WorldWideScience

Sample records for three-dimensional geometries final

  1. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  2. Resistive drift wave turbulence in a three-dimensional geometry

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    1999-01-01

    The Hasegawa-Wakatani model describing resistive drift waves is investigated analytically and numerically in a three-dimensional periodic geometry. After an initial growth of the energy the drift waves couple nonlinearly to convective cells, which eventually dominate the system completely...

  3. Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry

    Science.gov (United States)

    Mammana, M. F.; Micale, B.; Pennisi, M.

    2012-01-01

    We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…

  4. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    Science.gov (United States)

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  5. Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods

    International Nuclear Information System (INIS)

    Xiong, Jie L.; Tong, M.S.; Atkins, Phillip; Chew, W.C.

    2010-01-01

    In this Letter, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problems are well-studied in classical computational electromagnetics. This Letter demonstrates that this quantum electrodynamic phenomenon can be studied using the knowledge and techniques of classical electrodynamics.

  6. Dynamic Three-Dimensional Geometry of the Aortic Valve Apparatus-A Feasibility Study

    NARCIS (Netherlands)

    Khamooshian, Arash; Amador, Yannis; Hai, Ting; Jeganathan, Jelliffe; Saraf, Maria; Mahmood, Eitezaz; Matyal, Robina; Khabbaz, Kamal R; Mariani, Massimo; Mahmood, Feroze

    OBJECTIVE: To provide (1) an overview of the aortic valve (AV) apparatus anatomy and nomenclature, and (2) data regarding the normal AV apparatus geometry and dynamism during the cardiac cycle obtained from three-dimensional transesophageal echocardiography (3D TEE). DESIGN: Retrospective

  7. An automated computerized vision technique for determination of three-dimensional object geometry

    Science.gov (United States)

    Chiang, Pen-Tai; Yang, Jackson C. S.; Pavlin, V.

    1988-01-01

    It is very important to determine three dimensional geometry of objects quickly in various military, space, construction, and industrial applications. An automatic scheme to obtain three dimensional geometry of objects by employing only one camera is presented. At present, this technique is applicable to a limited category of objects, satisfying the following constraints: they are flat-surfaces, and all the vertex points have to be recognized as corner points of the two dimensional image. The scheme consists of corner detection, data communication, camera calibration techniques and point searching and matching, edge cancelation, and creation procedures. An L shaped model is chosen as a test object. Experimental results demonstrated the reconstruction of this object geometry within 5 mm discrepancy. This scheme is quite convenient, efficient to use and can be applied to a wide range of problems in the real world.

  8. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    Science.gov (United States)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  9. Computational fluid dynamics in three dimensional angiography: Preliminary hemodynamic results of various proximal geometry

    International Nuclear Information System (INIS)

    Kim, Ha Youn; Park, Sung Tae; Bae, Won Kyoung; Goo, Dong Erk

    2014-01-01

    We studied the influence of proximal geometry on the results of computational fluid dynamics (CFD). We made five models of different proximal geometry from three dimensional angiography of 63-year-old women with intracranial aneurysm. CFD results were analyzed as peak systolic velocity (PSV) at inlet and outlet as well as flow velocity profile at proximal level of internal carotid artery (ICA) aneurysm. Modified model of cavernous one with proximal tubing showed faster PSV at outlet than that at inlet. The PSV of outlets of other models were slower than that of inlets. The flow velocity profiles at immediate proximal to ICA aneurysm showed similar patterns in all models, suggesting that proximal vessel geometries could affect CFD results.

  10. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  11. Three-dimensional muscle-tendon geometry after rectus femoris tendon transfer.

    Science.gov (United States)

    Asakawa, Deanna S; Blemker, Silvia S; Rab, George T; Bagley, Anita; Delp, Scott L

    2004-02-01

    Rectus femoris tendon transfer is performed in patients with cerebral palsy to improve knee flexion during walking. This procedure involves detachment of the muscle from its insertion into the quadriceps tendon and reattachment to one of the knee flexor muscles. The purpose of the present study was to evaluate the muscle-tendon geometry and to assess the formation of scar tissue between the rectus femoris and adjacent structures. Magnetic resonance images of the lower extremities were acquired from five subjects after bilateral rectus femoris tendon transfer. A three-dimensional computer model of the musculoskeletal geometry of each of the ten limbs was created from these images. The three-dimensional paths of the rectus femoris muscles after transfer demonstrated that the muscle does not follow a straight course from its origin to its new insertion. The typical muscle-tendon path included an angular deviation; this deviation was sharp (>35 degrees ) in seven extremities. In addition, scar tissue between the transferred rectus femoris and the underlying muscles was visible on the magnetic resonance images. The angular deviations in the rectus femoris muscle-tendon path and the presence of scar tissue between the rectus femoris and the underlying muscles suggest that the beneficial effects of rectus femoris tendon transfer are derived from reducing the effects of the rectus femoris muscle as a knee extensor rather than from converting the muscle to a knee flexor. These findings clarify our understanding of the mechanism by which rectus femoris tendon transfer improves knee flexion.

  12. Application of three-dimensional simulation at lecturing on descriptive geometry

    Directory of Open Access Journals (Sweden)

    Tel'noy Viktor Ivanovich

    2014-05-01

    Full Text Available Teaching descriptive geometry has its own characteristics. Need not only to inform students of a certain amount of knowledge on the subject, but also to develop their spatial imagination as well as the right to develop the skills of logical thinking. Practice of teaching the discipline showed that students face serious difficulties in the process of its study. This is due to the relatively low level of their schooling in geometry and technical drawing, and lacking in high spatial imagination. They find it difficult to imagine the geometrical image of the object of study and mentally convert it on the plane. Because of this, there is a need to find ways to effectively teach the discipline «Descriptive Geometry» at university. In the context of global informatization and computerization of the educational process, implementation of graphically programs for the development of design documentation and 3D modeling is one of the most promising applications of information technology in the process of solving these problems. With the help of three-dimensional models the best visibility in the classroom is achieved. When conducting lectures on descriptive geometry it is requested to use three-dimensional modeling not only as didactic means (demonstrativeness means, but also as a method of teaching (learning tool to deal with various graphics tasks. Bearing this in mind, the essence of the implementation of 3D modeling is revealed with the aim of better understanding of the algorithms for solving both positional and metric tasks using spatial representation of graphic constructions. It is shown that the possibility to consider the built model from different angles is of particular importance, as well as the use of transparency properties for illustrating the results of solving geometric problems. Using 3D models together with their display on the plane, as well as text information promotes better assimilation and more lasting memorization of the

  13. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  14. Universal structure conversion method for organic molecules: From atomic connectivity to three-dimensional geometry

    International Nuclear Information System (INIS)

    Kim, Yeon Joon; Kim, Woo Youn

    2015-01-01

    We present a powerful method for the conversion of molecular structures from atomic connectivity to bond orders to three-dimensional (3D) geometries. There are a number of bond orders and 3D geometries corresponding to a given atomic connectivity. To uniquely determine an energetically more favorable one among them, we use general chemical rules without invoking any empirical parameter, which makes our method valid for any organic molecule. Specifically, we first assign a proper bond order to each atomic pair in the atomic connectivity so as to maximize their sum and the result is converted to a SMILES notation using graph theory. The corresponding 3D geometry is then obtained using force field or ab initio calculations. This method successfully reproduced the bond order matrices and 3D geometries of 10 000 molecules randomly sampled from the PubChem database with high success rates of near 100% except a few exceptional cases. As an application, we demonstrate that it can be used to search for molecular isomers efficiently

  15. Three-Dimensional Echocardiographic Assessment of Changes in Mitral Valve Geometry After Valve Repair

    Science.gov (United States)

    Mahmood, Feroze; Subramaniam, Balachundhar; Gorman, Joseph H.; Levine, Robert M.; Gorman, Robert C.; Maslow, Andrew; Panzica, Peter J.; Hagberg, Robert M.; Karthik, Swaminathan; Khabbaz, Kamal R.

    2011-01-01

    Background Application of annuloplasty rings during mitral valve (MV) repair has been shown to significantly change the mitral annular geometry. Until recently, a comprehensive two-dimensional echocardiographic evaluation of annular geometric changes was difficult owing to its nonplanar orientation. In this study, an analysis of the three-dimensional intraoperative transesophageal echocardiographic evaluation of the MV annulus is presented before and immediately after repair. Methods We performed three-dimensional geometric analysis on 75 patients undergoing MV repair during coronary artery bypass graft surgery for mitral regurgitation or myxomatous mitral valve disease. Geometric analysis of the MV was performed before and immediately after valve repair with full rings and annuloplasty bands. The acquired three-dimensional volumetric data were analyzed in the operating room. Specific measurements included annular diameter, leaflet lengths, the nonplanarity angle, and the circularity index. Before and after repair data were compared. Results Complete echocardiographic assessment of the MV was feasible in 69 of 75 patients (92%) within 2 to 3 minutes of acquisition. Placement of full rings resulted in an increase in the nonplanarity angle or a less saddle shape of the native mitral annulus (137 ±14 versus 146 ± 14; p = 0.002. By contrast, the nonplanarity angle did not change significantly after placement of partial rings. Conclusions Mitral annular nonplanarity can be assessed in the operating room. Application of full annuloplasty rings resulted in the mitral annulus becoming more planar. Partial annuloplasty bands did not significantly change the nonplanarity angle. Neither of the two types of rings restored the native annular planarity. PMID:19932245

  16. Efficient three-dimensional reconstruction of aquatic vegetation geometry: Estimating morphological parameters influencing hydrodynamic drag

    Science.gov (United States)

    Liénard, Jean; Lynn, Kendra; Strigul, Nikolay; Norris, Benjamin K.; Gatziolis, Demetrios; Mullarney, Julia C.; Bryan, Karin, R.; Henderson, Stephen M.

    2016-09-01

    Aquatic vegetation can shelter coastlines from energetic waves and tidal currents, sometimes enabling accretion of fine sediments. Simulation of flow and sediment transport within submerged canopies requires quantification of vegetation geometry. However, field surveys used to determine vegetation geometry can be limited by the time required to obtain conventional caliper and ruler measurements. Building on recent progress in photogrammetry and computer vision, we present a method for reconstructing three-dimensional canopy geometry. The method was used to survey a dense canopy of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Photogrammetric estimation of geometry required 1) taking numerous photographs at low tide from multiple viewpoints around 1 m2 quadrats, 2) computing relative camera locations and orientations by triangulation of key features present in multiple images and reconstructing a dense 3D point cloud, and 3) extracting pneumatophore locations and diameters from the point cloud data. Step 3) was accomplished by a new 'sector-slice' algorithm, yielding geometric parameters every 5 mm along a vertical profile. Photogrammetric analysis was compared with manual caliper measurements. In all 5 quadrats considered, agreement was found between manual and photogrammetric estimates of stem number, and of number × mean diameter, which is a key parameter appearing in hydrodynamic models. In two quadrats, pneumatophores were encrusted with numerous barnacles, generating a complex geometry not resolved by hand measurements. In remaining cases, moderate agreement between manual and photogrammetric estimates of stem diameter and solid volume fraction was found. By substantially reducing measurement time in the field while capturing in greater detail the 3D structure, photogrammetry has potential to improve input to hydrodynamic models, particularly for simulations of flow through large-scale, heterogenous canopies.

  17. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  18. Feature-based three-dimensional registration for repetitive geometry in machine vision.

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J

    2016-08-01

    As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction.

  19. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180 0 rotational symmetry, and the rotational symmetry conditions for the 30 0 , 60 0 , and 120 0 triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source

  20. ACCEPT: three-dimensional electron/photon Monte Carlo transport code using combinatorial geometry

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A. Sr.

    1979-05-01

    The ACCEPT code provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through three-dimensional multimaterial geometries described by the combinational method. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. ACCEPT combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. The ACCEPT code is currently running on the CDC-7600 (66000) where the bulk of the cross-section data and the statistical variables are stored in Large Core Memory (Extended Core Storage).

  1. ACCEPT: three-dimensional electron/photon Monte Carlo transport code using combinatorial geometry

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.

    1979-05-01

    The ACCEPT code provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through three-dimensional multimaterial geometries described by the combinational method. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. ACCEPT combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. The ACCEPT code is currently running on the CDC-7600 (66000) where the bulk of the cross-section data and the statistical variables are stored in Large Core Memory

  2. Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries

    Science.gov (United States)

    McBride, D.; Cross, M.; Croft, N.; Bennett, C.; Gebhardt, J.

    2006-03-01

    A computational procedure is presented for solving complex variably saturated flows in porous media, that may easily be implemented into existing conventional finite-volume-based computational fluid dynamics codes, so that their functionality might be geared upon to readily enable the modelling of a complex suite of interacting fluid, thermal and chemical reaction process physics. This procedure has been integrated within a multi-physics finite volume unstructured mesh framework, allowing arbitrarily complex three-dimensional geometries to be modelled. The model is particularly targeted at ore heap-leaching processes, which encounter complex flow problems, such as infiltration into dry soil, drainage, perched water tables and flow through heterogeneous materials, but is equally applicable to any process involving flow through porous media, such as in environmental recovery processes. The computational procedure is based on the mixed form of the classical Richards equation, employing an adaptive transformed mixed algorithm that is numerically robust and significantly reduces compute (or CPU) time. The computational procedure is accurate (compares well with other methods and analytical data), comprehensive (representing any kind of porous flow model), and is computationally efficient. As such, this procedure provides a suitable basis for the implementation of large-scale industrial heap-leach models.

  3. Dynamic Three-Dimensional Geometry of the Aortic Valve Apparatus-A Feasibility Study.

    Science.gov (United States)

    Khamooshian, Arash; Amador, Yannis; Hai, Ting; Jeganathan, Jelliffe; Saraf, Maria; Mahmood, Eitezaz; Matyal, Robina; Khabbaz, Kamal R; Mariani, Massimo; Mahmood, Feroze

    2017-08-01

    To provide (1) an overview of the aortic valve (AV) apparatus anatomy and nomenclature, and (2) data regarding the normal AV apparatus geometry and dynamism during the cardiac cycle obtained from three-dimensional transesophageal echocardiography (3D TEE). Retrospective feasibility study. A single-center university teaching hospital. The study was performed on data of 10 patients with a nonregurgitant, nonstenotic aortic valve undergoing cardiac surgery. Intraoperative 3D TEE was performed on all the participants using the Siemens ACUSON SC2000 ultrasound system and Z6Ms transducer (Siemens Medical Systems, Mountainview, CA). Dynamic offline analyses were performed with Siemens eSie valve analytical software in a semiautomated fashion. Forty-five parameters were exported of which 13 were selected and analyzed. The cardiac cycle was divided into 4 quartiles to account for frame-rate variations. The annulus, sinus of Valsalva (SoV) and sinotubular junction (STJ) areas, diameter, perimeter and height, aortic leaflet height, leaflet coaptation height, and aortic valve-mitral valve angle changed significantly during the cardiac cycle (p < 0.001). STJ expanded more than both the annulus and the SoV (p < 0.001). The maximum aortic valve leaflet height change was greater in the left and right versus noncoronary leaflet (p < 0.001). The semiautomated AV apparatus dynamic assessment using eSie valve software is a clinically feasible technique and can be performed readily in the operating room. It has the potential to significantly impact intraoperative decision-making in cases suitable for AV repair. The AV apparatus is a dynamic structure and demonstrates significant changes during the cardiac cycle. Copyright © 2017. Published by Elsevier Inc.

  4. Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex

    Directory of Open Access Journals (Sweden)

    J. Curbelo

    2017-07-01

    Full Text Available In this paper we study the three-dimensional (3-D Lagrangian structures in the stratospheric polar vortex (SPV above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979 and an interval of rapid SPV changes (October 1979. Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.

  5. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1997-01-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green's function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade

  6. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D.; Kornreich, D.E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Nuclear Engineering

    1997-07-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.

  7. Connecting Geometry and Chemistry: A Three-Step Approach to Three-Dimensional Thinking

    Science.gov (United States)

    Donaghy, Kelley J.; Saxton, Kathleen J.

    2012-01-01

    A three-step active-learning approach is described to enhance the spatial abilities of general chemistry students with respect to three-dimensional molecular drawing and visualization. These activities are used in a medium-sized lecture hall with approximately 150 students in the first semester of the general chemistry course. The first activity…

  8. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  9. Integrative shell of the program complex MARS (Version 1.0) radiation transfer in three-dimensional geometries

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Lokhovitskij, A.E.; Maslov, M.A.; Yazynin, I.A.

    1994-01-01

    The first version of integrative shell of the program complex MARS is written for calculating radiation transfer in the three-dimensional geometries. The integrative shell allows the user to work in convenient form with complex MARS, creat input files data and get graphic visualization of calculated functions. Version 1.0 is adapted for personal computers of types IBM-286,386,486 with operative size memory not smaller than 500K. 5 refs

  10. Three-dimensional elastic--plastic stress and strain analyses for fracture mechanics: complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, H.J.

    1975-11-01

    The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix.

  11. Geometry and scaling of tangled vortex lines in three-dimensional random wave fields

    International Nuclear Information System (INIS)

    Taylor, A J; Dennis, M R

    2014-01-01

    The short- and long-scale behaviour of tangled wave vortices (nodal lines) in random three-dimensional (3D) wave fields is studied via computer experiment. The zero lines are tracked in numerical simulations of periodic superpositions of 3D complex plane waves. The probability distribution of local geometric quantities such as curvature and torsion are compared to previous analytical and new Monte Carlo results from the isotropic Gaussian random wave model. We further examine the scaling and self-similarity of tangled wave vortex lines individually and in the bulk, drawing comparisons with other physical systems of tangled filaments. (paper)

  12. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  13. Gyrokinetic Vlasov code including full three-dimensional geometry of experiments

    International Nuclear Information System (INIS)

    Nunami, Masanori; Watanabe, Tomohiko; Sugama, Hideo

    2010-03-01

    A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in the Large Helical Device (LHD) configuration are carried out by the GKV-X code for a benchmark test against the GKV code. The frequency, the growth rate, and the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers, while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD region. (author)

  14. Three-dimensional reconstruction of a random fibrous medium: Geometry, transport, and sound absorbing properties.

    Science.gov (United States)

    Luu, Hoang Tuan; Perrot, Camille; Monchiet, Vincent; Panneton, Raymond

    2017-06-01

    The main purpose of this article is to present, within a unified framework, a technique based on numerical homogenization, to model the acoustical properties of real fibrous media from their geometrical characteristics and to compare numerical results with experimental data. The authors introduce a reconstruction procedure for a random fibrous medium and use it as a basis for the computation of its geometrical, transport, and sound absorbing properties. The previously ad hoc "fiber anisotropies" and "volume weighted average radii," used to describe the experimental data on microstructure, are here measured using scanning electron microscopy. The authors show that these parameters, in conjunction with the bulk porosity, contribute to a precise description of the acoustical characteristics of fibrous absorbents. They also lead to an accurate prediction of transport parameters which can be used to predict acoustical properties. The computed values of the permeability and frequency-dependent sound absorption coefficient are successfully compared with permeability and impedance-tube measurements. The authors' results indicate the important effect of fiber orientation on flow properties associated with the different physical properties of fibrous materials. A direct link is provided between three-dimensional microstructure and the sound absorbing properties of non-woven fibrous materials, without the need for any empirical formulae or fitting parameters.

  15. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  16. Effects of growth on geometry of gastrocnemius muscle in children: a three-dimensional ultrasound analysis

    NARCIS (Netherlands)

    Benard, M.R.; Harlaar, J.; Becher, J.G.; Huijing, P.A.; Jaspers, R.T.

    2011-01-01

    During development, muscle growth is usually finely adapted to meet functional demands in daily activities. However, how muscle geometry changes in typically developing children and how these changes are related to functional and mechanical properties is largely unknown. In rodents, longitudinal

  17. Revealing the three-dimensional geometry of tephra horizons found within soft sediment deposits

    Science.gov (United States)

    Evans, Elizabeth; Davies, Siwan; Johnston, Richard; Abbott, Peter; Wulf, Sabine

    2017-04-01

    features were not apparent in the one-dimensional visual descriptions. We also apply the XRμCT technique to investigate the three-dimensional structures associated with cryptotephra deposits where tephra concentrations may be anywhere between 1 - 400,000 shards per 0.5 g dry weight (in the case of one sample studied). At this concentration there is no visible macroscopic horizon of tephra in the sample. Our scans, with an isotropic voxel size of ˜26 μm (giving an effective resolution of ˜50-80 μm3), detected low concentration deposits that broadly agree with the shard concentration profile derived by conventional microscopy work. These data also provide new insight into the sedimentary structures and indicate the discontinuous nature of cryptotephra deposits where "cross-bedding" features between tephra-rich and poor regions are visible. The unprecedented three-dimensional insight into the structure of cryptotephra deposits has considerable potential as a routine first step in a workflow for constructing a tephrostratigraphical framework in sediment cores.

  18. Changes in Mitral Annular Geometry after Aortic Valve Replacement: A Three-Dimensional Transesophageal Echocardiographic Study

    Science.gov (United States)

    Mahmood, Feroze; Warraich, Haider J.; Gorman, Joseph H.; Gorman, Robert C.; Chen, Tzong-Huei; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal

    2014-01-01

    Background and aim of the study Intraoperative real-time three-dimensional transesophageal echocardiography (RT-3D TEE) was used to examine the geometric changes that occur in the mitral annulus immediately after aortic valve replacement (AVR). Methods A total of 35 patients undergoing elective surgical AVR under cardiopulmonary bypass was enrolled in the study. Intraoperative RT-3D TEE was used prospectively to acquire volumetric echocardiographic datasets immediately before and after AVR. The 3D echocardiographic data were analyzed offline using TomTec® Mitral Valve Assessment software to assess changes in specific mitral annular geometric parameters. Results Datasets were successfully acquired and analyzed for all patients. A significant reduction was noted in the mitral annular area (-16.3%, p <0.001), circumference (-8.9% p <0.001) and the anteroposterior (-6.3%, p = 0.019) and anterolateral-posteromedial (-10.5%, p <0.001) diameters. A greater reduction was noted in the anterior annulus length compared to the posterior annulus length (10.5% versus 62%, p <0.05) after AVR. No significant change was seen in the non-planarity angle, coaptation depth, and closure line length. During the period of data acquisition before and after AVR, no significant change was noted in the central venous pressure or left ventricular end-diastolic diameter. Conclusion The mitral annulus undergoes significant geometric changes immediately after AVR Notably, a 16.3% reduction was observed in the mitral annular area. The anterior annulus underwent a greater reduction in length compared to the posterior annulus, which suggested the existence of a mechanical compression by the prosthetic valve. PMID:23409347

  19. Direct-Write Printing on Three-Dimensional Geometries for Miniaturized Detector and Electronic Assemblies

    Science.gov (United States)

    Paquette, Beth; Samuels, Margaret; Chen, Peng

    2017-01-01

    Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.

