WorldWideScience

Sample records for three-dimensional boundary element

  1. Seismic response of three-dimensional rockfill dams using the Indirect Boundary Element Method

    International Nuclear Information System (INIS)

    Sanchez-Sesma, Francisco J; Arellano-Guzman, Mauricio; Perez-Gavilan, Juan J; Suarez, Martha; Marengo-Mogollon, Humberto; Chaillat, Stephanie; Jaramillo, Juan Diego; Gomez, Juan; Iturraran-Viveros, Ursula; Rodriguez-Castellanos, Alejandro

    2010-01-01

    The Indirect Boundary Element Method (IBEM) is used to compute the seismic response of a three-dimensional rockfill dam model. The IBEM is based on a single layer integral representation of elastic fields in terms of the full-space Green function, or fundamental solution of the equations of dynamic elasticity, and the associated force densities along the boundaries. The method has been applied to simulate the ground motion in several configurations of surface geology. Moreover, the IBEM has been used as benchmark to test other procedures. We compute the seismic response of a three-dimensional rockfill dam model placed within a canyon that constitutes an irregularity on the surface of an elastic half-space. The rockfill is also assumed elastic with hysteretic damping to account for energy dissipation. Various types of incident waves are considered to analyze the physical characteristics of the response: symmetries, amplifications, impulse response and the like. Computations are performed in the frequency domain and lead to time response using Fourier analysis. In the present implementation a symmetrical model is used to test symmetries. The boundaries of each region are discretized into boundary elements whose size depends on the shortest wavelength, typically, six boundary segments per wavelength. Usually, the seismic response of rockfill dams is simulated using either finite elements (FEM) or finite differences (FDM). In most applications, commercial tools that combine features of these methods are used to assess the seismic response of the system for a given motion at the base of model. However, in order to consider realistic excitation of seismic waves with different incidence angles and azimuth we explore the IBEM.

  2. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  3. Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering.

    Science.gov (United States)

    Perrey-Debain, E; Laghrouche, O; Bettess, P; Trevelyan, J

    2004-03-15

    Classical finite-element and boundary-element formulations for the Helmholtz equation are presented, and their limitations with respect to the number of variables needed to model a wavelength are explained. A new type of approximation for the potential is described in which the usual finite-element and boundary-element shape functions are modified by the inclusion of a set of plane waves, propagating in a range of directions evenly distributed on the unit sphere. Compared with standard piecewise polynomial approximation, the plane-wave basis is shown to give considerable reduction in computational complexity. In practical terms, it is concluded that the frequency for which accurate results can be obtained, using these new techniques, can be up to 60 times higher than that of the conventional finite-element method, and 10 to 15 times higher than that of the conventional boundary-element method.

  4. Three Dimensional Plenoptic PIV Measurements of a Turbulent Boundary Layer Overlying a Hemispherical Roughness Element

    Science.gov (United States)

    Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.

  5. A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity

    Directory of Open Access Journals (Sweden)

    Igumnov Leonid

    2015-01-01

    Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.

  6. A three-dimensional acoustic Boundary Element Method formulation with viscous and thermal losses based on shape function derivatives

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Andersen, Peter Risby

    2018-01-01

    then be modeled with numerical methods that include losses. In recent years, versions of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) including viscous and thermal losses have been developed. This paper deals with an improved formulation in three dimensions of the BEM with losses...... which avoids the calculation of tangential derivatives on the surface by finite differences used in a previous BEM implementation. Instead, the tangential derivatives are obtained from the element shape functions. The improved implementation is demonstrated using an oscillating sphere, where......Sound waves in fluids are subject to viscous and thermal losses, which are particularly relevant in the so-called viscous and thermal boundary layers at the boundaries, with thicknesses in the micrometer range at audible frequencies. Small devices such as acoustic transducers or hearing aids must...

  7. Indirect boundary element method for three dimensional problems. Analytical solution for contribution to wave field by triangular element; Sanjigen kansetsu kyokai yosoho. Sankakukei yoso no kiyo no kaisekikai

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, T. [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F. [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria

    1997-05-27

    Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.

