans or radioactive density. A desktop computer with enough video memory to produce the image is capable of this work. The memory changes with the size and resolution of the desired images to be stacked and viewed.

  17. Librarian driven analysis with graphic user interface for nuclides quantification by gamma spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, V.S. E-mail: vlkondra@cdrewu.edu; Rothenberg, S.J.; Petersone, I

    2001-09-11

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates to produce a list of possible radionuclides matching gamma-ray line(s). An a priori determined list of nuclides is obtained by searching for a match with the energy information of the database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma-ray data library. This library of experimental data includes approximately 17,000 gamma-energy lines related to 756 known gamma emitter radionuclides listed by ICRP.

  18. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    Science.gov (United States)

    Interactive modules for data exploration and visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data sets with a user-friendly interface. Individual modules were designed to provide toolsets to enable interactive ...

  19. Three-Dimensional Maps for Disaster Management

    Science.gov (United States)

    Bandrova, T.; Zlatanova, S.; Konecny, M.

    2012-07-01

    Geo-information techniques have proven their usefulness for the purposes of early warning and emergency response. These techniques enable us to generate extensive geo-information to make informed decisions in response to natural disasters that lead to better protection of citizens, reduce damage to property, improve the monitoring of these disasters, and facilitate estimates of the damages and losses resulting from them. The maintenance and accessibility of spatial information has improved enormously with the development of spatial data infrastructures (SDIs), especially with second-generation SDIs, in which the original product-based SDI was improved to a process-based SDI. Through the use of SDIs, geo-information is made available to local, national and international organisations in regions affected by natural disasters as well as to volunteers serving in these areas. Volunteer-based systems for information collection (e.g., Ushahidi) have been created worldwide. However, the use of 3D maps is still limited. This paper discusses the applicability of 3D geo-information to disaster management. We discuss some important aspects of maps for disaster management, such as user-centred maps, the necessary components for 3D maps, symbols, and colour schemas. In addition, digital representations are evaluated with respect to their visual controls, i.e., their usefulness for the navigation and exploration of the information. Our recommendations are based on responses from a variety of users of these technologies, including children, geospecialists and disaster managers from different countries.

  20. TRIGLAV-W a Windows computer program package with graphical users interface for TRIGA reactor core management calculations

    International Nuclear Information System (INIS)

    Zagar, T.; Zefran, B.; Slavic, S.; Snoj, L.; Ravnik, M.

    2006-01-01

    TRIGLAV-W is a program package for reactor calculations of TRIGA Mark II research reactor cores. This program package runs under Microsoft Windows operating system and has new friendly graphical user interface (GUI). The main part of the package is the TRIGLAV code based on two dimensional diffusion approximation for flux distribution calculation. The new GUI helps the user to prepare the input files, runs the main code and displays the output files. TRIGLAV-W has a user friendly GUI also for the visualisation of the calculation results. Calculation results can be visualised using 2D and 3D coloured graphs for easy presentations and analysis. In the paper the many options of the new GUI are presented along with the results of extensive testing of the program. The results of the TRIGLAV-W program package were compared with the results of WIMS-D and MCNP code for calculations of TRIGA benchmark. TRIGLAV-W program was also tested using several libraries developed under IAEA WIMS-D Library Update Project. Additional literature and application form for TRIGLAV-W program package beta testing can be found at http://www.rcp.ijs.si/triglav/. (author)