  20. Complexities of three dimensional part geometry. [Ambiguities in specification of pieces for manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R.H.

    1977-05-01

    This report is a non-technical exposition on the ambiguities in conventional specification of the shape of a part to be manufactured and on various alternatives for representing its geometry for computer processing. It touches lightly on wire-frame and bounded surface representations and on the concept of design by volumes. It concludes that no existing computer-aided design system has yet shown its long-range superiority over he spectrum of parts and of uses to which its information base should be applicable. 9 figures.

  1. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling.

    Science.gov (United States)

    Haj-Ali, Rami; Marom, Gil; Ben Zekry, Sagit; Rosenfeld, Moshe; Raanani, Ehud

    2012-09-21

    The complex three-dimensional (3D) geometry of the native tricuspid aortic valve (AV) is represented by select parametric curves allowing for a general construction and representation of the 3D-AV structure including the cusps, commissures and sinuses. The proposed general mathematical description is performed by using three independent parametric curves, two for the cusp and one for the sinuses. These curves are used to generate different surfaces that form the structure of the AV. Additional dependent curves are also generated and utilized in this process, such as the joint curve between the cusps and the sinuses. The model's feasibility to generate patient-specific parametric geometry is examined against 3D-transesophageal echocardiogram (3D-TEE) measurements from a non-pathological AV. Computational finite-element (FE) mesh can then be easily constructed from these surfaces. Examples are given for constructing several 3D-AV geometries by estimating the needed parameters from echocardiographic measurements. The average distance (error) between the calculated geometry and the 3D-TEE measurements was only 0.78±0.63mm. The proposed general 3D parametric method is very effective in quantitatively representing a wide range of native AV structures, with and without pathology. It can also facilitate a methodical quantitative investigation over the effect of pathology and mechanical loading on these major AV parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.

    2005-01-01

    An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system

  3. Altered Left Ventricular Geometry and Torsional Mechanics in High Altitude-Induced Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study.

    Science.gov (United States)

    De Boeck, Bart W; Toma, Aurel; Kiencke, Stephanie; Dehnert, Christoph; Zügel, Stefanie; Siebenmann, Christoph; Auinger, Katja; Buser, Peter T; Maggiorini, Marco; Kaufmann, Beat A

    2018-03-01

    Changes in left ventricular (LV) torsion have been related to LV geometry in patients with concomitant long-standing myocardial disease or pulmonary hypertension (PH). We evaluated the effect of acute high altitude-induced isolated PH on LV geometry, volumes, systolic function, and torsional mechanics. Twenty-three volunteers were prospectively studied at low altitude and after the second (D3) and third night (D4) at high altitude (4,559 m). LV ejection fraction, multidirectional strains and torsion, LV volumes, sphericity, and eccentricity were derived by speckle-tracking on three-dimensional echocardiographic data sets. Pulmonary pressure was estimated from the transtricuspid pressure gradient (TRPG), LV preload from end-diastolic LV volume, and transmitral over mitral annular E velocity (E/e'). At high altitude, oxygen saturation decreased by 15%-20%, heart rate and cardiac index increased by 15%-20%, and TRPG increased from 21 ± 2 to 37 ± 9 mm Hg (P geometry and torsional mechanics. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  4. Three-dimensional Geometry of Buried Fold Scarps Associated With Ancient Earthquakes on the Puente Hills Blind Thrust Fault

    Science.gov (United States)

    Leon, L. A.; Dolan, J. F.; Hoeft, J. S.; Shaw, J. H.; Hartleb, R. D.

    2003-12-01

    The Puente Hills thrust fault (PHT) is a large blind thrust fault that extends east-west beneath the heart of the metropolitan Los Angeles region (Shaw and Shearer, 1999; Shaw et al., 2003). Christofferson (2002; in prep.) and Dolan et al. (2003) identified four buried fold scarps associated with large (Mw greater than or equal to 7), ancient earthquakes on the PHT beneath the City of Bellflower, in northern Orange County. One of the major outstanding questions regarding this research concerns the subsurface, three-dimensional geometry of these buried scarps. Specifically, we want to determine the extent to which the subsurface geometry of these scarps is controlled by tectonic versus fluvial processes. In order to begin addressing these questions, we drilled a north-south transect of hollow-stem, continuously cored boreholes across the buried fold scarps. This new borehole transect, which comprises six, 20-m-deep boreholes, was drilled parallel to, and ˜ 100 m west of, the original Carfax Avenue transect of Christofferson (2002) and Dolan et al. (2003). The overall pattern of progressive southward thickening of sedimentary units observed in the Carfax borehole transect extends westward to the new transect. Moreover, several key sedimentary contacts that are traceable laterally between the two transects occur at approximately the same depths at all locations along both transects. This three-dimensional data set thus defines several buried fold scarps that extend east-west beneath the study site. These observations confirm that the buried scarps are primarily tectonic, rather than fluvial features.

  5. Effect Of Open Ended Teaching Learning Approach On Secondary School Students Mathematics Achievement In Learning Three Dimensional Geometry

    Directory of Open Access Journals (Sweden)

    Chogo C.N.

    2017-12-01

    Full Text Available Mathematics is globally valued for use by an individual and society. It plays a significant role in the development of modern science and technology. Despite its importance students motivation to learn and achievement at national examinations globally and at the KCSE mathematics examination in Kenya particularly has been dismal over the years. The learners low achievement in the subject has been attributed to the didactic teaching methods that the teachers use among other factors. The study of geometry in Mathematics poses a number of difficulties to learners which are different in nature from those of arithmetic and algebra. This is because geometry is primarily abstract in nature. The purpose of this study was to determine the effects of Open Ended Teaching and Learning Approach OETLA on Secondary School students mathematics achievement in learning Three Dimensional Geometry 3DG. The study employed Solomon four non-equivalent control group design. The two experimental groups E1amp E2 received OETLA treatment while the control groups C1ampC2 were taught using the conventional teaching and learning methods. Only E1amp C1 took a pre-test and a post test for all the groups. The target population for this study was form four 17 year old students of secondary schools in Marani Sub County in Kisii County. Purposive sampling was used to obtain the four county mixed-sex secondary schools for the study. A total of 152 students formed the sample size. Students Mathematics Achievement Test SMAT was used to collect data. The instruments were validated by three experts from the department of curriculum and instruction of Egerton University and three Secondary School Mathematics Heads of Department. The reliability of the instruments were established using Cronbachs Alpha. A reliability coefficient of 0.92 was obtained and thus considered acceptable. The SMAT was administered to two groups as a pretest before the treatment and as a posttest to all the four

  6. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  7. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  8. Three dimensional global modeling of atmospheric CO2. Final technical report

    International Nuclear Information System (INIS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A modeling effort has been initiated to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO 2 variations. The approach uses a three-dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO 2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO 2 at the surface. This report identifies the 3-D model employed in this study and discusses biosphere, ocean and fossil fuel sources and sinks. Some preliminary model results are presented. 14 figures

  9. A numerical model of mantle convection with deformable, mobile continental lithosphere within three-dimensional spherical geometry

    Science.gov (United States)

    Yoshida, M.

    2010-12-01

    A new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry (Yoshida, 2010, Earth Planet. Sci. Lett.). The numerical results revealed that one of major factor that realizes the supercontinental breakup and subsequent continental drift is a pre-existing, weak (low-viscosity) continental margin (WCM) in the supercontinent. Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of the WCM in the stability of continental lithosphere has not been understood in terms of geophysics. In my numerical model, a compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being

  10. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  11. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    International Nuclear Information System (INIS)

    Guzina, Bojan; Kunerth, Dennis

    2014-01-01

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  12. BACCHUS-3D/SP. A computer programme for the three-dimensional description of sodium single-phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Bottoni, M.; Dorr, B.; Homann, C.; Struwe, D.

    1983-07-01

    The computer programme BACCHUS implemented at KfK includes a steady-state version, a two-dimensional and a three-dimensional transient single-phase flow version describing the thermal-hydraulic behaviour of the coolant (sodium or water) in bundle geometry under nominal or accident conditions. All versions are coupled with a pin model describing the temperature distribution in fuel (or electrical heaters) and cladding. The report describes the programme from the viewpoints of the geometrical model, the mathematical foundations and the numerical treatment of the basic equations. Although emphasis is put on the three-dimensional version, the two-dimensional and the steady state versions are also documented in self-consistent sections. (orig.) [de

  13. Intraoperative three-dimensional transesophageal echocardiography for assessing the defect geometries of mitral prosthetic paravalvular leak during transcatheter closure

    Directory of Open Access Journals (Sweden)

    Jeng Wei

    2015-03-01

    Conclusion: RT 3D TEE can clearly delineate the geometries of defects in their entirety, including shape, size, and location of the defect and track canal. It would also appear that RT 3D TEE is superior to 2D TEE in the process of guiding the wire through the difficult canal anatomy, facilitating the overall procedure. The small mitral PVLs can be completely occluded, but subsequent complications occurred with large defect closures because of embolization or releak. Therefore, transcatheter closure of PVLs seems to be an attractive alternative for these patients, but newer occluder designs that better conform to leak geometry will be required to improve outcomes.

  14. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  15. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993 - September 22, 1996

    International Nuclear Information System (INIS)

    1998-01-01

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground

  16. Development and Validation of a Three-Dimensional Diffusion Code Based on a High Order Nodal Expansion Method for Hexagonal-z Geometry

    Directory of Open Access Journals (Sweden)

    Daogang Lu

    2016-01-01

    Full Text Available A three-dimensional, multigroup, diffusion code based on a high order nodal expansion method for hexagonal-z geometry (HNHEX was developed to perform the neutronic analysis of hexagonal-z geometry. In this method, one-dimensional radial and axial spatially flux of each node and energy group are defined as quadratic polynomial expansion and four-order polynomial expansion, respectively. The approximations for one-dimensional radial and axial spatially flux both have second-order accuracy. Moment weighting is used to obtain high order expansion coefficients of the polynomials of one-dimensional radial and axial spatially flux. The partially integrated radial and axial leakages are both approximated by the quadratic polynomial. The coarse-mesh rebalance method with the asymptotic source extrapolation is applied to accelerate the calculation. This code is used for calculation of effective multiplication factor, neutron flux distribution, and power distribution. The numerical calculation in this paper for three-dimensional SNR and VVER 440 benchmark problems demonstrates the accuracy of the code. In addition, the results show that the accuracy of the code is improved by applying quadratic approximation for partially integrated axial leakage and four-order approximation for one-dimensional axial spatially flux in comparison to flat approximation for partially integrated axial leakage and quadratic approximation for one-dimensional axial spatially flux.

  17. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    DEFF Research Database (Denmark)

    Eltschka, M.; Klaui, M.; Rudiger, U

    2008-01-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using t....... The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states. (c) 2008 American Institute of Physics....

  18. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  19. Three-dimensional analysis of the proximal humeral and glenoid geometry using MicroScribe 3D digitizer.

    Science.gov (United States)

    Owaydhah, Wejdan H; Alobaidy, Mohammad A; Alraddadi, Abdulrahman S; Soames, Roger W

    2017-07-01

    To understand the geometry of the proximal humerus and glenoid fossa to facilitate the design of components used in shoulder arthroplasty. The aim is to evaluate the geometry of the proximal humerus and glenoid fossa and their relationship using a MicroScribe 3D digitizer. Scans and measurements were obtained from 20 pairs of dry proximal humeri and scapulae [10 female and 10 male cadavers: median age 81 years (range 70-94 years)] using a MicroScribe 3D digitizer and Rhinoceros software. Means (±SD) of humeral inclination, medial wall angle of the bicipital groove, and radius of the humeral head values were 135 ± 11°, 39 ± 19°, and 14 ± 3 mm, respectively. Means (±SD) of glenoid height and width were 35 ± 4 and 26 ± 4 mm, while the means (±SD) of the angles of glenoid inclination, retroversion, and rotation were 87 ± 32°, 96 ± 10°, and 9 ± 6°, respectively. A significant difference in glenoid height (P ≤ 0.002) and width (P ≤ 0.0001) was observed between males and females, despite them having almost an identical radius of the humeral head, glenoid inclination, retroversion, and angle of rotation. There was also a significant difference (P ≤ 0.01) in the angle of glenoid retroversion between the right and left sides. Using a MicroScribe 3D digitizer, the glenoid fossa was observed to be significantly smaller in females than males; furthermore, there was a difference in glenoid retroversion between the right and left sides.

  20. THREE-DIMENSIONAL GEOMETRY OF A CURRENT SHEET IN THE HIGH SOLAR CORONA: EVIDENCE FOR RECONNECTION IN THE LATE STAGE OF THE CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Webb, David, E-mail: rkwon@gmu.edu [ISR, Boston College, Chestnut Hill, MA (United States)

    2016-07-20

    Motivated by the standard flare model, ray-like structures in the wake of coronal mass ejections (CMEs) have been often interpreted as proxies of the reconnecting current sheet connecting the CME with the postflare arcade. We present the three-dimensional properties of a post-CME ray derived from white light images taken from three different viewing perspectives on 2013 September 21. By using a forward modeling method, the direction, cross section, and electron density are determined within the heliocentric distance range of 5–9 R {sub ⊙}. The width and depth of the ray are 0.42 ± 0.08 R {sub ⊙} and 1.24 ± 0.35 R {sub ⊙}, respectively, and the electron density is (2.0 ± 0.5) × 10{sup 4} cm{sup 3}, which seems to be constant with height. Successive blobs moving outward along the ray are observed around 13 hr after the parent CME onset. We model the three-dimensional geometry of the parent CME with the Gradual Cylindrical Shell model and find that the CME and ray are coaxial. We suggest that coaxial post-CME rays, seen in coronagraph images, with successive formation of blobs could be associated with current sheets undergoing magnetic reconnection in the late stage of CMEs.

  1. Three-dimensional metamaterials

    Science.gov (United States)

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  2. Three-dimensional echocardiographic ventricular mass/end-diastolic volume ratio in native hypertensive patients: relation between stroke volume and geometry.

    Science.gov (United States)

    Lembo, Maria; Esposito, Roberta; Santoro, Ciro; Lo Iudice, Francesco; Schiano-Lomoriello, Vincenzo; Fazio, Valeria; Grimaldi, Maria Gabriella; Trimarco, Bruno; de Simone, Giovanni; Galderisi, Maurizio

    2018-03-22

    Elevated left ventricular (LV) mass/end-diastolic volume ratio (LVM/EDV) has been associated with higher evidence of myocardial fibrosis and dysfunction in hypertensive patients by cardiac magnetic resonance, a technique with limited availability. We investigated the ability of three-dimensional (3D) echocardiography in identifying a phenotype of LV concentric geometry according to LVM/EDV ratio, possibly detecting early myocardial damage in native-hypertensive patients. One hundred and twenty-eight native-hypertensive patients underwent 2D and 3D-echocardiography. The population was divided into two groups, according to cut-off point values of 3D-LVM/EDV ratio corresponding to its upper 95% confidence interval in a population of 90 healthy normotensive individuals: LVM/EDV ratio cut-off was 1.22 in men and 1.23 in women. An increased 3D-LVM/EDV ratio identified a higher rate of LV concentric geometry in comparison with 2D-derived relative wall thickness (37 versus 24%, P = 0.03). Patients with LVM/EDV ratio of 1.22 or more in men and 1.23 or more in women were significantly older, had smaller 3D-LV end-diastolic and end-systolic volumes and higher LV mass index, without difference in ejection fraction. 3D-stroke volume (P geometry than 2D-relative wall thickness. Stroke volume is independently and negatively associated with LVM/EDV ratio and its reduction represents an early marker of myocardial dysfunction in hypertensives with LV concentric geometry.

  3. Laser treatment of port wine stains: three-dimensional simulation using biopsy-defined geometry in an optical-thermal model

    Science.gov (United States)

    Pfefer, T. Joshua; Barton, Jennifer K.; Smithies, Derek J.; Milner, Thomas E.; Nelson, J. Stuart; van Gemert, Martin J. C.; Welch, Ashley J.

    1998-07-01

    The efficacy of laser treatment of port wine stains (PWS) has been shown to be highly dependent on the patient-specific structure of vascular lesions. To improve the accuracy of PWS numerical models, an optical-thermal model simulating an arbitrarily complex, three dimensional tissue geometry has been developed. In this model, the distribution of absorbed radiant energy -- determined using a modified Monte Carlo technique -- is used as the source term in a finite difference thermal model that predicts transient temperature rise. The Arrhenius rate process integral is then used to calculate thermal damage. Simulations based on a tomographic reconstruction of a PWS biopsy were performed for laser pulse durations of 0.5, 5.0 and 50.0 ms and a wavelength of 585 nm. Irradiances that produced maximum tissue temperatures of 120 degrees Celsius were used. The simulations indicated that energy deposition in blood is primarily a function of depth in skin. Thermal diffusion effects increased with longer pulse duration, leading to collateral damage observed at 5.0 and 50.0 ms. A pulse duration of 0.5 ms resulted in confinement of thermal damage to blood regions. Clusters of small vessels tended to behave similarly to larger vessels, reaching higher temperatures and creating more damage in the surrounding dermis than isolated vessels. The incorporation of realistic geometry into an optical-thermal model represents a significant advance in computer modeling of laser surgery.

  4. Three-dimensional model of plate geometry and velocity model for Nankai Trough seismogenic zone based on results from structural studies

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.

    2012-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture zone of the Nankai megathrust event based on the knowledge of realistic earthquake cycle and variation of magnitude, it is important to know the geometry and property of the plate boundary of the subduction seismogenic zone. To improve a physical model of the Nankai Trough seismogenic zone, the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation has been conducted since 2008. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km every year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found that several strong lateral variations of the subducting Philippine Sea plate and overriding plate corresponding to margins of coseismic rupture zone of historical large event occurred along the Nankai Trough. Particularly a possible prominent reflector for the forearc Moho is recently imaged in the offshore side in the Kii channel at the depth of ~18km which is shallower than those of other area along the Nankai Trough. Such a drastic variation of the overriding plate might be related to the existence of the segmentation of the Nankai megathrust earthquake. Based on our results derived from seismic studies, we have tried to make a geometrical model of the Philippine Sea plate and a three-dimensional velocity structure model of the Nankai Trough seismogenic zone. In this presentation, we will summarize major results of out seismic studies, and

  5. Association of stent-induced changes in coronary geometry with late stent failure: Insights from three-dimensional quantitative coronary angiographic analysis.

    Science.gov (United States)

    Zhang, Bu Chun; Tu, Sheng Xian; Karanasos, Antonios; van Geuns, Robert-Jan; de Jaegere, Peter; Zijlstra, Felix; Regar, Evelyn

    2018-02-05

    The relationship between vessel angulation and large changes in vessel geometry after stent implantation and the occurrence of stent failure still remains unclear. We sought to investigate the association of the change in the coronary bending angle after stenting and the risk for late stent failure by three-dimensional quantitative coronary angiography (3D QCA). The bending angle in coronary lesions that presented with late stent failure and those without stent failure was computed during the cardiac cycle, before and after stenting using a recently developed 3D QCA software. A total of 40 lesions with stent failure (cases) were successfully matched to 47 lesions without stent failure (controls).The mean duration to follow-up coronary angiography was 1,011 days in cases and 1,109 days in the control group (P = 0.14). In stent failure, the systolic bending angle after stenting was smaller (14.45° [12.18, 17.68] versus 18.20° [14.00, 20.30], P = 0.01), while the stent-induced change in systolic bending angle was significantly larger (4.15° [1.13, 7.20] versus 1.80° [-1.90, 4.40], P = 0.004). Multivariable logistic regression analysis suggested that systolic bending angle after stenting (odds ratio: 0.88; 95% CI: 0.79-0.99; P = 0.03), and decrease in systolic bending angle after stenting (odds ratio: 1.13; 95% CI: 1.02-1.26; P = 0.03) were predictors of stent failure. Our study suggests that a change in the natural tortuous course of the coronaries by stent implantation with the decrease in coronary bending angle is a potentially major contributor in stent failure. © 2018 Wiley Periodicals, Inc.

  6. Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly(ε-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation.

    Science.gov (United States)

    Wang, Zu-yong; Teo, Erin Yiling; Chong, Mark Seow Khoon; Zhang, Qin-yuan; Lim, Jing; Zhang, Zhi-yong; Hong, Ming-hui; Thian, Eng-san; Chan, Jerry Kok Yen; Teoh, Swee-hin

    2013-07-01

    Anisotropic geometries are critical for eliciting cell alignment to dictate tissue microarchitectures and biological functions. Current fabrication techniques are complex and utilize toxic solvents, hampering their applications for translational research. Here, we present a novel simple, solvent-free, and reproducible method via uniaxial stretching for incorporating anisotropic topographies on bioresorbable films with ambitions to realize stem cell alignment control. Uniaxial stretching of poly(ε-caprolactone) (PCL) films resulted in a three-dimensional micro-ridge/groove topography (inter-ridge-distance: ~6 μm; ridge-length: ~90 μm; ridge-depth: 200-900 nm) with uniform distribution and controllable orientation by the direction of stretch on the whole film surface. When stretch temperature (Ts) and draw ratio (DR) were increased, the inter-ridge-distance was reduced and ridge-length increased. Through modification of hydrolysis, increased surface hydrophilicity was achieved, while maintaining the morphology of PCL ridge/grooves. Upon seeding human mesenchymal stem cells (hMSCs) on uniaxial-stretched PCL (UX-PCL) films, aligned hMSC organization was obtained. Compared to unstretched films, hMSCs on UX-PCL had larger increase in cellular alignment (>85%) and elongation, without indication of cytotoxicity or reduction in cellular proliferation. This aligned hMSC organization was homogenous and stably maintained with controlled orientation along the ridges on the whole UX-PCL surface for over 2 weeks. Moreover, the hMSCs on UX-PCL had a higher level of myogenic genes' expression than that on the unstretched films. We conclude that uniaxial stretching has potential in patterning film topography with anisotropic structures. The UX-PCL in conjunction with hMSCs could be used as "basic units" to create tissue constructs with microscale control of cellular alignment and elongation for tissue engineering applications.