  8. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  9. A free boundary problem on three-dimensional cones

    Science.gov (United States)

    Allen, Mark

    2017-12-01

    We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoids the vertex. We also show that when c is small enough but still positive, the free boundary is allowed to pass through the vertex. This establishes 3 as the critical dimension for which the free boundary may pass through the vertex of a right circular cone. In view of the well-known connection between area-minimizing surfaces and the free boundary problem under consideration, our result is analogous to a result of Morgan that classifies when an area-minimizing surface on a cone passes through the vertex.

  10. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  11. hp Spectral element methods for three dimensional elliptic problems ...

    Indian Academy of Sciences (India)

    125, No. 3, August 2015, pp. 413–447. c Indian Academy of Sciences h-p Spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. P DUTT1, AKHLAQ HUSAIN2,∗, A S VASUDEVA MURTHY3 and C S UPADHYAY4. 1Department of Mathematics & Statistics ...

  12. On the secondary instability of three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Janke, E. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik; Balakumar, P. [Department of Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2000-09-01

    One of the possible transition scenarios in three-dimensional boundary layers, the saturation of stationary crossflow vortices and their secondary instability to high-frequency disturbances, is studied using the parabolized stability equations (PSE) and Floquet theory. Starting from nonlinear PSE solutions, we investigate the region where a purely stationary crossflow disturbance saturates for its secondary instability characteristics utilizing global and local eigenvalue solvers that are based on the implicitly restarted Arnoldi method and a Newton-Raphson technique, respectively. Results are presented for swept Hiemenz flow and the DLR swept flat plate experiment. The main focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances, on the origin of high-frequency disturbances, as well as on gaining more information about threshold amplitudes of primary disturbances necessary for the growth of secondary disturbances. (orig.)

  13. Three-dimensional boundary layer stability and transition

    Science.gov (United States)

    Malik, M. R.; Li, F.

    1992-01-01

    Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.

  14. THREE-DIMENSIONAL NONLINEAR FINITE ELEMENT MODELING FOR LATERALLY LOADED VERTICAL PILES

    Directory of Open Access Journals (Sweden)

    M. Kubilay KELESOĞLU

    2006-01-01

    Full Text Available This paper presents a study for laterally loaded free head concrete piles using the finite element method (FEM. The finite element mesh is constituted from three-dimensional elements. The pile and soil boundary are defined cylindrically while lateral load is defined as single concentrated load from the top of the pile head. Various types of soil and pile properties are analysed and the load-deformation curves for different types of soils namely, sands and clays are evaluated.

  15. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    Science.gov (United States)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-03-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  16. hp Spectral element methods for three dimensional elliptic problems ...

    Indian Academy of Sciences (India)

    we use spectral element functions which are non-conforming and hence there are no com- mon boundary ... We assume our spectral element functions to be a sum of tensor product of polynomials of variable degree .... R3 with a Lipschitz boundary ∂O. Assume in addition that ∂O is piecewise C2. Let P be a point on ∂O ...

  17. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  18. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  19. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  20. Construction and validation of a three-dimensional finite element model of degenerative scoliosis.

    Science.gov (United States)

    Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui

    2015-12-24

    With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in

  1. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  2. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.

    1977-01-01

    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  3. The Topology Optimization of Three-dimensional Cooling Fins by the Internal Element Connectivity Parameterization Method

    International Nuclear Information System (INIS)

    Yoo, Sung Min; Kim, Yoon Young

    2007-01-01

    This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins

  4. An Interactive Preprocessor Program with Graphics for a Three-Dimensional Finite Element Code.

    Science.gov (United States)

    Hamilton, Claude Hayden, III

    The development and capabilities of an interactive preprocessor program with graphics for an existing three-dimensional finite element code is presented. This preprocessor program, EDGAP3D, is designed to be used in conjunction with the Texas Three Dimensional Grain Analysis Program (TXCAP3D). The code presented in this research is capable of the…

  5. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  6. [Three dimensional mathematical model of tooth for finite element analysis].