  7. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  8. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report; Entwicklung und Validierung dreidimensionaler CFD Verfahren fuer Anwendungen in der Reaktorsicherheit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-15

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case

  9. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.

    Science.gov (United States)

    Baggi, Luigi; Cappelloni, Ilaria; Di Girolamo, Michele; Maceri, Franco; Vairo, Giuseppe

    2008-12-01

    Load transfer mechanisms and possible failure of osseointegrated implants are affected by implant shape, geometrical and mechanical properties of the site of placement, as well as crestal bone resorption. Suitable estimation of such effects allows for correct design of implant features. The purpose of this study was to analyze the influence of implant diameter and length on stress distribution and to analyze overload risk of clinically evidenced crestal bone loss at the implant neck in mandibular and maxillary molar periimplant regions. Stress-based performances of 5 commercially available implants (2 ITI, 2 Nobel Biocare, and 1 Ankylos implant; diameters of 3.3 mm to 4.5 mm, bone-implant interface lengths of 7.5 mm to 12 mm) were analyzed by linearly elastic 3-dimensional finite element simulations, under a static load (lateral component: 100 N; vertical intrusive component: 250 N). Numerical models of maxillary and mandibular molar bone segments were generated from computed tomography images, and local stress measures were introduced to allow for the assessment of bone overload risk. Different crestal bone geometries were also modelled. Type II bone quality was approximated, and complete osseous integration was assumed. Maximum stress areas were numerically located at the implant neck, and possible overloading could occur in compression in compact bone (due to lateral components of the occlusal load) and in tension at the interface between cortical and trabecular bone (due to vertical intrusive loading components). Stress values and concentration areas decreased for cortical bone when implant diameter increased, whereas more effective stress distributions for cancellous bone were experienced with increasing implant length. For implants with comparable diameter and length, compressive stress values at cortical bone were reduced when low crestal bone loss was considered. Finally, dissimilar stress-based performances were exhibited for mandibular and maxillary

  10. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  11. Performance of a fine-grained parallel model for multi-group nodal-transport calculations in three-dimensional pin-by-pin reactor geometry

    International Nuclear Information System (INIS)

    Masahiro, Tatsumi; Akio, Yamamoto

    2003-01-01

    A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)

  12. Effects of two-dimensional versus three-dimensional landmark geometry and layout on young children's recall of locations from new viewpoints.

    Science.gov (United States)

    Negen, James; Roome, Hannah E; Keenaghan, Samantha; Nardini, Marko

    2018-06-01

    Spatial memory is an important aspect of adaptive behavior and experience, providing both content and context to the perceptions and memories that we form in everyday life. Young children's abilities in this realm shift from mainly egocentric (self-based) to include allocentric (world-based) codings at around 4 years of age. However, information about the cognitive mechanisms underlying acquisition of these new abilities is still lacking. We examined allocentric spatial recall in 4.5- to 8.5-year-olds, looking for continuity with navigation as previously studied in 2- to 4-year-olds and other species. We specifically predicted an advantage for three-dimensional landmarks over two-dimensional ones and for recalling targets "in the middle" versus elsewhere. However, we did not find compelling evidence for either of these effects, and indeed some analyses even support the opposite of each of these conclusions. There were also no significant interactions with age. These findings highlight the incompleteness of our overall theories of the development of spatial cognition in general and allocentric spatial recall in particular. They also suggest that allocentric spatial recall involves processes that have separate behavioral characteristics from other cognitive systems involved in navigation earlier in life and in other species. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    International Nuclear Information System (INIS)

    Korayem, Moharam Habibnejad; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-01-01

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry

  14. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Korayem, Moharam Habibnejad, E-mail: hkorayem@iust.ac.ir; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-04-15

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry

  15. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  16. Biomimetic three-dimensional anisotropic geometries by uniaxial stretching of poly(ε-caprolactone) films: degradation and mesenchymal stem cell responses.

    Science.gov (United States)

    Wang, Zu-Yong; Lim, Jing; Ho, Yeow Siong; Zhang, Qin-Yuan; Chong, Mark S K; Tang, Min; Hong, Ming-Hui; Chan, Jerry K Y; Teoh, Swee Hin; Thian, Eng San

    2014-07-01

    Geometric cues have been used for a variety of cell regulation and tissue regenerative applications. While the function of geometric cues is being recognized, their stability and degradation behaviors are not well known. Here, we studied the influence of degradation on uniaxial-stretch-induced poly(ε-caprolactone) (UX-PCL) ridge/groove arrays and further cellular responses. Results from accelerated hydrolysis in vitro showed that UX-PCL ridge/groove arrays followed a surface-controlled erosion, with an overall geometry remained even at ∼45% film weight loss. Compared to unstretched PCL flat surfaces and/or ridge/groove arrays, UX-PCL ridge/groove arrays achieved an enhanced morphological stability against degradation. Over the degradation period, UX-PCL ridge/groove arrays exhibited an "S-shape" behavior of film weight loss, and retained more stable surface hydrophilicity and higher film mechanical properties than those of unstretched PCL surfaces. Human mesenchymal stem cells (MSCs) aligned better toward UX-PCL ridge/groove arrays when the geometries were remained intact, and became sensitive with gradually declined nucleus alignment and elongation to the geometric degradation of ridges. We speculate that uniaxial stretching confers UX-PCL ridge/groove arrays with enhanced stability against degradation in erosive environment. This study provides insights of how degradation influences geometric cues and further cell responses, and has implications for the design of biomaterials with stability-enhanced geometric cues for long-term tissue regeneration. © 2013 Wiley Periodicals, Inc.

  17. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  18. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  19. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  20. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    Singer, Isadore M.

    2008-01-01

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  1. Spatio-temporal EEG source localization using a three-dimensional subspace FINE approach in a realistic geometry inhomogeneous head model.

    Science.gov (United States)

    Ding, Lei; He, Bin

    2006-09-01

    The subspace source localization approach, i.e., first principle vectors (FINE), is able to enhance the spatial resolvability and localization accuracy for closely-spaced neural sources from EEG and MEG measurements. Computer simulations were conducted to evaluate the performance of the FINE algorithm in an inhomogeneous realistic geometry head model under a variety of conditions. The source localization abilities of FINE were examined at different cortical regions and at different depths. The present computer simulation results indicate that FINE has enhanced source localization capability, as compared with MUSIC and RAP-MUSIC, when sources are closely spaced, highly noise-contaminated, or inter-correlated. The source localization accuracy of FINE is better, for closely-spaced sources, than MUSIC at various noise levels, i.e., signal-to-noise ratio (SNR) from 6 dB to 16 dB, and RAP-MUSIC at relatively low noise levels, i.e., 6 dB to 12 dB. The FINE approach has been further applied to localize brain sources of motor potentials, obtained during the finger tapping tasks in a human subject. The experimental results suggest that the detailed neural activity distribution could be revealed by FINE. The present study suggests that FINE provides enhanced performance in localizing multiple closely spaced, and inter-correlated sources under low SNR, and may become an important alternative to brain source localization from EEG or MEG.

  2. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  3. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  4. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  5. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  6. Evaluation of the fish passage effectiveness of the Bonneville I prototype surface collector using three-dimensional ultrasonic fish tracking - Final Report

    Science.gov (United States)

    Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.

    2001-01-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.

  7. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  8. Three dimensional moire pattern alignment

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1991-01-01

    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  9. The Three-Dimensional Sign.

    Science.gov (United States)

    Davis, Daniel R.

    1997-01-01

    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  10. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  11. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  12. High-resolution, three-dimensional, seismic survey over the geopressured-geothermal reservoir at Parcperdue, Louisiana. Final report, January 1, 1981-July 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Kinsland, G.L.

    1985-07-01

    A high resolution three-dimensional seismic survey was performed over the reservoir of the geopressured-geothermal production experiment at Parcperdue, Louisiana and high quality results have been obtained. The reservoir is now mapped with more control and assurance than was possible with the previously existing data. Three differences between the map of this project and those available before are significant in the interpretation of the depletion experiment: (1) the western bounding fault is further west leading to a larger reservoir volume; (2) a down to the north (relief) fault through the reservoir has been found; and (3) there are structural highs in which small petroleum accumulations may exist within the reservoir. An original goal of testing the before and after seismic experiment idea as a production monitor has not been realized. However, the quality of the data at the stages of processing presently available is high enough that, had the well not failed, it would have been prudent to have proceeded with the project toward the second experiment. 3 refs., 16 figs., 3 tabs.

  13. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  14. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  15. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  16. Entanglement entropy in three dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Henry [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2015-04-07

    The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS{sub 3}, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ{sup 2} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.

  17. Development of a three dimensional homogeneous calculation model for the BFS-62 critical experiment. Preparation of adjusted equivalent measured values for sodium void reactivity values. Final report

    International Nuclear Information System (INIS)

    Manturov, G.; Semenov, M.; Seregin, A.; Lykova, L.

    2004-01-01

    of group constants prepared by CONSYST code using the ABBN93.01a binary group data library. To start calculations a 'reference' (called 'as-built') heterogeneous model was specified for the BFS-62-3A core. The final results are presented in this paper. They agree with the experiment within the estimated uncertainty

  18. [Precision of three-dimensional printed brackets].

    Science.gov (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  19. Real three-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)

    2010-09-07

    We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.

  20. Singularities at rims in three-dimensional fluid flow

    NARCIS (Netherlands)

    Driesen, C.H.; Kuerten, Johannes G.M.

    1999-01-01

    Asymptotic solutions are presented for Stokes flow near circular rims in three-dimensional geometries. Using nonstandard toroidal coordinates, asymptotic analytical expressions are derived for different corner angles. In comparison to the two-dimensional case, an extra critical corner angle value is

  1. Some Remarks on the Three Dimensionality of Hydrofoil Cavitation

    Directory of Open Access Journals (Sweden)

    Mehmet Salih KARAALİOĞLU

    2017-12-01

    Full Text Available As it is well-known that cavitation is a very important physical phenomenon that affects significantly the performance of three-dimensional hydrofoils. Prediction of cavitation on three-dimensional hydrofoils is very important in the design stage. In this study, some approaches have been verified for hydrofoil cavitation. The main aim of this paper is to compare the mid-section pressure distribution of three-dimensional cavitating rectangular hydrofoil for increasing aspect ratios, with the pressure distribution of two-dimensional cavitating hydrofoil having the same section geometry as in the three-dimensional hydrofoil. In this study, a boundary element (panel method (BEM has been applied to investigate the hydrofoil cavitation for both two- and three-dimensional cases. Two-dimensional analytical solution in case of cavitating flat-plate has also been applied for comparison. It has been shown that the pressure distributions on the mid-section of three-dimensional cavitating and non-cavitating hydrofoil for increasing aspect ratios have converged to the solutions in two-dimensional case.

  2. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  3. MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS

    Science.gov (United States)

    2017-09-01

    MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS ECBC-TR-1459 James D. Wright Jr. Mary...REPORT DATE (DD-MM-YYYY) XX-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2016 – Dec 2016 4. TITLE AND SUBTITLE Materials ...Compatibility Study for Three-Dimensional Printer Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wright

  4. Anatomical and functional assessment of Tryton bifurcation stent before and after final kissing balloon dilatation: Evaluations by three-dimensional coronary angiography, optical coherence tomography imaging and fractional flow reserve.

    Science.gov (United States)

    Pyxaras, Stylianos A; Toth, Gabor G; Di Gioia, Giuseppe; Ughi, Giovanni J; Tu, Shengxian; Rusinaru, Dan; Adriaenssens, Tom; Reiber, Johan H C; Leon, Martin B; Bax, Jeroen J; Wijns, William

    2017-07-01

    To assess the anatomical and functional impact of final kissing balloon inflation (FKBI) after implantation of a dedicated bifurcation stent system. Current evidence suggests clinical benefit of FKBI in patients undergoing bifurcation dilatation using the Tryton side branch stent (Tryton-SBS). We hypothesized that FKBI improves anatomical reconstruction and functional results of bifurcation treated by Tryton-SBS. An unselected group of patients with complex bifurcation coronary lesions undergoing percutaneous coronary intervention (PCI) with Tryton-SBS underwent paired anatomical assessment with two- and three-dimensional quantitative coronary analysis (2D- and 3D-QCA), and optical coherence tomography (OCT), including 3D reconstruction before and after FKBI. Functional assessment by fractional flow reserve (FFR) was performed in the main branch (MB) and side branch (SB) before and after FKBI. Paired pre- and post-FKBI data were obtained in 10 patients. By OCT imaging, FKBI increased both the SB ostial area (4.93 ± 2.81 vs. 7.43 ± 2.87 mm 2 , P system, FKBI is associated with improved anatomical and functional results at the SB level, without compromising the result at the MB. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Three dimensional magnetic abacus memory.

    Science.gov (United States)

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  6. Three-Dimensional Laser Microvision

    Science.gov (United States)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  7. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  8. Three dimensional magnetic abacus memory

    Science.gov (United States)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  9. The Three-Dimensional Universe with Gaia

    Science.gov (United States)

    Turon, C.; O'Flaherty, K. S.; Perryman, M. A. C.

    2005-01-01

    "The Three-Dimensional Universe with Gaia" symposium was hosted by the Observatoire de Paris (Meudon), France, from 4 to 7 October 2004. The date chosen for this symposium corresponded to the end of the definition phase of Gaia, a cornerstone mission of the European Space Agency. The purposes of this symposium were: (1) to present to the scientific community the design chosen for the mission, the final characteristics and performances, and to update the resulting scientific case; (2) to bring to the attention of the scientific community the extraordinary potential of Gaia and to share with the younger generation of scientists the expertise acquired during the preparation phases of the Gaia mission, and during all phases of the Hipparcos mission; (3) to organise the next phase of scientific preparation of the mission, in particular the data reduction which constitutes a major challenge with a petabyte of interconnected data which has to be treated in a global and iterative manner, and to prepare for the scientific exploitation of the data. The symposium was open to scientists working on the preparation of Gaia and to the large community interested in using the data from the mission. The proceedings of the symposium are published by the European Space Agency as ESA SP-576: "The Three-Dimensional Universe with Gaia". These proceedings contain invited and contributed papers for six sessions covering technical and scientific aspects of the mission.

  10. Modelling three-dimensional beta sources for skin dose calculations using VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.; Reece, W.D.

    1991-01-01

    The computer code VARSKIN Mod 1 has been modified to include three-dimensional sources and insertion of layers of protective clothing between the source and the skin. The new code, VARSKIN Mod 2, is described, and the sensitivity of the dose to source geometry, diameter, thickness, density, and protective clothing thickness are presented for low, intermediate, and high energy beta emitters. Finally, doses calculated using VARSKIN Mod 2 are compared with dose measured from hot particles found in nuclear power plants. The results indicate that VARSKIN Mod 2 will greatly improve the accuracy of hot particle dosimetry. (author)

  11. Microlaser-based three-dimensional display

    Science.gov (United States)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.

    1999-08-01

    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  12. Shape memory polymers: three-dimensional isotropic modeling

    Science.gov (United States)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  13. Measurements using three-dimensional product imaging

    Directory of Open Access Journals (Sweden)

    A. Sioma

    2010-07-01

    Full Text Available This article discusses a method of creating a three-dimensional cast model using vision systems and how that model can be used in thequality assessment process carried out directly on the assembly line. The technology of active vision, consisting in illumination of theobject with a laser beam, was used to create the model. Appropriate configuration of camera position geometry and laser light allows thecollection of height profiles and construction of a 3D model of the product on their basis. The article discusses problems connected with the resolution of the vision system, resolution of the laser beam analysis, and resolution connected with the application of the successive height profiles on sample cast planes. On the basis of the model, measurements allowing assessment of dimension parameters and surface defects of a given cast are presented. On the basis of tests and analyses of such a threedimensional cast model, a range of checks which are possible to conduct using 3D vision systems is indicated.Testing casts using that technology allows rapid assessment of selected parameters. Construction of the product’s model and dimensional assessment take a few seconds, which significantly reduces the duration of checks in the technological process. Depending on the product, a few checks may be carried out simultaneously on the product’s model.The possibility of controlling all outgoing products, and creating and modifying the product parameter control program, makes the solutionhighly flexible, which is confirmed by pilot industrial implementations. The technology will be developed in terms of detection andidentification of surface defects. It is important due to the possibility of using such information for the purposes of selecting technologicalprocess parameters and observing the effect of changes in selected parameters on the cast parameter controlled in a vision system.

  14. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  15. Parallelization method for three dimensional MOC calculation

    International Nuclear Information System (INIS)

    Zhang Zhizhu; Li Qing; Wang Kan

    2013-01-01

    A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance. (authors)

  16. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  17. Towards three-dimensional optical metamaterials.

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-01-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  18. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  19. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  20. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  1. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  2. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    Science.gov (United States)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    . M. Mancho, A. M. A theoretical framework for lagrangian descriptors. International Journal of Bifurcation and Chaos (2017) to appear. [5] The three-dimensional Lagrangian geometry of the Antarctic Polar Vortex circulation. Preprint.

  3. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  4. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  5. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...

  6. Three-dimensional chiral photonic superlattices.

    Science.gov (United States)

    Thiel, M; Fischer, H; von Freymann, G; Wegener, M

    2010-01-15

    We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.

  7. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  8. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  9. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study

    Science.gov (United States)

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-01-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in

  10. Three-dimensional patterning methods and related devices

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  11. Chern-Simons theory and three-dimensional surfaces

    International Nuclear Information System (INIS)

    Guven, Jemal

    2007-01-01

    There are two natural Chern-Simons theories associated with the embedding of a three-dimensional surface in Euclidean space: one is constructed using the induced metric connection and involves only the intrinsic geometry? the other is extrinsic and uses the connection associated with the gauging of normal rotations. As such, the two theories appear to describe very different aspects of the surface geometry. Remarkably, at a classical level, they are equivalent. In particular, it will be shown that their stress tensors differ only by a null contribution. Their Euler-Lagrange equations provide identical constraints on the normal curvature. A new identity for the Cotton tensor is associated with the triviality of the Chern-Simons theory for embedded hypersurfaces implied by this equivalence

  12. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  13. Canonical and symplectic analysis for three dimensional gravity without dynamics

    International Nuclear Information System (INIS)

    Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.

    2017-01-01

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  14. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  15. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  16. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  17. Arching in three-dimensional clogging

    Directory of Open Access Journals (Sweden)

    Török János

    2017-01-01

    Full Text Available Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based. The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  18. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  19. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  20. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  1. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  2. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  3. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  4. Geometric actions for three-dimensional gravity

    Science.gov (United States)

    Barnich, G.; González, H. A.; Salgado-Rebolledo, P.

    2018-01-01

    The solution space of three-dimensional asymptotically anti-de Sitter or flat Einstein gravity is given by the coadjoint representation of two copies of the Virasoro group in the former and the centrally extended BMS3 group in the latter case. Dynamical actions that control these solution spaces are usually constructed by starting from the Chern–Simons formulation and imposing all boundary conditions. In this note, an alternative route is followed. We study in detail how to derive these actions from a group-theoretical viewpoint by constructing geometric actions for each of the coadjoint orbits, including the appropriate Hamiltonians. We briefly sketch relevant generalizations and potential applications beyond three-dimensional gravity.

  5. Analysis of three-dimensional transonic compressors

    Science.gov (United States)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  6. Three-dimensional display of document set

    Science.gov (United States)

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  7. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  8. Three-Dimensional Dynamic Loading of Sand

    Science.gov (United States)

    2011-02-01

    oading conditions exist at the bulk scale, and exam ples include planetary impact and crater formation, tectonic plate movement , ballistic im pact and...found further way from an impact event, where the bulk material does not necessarily experience uniform loading in excess of the Hugoniot elastic li...either as a collection of quartz spheres in a three-dimensional rectilinear dom ain for t he mesoscale simulations or as a single representative material

  9. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  10. Three-Dimensional Ocean Noise Modeling

    Science.gov (United States)

    2015-03-01

    realistic and complex three-dimensional bathymetry. This is achieved by using a parabolic equation [PE) propagation model and the reciprocity principle...explain the horizontal noise directionality observed in the Tonga Trench [Barclay, 2014], which was found not to be a 3D effect, but rather due to...modeled noise arriving on the axis of the canyon has significantly perturbed zero-crossings when compared to the equivalent Nx2D result. Theoretical

  11. Three-dimensional accelerating electromagnetic waves.

    Science.gov (United States)

    Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai

    2013-06-17

    We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  12. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  13. Three-Dimensional Audio Client Library

    Science.gov (United States)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  14. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  15. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  16. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  17. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  18. A three dimensional model of a vane rheometer

    International Nuclear Information System (INIS)

    Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas

    2013-01-01

    Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results

  19. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  20. Three-dimensional positioning with optofluidic microscope

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric

    2010-01-01

    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...... a conventional fluorescence microscope as readout. The size separated microspheres are detected by OFM with an accuracy of ≤ 0.92 μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4 μm and 0.08 mm/s respectively. Throughout...

  1. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  2. Three-Dimensional Printing in Orthopedic Surgery.

    Science.gov (United States)

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  3. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  4. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  5. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  6. Three Dimensional Analysis of the Final Design of Pier Extensions and West Guide Wall to Mitigate Local Scour Risk at the BNSF Railroad Bridge Downstream of the Prado Dam Supplemental Report

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sinha, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Kerenyi, K. [Turner-Fairbank Highway Research Center, McLean, VA (United States); Sharp, Jeremy [U.S. Army Corps of Engineers, Vicksburg, MI (United States), Coastal and Hydraulics Lab

    2016-06-01

    This report is a supplement to a previous report [ref] covering optimization of wedge shaped pier extensions to streamline large bluff body piers as a local scour countermeasure for the Burlington Northern and Santa Fe (BNSF) Railroad Bridge over the Santa Ana River downstream of Prado Dam in Riverside County, CA. The optimized design was tested in a 1/30 scale physical model at U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, and the optimized design was used as the base for the construction design. Constructability issues having to do with both materials and site conditions including access underneath the BNSF bridge yielded a construction design that required making the pier extensions wider and either moving the western curve of the west guide wall upstream or changing its geometry.

  7. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  8. Characterization of an Actively Controlled Three-Dimensional Turret Wake

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2012-11-01

    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  9. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  10. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  11. Three-dimensional electrical impedance tomography

    Science.gov (United States)

    Metherall, P.; Barber, D. C.; Smallwood, R. H.; Brown, B. H.

    1996-04-01

    THE electrical resistivity of mammalian tissues varies widely1-5 and is correlated with physiological function6-8. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body9-11. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem10,12. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane13. A few studies have attempted three-dimensional EIT image reconstruction14,15, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening8.

  12. Three-dimensional turbopump flowfield analysis

    Science.gov (United States)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  13. Teaching veterinary obstetrics using three-dimensional animation technology.

    Science.gov (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  14. Three-Dimensional Printing of Drug-Eluting Implants

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Bohr, Adam; Bøtker, Johan Peter

    2015-01-01

    The aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF......) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during...... of custom-made, drug-loaded feedstock materials for 3D printing of pharmaceutical products for controlled release....

  15. The three-dimensional origin of the classifying algebra

    International Nuclear Information System (INIS)

    Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl

    2010-01-01

    It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.

  16. Three-dimensional super Yang-Mills with unquenched flavor

    Science.gov (United States)

    Faedo, Antón F.; Mateos, David; Tarrío, Javier

    2015-07-01

    We construct analytically the gravity duals of three-dimensional, super Yang-Mills-type theories with supersymmetry coupled to N f quark flavors. The backreaction of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N f D6-branes on the background of N D2-branes. The D6-branes are smeared over the compact part of the geometry, which must be a six-dimensional nearly Kähler manifold in order to preserve supersymmetry. For massless quarks, the solutions flow in the IR to an AdS 4 fixed point dual to a Chern-Simons-matter theory. For light quarks the theories exhibit quasi-conformal dynamics (walking) at energy scales m q ≪ E ≪ λN f / N, with λ = g YM 2 N the 't Hooft coupling.

  17. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  18. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  19. Shape synchronization control for three-dimensional chaotic systems

    International Nuclear Information System (INIS)

    Huang, Yuanyuan; Wang, Yinhe; Chen, Haoguang; Zhang, Siying

    2016-01-01

    This paper aims to the three-dimensional continuous chaotic system and shape of the chaotic attractor by utilizing the basic theory of plane curves in classical differential geometry, the continuous controller is synthesized for the master–slave synchronization in shape. This means that the slave system can possess the same shape of state trajectory with the master system via the continuous controller. The continuous controller is composed of three sub-controllers, which respectively correspond to the master–slave synchronization in shape for the three projective curves of the chaotic attractor onto the three coordinate planes. Moreover, the proposed shape synchronization technique as well as application of control scheme to secure communication is also demonstrated in this paper, where numerical simulation results show the proposed control method works well.

  20. DNA Origami with Complex Curvatures in Three-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao

    2011-04-14

    We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

  1. Three-dimensional trajectory optimization in constrained airspace

    Science.gov (United States)

    Dai, Ran

    This dissertation deals with the generation of three-dimensional optimized trajectory in constrained airspace. It expands the previously used two-dimensional aircraft model to a three-dimensional model and includes the consideration of complex airspace constraints not included in previous trajectory optimization studies. Two major branches of optimization methods, indirect and direct methods, are introduced and compared. Both of the methods are applied to solve a two-dimensional minimum-time-to-climb (MTTC) problem. The solution procedure is described in detail. Two traditional problems, the Brachistochrone problem and Zermelo's problem, are solved using the direct collocation and nonlinear programming method. Because analytical solutions to these problems are known. These solutions provide verification of the numerical methods. Three discretization methods, trapezoidal, Hermite-Simpson and Chebyshev Pseudospectral (CP) are introduced and applied to solve the Brachistochrone problem. The solutions obtained using these discretization methods are compared with the analytical results. An 3-D aircraft model with six state variables and two control variables are presented. Two primary trajectory optimization problems are considered using this model in the dissertation. One is to assume that the aircraft climbs up from sea level to a desired altitude in a square cross section cylinder of arbitrary height. Another is to intercept a constant velocity, constant altitude target in minimum time starting from sea level. Results of the optimal trajectories are compared with the results from the proportional navigation guidance law. Field of View constraint is finally considered in this interception problem. The CP discretization and nonlinear programming method is shown to have advantages over indirect methods in solving three-dimensional (3-D) trajectory optimization problems with multiple controls and complex constraints. Conclusions from both problems are presented and

  2. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  3. AAOGlimpse: Three-dimensional Data Viewer

    Science.gov (United States)

    Shortridge, Keith

    2011-10-01

    AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

  4. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    Energy Technology Data Exchange (ETDEWEB)

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  5. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  6. Electron in three-dimensional momentum space

    Science.gov (United States)

    Bacchetta, Alessandro; Mantovani, Luca; Pasquini, Barbara

    2016-01-01

    We study the electron as a system composed of an electron and a photon, using lowest-order perturbation theory. We derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of the light-front wave function overlap representation and the diagrammatic approach. We perform the calculations both in light-cone gauge and Feynman gauge, and we present a detailed discussion of the role of the Wilson lines to obtain gauge-independent results. We provide numerical results and plots for many of the computed distributions.

  7. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  8. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2017-12-01

    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  9. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  10. Three dimensional thrust chamber life prediction

    Science.gov (United States)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  11. Three-dimensional detectors for neutron imaging

    Science.gov (United States)

    Mendicino, R.; Dalla Betta, G.-F.

    2018-01-01

    Solid-state sensors fabricated with 3D technologies and coupled to different neutron converter materials have been developed by several groups as direct replacement of 3 He gas detectors, mainly for homeland security applications. Results so far achieved in terms of detection efficiency are quite good (up to ≃50%) and, combined with the intrinsic excellent position resolution of silicon sensors, could lead to high performance neutron imaging systems. In this paper, we review the state of the art in three-dimensional silicon sensors for thermal-neutron detection, addressing the most promising solutions for neutron imaging. Moreover, selected results from the developments at the University of Trento on 3D pixelated detectors having relatively low fabrication complexity and expected high neutron detection efficiency up to 30% will be reported.

  12. Manufacturing of an injection moulding mould insert with three-dimensional micro features by micromilling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Fugl, Jimmy; Tang, Peter Torben

    2005-01-01

    This paper describes the realisation of mould inserts for injection moulding purposes with three-dimensional (3D) micro features using micromilling. The case under consideration was a microfluidic system with regular 2½D patterns as well as true 3D geometries of minimum size 200 µm....

  13. Method for Parametric Design of Three-Dimensional Shapes

    National Research Council Canada - National Science Library

    Dick, James L

    2006-01-01

    The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...

  14. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  15. Understanding students’ misconceptions: An analysis of final Grade 12 examination questions in geometry

    Directory of Open Access Journals (Sweden)

    Kakoma Luneta

    2015-06-01

    Full Text Available The role geometry plays in real life makes it a core component of mathematics that students must understand and master. Conceptual knowledge of geometric concepts goes beyond the development of skills required to manipulate geometric shapes. This study is focused on errors students made when solving coordinate geometry problems in the final Grade 12 examination in South Africa. An analysis of 1000 scripts from the 2008 Mathematics examination was conducted. This entailed a detailed analysis of one Grade 12 geometry examination question. Van Hiele levels of geometrical thought were used as a lens to understand students’ knowledge of geometry. Studies show that Van Hiele levels are a good descriptor of current and future performance in geometry. This study revealed that whilst students in Grade 12 are expected to operate at level 3 and level 4, the majority were operating at level 2 of Van Hiele’s hierarchy. The majority of students did not understand most of the basic concepts in Euclidian transformation. Most of the errors were conceptual and suggested that students did not understand the questions and did not know what to do as a result. It is also noted that when students lack conceptual knowledge the consequences are so severe that they hardly respond to the questions in the examination.

  16. Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction

    Science.gov (United States)

    Galvín, P.; Romero, A.; Domínguez, J.

    2010-11-01

    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.

  17. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  18. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  19. Primary and Secondary Three Dimensional Microbatteries

    Science.gov (United States)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  20. Quantitative evaluation of performance of three-dimensional printed lenses

    Science.gov (United States)

    Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-08-01

    We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.

  1. A comprehensive three-dimensional model of the cochlea

    International Nuclear Information System (INIS)

    Givelberg, Edward; Bunn, Julian

    2003-01-01

    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics

  2. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2017-11-01

    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  3. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  4. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  5. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  6. Three-dimensional endoscopy in sinus surgery.

    Science.gov (United States)

    Singh, Ameet; Saraiya, Rupali

    2013-02-01

    Surgical endoscopy revolutionized the management of disease in nearly every surgical field, including rhinology. Endoscopy offered several advantages for the surgical management of rhinologic disease. However, it had a distinct disadvantage compared to direct vision, namely loss of binocular vision. Two-dimensional (2D) endoscopy limited depth perception, widely regarded as an important parameter for accurate and efficient movements during surgery. Three-dimensional (3D) endoscopic visualization has been actively pursued for decades by endoscopic surgeons in multiple surgical specialties. However, its clinical role has been limited due to technical limitations as well as successful adaptation by endoscopic surgeons to monocular cues offered by 2D technology. Until recently, stereoscopic technology included variations of dual channel video, dual chip-on-the-tip, and shutter mechanism, as well as various 3D displays. Over the past decade a novel 3D endoscopic technology was introduced. This technology used a lenticular array of lenses in front of a single video chip at the distal end of an endoscope to generate a stereoscopic view of the surgical field. Also known as the 'insect eye' technology since it mimics the compound eye of arthropods, this endoscope has reinvigorated the field of 3D endoscopic surgery. Recent developments in 3D endoscopy hold much promise for all surgical subspecialties, particularly endoscopic sinus and skull-base surgery.

  7. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha

    2017-01-01

    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  8. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [and others

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  9. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  10. THREE-DIMENSIONAL ULTRASOUND IN GYNECOLOGIC ONCOLOGY

    Directory of Open Access Journals (Sweden)

    Iztok Takač

    2003-12-01

    Full Text Available Background. Although three-dimensional ultrasound (3D US imaging has been used for a decade, debate continues about its potential clinical aplications in gynecology. The same is true for the field of gynecologic oncology. Also, reports regarding usfulness of 3D US in gynecologic oncology are limited. A few potentially useful clinical applications have been described and some of these are now gaining general acceptance. In this paper, the usfulness of 3D US in the main areas of its application is demonstrated: diagnostics of cervical, endometrial, ovarian and breast cancer.Conclusions. An important advantage of 3D US over conventional two-dimensional imaging is the ability to reconstruct and display any arbitrarily chosen section within the volume dataset as well as ability to measure the volume of pelvic organs regardless of their shape. 3D US also allows the realtime analysis of the acquired image data to be conducted at a later time when the patient is off the examination table.

  11. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  12. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  13. A method for fabricating a three-dimensional carbon structure

    DEFF Research Database (Denmark)

    2017-01-01

    A method for fabricating a three-dimensional carbon structure (4) is disclosed. A mould (1) defining a three-dimensional shape is provided, and natural protein containing fibres are packed in the mould (1) at a predetermined packing density. The packed natural protein containing fibre structure (3......) undergoes pyrolysis, either while still in the mould (1) or after having been removed from the mould (1). Thereby a three-dimensional porous and electrically conducting carbon structure (4) having a three-dimensional shape defined by the three-dimensional shape of the mould (1) and a porosity defined...

  14. Tailoring thermal conductivity via three-dimensional porous alumina.

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-12-09

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m -1 ·K -1 , which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  15. Tailoring thermal conductivity via three-dimensional porous alumina

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  16. Horizontal biases in rats’ use of three-dimensional space

    Science.gov (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  17. Reduction of the three-dimensional Schrödinger equation for multilayered films

    Science.gov (United States)

    Abbott, Charles; Fernando, G. W.; Rasamny, M.

    2004-05-01

    In this paper we present a method for reducing the three-dimensional Schrödinger equation to study confined metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approximations that are employed when dealing with the three dimensionality of the problem, we derive a one-dimensional equation suitable for studying such states using an envelope function approach. Some applications to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle-resolved photoemission experiments are discussed.

  18. Three-dimensional semi-idealized model for estuarine turbidity maxima in tidally dominated estuaries

    Science.gov (United States)

    Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.

    2017-05-01

    We develop a three-dimensional idealized model that is specifically aimed at gaining insight in the physical mechanisms resulting in the formation of estuarine turbidity maxima in tidally dominated estuaries. First, the three-dimensional equations for water motion and suspended sediment concentration together with the so-called morphodynamic equilibrium condition, are scaled. Next, surface elevation, velocity and sediment concentration are expanded in a small parameter ɛ =AbarM2 / H , where AbarM2 is the mean amplitude of the M2 tide and H is the mean water depth at the seaward side. This results in a system of equations at each order in this small parameter. This ordering allows solving for the vertical structure of the velocity and suspended sediment concentration, independently of the horizontal dimension. After obtaining these vertical structures, the horizontal dependencies of the physical variables follow from solving a two-dimensional elliptic partial differential equation for the surface elevation. The availability of fine sediments in the estuary follows from a two-dimensional elliptic partial differential equation which results from requiring the system to be in morphodynamic equilibrium, and prescribing the total amount of easily erodible sediments available in the estuary. These elliptic equations for the surface elevation and sediment availability are solved numerically using the finite element method with cubic polynomials as basis functions. As a first application, the model is applied to the Ems estuary using a simplified geometry and bathymetric profiles characteristic for the years 1980 and 2005. The availability of fine sediments and location of maximum concentration are investigated for different lateral depth profiles. In the first experiment, a uniform lateral depth is considered. In this case, both the sediment availability and suspended sediment concentration are, as expected, uniform in the lateral direction. In 1980, the sediment is

  19. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  20. Let's Get Virtual: An Examination of Best Practices to Provide Public Access to Digital Versions of Three-Dimensional Objects

    Directory of Open Access Journals (Sweden)

    Tanya M. Johnson

    2016-06-01

    Full Text Available Three-dimensional objects are important sources of information that should not be ignored in the increasing trend towards digitization. Previous research has not addressed the evaluation of digitized versions of three-dimensional objects. This paper first reviews research concerning such digitization, in both two and three dimensions, as well as public access in this context. Next, evaluation criteria for websites incorporating digital versions of three-dimensional objects are extrapolated from previous research. Finally, five websites are evaluated, and suggestions for best practices to provide public access to digital versions of three-dimensional objects are proposed.

  1. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-01-01

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations

  2. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  3. Three-dimensional flow modeling of a self-wiping corotating twin-screw extruder .2. The kneading section

    NARCIS (Netherlands)

    VanderWal, D.J.; Goffart, D.; Klomp, E.M.; Hoogstraten, H.W; Janssen, L.P.B.M.

    Three-dimensional flow simulations of kneading elements in an intermeshing corotating twin-screw extruder are performed by solving the Navier Stokes equations with a finite element package, Sepran. Instead of using the whole geometry of the 8-shaped barrel a simplified geometry is used, representing

  4. Three-Dimensional Flow Modeling of a Self-wiping Corotating Twin-Screw Extruder. Part II : The Kneading Section

    NARCIS (Netherlands)

    Wal, D.J. van der; Goffart, D.; Klomp, E.M.; Hoogstraten, H.W.; Janssen, L.P.B.M.

    1996-01-01

    Three-dimensional flow simulations of kneading elements in an intermeshing corotating twin-screw extruder are performed by solving the Navier Stokes equations with a finite element package, Sepran. Instead of using the whole geometry of the 8-shaped barrel a simplified geometry is used, representing

  5. Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability

    International Nuclear Information System (INIS)

    Jain, Neeraj; Das, Amita; Sengupta, Sudip; Kaw, Predhiman

    2012-01-01

    This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.

  6. Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability

    Science.gov (United States)

    Jain, Neeraj; Das, Amita; Sengupta, Sudip; Kaw, Predhiman

    2012-09-01

    This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.

  7. GRAFFITI: a 'menu-driven' graphics package for the manipulation of three-dimensional solids

    International Nuclear Information System (INIS)

    Lander, P.A.

    1985-01-01

    GRAFFITI was originally developed as an alternative method of geometry input for the discrete Monte Carlo code MONTY (1). The package enables users to create and manipulate three-dimensional objects, either as individual solids or as groups of solids. By filling in menus, users can quickly and easily build complex geometries, which in turn can be used as the geometry input for the MONTY program. GRAFFITI is written in the high-level 'structured' language C and is designed to run under the INIX operating system. The package was developed on a WICAT 150-3WS desk top microprocessor computer system. (author)

  8. Phonon band structures of the three dimensional latticed pentamode metamaterials

    Directory of Open Access Journals (Sweden)

    Guan Wang

    2017-02-01

    Full Text Available The artificially designed three-dimensional (3D pentamode metamaterials have such an extraordinary characteristic that the solid materials behave like liquids. Meanwhile, the ideal structure of the pentamode metamaterials arranges in the same way as that of the diamond crystals. In the present research, we regard three types of pentamode metamaterials derived from the 3D crystal lattices as research objects. The phonon band structures of the candidate pentamode structures are calculated by using the finite element method (FEM. We illustrate the relation between the ratio of the bulk modulus B and the shear modulus G of different combinations of D and d. Finally, we find out the relationship between the phonon band structure and the structure parameters. It is useful for generating the phonon band structure and controlling elastic wave propagation.

  9. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  10. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  11. Simplified two and three dimensional HTTR benchmark problems

    International Nuclear Information System (INIS)

    Zhang Zhan; Rahnema, Farzad; Zhang Dingkang; Pounders, Justin M.; Ougouag, Abderrafi M.

    2011-01-01

    To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems.

  12. Three-dimensional spherical analyses of cosmological spectroscopic surveys

    Science.gov (United States)

    Nicola, Andrina; Refregier, Alexandre; Amara, Adam; Paranjape, Aseem

    2014-09-01

    Spectroscopic redshift surveys offer great prospects for constraining the dark sector in cosmology. Future surveys will however be both deep and wide and will thus require an analysis in three-dimensional spherical geometry. We review and compare several methods which have been proposed in the literature for this purpose, focusing in particular on implementations of the spherical harmonic tomography (SHT) power spectrum Clij and the spherical Fourier Bessel (SFB) power spectrum Cl(k ,k'). Using a Fisher analysis, we compare the forecasted constraints on cosmological parameters using these statistics. These constraints typically rely on approximations such as the Limber approximation and make specific choices in the numerical implementation of each statistic. Using a series of toy models, we explore the applicability of these approximations and study the sensitivity of the SHT and SFB statistics to the details of their implementation. In particular, we show that overlapping redshift bins may improve cosmological constraints using the SHT statistic when the number of bins is small, and that the SFB constraints are quite robust to changes in the assumed distance-redshift relation. We also find that the SHT can be tailored to be more sensitive to modes at redshifts close to the survey boundary, while the SFB appears better suited to capture information beyond the smooth shape of the power spectrum. In this context, we discuss the pros and cons of the different techniques and their impact on the design and analysis of future wide field spectroscopic surveys.

  13. Desingularization strategies for three-dimensional vector fields

    CERN Document Server

    Torres, Felipe Cano

    1987-01-01

    For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the pro...

  14. Self-assembled three dimensional network designs for soft electronics.

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2017-06-21

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  15. Three dimensional modelling of earthquake rupture cycles on frictional faults

    Science.gov (United States)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  16. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  17. A new three-dimensional track fit with multiple scattering

    International Nuclear Information System (INIS)

    Berger, Niklaus; Kozlinskiy, Alexandr; Kiehn, Moritz; Schöning, André

    2017-01-01

    Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit provides a significantly better performance than a single helix fit. The triplets fit is fast and can easily be parallelized, which makes it ideal for the implementation on parallel computing architectures.

  18. Three Dimensional CFD Analysis of the GTX Combustor

    Science.gov (United States)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation Indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. Scramjet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel mass flow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  19. Self-assembled three dimensional network designs for soft electronics

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2017-06-01

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  20. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  1. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  2. Three dimensional computed tomography (CT) algorithms for a planar object

    International Nuclear Information System (INIS)

    Chi, Yong Ki

    2007-02-01

    Recently modern X-ray computed tomography (CT) scanner is rapidly moving towards cone-beam geometry. One of the important advantages of the cone-beam CT is its fast volumetric scanning capability. Also it provides the opportunity for tomographic image reconstruction with magnified resolution. This opportunity is applicable for Emission CT (ECT) scanner with a convergent collimator, which functions as cone beam geometry. However, in a cone-beam image reconstruction, current existing reconstruction algorithms put limitations from long object problems due to the nature of insufficient data or limited source scanning. Therefore, the algorithms that is based on cone-beam geometry and free from limited source scanning highly demanded these days. In this study, for planar object, we have developed full and half-scan algorithms based on approximated cone-beam back-projection. For solving long object problems, many other reconstruction algorithms have been adopted by several helical CT scanners that are composed of a micro-focus X-ray tube and flat panel detector. Although these efforts make the long object problem solved, it remains for planar object as ever due to limited source scanning such as non-isocentric circular orbit. Prior to the algorithmic development, we report digital tomosynthesis (DT) called laminography using geometric projection methods for reconstructing arbitrary cross-section images as well as three dimensional laminography images for cone-beam CT. Digital laminography are advantageous in terms of temporal resolution, and widely used only with a few number of projection data on cone-beam geometry. While existing laminography algorithms use the geometric projection methods, in this dissertation we substitute back-projection technique instead of the geometric projection. Both of laminography without filtering and weighting steps have similar results except for the complexity between their algorithms but it makes the blurring and other severe artifacts in

  3. Confined thermocapillary motion of a three-dimensional deformable drop

    Science.gov (United States)

    Brady, P. T.; Herrmann, M.; Lopez, J. M.

    2011-02-01

    In this paper, simulations are performed of the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus. The refined level-set grid method is used to track the interface and resolve very small deformations. We compare our results to theoretically predicted thermocapillary migration velocities of drops and to experimentally measured migration velocities in microgravity experiments. The motivation of the present work is to address four important questions surrounding thermocapillary migration. These are as follows. (1) What is the impact of initial conditions on both the initial transient and steady state drop behavior? (2) What is the impact of the domain geometry on drop behavior? (3) Do drops deform for intermediate Marangoni numbers and are those deformations axisymmetric? (4) Can the assumption of constant temperature fluid properties be used when simulating physical experiments? To answer the first question, we explore the parameter space of initial drop temperature distribution and drop holding time. We find that in lower Marangoni number regimes, the drop rapidly settles to a quasisteady state. For larger Marangoni numbers, the initial conditions dominate the drop behavior. To address the second and third questions, we look at the spatial distribution of tangential temperature gradients on the surface of the drop as well as drop deformations and migration velocities. The domain geometry induces nonaxisymmetric deformations and temperature distributions. The results of several axisymmetric runs with realistic physical properties are examined to answer the fourth question. It is found that the variation of material properties influences the drop migration behavior in a nontrivial way.

  4. Three-dimensional breast image reconstruction from a limited number of views

    Science.gov (United States)

    McCauley, Thomas G.; Stewart, Alexander X.; Stanton, Martin J.; Wu, Tao; Phillips, Walter C.

    2000-04-01

    Typically in three-dimensional (3D) computed tomography (CT) imaging, hundreds or thousands of x-ray projection images are recorded. The image-collection time and patient dose required rule out conventional CT as a tool for screening mammography. We have developed a CT method that overcomes these limitations by using (1) a novel image collection geometry, (2) new digital electronic x-ray detector technology, and (3) modern image reconstruction procedures. The method, which we call Computed Planar Mammography (CPM), is made possible by the full-field, low-noise, high-resolution CCD-based detector design that we have previously developed. With this method, we need to record only a limited number (10 - 50) of low-dose x- ray images of the breast. The resulting 3D full breast image has a resolution in two orientations equal to the full detector resolution (47 microns), and a lower, variable resolution (0.5 - 10 mm) in the third orientation. This 3D reconstructed image can then be viewed as a series of cross- sectional layers, or planes, each at the full detector resolution. Features due to overlapping tissue, which could not be differentiated in a conventional mammogram, are separated into layers at different depths. We demonstrate the features and capabilities of this method by presenting reconstructed images of phantoms and mastectomy specimens. Finally, we discuss outstanding issues related to the further development of this procedure, as well as considerations for its clinical implementation.

  5. Anisotropic three-dimensional inversion of CSEM data using finite element techniques on unstructured grids

    Science.gov (United States)

    Wang, Feiyan; Petter Morten, Jan; Spitzer, Klaus

    2018-01-01

    In this paper, we present a recently developed anisotropic three-dimensional (3-D) inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multi-source problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parameterization of the inversion domain at a suitable scale. For a rapid simulation of multi-source EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  6. Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms

    OpenAIRE

    Wiedenmann, Daniel; Keller, Lukas; Holzer, Lorenz; Stojadinović, Jelena; Münch, Beat; Suarez, Laura; Fumey, Benjamin; Hagendorfer, Harald; Brönnimann, Rolf; Modregger, Peter; Gorbar, Michal; Vogt, Ulrich F.; Züttel, Andreas; Mantia, Fabio La; Wepf, Roger

    2013-01-01

    The ion conductivity of two series of porous ceramic diaphragms impregnated with caustic potash was investigated by electrochemical impedance spectroscopy. To understand the impact of the pore structure on ion conductivity, the three-dimensional (3-D) pore geometry of the diaphragms was characterized with synchrotron x-ray absorption tomography. Ion migration was calculated based on an extended pore structure model, which includes the electrolyte conductivity and geometric pore parameters, fo...

  7. Three-dimensional temperature history of a multipass filled weldment. Part 2

    International Nuclear Information System (INIS)

    Pinkowish, J.A.; Whitman, P.K.

    1976-01-01

    Computer simulation of the three-dimensional temperature history in a multipass filled weldment was attempted by modifying a transient heat transfer code, HEATING5. The model includes temperature-dependent physical parameters, radiation and convection heat losses, turbulent and laminar convection in the molten pool, and variable arc velocity, intensity, and weld geometry. The model requires approximately 28 CPU min to simulate one second of welding. 15 figures, 8 tables

  8. Semi-implicit method for three-dimensional compressible MHD simulation

    International Nuclear Information System (INIS)

    Harned, D.S.; Kerner, W.

    1984-03-01

    A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)

  9. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  10. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  11. Three dimensional reductions of four-dimensional quasilinear systems

    Science.gov (United States)

    Pavlov, Maxim V.; Stoilov, Nikola M.

    2017-11-01

    In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.

  12. Pathogen propagation in cultured three-dimensional tissue mass

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  13. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  14. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  15. Three-dimensional metrology for printed electronics

    Science.gov (United States)

    Bromberg, Vadim; Harding, Kevin

    2017-05-01

    Novel materials and printing technologies can enable rapid and low cost prototyping and manufacturing of electronic devices with increased flexibility and complexity. However, robust and on-demand printing of circuits will require accurate metrology methods that can measure micron level patterns to verify proper production. This paper presents an evaluation of a range of optical gaging tools ranging from confocal to area 3D systems to determine metrological capability for a range of key parameters from trace thickness to solder paste volumes. Finally, this paper will present a select set of optimized measurement tools detailing both capabilities and gaps in the available technologies needed to fully realize the potential of printed electronics.

  16. Three-Dimensional Electron Beam Dose Calculations.

    Science.gov (United States)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional

  17. Three-dimensional dynamic range reduction techniques

    Science.gov (United States)

    Harding, Kevin G.; Qian, Xiaoping

    2004-02-01

    A significant limitation of the application of 3D structured light systems has been the large dynamic range of reflectivity of typical parts such as machined parts. The advent of digital cameras have helped this problem to some extent by providing a larger dynamic range of detection, but often parts must still be coated with white paint or powder to get a good enough return for 3D measurement techniques such as structured light. This paper will present an overview of methods that have been used to minimize the range of light reflections from many parts including polarization, multiple exposure, multiple viewing and masking techniques. Also presented will be methods of analysis such as phase analysis techniques which can provide improved robustness. Finally, we will discuss the pros and cons of these options as applied to the application of 3D structured light techniques to machined metal parts.

  18. On a modified form of navier-stokes equations for three-dimensional flows.

    Science.gov (United States)

    Venetis, J

    2015-01-01

    A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.

  19. Three-dimensional optical techniques using Dammann gratings

    Science.gov (United States)

    Zhou, Changhe; Yu, Junjie; Wang, Shaoqing; Wei, Shengbin

    2012-11-01

    This paper summarized our work on three-dimensional optical technologies using Dammann gratings, e.g., threedimnensional Dammann gratings, three dimensional imaging using a Dammann grating, etc.. We developed threedimensional Dammann grating which can produce three-dimensional array with equal distance and equal intensity with a high-numerical-aperture lens. As we know, a lens usually has a single focal point. Fresnel zone plate can generate several axial focal points, but the intensity between them is unequal. By introducing the concept of Dammann grating into the circular phase plate, we invented Dammann zone plate(DZP) which can produce a series of axial focal points with equal intensity. Combining DZP with a Dammann grating, three-dimensional Dammann array will be generated, which is highly interesting for various applications. We also built a three-dimensional measuring system using a Dammann grating, with two cameras as the right eye and right eye, respectively. We used a 64×64 Dammann grating for generation of a square array of light spots for parallel capturing the three-dimensional profile of an object. The two cameras and the illuminating part are packaged together. After scanning the object, its three-dimensional profile will be obtained. Experimental results demonstrated the effectiveness of this technique.

  20. Optimal three-dimensional biped walking pattern generation based on geodesics

    Directory of Open Access Journals (Sweden)

    Liandong Zhang

    2017-03-01

    Full Text Available The innovative three-dimensional humanoid biped gait planning method using geodesics is introduced in this article. In order to control three-dimensional walking, the three-dimensional linear inverted pendulum model is studied in our energy-optimal gait planning based on geodesics. The kinetic energy of the three-dimensional linear inverted pendulum model is calculated at first. Based on this kinetic energy model, the Riemannian metric is defined and the Riemannian surface is further determined by this Riemannian metric. The geodesic is the shortest line between two points on the Riemannian surface. This geodesic is the optimal kinetic energy gait for the center of gravity because the kinetic energy along the geodesic is invariant according to the geometric property of geodesics and the walking is energy-saving. Finally, a simulation experiment using a 12-degree-of-freedom biped robot model is implemented. The gait sequences of the simulated RoboErectus humanoid robot are obtained in the ROS (Robot Operating System Gazebo environment. The proposed geodesics approach is compared with the traditional sinusoidal interpolation method by analyzing the torque feedback of each joint of both legs, and our geodesics optimization gait planning method for three-dimensional linear inverted pendulum model walking control is verified by the assessment results.

  1. Three-dimensional reconstruction in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grano, D.A.

    1979-05-01

    The development and implementation of a versatile system of image processing programs for electron microscopy is described. Both high-dose, negatively stained specimens and low-dose, unstained specimens can be analyzed by this system. The theory behind image analysis in electron microscopy is described together with the practical aspects of computer processing of electron micrographs. The Fourier transform of cylindrically symmetric objects is studied in some detail. The range of structural deductions that may be made from the Fourier transforms of projections of such objects is discussed. The methods of 2-D image filtering are applied to high-dose images of negatively stained gap junction membranes and to frozen, hydrated, low-dose images of the hexagonally packed protein component of Spirillum serpens cell wall. The computer processed Spirillum specimen reveals the presence of Y-linkers similar to those seen in negatively stained preparations. Computer processing of the gap junction images makes the presence of a central staining pit more obvious. The techniques of 3-D helical reconstruction are applied to high-dose images of negatively stained T4 bacteriophage tails, to demonstrate the successful transfer of the IBM-based MRC helical reconstruction programs to our Control Data corporation computer system. Finally, the tubular structures found in preparations of Spirillum serpens cell wall are analyzed by Fourier methods.

  2. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures

    Science.gov (United States)

    Ertin, Emre; Austin, Christian D.; Sharma, Samir; Moses, Randolph L.; Potter, Lee C.

    2007-04-01

    We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.

  3. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli

    Directory of Open Access Journals (Sweden)

    Feroze Mahmood

    2014-01-01

    Full Text Available Aims and Objectives: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. Materials and Methods: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Results: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Conclusions: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  4. Construction of Three-Dimensional Road Surface and Application on Interaction between Vehicle and Road

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2018-01-01

    Full Text Available The quantitative description is given to three-dimensional micro and macro self-similar characteristics of road surface from the perspective of fractal geometry using FBM stochastic midpoint displacement and diamond-square algorithm in conjunction with fractal characteristics and statistical characteristics of standard pavement determined by estimation method of box-counting dimension. The comparative analysis between reconstructed three-dimensional road surface spectrum and theoretical road surface spectrum and correlation coefficient demonstrate the high reconstruction accuracy of fractal reconstructed road spectrum. Furthermore, the bump zone is taken as an example to reconstruct a more arbitrary 3D road model through isomorphism of special road surface with stochastic road surface model. Measurement is taken to assume the tire footprint on road surface to be a rectangle, where the pressure distribution is expressed with mean stiffness, while the contact points in the contact area are replaced with a number of springs. Two-DOF vehicle is used as an example to analyze the difference between three-dimensional multipoint-and-plane contact and traditional point contact model. Three-dimensional road surface spectrum provides a more accurate description of the impact effect of tire on road surface, thereby laying a theoretical basis for studies on the dynamical process of interaction of vehicle-road surface and the road friendliness.

  5. X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis.

    Science.gov (United States)

    Johnson, T F; Levison, P R; Shearing, P R; Bracewell, D G

    2017-03-03

    Physical characteristics critical to chromatography including geometric porosity and tortuosity within the packed column were analysed based upon three dimensional reconstructions of bed structure in-situ. Image acquisition was performed using two X-ray computed tomography systems, with optimisation of column imaging performed for each sample in order to produce three dimensional representations of packed beds at 3μm resolution. Two bead materials, cellulose and ceramic, were studied using the same optimisation strategy but resulted in differing parameters required for X-ray computed tomography image generation. After image reconstruction and processing into a digital three dimensional format, physical characteristics of each packed bed were analysed, including geometric porosity, tortuosity, surface area to volume ratio as well as inter-bead void diameters. Average porosities of 34.0% and 36.1% were found for ceramic and cellulose samples and average tortuosity readings at 1.40 and 1.79 respectively, with greater porosity and reduced tortuosity overall values at the centre compared to the column edges found in each case. X-ray computed tomography is demonstrated to be a viable method for three dimensional imaging of packed bed chromatography systems, enabling geometry based analysis of column axial and radial heterogeneity that is not feasible using traditional techniques for packing quality which provide an ensemble measure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Three-dimensional surface anthropometry: Applications to the human body

    Science.gov (United States)

    Jones, Peter R. M.; Rioux, Marc

    1997-09-01

    Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.

  7. Three-dimensional touch interface for medical education.

    Science.gov (United States)

    Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert

    2007-05-01

    We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.

  8. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  9. New "sandwich" structures conformed from three dimensional

    Directory of Open Access Journals (Sweden)

    Alba, Juan J.

    1996-03-01

    laminar otros materiales de refuerzo, a la vez que se puede inyectar una espuma sintética en el hueco existente entre las pieles del "sandwich". Esto permitirá establecer las propiedades mecánicas finales del producto acabado.

  10. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham

    2008-01-01

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  11. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.

    Directory of Open Access Journals (Sweden)

    Jae Won Park

    Full Text Available A three-dimensional (3D-printed customized bolus (3D bolus can be used for radiotherapy application to irregular surfaces. However, bolus fabrication based on computed tomography (CT scans is complicated and also delivers unwanted irradiation. Consequently, we fabricated a bolus using a 3D scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a 3D scanner. The 3D surface data were exported and reconstructed with Geomagic Design X software. A 3D bolus of 5-mm thickness designed to fit onto the nose was printed with the use of rubber-like printing material, and a radiotherapy plan was developed. We successfully fabricated the customized 3D bolus, and further, a CT simulation indicated an acceptable fit of the 3D bolus to the nose. There was no air gap between the bolus and the phantom surface. The percent depth dose (PDD curve of the phantom with the 3D bolus showed an enhanced surface dose when compared with that of the phantom without the bolus. The PDD of the 3D bolus was comparable with that of a commercial superflab bolus. The radiotherapy plan considering the 3D bolus showed improved target coverage when compared with that without the bolus. Thus, we successfully fabricated a customized 3D bolus for an irregular surface using a 3D scanner instead of a CT scanner.

  12. Three-dimensional facial morphometry of attractive Italian women.

    Science.gov (United States)

    Sforza, Chiarella; Laino, Alberto; D'Alessio, Raoul; Grandi, Gaia; Dellavia, Claudia; Tartaglia, Gianluca M; Ferrario, Virgilio Ferruccio

    2007-01-01

    To identify reference standards and possible esthetic features in facial proportion and form of Italian adult women. A three-dimensional electromagnetic digitizer was used to collect the coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw, ears) in 71 healthy, reference women (18-30 years old) and in 48 "attractive" women selected during a beauty competition; soft tissue facial angles, distances and volumes were computed. Attractive women had wider faces with a relatively larger upper facial third (forehead); a larger facial width relative to facial height. The mouth was larger, and lips were more prominent; the interlabial angle was reduced. Overall, the soft-tissue profile was more prominent, with a larger maxillary prominence relative to the mandible. Faces in the attractive women were more flat in the horizontal plane. For several of the analyzed measurements, similar patterns were observed for the 36 women participants to the semi-final stage of the beauty competition, the 12 finalists, and the winner. The winner of the beauty competition deviated from the reference women more than the other two groups of attractive women. Esthetic reference values were determined for a population of 18-30 year olds that reflect contemporary society.

  13. Three-dimensional ultrasound palmprint recognition using curvature methods

    Science.gov (United States)

    Iula, Antonio; Nardiello, Donatella

    2016-05-01

    Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.

  14. Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal

    International Nuclear Information System (INIS)

    Song, Moon Ho; Song, Sang Rock; Cho, Jung Ho; Sung, Je Joong; Ahn, Hyung Keun; Jang, Soon Jae

    2003-01-01

    Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D

  15. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  16. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  17. A topologically twisted index for three-dimensional supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2015-07-23

    We provide a general formula for the partition function of three-dimensional N=2 gauge theories placed on S{sup 2}×S{sup 1} with a topological twist along S{sup 2}, which can be interpreted as an index for chiral states of the theories immersed in background magnetic fields. The result is expressed as a sum over magnetic fluxes of the residues of a meromorphic form which is a function of the scalar zero-modes. The partition function depends on a collection of background magnetic fluxes and fugacities for the global symmetries. We illustrate our formula in many examples of 3d Yang-Mills-Chern-Simons theories with matter, including Aharony and Giveon-Kutasov dualities. Finally, our formula generalizes to Ω-backgrounds, as well as two-dimensional theories on S{sup 2} and four-dimensional theories on S{sup 2}×T{sup 2}. In particular this provides an alternative way to compute genus-zero A-model topological amplitudes and Gromov-Witten invariants.

  18. Three-dimensional analysis of anisotropic spatially reinforced structures

    Science.gov (United States)

    Bogdanovich, Alexander E.

    1993-01-01

    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.

  19. Path Planning in Three Dimensional Environment Using Feedback Linearization (Preprint)

    National Research Council Canada - National Science Library

    Schumacher, Corey J; Kanchanavally, Shreecharan; Ordonez, Raul

    2006-01-01

    This paper presents a control scheme via feedback linearization for three-dimensional cooperative path planning of a class of interconnected systems in general, and unmanned aerial vehicles (UAVs) in particular...

  20. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  1. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  2. Three dimensional QSAR: applications in pharmacology and toxicology

    National Research Council Canada - National Science Library

    Doucet, Jean-Pierre; Panaye, Annick

    2010-01-01

    ... networks and support vector machines. Three-Dimensional QSAR addresses the scope and limitations of different modeling techniques using case studies from pharmacology, toxicology, and ecotoxicology to demonstrate the utility of each...

  3. Three-dimensional anthropometry of the adult face.

    Science.gov (United States)

    1978-03-01

    This study describes a new three-dimensional anatomical axis system based on four conventional anthropometrical face landmarks. Coincident as a coordinate (orthogonal) axis system, this reference system was developed to provide convenient orientation...

  4. Three-dimensional reconstructions of solid surfaces using conventional microscopes.

    Science.gov (United States)

    Ficker, Tomáš; Martišek, Dalibor

    2016-01-01

    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. © Wiley Periodicals, Inc.

  5. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  6. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  7. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...

  8. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  9. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  10. Alignment-free three-dimensional optical metamaterials.

    Science.gov (United States)

    Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea

    2014-03-05

    Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of two three-dimensional cephalometric analysis computer software

    OpenAIRE

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-01-01

    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  12. Three-dimensional study of the multi-cavity FEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnagopal, S.; Kumar, V. [Centre for Advanced Technology, Indore (India)

    1995-12-31

    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  13. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  14. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  15. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    Science.gov (United States)

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  16. Three-dimensional rail-current distribution near the armature of simple, square-bore, two-rail railguns

    International Nuclear Information System (INIS)

    Beno, J.H.

    1991-01-01

    In this paper vector potential is solved as a three dimensional, boundary value problem for a conductor geometry consisting of square-bore railgun rails and a stationary armature. Conductors are infinitely conducting and perfect contact is assumed between rails and the armature. From the vector potential solution, surface current distribution is inferred

  17. Three-Dimensional Flow Modeling of a Self-wiping Corotating Twin-Screw Extruder. Part I : The Transporting Section

    NARCIS (Netherlands)

    Goffart, D.; Wal, D.J. van der; Klomp, E.M.; Hoogstraten, H.W.; Janssen, L.P.B.M.; Breysse, L.; Trolez, Y.

    1996-01-01

    A three-dimensional modeling of the transporting elements in a self-wiping corotating twin-screw extruder has been carried out by using the finite element package Sepran. This simulation uses the 3D geometry of the channel rolled over the twin-screw, which consists of the intermeshing and normal

  18. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  19. Three-Dimensional parton structure of light nuclei

    Science.gov (United States)

    Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2018-03-01

    Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.

  20. BOXER3: a three dimensional integral transport code for PHWR supercell

    International Nuclear Information System (INIS)

    Degweker, S.B.

    1985-01-01

    This report describes BOXER3, three dimensional computer code for solving the integral transport equation. The code uses a combination of the collision probability and the interface current methods. It uses mixed rectangular and cylinderical coordinates and can therefore treat cylindrical fuel channels and reactivity devices within a rectangular 'supercell' of a Candu PHWR. The report describes the details of computation of collision probabilities and the solution of the neutron balance equations. The latter can be done iteratively or by direct matrix inversion. It is shown that the iteration scheme is convergent. Comparisons of the results of BOXER3 and those obtained by other transport and diffusion codes in one, two and three dimensional geometries are also presented. (author)

  1. Three-dimensional dynamic response modeling of floating nuclear plants using finite element methods

    International Nuclear Information System (INIS)

    Johnson, H.W.; Vaish, A.K.; Porter, F.L.; McGeorge, R.

    1976-01-01

    A modelling technique which can be used to obtain the dynamic response of a floating nuclear plant (FNP) moored in an artificial basin is presented. Hydrodynamic effects of the seawater in the basin have a significant impact on the response of the FNP and must be included. A three-dimensional model of the platform and mooring system (using beam elements) is used, with the hydrodynamic effects represented by added mass and damping. For an essentially square plant in close proximity to the site structures, the three-dimensional nature of the basin must be considered in evaluating the added mass and damping. However, direct solutions for hydrodynamic effects with complex basin geometry are not, as yet, available. A method for estimating these effects from planar finite element analysis is developed. (Auth.)

  2. Computation of three-dimensional, rotational flow through turbomachinery blade rows for improved aerodynamic design studies

    Science.gov (United States)

    Subramanian, S. V.; Bozzola, R.; Povinelli, L. A.

    1986-01-01

    The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.

  3. Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section

    Science.gov (United States)

    Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli

    2017-12-01

    Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.

  4. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  5. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  6. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  7. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering.

    Science.gov (United States)

    D'Amora, Ugo; D'Este, Matteo; Eglin, David; Safari, Fatemeh; Sprecher, Christoph M; Gloria, Antonio; De Santis, Roberto; Alini, Mauro; Ambrosio, Luigi

    2018-02-01

    The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r....... The overall presentation is supported by numerical simulations of electrode misalignment caused by the flexibility of the welding machine arms and electrical shunting due to consecutive welds in the resistance spot welding of two sheets.......This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...

  9. Robot vision based on three-dimensional model

    International Nuclear Information System (INIS)

    Shirai, Yoshiaki

    1985-01-01

    In order that robots recognize objects, the models of the objects are required. If there is not any constraint about an object scene, it is desirable that robot vision has the three-dimensional models of the things composing the scene. Since the preparation of three-dimensional models takes much time, here, the utilization of the geometrical models made by CAD is proposed. Besides, when the description of a scene and three-dimensional models are compared, to attempt the comparison with all attitudes of respective models is not efficient, therefore, stratum-wise comparison was proposed. As concrete examples, when input information is only in the direction of a part of surfaces such as lustrous bodies, when information can be obtained in all the directions of the surfaces of a body visible by a photometric stereo, and when complete three dimensional information is obtained by a distance-measuring instrument, the techniques of object recognition are described. In all cases, by carrying out the stratum-wise comparison based on three-dimensional models, the efficient and generalized object recognition was able to be achieved. (Kako, I.)

  10. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  11. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  12. Computer-aided-design-model-assisted absolute three-dimensional shape measurement.

    Science.gov (United States)

    Li, Beiwen; Bell, Tyler; Zhang, Song

    2017-08-20

    Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.

  13. Three-dimensional Image Processing of Identifying Toner Particle Centroids

    Science.gov (United States)

    Bai, Di

    Powder-based 3D printed products are composed of fine particles. The structure formed by the particles in the powder is expected to affect the performance of the final products constructed from them (Finney, 1970; Dinsmore, 2001; Chang, 2015; Patil, 2015). A prior study done by Patil (2015) demonstrated a method for determining the centroids and radii of spherical particles and consequently reconstructed the structure formed by the particles. Patil's method used a Confocal Laser Scanning Microscope to capture a stack of cross-sections of fluorescent toner particles and Matlab image analysis tools to determine the particle centroid positions and radii. Patil identified each particle centroid's XY coordinates and particle radius layer by layer, called "frame-by-frame" method; where the Z-position of the particle centroid was estimated by comparing the radius change at different layers. This thesis extends Patil's work by automatically locating particle centroids in 3D space. The researcher built an algorithm, named "3D particle sighting method," for processing the same stacks of two-dimensional images that Patil used. The algorithm at first, created a three-dimensional image matrix and then processed it by convolving with a 3D kernel to locate local maxima, which pinpointed the centroid locations of the particles. This method treated the stack of images as a 3D image matrix and the convolution operation automatically located the particle centroids. By treating Patil's results as the ground truth, the results revealed that the average delta distance between the particle centroids identified through Patil's method and the automated method was 1.02 microm +/- 0.93 microm. Since the diameter of the particles is around 10 microm, this error is small compared to the size of the particles, and the results of the 3D particle sighting method are acceptable. In addition, this automated method need 1/5 of the processing time compared to Patil's frame-by-frame method.

  14. Three-dimensional synthetic aperture particle image velocimetry

    Science.gov (United States)

    Belden, Jesse; Truscott, Tadd T.; Axiak, Michael C.; Techet, Alexandra H.

    2010-12-01

    We present a new method for resolving three-dimensional (3D) fluid velocity fields using a technique called synthetic aperture particle image velocimetry (SAPIV). By fusing methods from the imaging community pertaining to light field imaging with concepts that drive experimental fluid mechanics, SAPIV overcomes many of the inherent challenges of 3D particle image velocimetry (3D PIV). This method offers the ability to digitally refocus a 3D flow field at arbitrary focal planes throughout a volume. The viewable out-of-plane dimension (Z) can be on the same order as the viewable in-plane dimensions (X-Y), and these dimensions can be scaled from tens to hundreds of millimeters. Furthermore, the digital refocusing provides the ability to 'see-through' partial occlusions, enabling measurements in densely seeded volumes. The advantages are achieved using a camera array (typically at least five cameras) to image the seeded fluid volume. The theoretical limits on refocused plane spacing and viewable depth are derived and explored as a function of camera optics and spacing of the array. A geometric optics model and simulated PIV images are used to investigate system performance for various camera layouts, measurement volume sizes and seeding density; performance is quantified by the ability to reconstruct the 3D intensity field, and resolve 3D vector fields in densely seeded simulated flows. SAPIV shows the ability to reconstruct fields with high seeding density and large volume size. Finally, results from an experimental implementation of SAPIV using a low cost eight-camera array to study a vortex ring in a 65 × 40 × 32 mm3 volume are presented. The 3D PIV results are compared with 2D PIV data to demonstrate the capability of the 3D SAPIV technique.

  15. Three-dimensional imaging of rheumatoid hands with MR

    International Nuclear Information System (INIS)

    Phillips, J.J.; Fischer, H.; Hollister, A.; Myers, L.

    1990-01-01

    Quantitative evaluation of soft-tissue proliferation associated with rheumatoid disease provided an objective measure of the activity and pattern of joint pathology. This paper propose a three-dimensional model for this purpose. With use of a 1.5-T Picker MR imager and a stellar GS 2000 computer graphics workstation, hands from patients with rheumatoid arthritis and age-matched controls were imaged to measure the quantity and location of inflammatory tissues. Three-dimensional Fourier transform gradient-echo sequences were used, with 0.8-1.6-mm section thickness. The definition of soft-tissue abnormalities and normal structures was facilitated by image smoothing and edge-detection computer algorithms. Separation of joint components permitted volume measurements and three-dimensional graphic displays

  16. On three-dimensional quiver gauge theories of type B

    Science.gov (United States)

    Dey, Anindya; Hanany, Amihay; Koroteev, Peter; Mekareeya, Noppadol

    2017-09-01

    We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine B N quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2 N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine B N quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine B N quiver.

  17. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  18. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  19. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  20. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  1. The use of the co-ordinate measuring machine for the study of three-dimensional biomechanics of the knee.

    Science.gov (United States)

    Veselko, M; Jenko, M; Lipuscek, I

    1998-07-01

    Original methodology for the study of three-dimensional biomechanics of the knee is presented in the paper. Defining the geometry of the rigid body in the body-fixed reference frame and the orientation of the body-fixed reference frame in the global co-ordinate system are the theoretic basis. The data in the form of co-ordinates of the Cartesian frame are gathered by the co-ordinate measuring machine and analysed by specially computer program. The theory and a practical example of the study of the three-dimensional biomechanics of the knee are presented. Various possibilities of the use of the methodology are discussed.

  2. A parallel code base on discontinuous Galerkin method on three dimensional unstructured meshes for MHD equations

    Science.gov (United States)

    Li, Xujing; Zheng, Weiying

    2016-10-01

    A new parallel code based on discontinuous Galerkin (DG) method for hyperbolic conservation laws on three dimensional unstructured meshes is developed recently. This code can be used for simulations of MHD equations, which are very important in magnetic confined plasma research. The main challenges in MHD simulations in fusion include the complex geometry of the configurations, such as plasma in tokamaks, the possibly discontinuous solutions and large scale computing. Our new developed code is based on three dimensional unstructured meshes, i.e. tetrahedron. This makes the code flexible to arbitrary geometries. Second order polynomials are used on each element and HWENO type limiter are applied. The accuracy tests show that our scheme reaches the desired three order accuracy and the nonlinear shock test demonstrate that our code can capture the sharp shock transitions. Moreover, One of the advantages of DG compared with the classical finite element methods is that the matrices solved are localized on each element, making it easy for parallelization. Several simulations including the kink instabilities in toroidal geometry will be present here. Chinese National Magnetic Confinement Fusion Science Program 2015GB110003.

  3. Novel multipole Wien filter as three-dimensional spin manipulator

    Science.gov (United States)

    Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.

    2014-04-01

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  4. Novel multipole Wien filter as three-dimensional spin manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, T., E-mail: yasue@isc.osakac.ac.jp; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)

    2014-04-15

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  5. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching

    Science.gov (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  6. Three-dimensional boron particle loaded thermal neutron detector

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  7. Weyl and Dirac semimetals in three-dimensional solids

    Science.gov (United States)

    Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin

    2018-01-01

    Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

  8. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto

    2012-01-01

    This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the oth......, causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011....

  9. Three-dimensional printing of freeform helical microstructures: a review

    Science.gov (United States)

    Farahani, R. D.; Chizari, K.; Therriault, D.

    2014-08-01

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ~100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  10. Fast Three-dimensional Sparse Holography Imaging Algorithm for Personal Security Verification

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2016-06-01

    Full Text Available Terahertz holographic imaging has broad applications in the field of personal security verification, concealed weapon detection, and non-destructive testing. To suppress the range ambiguity, a fast sparse image reconstruction approach and imaging scheme is proposed for three-dimensional terahertz holography. The proposed algorithm establishes the terahertz imaging geometry and corresponding echo model. The range ambiguity is eliminated using the random step frequency method, and a frequency shift procedure is applied to recover the targets with a high computational efficiency. Simulation and experimental results verify the proposed algorithm.

  11. Three-dimensional oblique water-entry problems at small deadrise angles

    KAUST Repository

    Moore, M. R.

    2012-09-19

    This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.

  12. Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media

    International Nuclear Information System (INIS)

    Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei

    2012-01-01

    We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity

  13. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    International Nuclear Information System (INIS)

    Nowak, S.; Orefice, A.

    1994-01-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer

  14. PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour

    DEFF Research Database (Denmark)

    Klank, Henning; Goranovic, Goran; Kutter, Jörg Peter

    2002-01-01

    . The structures are often of complex geometry and include strongly three-dimensional flow behaviour, which poses a challenge for the micro particle image velocimetry (micro-PIV) technique. The flow in a microfluidic 3D-sheathing structure has been measured throughout the volume using micro-PIV. In addition......, a stereoscopic principle was applied to obtain all three velocity components, showing the feasibility of obtaining full volume mapping (x, y, z, U, V, W) from micro-PIV measurements. The results are compared with computational fluid dynamics (CFD) simulations....

  15. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  16. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests

    Science.gov (United States)

    Iverson, Richard M.; Logan, Matthew; Denlinger, Roger P.

    2004-03-01

    Scaling considerations indicate that miniature experiments can be used to test models of granular avalanches in which the effects of intergranular fluid and cohesion are negligible. To test predictions of a granular avalanche model described in a companion paper, we performed bench top experiments involving avalanches of dry sand across irregular basal topography that mimicked the complexity of natural terrain. The experiments employed a novel method of laser-assisted cartography to map the three-dimensional morphology of rapidly moving avalanches, thereby providing high-resolution data for comparison with model output. Model input consisted of two material properties (angles of internal and basal Coulomb friction of the sand), which were measured in independent tests, and of initial and boundary conditions that characterized the geometry of the experimental apparatus. Experimental results demonstrate that the model accurately predicts not only the gross behavior but also many details of avalanche motion, from initiation to deposition. We attribute this accuracy to a mathematical and computational formulation that conserves mass and momentum in three-dimensional physical space and satisfies the Coulomb equation in three-dimensional stress space. Our results support the hypothesis that a Coulomb proportionality between shear and normal stresses applies in moderately rapid granular flows and that complicated constitutive postulates are unnecessary if momentum conservation is strictly enforced in continuum avalanche models. Furthermore, predictions of our Coulomb continuum model contrast with those of a Coulomb point mass model, illustrating the importance of multidimensional modeling and model testing.

  17. Direct laser fabrication of three dimensional components using SC420 stainless steel

    International Nuclear Information System (INIS)

    Ravi, G.A.; Hao, X.J.; Wain, N.; Wu, X.; Attallah, M.M.

    2013-01-01

    Highlights: ► The feasibility of direct laser fabrication of SC402 alloy was studied. ► Three-dimensional (3D) components with varying thicknesses can be built using DLF to near net-shape. ► The build size and orientation affects the mechanical properties. ► Hot isostatic pressing can be used to homogenise the mechanical properties. - Abstract: Direct Laser Fabrication (DLF) has been used in the fabrication of three-dimensional (3D) near net-shape metallic parts using stainless steel SC420 powder. The mechanical properties and microstructure of the as-deposited SC420 and of hot isostatically pressed DLF builds were investigated as a function of deposition direction and sample size using tensile testing, scanning electron microscopy and X-ray diffraction. The influence of the build geometry and orientation on the microstructure and the mechanical properties was also assessed. From this work, it was evident that the DLF process can produce three dimensional parts with good mechanical properties (yield strength > 1000 MPa, tensile strength > 1400 MPa, elongation > 5%), which approach the properties of wrought products

  18. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Jürgen; Ortlepp, Thomas

    2011-01-01

    Accurate inductance calculations are critical for the design of both digital and analogue superconductive integrated circuits, and three-dimensional calculations are gaining importance with the advent of inductive biasing, inductive coupling and sky plane shielding for RSFQ cells. InductEx, an extraction programme based on the three-dimensional calculation software FastHenry, was proposed earlier. InductEx uses segmentation techniques designed to accurately model the geometries of superconductive integrated circuit structures. Inductance extraction for complex multi-terminal three-dimensional structures from current distributions calculated by FastHenry is discussed. Results for both a reflection plane modelling an infinite ground plane and a finite segmented ground plane that allows inductive elements to extend over holes in the ground plane are shown. Several SQUIDs were designed for and fabricated with IPHT's 1 kA cm −2 RSFQ1D niobium process. These SQUIDs implement a number of loop structures that span different layers, include vias, inductively coupled control lines and ground plane holes. We measured the loop inductance of these SQUIDs and show how the results are used to calibrate the layer parameters in InductEx and verify the extraction accuracy. We also show that, with proper modelling, FastHenry can be fast enough to be used for the extraction of typical RSFQ cell inductances.

  19. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing

    Science.gov (United States)

    Li, Y.; Fullager, D. B.; Angelbello, E.; Childers, D.; Boreman, G.; Hofmann, T.

    2018-01-01

    Three-dimensional direct laser writing via two photon polymerization is used to fabricate anti-reflective structured surfaces composed of sub-wavelength conicoid features optimized to operate over a wide bandwidth in the near-infrared range from 3700 cm$^{-1}$ to 6600 cm$^{-1}$ (2.7 to 1.52 $\\mu$m). Analytic Bruggemann effective medium calculations are used to predict nominal geometric parameters such as the fill factor of the constitutive conicoid features of the anti-reflective structured surfaces presented here. The performance of the anti-reflective structured surfaces was investigated experimentally using infrared transmission measurements. An enhancement of the transmittance by 1.35\\% to 2.14\\% over a broadband spectral range from 3700 cm$ ^{-1} $ to 6600 cm$^{-1}$ (2.7 to 1.52 $\\mu$m) was achieved. We further report on finite-element-based reflection and transmission data using three-dimensional model geometries for comparison. A good agreement between experimental results and the finite-element-based numerical analysis is observed once as-fabricated deviations from the nominal conicoid forms are included in the model. Three-dimensional direct laser writing is demonstrated here as an efficient method for the fabrication and optimization of anti-reflective structured surfaces designed for the infrared spectral range.

  20. Data Visualization in Physics II: VRML and Java for three-dimensional imaging and fully three-dimensional movies

    Science.gov (United States)

    Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.

    2006-03-01

    Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.

  1. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    Science.gov (United States)

    2016-03-01

    gels consisting of nanoscale silica networks that have lithium polysulfide catholyte filling the pores. Another key result was the fabrication of a...cathode into a 3-D structure which is compatible with the silicon /SU-8 fabrication process. Finally, we assembled a full 3-D battery device and...demonstrated charge and discharge cycling in the prototype. 15. SUBJECT TERMS Three-dimensional battery (3-D battery) , 3-D electrode arrays, silicon

  2. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  3. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    International Nuclear Information System (INIS)

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in

  4. Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas

    Science.gov (United States)

    Qi, L.; Carr, T.R.; Goldstein, R.H.

    2007-01-01

    In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  5. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  6. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  7. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  8. Two-and three-dimensional gravity modeling along western ...

    Indian Academy of Sciences (India)

    The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, ...

  9. Kondo effect in three-dimensional Dirac and Weyl systems

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Fritz, Lars

    2015-01-01

    Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a

  10. Rigid isotopy classification of real three-dimensional cubics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [Yaroslavl Demidov State University (Russian Federation)

    2006-08-31

    We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.

  11. Monitoring the three-dimensional ionospheric electron density ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 3. Monitoring the three-dimensional ionospheric ... A numerical experiment is used to validate the reliability of the method and its advantages to the classical algebraic reconstruction technique (ART). This is then used to reconstruct the IED images using ...

  12. A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning

    Science.gov (United States)

    Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.

    2007-01-01

    Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually…

  13. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology

    NARCIS (Netherlands)

    Haberfehlner, H.; Maas, H.; Harlaar, J.; Becher, J.G.; Buizer, A.I.; Jaspers, R.T.

    2016-01-01

    In several neurological disorders and muscle injuries, morphological changes of the m. semitendinosus (ST) are presumed to contribute to movement limitations around the knee. Freehand three-dimensional (3D) ultrasound (US), using position tracking of two-dimensional US images to reconstruct a 3D

  14. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  15. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  16. Three-dimensional structure of heat shock protein 90 from ...

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-04-02

    Apr 2, 2007 ... Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory ... role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length .... PfHsp90 and for the development of small-molecule targets.

  17. Three-dimensional reconstruction of the rat nephron

    DEFF Research Database (Denmark)

    Christensen, Erik Ilsø; Grann, Birgitte; Kristoffersen, Inger B.

    2014-01-01

    This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded...

  18. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  19. hp Spectral element methods for three dimensional elliptic problems ...

    Indian Academy of Sciences (India)

    125, No. 3, August 2015, pp. 413–447. c Indian Academy of Sciences h-p Spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. P DUTT1, AKHLAQ HUSAIN2,∗, A S VASUDEVA MURTHY3 and C S UPADHYAY4. 1Department of Mathematics & Statistics ...

  20. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Mathematical modeling of three-dimensional images in emission tomography

    International Nuclear Information System (INIS)

    Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out

  2. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    Abstract. An analytical solution in the form of infinite series is developed for predicting time-dependent three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size, the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level ...

  3. and three-dimensional gravity modeling along western continental ...

    Indian Academy of Sciences (India)

    Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ± 1.2 km thick with its upper surface at ...

  4. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 1. Wave packet construction in three-dimensional quantum billiards: Visualizing the closed orbit, collapse and revival of wave packets in the cubical billiard. Maninder Kaur Bindiya Arora Mahmood Mian. Volume 86 Issue 1 January 2016 pp 31-48 ...

  5. Three-dimensional simulation of laser–plasma-based electron ...

    Indian Academy of Sciences (India)

    Abstract. A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out ...

  6. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  7. Three-dimensional group manifold reductions of gravity

    Science.gov (United States)

    Linares, Román

    2005-04-01

    We review the three-dimensional group manifold reductions of pure Einstein gravity and we exhibit a new consistent group manifold reduction of gravity when the compactification group manifold is S3. The new reduction leads to a lower dimensional theory whose gauge group is SU(2).

  8. Robust cylinder fitting in three-dimensional point cloud data

    NARCIS (Netherlands)

    Nurunnabi, Abdul; Sadahiro, Yukio; Lindenbergh, R.C.

    2017-01-01

    This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete

  9. The Importance of Three-Dimensionality in Children's Art

    Science.gov (United States)

    Heldmeyer, Karen

    1978-01-01

    Investigated young children's ability to represent three-dimensionality in their drawings. Preschool, kindergarten and first grade children and adults were asked to draw a cube, a house, and a ball presented in a plain form, a form differentially decorated on each side, and in both 2- and 3-dimensional forms. (JMB)

  10. Three-Dimensional Extension of a Digital Library Service System

    Science.gov (United States)

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  11. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  12. Three-Dimensional Utah: 100 Years of Sculpture

    OpenAIRE

    Nora Eccles Harrison Museum of Art

    1996-01-01

    Three-Dimensional Utah: 100 Years of Sculpture began as a series of conversations about sculptors and sculpture nearly six years ago. Specific development of the exhibition began three years ago during the process of creating a national inventory of outdoor sculpture for a program called Save Outdoor Sculpture (SOS)! Utah is home to more than 200 pieces of outdoor sculpture.

  13. Three-dimensional computer models of electrospinning systems

    Directory of Open Access Journals (Sweden)

    Smółka Krzysztof

    2017-12-01

    Full Text Available Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.

  14. Molecular dynamics study of two- and three-dimensional classical ...

    Indian Academy of Sciences (India)

    Abstract. We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard–Jones, when parameters occurring in double Yukawa potential are chosen to fit ...

  15. and three-dimensional models for analysis of optical absorption

    Indian Academy of Sciences (India)

    Unknown

    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  16. Optical and thermal performance of a three-dimensional compound ...

    Indian Academy of Sciences (India)

    The three-dimensional compound parabolic concentrator (3D CPC) was found to be more efficient than 2D CPC because of the higher concentration ratio. In the present work a 3D CPC was fabricated with a half acceptance angle of 4° for a spherical absorber of radius 100 mm. UV stabilized aluminized polyester foil having ...

  17. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    Keywords. Three-dimensional bound systems; revivals and collapses; quantum mechanics. PACS Nos 03.65.Ge; 03.65.Yz; 42.50.Md. 1. Introduction. The study of time evolution of the unbound and bound-state wave packet illuminates many features of the wave mechanics. These include both semiclassical features as well.

  18. KP Equation in a Three-Dimensional Unmagnetized Warm Dusty ...

    Indian Academy of Sciences (India)

    Kh. H. El-Shorbagy

    yahoo.com. MS received 24 May 2017; accepted 26 September 2017; published online 27 November 2017. Abstract. In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-. Coulomb waves in an ...

  19. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Three-dimensional free vibration analysis of thick laminated circular plates. Sumit Khare, N.D. Mittal. Abstract. In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as well as simply-supported boundary conditions at outer edges of plates is presented.

  20. and three-dimensional gravity modeling along western continental ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of ...

  1. Three dimensional rigorous model for optical scattering problems

    NARCIS (Netherlands)

    Wei, X.

    2006-01-01

    We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We

  2. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    In three-dimensional formulation one prefers a spinning frame for derivation of the govern- ing equations (Nandi & Neogy 2001). In this spinning frame, the orthotropic bearing stiffness becomes periodic. The governing equations thus become parametric in nature. A rotor cross- section is symmetric when the rotor has same ...

  3. Three-dimensional simulations of viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...

  4. Three-dimensional computer models of electrospinning systems

    Science.gov (United States)

    Smółka, Krzysztof; Firych-Nowacka, Anna; Lefik, Marcin

    2017-12-01

    Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.

  5. Three dimensional internal electromagnetic pulse calculated by particle source method

    International Nuclear Information System (INIS)

    Wang Yuzhi; Wang Taichun

    1986-01-01

    The numerical results of the primary electric current and the internal electromagnetic pulse were obtained by particle method in the rectanglar cavity. The results obtained from this method is compared with three dimensional Euler-method. It is shown that two methods are in good agreement if the conditions are the same

  6. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines.

    Science.gov (United States)

    Piantadosi, Steven

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.

  7. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part I: theoretical formulation

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to present a method for solving the time-domain three-dimensional Maxwell equations. This method is based on a variational formulation and can be easily coupled with a particle solver for the Vlasov equation. The necessity to take into account complex three-dimensional geometries and to have a spatial resolution fitted to the various computation zones, leads to choose a finite element method built on tetrahedral unstructured meshes. 12 refs

  8. Final Report for the grant "Applied Geometry" (DOE DE-FG02-04ER25657)

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Mathieu Desbrun

    2009-05-20

    The primary purpose of this 3-year DOE-funded research effort, now completed, was to develop consistent, theoretical foundations of computations on discrete geometry, to realize the promise of predictive and scalable management of large geometric datasets as handled routinely in applied sciences. Geometry (be it simple 3D shapes or higher dimensional manifolds) is indeed a central and challenging issue from the modeling and computational perspective in several sciences such as mechanics, biology, molecular dynamics, geophysics, as well as engineering. From digital maps of our world, virtual car crash simulation, predictive animation of carbon nano-tubes, to trajectory design of space missions, knowing how to process and animate digital geometry is key in many cross-disciplinary research areas.

  9. FACSY - a three-dimensional kinetic code for nuclear reactors using flux factorization and synthesis approximation

    International Nuclear Information System (INIS)

    Grundmann, U.; Rohde, U.

    1980-06-01

    The kinetics code FACSY solves the time dependent multigroup diffusion equations in three-dimensional geometry. Using the factorization method the neutron flux is split into a product of an amplitude function and a shape function. Generalized point kinetics equations for the amplitude function are obtained weighting the diffusion equation with the stationary flux. The equations of shape functions are solved by the help of synthesis approximation. Both systems of equations are coupled iteratively. The synthesis of shape function in axial direction of the reactor is discontinuous, applying two-dimensional expansion functions in hexagonal geometry. The effect of delayed neutrons is treated by means of their projections on the expansion functions. As an example the time dependent neutron flux distribution is calculated, when a control rod is moved into a reactor. (author)

  10. Three-dimensional radar imaging of buildings based on computer models

    Science.gov (United States)

    Dogaru, Traian; Liao, DaHan; Le, Calvin

    2013-05-01

    This paper describes the study of a through-the-wall radar system for three-dimensional (3-D) building imaging, based on computer simulations. Two possible configurations are considered, corresponding to an airborne spotlight and a ground-based strip-map geometry. The paper details all the steps involved in this analysis: creating the computational meshes, calculating the radar signals scattered by the target, forming the radar images, and processing the images for visualization and interpretation. Particular attention is given to the scattering phenomenology and its dependence on the system geometry. The images are created via the backprojection algorithm and further processed using a constant falsealarm rate (CFAR) detector. We discuss methods of 3-D image visualization and interpretation of the results.

  11. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    Science.gov (United States)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  12. Three-dimensional range data compression using computer graphics rendering pipeline.

    Science.gov (United States)

    Zhang, Song

    2012-06-20

    This paper presents the idea of naturally encoding three-dimensional (3D) range data into regular two-dimensional (2D) images utilizing computer graphics rendering pipeline. The computer graphics pipeline provides a means to sample 3D geometry data into regular 2D images, and also to retrieve the depth information for each sampled pixel. The depth information for each pixel is further encoded into red, green, and blue color channels of regular 2D images. The 2D images can further be compressed with existing 2D image compression techniques. By this novel means, 3D geometry data obtained by 3D range scanners can be instantaneously compressed into 2D images, providing a novel way of storing 3D range data into its 2D counterparts. We will present experimental results to verify the performance of this proposed technique.

  13. The Group Evacuation Behavior Based on Fire Effect in the Complicated Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2014-01-01

    Full Text Available In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.

  14. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  15. Three-dimensional MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.

    1987-01-01

    Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging

  16. Polarization singularity anarchy in three dimensional ellipse fields

    Science.gov (United States)

    Freund, Isaac

    2004-11-01

    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  17. Three-dimensional data visualization using DSP meshes

    Science.gov (United States)

    Liow, Yuh-Tay; Civanlar, Mehmet R.; Dzik, Steven C.

    1990-08-01

    This paper presents a parallel scheme for three dimensional data visualization at interactive rates. The scheme is particularly suitable for multiprocessor systems with distributed frame buffers and is currently implemented on an AT&T Pixel Machine, a parallel computer based on mesh connected digital signal processors with a distributed frame buffer. Nearly linear performance increase with the number of processors in the mesh is obtained by partitioning the original three dimensional data into sub-blocks and processing each sub-block in parallel. The approach is very flexible in implementing a variety of visualization techniques, such as volume compositing (translucent models), binary-class and percentage mixtures and surface based volume rendering.

  18. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  19. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  20. Ultrafast three-dimensional x-ray computed tomography

    International Nuclear Information System (INIS)

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg

    2011-01-01

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s -1 . Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  1. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  2. Three-dimensional computerized tomography in mandibular condyle fractures

    International Nuclear Information System (INIS)

    Bermeo, Fausto; Salazar, Abad

    2003-01-01

    Now, car accidents are so commons, this associated to the high technology in produce automobiles make this type of accidents so serious and the consequences of mandibular condyle fractures are more commons and with more gravity, some of these patients, generally need a traqueostomy to be operated, that is why every second that we can save during the surgery is important. The normal exams as X rays and simple TAC give as an important idea but no complete, on the contrary the three-dimensional TAC permits to observe every damages and its exact location, this contribute to make a better surgery organization, the number and type of plates that we have to put and the better way to treat each case, that contribute to reduce time in operating theatre which is in benefit of the patient, diminishing risks in serious patients as they are, that is why we recommend the utilization of the three-dimensional TAC. (The author)

  3. Handwriting: three-dimensional kinetic synergies in circle drawing movements.

    Science.gov (United States)

    Hooke, Alexander W; Karol, Sohit; Park, Jaebum; Kim, Yoon Hyuk; Shim, Jae Kun

    2012-07-01

    The purpose of this study was to investigate central nervous system (CNS) strategies for controlling multifinger forces during a circle-drawing task. Subjects drew 30 concentric, discontinuous clockwise and counter clockwise circles, at self and experimenter-set paces. The three-dimensional trajectory of the pen's center of mass and the three-dimensional forces and moments of force at each contact between the hand and the pen were recorded. Uncontrolled Manifold Analysis was used to quantify the synergies between pen-hand contact forces in radial, tangential and vertical directions. Results showed that synergies in the radial and tangential components were significantly stronger than in the vertical component. Synergies in the clockwise direction were significantly stronger than the counterclockwise direction in the radial and vertical components. Pace was found to be insignificant under any condition.

  4. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  5. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  6. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  7. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  8. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  9. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  10. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  11. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1997-01-01

    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r......The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance...... is with respect to the scattering. We find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will. still be at integer positions. The effect...

  12. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  13. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  14. Three-dimensional Microarchitecture of Adolescent Cancellous Bone

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I; Overgaard, Søren

    regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... during development and growth. We hypothesized that adolescent cancellous bone differed significantly from adult cancellous bone in their microarchitecture and mechanical properties. METHODS: Twenty-three human proximal tibiae were harvested and divided into 3 groups according to their ages: adolescence...... of Orthopaedics & Traumatology and Institute of Forensic Medicine, Odense and Aarhus University Hospitals, Denmark. RESULTS: Three-dimensional reconstructions of cancellous bone from micro-CT imaging are shown in Figure 1. Our data showed that trabecular separation was significantly greater in the adolescence...

  15. Study of three-dimensional effects on vortex breakdown

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  16. A three-dimensional model of women's empowerment

    OpenAIRE

    Huis, Marloes A.; Hansen, Nina; Otten, Sabine; Lensink, Robert

    2017-01-01

    Women's empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women's empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women's empowerment. We propose a Three-Dimensional Model of Women's Empowerment to integrate previous findings and to gain a deeper un...

  17. Isotropic three-dimensional left-handed meta-materials

    OpenAIRE

    Koschny, Th.; Zhang, L.; Soukoulis, C. M.

    2005-01-01

    We investigate three-dimensional left-handed and related meta-materials based on a fully symmetric multi-gap single-ring SRR design and crossing continuous wires. We demonstrate isotropic transmission properties of a SRR-only meta-material and the corresponding left-handed material which possesses a negative effective index of refraction due to simultaneously negative effective permeability and permittivity. Minor deviations from complete isotropy are due to the finite thickness of the meta-m...

  18. Three Dimensional Unstructured Multigrid for the Euler Equations

    Science.gov (United States)

    1991-05-01

    represents an algorithmic issue. While much work has been performed in two dimensions on direct [21, iterative implicit [3,4,51, and multigrid methods [6,7,8...methods, and many of the iterative implicit methods incur too large memory overheads to be practical for three-dimensional problems. Multigrid methods , on...the Third Copper Mountain Confer- ence on Multigrid Methods , Lecture Notes in Pure and Applied Mathematics, Ed S. F. McCormick, Marcel Dckker Inc

  19. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  20. Three-dimensional transparent parabolic concentrator for photovoltaics

    OpenAIRE

    Huichuan Lin; Peng Xie; Yong Liu; Xiang Zhou; Baojun Li

    2015-01-01

    A three-dimensional transparent parabolic concentrator made of polymethylmethacrylate (PMMA) was designed and fabricated for photovoltaic applications. The measured maximum concentration ratio of the concentrator is 8.31, which means that for normal incident light, optical energy can be concentrated as high as 8.31 times by the concentrator. Even for oblique incident lights with an incident angle of between 5° and 15°, the concentrator maintains a concentration ratio of between 6.81 and 3.72....

  1. Aerodynamics of Airfoils Subject to Three-Dimensional Periodic Gusts.

    Science.gov (United States)

    1983-08-31

    and computational procedures to calculate the unsteady forces acting upon airfoils of arbitrary shape subject to three-dimensional gust disturbances...However the mathenatical formulation which has evolved from our analytical work can also be applied under certain conditions to study the changes in...check the validity of our computation scheme two sets of comparisons were carried out. First we considered a two-dimensional gust with transverse and

  2. Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Kevin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eyler, L. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Okumura, Masahiko [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-28

    The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.

  3. Heat engine in the three-dimensional spacetime

    International Nuclear Information System (INIS)

    Mo, Jie-Xiong; Liang, Feng; Li, Gu-Qiang

    2017-01-01

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C V ≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r 0 .

  4. Three dimensional Green's function for ship motion at forward speed

    Directory of Open Access Journals (Sweden)

    Matiur Rahman

    1990-01-01

    Full Text Available The Green's function formulation for ship motion at forward speed contains double integrals with singularities in the path of integrations with respect to the wave number. In this study, the double integrals have been replaced by single integrals with the use of complex exponential integrals. It has been found that this analysis provides an efficient way of computing the wave resistance for three dimensional potential problem of ship motion with forward speed.

  5. Functional renormalization group for three-dimensional quantum magnetism

    Science.gov (United States)

    Iqbal, Yasir; Thomale, Ronny; Parisen Toldin, Francesco; Rachel, Stephan; Reuther, Johannes

    2016-10-01

    We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum Heisenberg antiferromagnet, and benchmark it against other approaches, if available.

  6. Three dimensional refractive index imaging with differential interference contrast microscopy

    Science.gov (United States)

    Aung, Htet; Buckley, Jared; Kostyk, Piotr; Rodriguez, Braulio; Phelan, Shelley; Xu, M.

    2012-03-01

    We report here a new approach based on an extension of the transport of the intensity equation for three dimensional refractive index imaging of a weak phase object from a series of images recorded by a differential interference contrast microscope at different focus (z-stack). Our method is first validated by imaging polystyrene spheres. We then apply this method to monitor in vivo apoptosis of human breast MCF7 epithelial cells. The potential applications are discussed at the end.

  7. Three-dimensional reconstruction of the otosclerotic focus

    DEFF Research Database (Denmark)

    Bloch, Sune Land; Sørensen, Mads Sølvsten

    2010-01-01

    The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between norm...... and otosclerotic bone remodeling suggests that inner ear mechanisms in control of bone remodeling may have a pathogenetic role in otosclerosis....

  8. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  9. Three-dimensional, computer simulated navigation in endoscopic neurosurgery

    Directory of Open Access Journals (Sweden)

    Roberta K. Sefcik, BHA

    2017-06-01

    Conclusion: Three-dimensional, frameless neuronavigation systems are useful in endoscopic neurosurgery to assist in the pre-operative planning of potential trajectories and to help localize the pathology of interest. Neuronavigation appears to be accurate to <1–2 mm without issues related to brain shift. Further work is necessary in the investigation of the effect of neuronavigation on operative time, cost, and patient-centered outcomes.

  10. Accuracy of three-dimensional printing for manufacturing replica teeth

    OpenAIRE

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were sc...

  11. Is a three-dimensional-printed tooth filling possible?

    OpenAIRE

    Muhammet Kerim Ayar

    2016-01-01

    Introduction: Three-dimensional (3-D) printing is seen as an innovative production process in many fields of dentistry and medicine. But implantation of this novel production process into the treatment of decayed teeth in dentistry remains lacking. Destruction of dental tissues as a result of dental caries is generally treated with dental resin composite fillings. However, a 3-D-printed tooth filling approach, which could be an alternative to traditional approaches, has a potential to reduce ...

  12. Three-dimensional regional-scale hydrostratigraphic modeling based on sequence stratigraphic methods: a case study of the Miocene succession in Denmark

    Science.gov (United States)

    Scharling, Peter B.; Rasmussen, Erik S.; Sonnenborg, Torben O.; Engesgaard, Peter; Hinsby, Klaus

    2009-12-01

    A sound hydrogeological model is the heart of every well-performing groundwater model. A sequence stratigraphic approach has been tested, which has been widely used in the petroleum industry since the 1980s for the construction of three-dimensional hydrogeological models for sedimentary basins. The sequence stratigraphic interpretation has been established for the Miocene succession in western Denmark based on seismic profiles, gamma-ray logs, sediment descriptions and palynological analysis of borehole samples. The up to 400-m-thick Miocene succession consists of deposits originating from deep marine to terrestrial depositional environments. The succession is subdivided into six sequences, corresponding system tracts and distinct lithofacies covering the period from late Oligocene to latest late Miocene. The final model is converted into a binary three-dimensional model that shows the location, geometry and thicknesses of potential deep aquifers, and is prepared for groundwater flow modeling. The model provides a qualified geological description of the connectivity between deep sand formations and the ground surface. By comparison to a traditional lithofacies model based on sediment descriptions of borehole samples, it is shown that the new method gives a more sound geological understanding, which is essential when flow paths and the vulnerability of deep aquifers are evaluated.

  13. Three-dimensional fluorescence characteristics of white chrysanthemum flowers

    Science.gov (United States)

    Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun

    2014-09-01

    White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.

  14. Surface image of herniated disc on three-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung Il; Jeon, Chang Hoon; Kim, Sun Yong; Kim, Ok Hwa; Suh, Jung Ho [Ajou Univ. College of Medicine, Suwon(Korea, Republic of)

    1996-03-01

    To evaluate surface configuration of herniated disc on three-dimensional CT. Three dimensional surface images reconstructed from CT scans(1 mm thick) of 24 surgically confirmed herniated discs in 23 patients were reviewed. Disc surface was classified into peripheral and central zones in contact with consecutive peripheral ring and central endplate. Surface irregularity was categorized into two types(local and general). The incidence, size, and extent of local irregularity were observed. General irregularity incidence and severity ranges in 4 grades, and peripheral width were evaluated. The findings were correlated with discography. Local irregularity compatible with anulus tear in discography was shown in all. It was large(13/24) and mainly peripheral tract extending to disc margin in protrusion(3/5) and sequestration(5/7), and cleft encompassing central zone to disc margin in extrusion(9/12). General irregularity was predominantly grade 3(15/22) and was shown in all except in 2 protrusions. Peripheral width was 0.56 of central radius. Extrusion in herniated disc shows characteristic cleft encompassing central zone to disc margin whereas sequestration or protrusion displays tract extending from peripheral zone to disc margin. Thus, three dimensional surface imaging may aid the diagnosis, follow-up, prediction, and treatment of herniated disc.

  15. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  16. Space charge cartography by FLIMM: a three-dimensional approach

    International Nuclear Information System (INIS)

    Marty-Dessus, D; Berquez, L; Petre, A; Franceschi, J L

    2002-01-01

    A technique for three-dimensional cartography of space charges profiles inside polymer insulating samples is proposed. Called focused laser intensity modulation method (FLIMM), it is derived from the well-known LIMM method, with an additional possibility of being able to focus the laser spot on the surface of the sample to be studied. The processed data is a short-circuited pyrolectric current collected between the electrodes and induced by the interaction of the charges with the periodic variations of temperature produced by the laser source. The focused aspect of our method requires a good three-dimensional modelling of the spatial evolution of this thermal gradient. Under these conditions, the treatment of the equation of heat propagation is carried out using simultaneously a double Fourier transform and Green functions. In association with the numerical simulations of this solution, a two-dimensional scanning of the beam on polyethylene test sample surfaces shows that one can get three-dimensional representations of space charge shapes with a lateral resolution lower than 10 μm and for a depth of analysis typically included in the range 1-100 μm

  17. Nonlinear three-dimensional trajectory following: simulation and application

    Science.gov (United States)

    Hines, George H.

    In light of recent military requirements for unmanned and autonomous vehicles, research into methods of designing arbitrary three-dimensional trajectories and controlling aircraft along them has become vital. In this report, we explore two methods of nonlinear control for the purpose of following three-dimensional trajectories and paths. First, prior work on a dynamic feedback linearization exploiting the differential flatness of the ideal airplane is adapted with the intent of implementing it on a physical testbed in MIT's Realtime indoor Autonomous Vehicle test ENvironment (RAVEN), but poor behavior—both in simulation and in hardware—under moderate levels of joint parameter uncertainty thwarted attempts at implementation. Additionally, the differential flatness technique in its pure form follows trajectories, which are sometimes inferior intuitively and practically to paths. In the context of unmanned air vehicle (UAV) flight in gusty environments, this motivated the extension of prior work on two-dimensional path following to three-dimensions, and simulations are presented in which the fully nonlinear controller derived from differential flatness follows a trajectory that is generated dynamically from a path. The three-dimensional path-following logic is actually implemented in RAVEN, and results are presented that demonstrate good vertical rise time in response to a step input and centimeter accuracy in vertical and lateral tracking. Future directions are proposed.

  18. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  19. Application of Image Processing and Three-Dimensional Data Reconstruction Algorithm Based on Traffic Video in Vehicle Component Detection

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-01-01

    Full Text Available Vehicle detection is one of the important technologies in intelligent video surveillance systems. Owing to the perspective projection imaging principle of cameras, traditional two-dimensional (2D images usually distort the size and shape of vehicles. In order to solve these problems, the traffic scene calibration and inverse projection construction methods are used to project the three-dimensional (3D information onto the 2D images. In addition, a vehicle target can be characterized by several components, and thus vehicle detection can be fulfilled based on the combination of these components. The key characteristics of vehicle targets are distinct during a single day; for example, the headlight brightness is more significant at night, while the vehicle taillight and license plate color are much more prominent in the daytime. In this paper, by using the background subtraction method and Gaussian mixture model, we can realize the accurate detection of target lights at night. In the daytime, however, the detection of the license plate and taillight of a vehicle can be fulfilled by exploiting the background subtraction method and the Markov random field, based on the spatial geometry relation between the corresponding components. Further, by utilizing Kalman filters to follow the vehicle tracks, detection accuracy can be further improved. Finally, experiment results demonstrate the effectiveness of the proposed methods.

  20. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system

    Science.gov (United States)

    Liu, Pengfei; Zhai, Wanming; Wang, Kaiyun

    2016-11-01

    For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train-track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle-track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train-track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel-rail relation and the line geometries. And for the calculation of the wheel-rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel-rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train-track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.

  1. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    Full Text Available Scanning Electron Microscope (SEM as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D. In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  2. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    OpenAIRE

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas–liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduct...

  3. Graphic system for the analysis of representation of a complex three-dimensional configuration for radiation shield calculation

    International Nuclear Information System (INIS)

    Berezhkov, A.B.; Gordeeva, E.K.; Mazanov, V.L.; Solov'ev, V.Yu.; Ryabov, A.V.; Khokhlov, V.F.; Shejno, I.N.

    1987-01-01

    Programs for obtaining phantom images when calculating the radiation shield structure for nuclear-engineering plants, using computer graphics, are developed. Programs are designed to accompany calculational investigations using the SUPER2/RRI3-PICSCH program and ZAMOK-TOMOGRAF program comutering complexes. Design geometry techniques, allowing to present three-dimensional object in the form of two-dimensional perspective projection to the screen plane, are realized in the programs

  4. Research on image matching method of big data image of three-dimensional reconstruction

    Science.gov (United States)

    Zhang, Chunsen; Qiu, Zhenguo; Zhu, Shihuan; Wang, Xiqi; Xu, Xiaolei; Zhong, Sidong

    2015-12-01

    Image matching is the main flow of a three-dimensional reconstruction. With the development of computer processing technology, seeking the image to be matched from the large date image sets which acquired from different image formats, different scales and different locations has put forward a new request for image matching. To establish the three dimensional reconstruction based on image matching from big data images, this paper put forward a new effective matching method based on visual bag of words model. The main technologies include building the bag of words model and image matching. First, extracting the SIFT feature points from images in the database, and clustering the feature points to generate the bag of words model. We established the inverted files based on the bag of words. The inverted files can represent all images corresponding to each visual word. We performed images matching depending on the images under the same word to improve the efficiency of images matching. Finally, we took the three-dimensional model with those images. Experimental results indicate that this method is able to improve the matching efficiency, and is suitable for the requirements of large data reconstruction.

  5. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  6. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  7. Vascular anatomical relationships of the retropubic space and the sacrospinous ligament, using three-dimensional imaging.

    Science.gov (United States)

    Dueñas-Garcia, Omar F; Kim, Youngwu; Leung, Katherine; Flynn, Michel K

    2017-08-01

    Pelvic anatomy is complex and intimate knowledge of variabilities in anatomical relationships is critical for surgeons to safely perform surgical procedures. Three-dimensional Imaging provides the opportunity to analyze undisturbed anatomical relationships. The authors hypothesized that three-dimensional models created from pelvic computed tomography angiograms could be used to obtain vascular anatomical measurements, and that the measurements obtained from three-dimensional models would be similar to those from cadaver studies. We included all pelvic computed tomography angiograms that were acquired in female patients older than 18 years at our institution within the previous 5 years. Three-dimensional models were created using the Invivo5 software based on the Digital Imaging and Communications in Medicine files. Structures of interest were virtually dissected and measured replicating previous cadaver studies. Statistical analysis of demographics and measurements was performed. The final analysis included 87 studies. The average age of the subjects was 66.9 years and their average BMI was 26.1 kg/m 2 . Of the 87 subjects, 12.6% had a history of hysterectomy, 2.3% a history of a continence procedure, and 1.1% a history of a prolapse procedure. The range of distance between the ischial spine and the pudendal artery was 3-17 mm. The closest vessels to the lower edge of the symphysis pubis were the obturator vessels. The aberrant corona mortis vessel was present in 27.9% of the subjects. Prior hysterectomy was associated with changes in the measurements of the obturator arteries with minimal changes in other measurements. Our results indicate that this technology provides similar measurements to those found in previous unembalmed cadaver studies. This technology offers a great opportunity to study anatomical relationships in a native undisturbed state.

  8. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  9. The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces

    Science.gov (United States)

    Fath, Elaine

    2015-03-01

    A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.

  10. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout

    Science.gov (United States)

    Wongwathanarat, A.; Müller, E.; Janka, H.-Th.

    2015-05-01

    We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M⊙ and 20 M⊙. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1), the 20 M⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He

  11. Three dimensional flow structures and turbulence distribution in an urban environment

    Science.gov (United States)

    Monnier, Bruno

    Understanding and controlling the dispersion of pollutants and contaminants in urban areas has become a major focus recently. Field measurements, numerical studies, and wind tunnel experiments have increased in number. Specifically, there is a growing need for a spatio-temporal description of such complex flow fields under well-controlled conditions, typically obtained in wind tunnel experiments. The reduced scale model of interest is a 4 by 3 array of cuboid blocks in an experimentally modeled, neutrally stratified, atmospheric boundary-layer. The use of Stereoscopic Particle Image Velocimetry (SPIV) allows for a three-dimensional description of this urban flow. A large amount of SPIV data is collected upstream and in each middle street of the urban environment allowing for a study of the flow evolution from street to street. Valuable information about the flow structures are presented along with the mechanisms responsible for contaminant transport and dispersion. The effects of small incidence angles of the incoming flow with respect to the urban array and the effects of streamwise spacing between streets on the flow characteristics are investigated. A major observation from this work is that a strong channeling effect is observed for incidence angles as small as 4.5° and is found to be comparable in strength to that observed in other investigations for much larger angles. A coupling between this channeling effect and the structures responsible for contaminant transport is revealed. An innovative method using sparse measurements to estimate the continuous temporal evolution of the dominant structures in the flow is investigated. Proper Orthogonal Decomposition is used to obtain a reduced-order representation (ROR) of the flow field. Sparse velocity measurements within the domain serve as input to measurement models that provide an estimation of the ROR of the velocity field. This ROR of the flow field could be regarded as the first that provides a temporal

  12. Development of a three-dimensionally movable phantom system for dosimetric verifications

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Mizowaki, Takashi; Narita, Yuichiro; Kawada, Noriyuki; Takahashi, Kunio; Mihara, Kazumasa; Hiraoka, Masahiro

    2008-01-01

    The authors developed a three-dimensionally movable phantom system (3D movable phantom system) which can reproduce three-dimensional movements to experimentally verify the impact of radiotherapy treatment-related movements on dose distribution. The phantom system consists of three integrated components: a three-dimensional driving mechanism (3D driving mechanism), computer control system, and phantoms for film dosimetry. The 3D driving mechanism is a quintessential part of this system. It is composed of three linear-motion tables (single-axis robots) which are joined orthogonally to each other. This mechanism has a motion range of 100 mm, with a maximum velocity of 200 mm/s in each dimension, and 3D motion ability of arbitrary patterns. These attributes are sufficient to reproduce almost all organ movements. The positional accuracy of this 3D movable phantom system in a state of geostationary is less than 0.1 mm. The maximum error in terms of the absolute position on movement was 0.56 mm. The positional reappearance error on movement was up to 0.23 mm. The observed fluctuation of time was 0.012 s in the cycle of 4.5 s of oscillation. These results suggested that the 3D movable phantom system exhibited a sufficient level of accuracy in terms of geometry and timing to reproduce interfractional organ movement or setup errors in order to assess the influence of these errors on high-precision radiotherapy such as stereotactic irradiation and intensity-modulated radiotherapy. In addition, the authors 3D movable phantom system will also be useful in evaluating the adequacy and efficacy of new treatment techniques such as gating or tracking radiotherapy

  13. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  14. Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices

    Science.gov (United States)

    Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.

    2008-03-01

    We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.

  15. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  16. Observation of three dimensional optical rogue waves through obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (RM) (Italy); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185 Roma (Italy)

    2015-06-22

    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.

  17. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter

    2016-01-01

    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  18. Modified Three-Dimensional Multicarrier Optical Prime Codes

    Directory of Open Access Journals (Sweden)

    Rajesh Yadav

    2016-01-01

    Full Text Available We propose a mathematical model for novel three-dimensional multicarrier optical codes in terms of wavelength/time/space based on the prime sequence algorithm. The proposed model has been extensively simulated on MATLAB for prime numbers (P to analyze the performance of code in terms of autocorrelation and cross-correlation. The simulated outcome resembles the mathematical model and gives better results over other methods available in the literature as far as autocorrelation and cross-correlation are concerned. The proposed 3D optical codes are more efficient in terms of cardinality, improved security, and providing quality of services.

  19. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  20. Impurity states in two and three dimensional disordered system S

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered system. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (author) [pt

  1. Evaluation of solar energy over three dimensional objects

    International Nuclear Information System (INIS)

    Serposhan, S.; Yaghoubi, M.

    2002-01-01

    The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined

  2. Three-dimensional analysis of two-pile caps

    Directory of Open Access Journals (Sweden)

    T.E.T. Buttignol

    Full Text Available This paper compares the results between a non-linear three-dimensional numerical analysis of pile caps with two piles and the experimental study conducted by Delalibera. It is verified the load-carrying capacity, the crack pattern distribution, the principal stress in concrete and steel, the deflection and the fracture of the pile cap. The numerical analysis is executed with the finite-element software ATENA 3D, considering a perfect bond between concrete and steel. The numerical and experimental results are presented and have demonstrated a good approximation, reasserting the results of the experimental model and corroborating the theory.

  3. Three-dimensional fractional topological insulators in coupled Rashba layers

    Science.gov (United States)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2017-08-01

    We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.

  4. Single-camera, three-dimensional particle tracking velocimetry

    OpenAIRE

    Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V.

    2012-01-01

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-PIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algor...

  5. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1976-01-01

    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  6. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  7. CATIA Core Tools Computer Aided Three-Dimensional Interactive Application

    CERN Document Server

    Michaud, Michel

    2012-01-01

    CATIA Core Tools: Computer-Aided Three-Dimensional Interactive Application explains how to use the essential features of this cutting-edge solution for product design and innovation. The book begins with the basics, such as launching the software, configuring the settings, and managing files. Next, you'll learn about sketching, modeling, drafting, and visualization tools and techniques. Easy-to-follow instructions along with detailed illustrations and screenshots help you get started using several CATIA workbenches right away. Reverse engineering--a valuable product development skill--is also covered in this practical resource.

  8. Fracture of three-dimensional fuse networks with quenched disorder

    OpenAIRE

    Räisänen, V. I.; Alava, M. J.; Nieminen, Risto M.

    1998-01-01

    We study a fracture on a quasistatic time scale in a three-dimensional (3D) fuse network model with “strong” and “weak” disorder. These two cases differ noticeably in the development of the fracture. For strong disorder the damage scaling is very close to volumelike [number of broken bonds Nb∼L3/(lnL)0.3] unlike for weak disorder [Nb∼L2.4/(lnL)0.3]. With strong disorder global load sharing is only approximately valid. The size distribution of “avalanches” of broken fuses in the failure follow...

  9. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  10. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  11. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  12. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J S; Hrousis, C A

    2010-03-09

    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  13. Field approach to three-dimensional gene expression pattern characterization

    Science.gov (United States)

    Costa, L. da F.; Travençolo, B. A. N.; Azeredo, A.; Beletti, M. E.; Müller, G. B.; Rasskin-Gutman, D.; Sternik, G.; Ibañes, M.; Izpisúa-Belmonte, J. C.

    2005-04-01

    We present a vector field method for obtaining the spatial organization of three-dimensional patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful framework to characterize the organization and dynamics of biological structures. We apply this methodology to analyze the expression pattern of the enhanced green fluorescent protein (EGFP) driven by the promoter of light chain myosin II during zebrafish heart formation.

  14. Wave field restoration using three-dimensional Fourier filtering method.

    Science.gov (United States)

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  15. Conoscopic holography: toward three-dimensional reconstructions of opaque objects.

    Science.gov (United States)

    Mugnier, L M

    1995-03-10

    Conoscopic holography is an interferometric technique that permits the recording of three-dimensional objects. A two-step scheme is presented to recover an opaque object's shape from its conoscopic hologram, consisting of a reconstruction algorithm to give a first estimate of the shape and an iterative restoration procedure that uses the object's support information to make the reconstruction more robust. The existence, uniqueness, and stability of the solution, as well as the convergence of the restoration algorithm, are studied. A preliminary experimental result is presented.

  16. Three Dimensional Digital Image Processing using Edge Detectors

    Directory of Open Access Journals (Sweden)

    John Schmeelk

    2005-11-01

    Full Text Available This paper provides an introduction to three dimensional image edge detection and its relationship to partial derivatives, convolutions and wavelets. We are especially addressing the notion of edge detection because it has far reaching applications in all areas of research to include medical research. A patient can be diagnosed as having an aneurysm by studying an angiogram. An angiogram is the visual view of the blood vessels whereby the edges are highlighted through the implementation of edge detectors. This process is completed through convolution, wavelets and matrix techniques. Some illustrations included will be vertical, horizontal, Sobel and wavelet edge detectors.

  17. Proton beam writing of three-dimensional microcavities

    International Nuclear Information System (INIS)

    Vanga, S.K.; Bettiol, A.A.

    2013-01-01

    Optical micro cavities exhibit high quality factors due to the circulation of resonant optical fields within the cavity. Polymers are good materials for the fabrication of micro cavities for practical applications due to the availability of various refractive indices and their low cost. Polymer micro cavities generally yield low Q-factors compared to semiconductor materials because of inherent material absorption losses, and their Q-factors are limited by the low index contrast between the polymer and the substrate material. In the present work, three dimensional micro cavities were fabricated in SU-8 using proton beam writing to enhance the index contrast by isolating the cavities from the substrate

  18. Three-dimensional imaging techniques: A literature review

    Science.gov (United States)

    Karatas, Orhan Hakki; Toy, Ebubekir

    2014-01-01

    Imaging is one of the most important tools for orthodontists to evaluate and record size and form of craniofacial structures. Orthodontists routinely use 2-dimensional (2D) static imaging techniques, but deepness of structures cannot be obtained and localized with 2D imaging. Three-dimensional (3D) imaging has been developed in the early of 1990's and has gained a precious place in dentistry, especially in orthodontics. The aims of this literature review are to summarize the current state of the 3D imaging techniques and to evaluate the applications in orthodontics. PMID:24966761

  19. Three-dimensional temporal reconstruction and analysis of plume images

    Science.gov (United States)

    Dhawan, Atam P.; Disimile, Peter J.; Peck, Charles, III

    1992-01-01

    An experiment with two subsonic jets generating a cross-flow was conducted as part of a study of the structural features of temporal reconstruction of plume images. The flow field structure was made visible using a direct injection flow visualization technique. It is shown that image analysis and temporal three-dimensional visualization can provide new information on the vortical structural dynamics of multiple jets in a cross-flow. It is expected that future developments in image analysis, quantification and interpretation, and flow visualization of rocket engine plume images may provide a tool for correlating the engine diagnostic features by interpreting the evolution of the structures in the plume.

  20. The Electron in Three-Dimensional Momentum Space

    Science.gov (United States)

    Mantovani, L.; Bacchetta, A.; Pasquini, B.

    2016-07-01

    We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.

  1. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  2. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  3. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud

    Science.gov (United States)

    Lott, Gordon

    2017-04-01

    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  4. Three-dimensional, subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1994-01-01

    The objective of this applied research and devolpment project is to develop a system known as 3-D SISAR. This sytem consists of a gound penetrating radar with software algorithms designed for detection, location, and identification of buried objects in the underground hazardous waste environments found at US DOE storage sites. Three-dimensional maps can assist the development of remdiation strategies and characterization of the digface during remediation. The system should also be useful for monitoring hydrocarbon-based contaminant migration after remediation. 5 figs

  5. Digital Simulation of Thunder from Three-Dimensional Lightning

    Science.gov (United States)

    Dunkin, James; Fleisch, Daniel

    2010-04-01

    The physics of lightning and its resultant thunder have been investigated by many people, but we still don't have a full understanding of the governing processes. In this study, we have constructed a three-dimensional model of lightning using MATLAB^ software, and used N-waves as postulated by Ribner and Roy to synthesize the resultant thunder signature. In addition, we have taken an FFT of the thunder signature, and compared the time-domain waveform and frequency spectrum to recordings of thunder taken over the summer of 2009. This analysis is done with the goal of further understanding the processes of thunder production.

  6. Three dimensional magnetic solutions in massive gravity with (nonlinear field

    Directory of Open Access Journals (Sweden)

    S.H. Hendi

    2017-12-01

    Full Text Available The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.

  7. Life is three-dimensional, and it begins with molecules.

    Directory of Open Access Journals (Sweden)

    Philip E Bourne

    2017-03-01

    Full Text Available The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.

  8. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    Science.gov (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  9. The three-dimensional crystal structure of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)

    1996-02-01

    The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

  10. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  11. Strongly interacting atom lasers in three-dimensional optical lattices.

    Science.gov (United States)

    Hen, Itay; Rigol, Marcos

    2010-10-29

    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  12. On a Three Dimensional Vision Based Collision Avoidance Model

    Science.gov (United States)

    Parzani, Céline; Filbet, Francis

    2017-08-01

    This paper presents a three dimensional collision avoidance approach for aerial vehicles inspired by coordinated behaviors in biological groups. The proposed strategy aims to enable a group of vehicles to converge to a common destination point avoiding collisions with each other and with moving obstacles in their environment. The interaction rules lead the agents to adapt their velocity vectors through a modification of the relative bearing angle and the relative elevation. Moreover the model satisfies the limited field of view constraints resulting from individual perception sensitivity. From the proposed individual based model, a mean-field kinetic model is derived. Simulations are performed to show the effectiveness of the proposed model.

  13. Analysis and visualization of complex unsteady three-dimensional flows

    Science.gov (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  14. Three-dimensional nonlinear waves under spatial confinement

    OpenAIRE

    Azhand, Arash

    2016-01-01

    The aim of my thesis is to study the evolution of scroll waves under spatial confinement both experimentally as well as numerically. Scroll waves represent three-dimensional (3D) analogs of spiral waves. In the simplest case, the central axis around which a scroll wave rotates is a straight line. The line is named the filament of the scroll wave, and each infinitesimal cross-section represents the core of a spiral wave. Two specific types of scroll waves are considered: (1) Straight scroll wa...

  15. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  16. Three-dimensional opal-like silica foams.

    Science.gov (United States)

    Carn, Florent; Saadaoui, Hassan; Massé, Pascal; Ravaine, Serge; Julian-Lopez, Beatriz; Sanchez, Clément; Deleuze, Hervé; Talham, Daniel R; Backov, Rénal

    2006-06-06

    The synthesis of novel meso-/macroporous SiO2 monoliths by combining a nano-building-blocks-based approach with the confined geometry of a tailored air-liquid foam structure is described. The resulting macrostructure in which ordered close-packed colloidal silica nanoparticles constitute the monolith's scaffolds very closely resembles the tailored periodic air-liquid foam template. The void spaces between adjacent particles create textural mesoporosity; therefore, the as-prepared silica networks are characterized by hierarchical porosity at the macroscopic and mesoscopic length scales. The fine-tuning of both the liquid foam's fraction and the bubble size allows a rational design over the macroscopic cell morphologies (shape, Plateau border's length, and width). Striking results of this approach are the weak shrinkage of the as-synthesized opal-like scaffolds during the thermally induced sintering process and, in contrast with previous studies, the formation of closed-cell structures. Particle organization and the foam film surface roughness are investigated by atomic force microscopy (AFM), showing the influence of the liquid flow, within the foams' Plateau borders and films, on the final assemblies.

  17. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  18. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing.

    Science.gov (United States)

    Li, Y; Fullager, D B; Angelbello, E; Childers, D; Boreman, G; Hofmann, T

    2018-01-15

    Three-dimensional direct laser writing via two-photon polymerization is used to fabricate anti-reflective structured surfaces (ARSSs) composed of subwavelength conicoid features optimized to operate over a wide bandwidth in the near-infrared range from 3700  cm -1 to 6600  cm -1 (2.7-1.52 μm). Analytic Bruggemann effective medium calculations are used to predict nominal geometric parameters such as the fill factor of the constitutive conicoid features of the anti-reflective structured surfaces (ARSSs) presented here. The performance of the ARSSs was investigated experimentally using infrared reflection and transmission measurements. An enhancement of the transmittance by 1.35%-2.14% over a broadband spectral range from 3700  cm -1 to 6600  cm -1 (2.7-1.52 μm) was achieved. We further report on finite-element-based reflection and transmission data using three-dimensional (3D) model geometries for comparison. A good agreement between experimental results and the finite-element-based numerical analysis is observed once as-fabricated deviations from the nominal conicoid forms are included in the model. 3D direct laser writing is demonstrated here as an efficient method for the fabrication and optimization of ARSSs designed for the infrared spectral range.

  19. A three-dimensional mathematical model for the signal propagation on a neuron’s membrane.

    Directory of Open Access Journals (Sweden)

    Konstantinos eXylouris

    2015-07-01

    Full Text Available In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations.When the neuron's intra- and extracellular space is assumed to be purely resistive (i.e. no free charges, the balance law of electric fluxes leads to the Laplace equation for the distribution of the intra- and extracellular potential. Moreover, the flux across the neuron's membrane is continuous. This observation already delivers the three dimensional cable equation. The coupling of the intra- and extracellular potential over the membrane is not trivial. Here, we present a continuous extension of the extracellular potential to the intracellular space and combine the resulting equation with the intracellular problem. This approach makes the system numerically accessible.On the basis of the assumed pure resistive intra- and extracellular spaces, we conclude that a cell's out-flux balances out completely. As a consequence neurons do not own any current monopoles. We present a rigorous analysis with spherical harmonics for the extracellular potential by approximating the neuron's geometry to a sphere. Furthermore, we show with first numeric simulations on idealized circumstances that the extracellular potential can have a decisive effect on network activity through ephaptic interactions.

  20. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.