    Science.gov (United States)

    Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka

    2010-01-01

    The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  7. Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions at Mach 6

    Science.gov (United States)

    1975-06-01

    separation which, in the three-dimensional case, will scavenge off the low energy flow of the boundary layer. The reattaching flow consists of high energy ... energy flow in the boundary layer is scavenged off by the crossflow vortex, and only the outer flow in the boundary layer has sufficient energy to...a I2 01I . . 0.0 1.0 2.0 - 3.0 4.0 y/ s Figure 91. Surface Pressure and Heat Transfer Distributions for Re = 3.0 x 10 7 ft-1 and 6 = L60 30 󈧒 - BSG

  8. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    Science.gov (United States)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  9. The dimension split element-free Galerkin method for three-dimensional potential problems

    Science.gov (United States)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-02-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  10. Grain boundary character distribution derived from three-dimensional microstructure reconstruction

    International Nuclear Information System (INIS)

    Pirgazi, H; Kestens, L A I

    2015-01-01

    Manual serial sectioning which includes consecutive steps of sample preparation and Electron Back Scattering Diffraction (EBSD) measurement was employed to extract the twodimensional (2D) sections of a pure nickel sample and to reconstruct the three-dimensional (3D) microstructure. A general alignment algorithm based on the minimization of misorientation between two adjacent sections has been developed to accurately align the sections. By employing this alignment algorithm, any in-plane (translational) and rotational misalignment as well as the planparallelity can be corrected. Surface triangulation technique was used to reconstruct the grain boundary surfaces. The Grain Boundary Character Distribution (GBCD) was derived from reconstructed grain boundaries. The results show that a smoother grain boundary plane can be obtained after precise translational and rotational alignment and correction of planparallelity.The relative grain boundary energy was computed as a function of the five grain boundary parameters based on equilibrium at triple lines. The results show that the grain boundary planes carrying a Σ 3 type misorientation are dominantly parallel to the {111} crystal plane, which indicates the presence of coherent twin boundaries. It was observed that coherent Σ 3 type boundaries exhibit the minimum relative grain boundary energy, which is approximately 57% smaller than the average of all Σ 3 boundaries, including also incoherent twin boundaries. (paper)

  11. Grain boundary character distribution derived from three-dimensional microstructure reconstruction

    Science.gov (United States)

    Pirgazi, H.; Kestens, L. A. I.

    2015-04-01

    Manual serial sectioning which includes consecutive steps of sample preparation and Electron Back Scattering Diffraction (EBSD) measurement was employed to extract the twodimensional (2D) sections of a pure nickel sample and to reconstruct the three-dimensional (3D) microstructure. A general alignment algorithm based on the minimization of misorientation between two adjacent sections has been developed to accurately align the sections. By employing this alignment algorithm, any in-plane (translational) and rotational misalignment as well as the planparallelity can be corrected. Surface triangulation technique was used to reconstruct the grain boundary surfaces. The Grain Boundary Character Distribution (GBCD) was derived from reconstructed grain boundaries. The results show that a smoother grain boundary plane can be obtained after precise translational and rotational alignment and correction of planparallelity. The relative grain boundary energy was computed as a function of the five grain boundary parameters based on equilibrium at triple lines. The results show that the grain boundary planes carrying a Σ3 type misorientation are dominantly parallel to the {111} crystal plane, which indicates the presence of coherent twin boundaries. It was observed that coherent Σ3 type boundaries exhibit the minimum relative grain boundary energy, which is approximately 57% smaller than the average of all Σ3 boundaries, including also incoherent twin boundaries.

  12. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Monayem, A. K. M. [Univ. of New Mexico, Albuquerque, NM (United States); Mazumder, H. [Univ. of New Mexico, Albuquerque, NM (United States); Heinrich, Juan C. [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.

  13. Nondestructive three-dimensional elemental microanalysis by combined helical x-ray microtomographies

    International Nuclear Information System (INIS)

    Golosio, Bruno; Somogyi, Andrea; Simionovici, Alexandre; Bleuet, Pierre; Susini, Jean; Lemelle, Laurence

    2004-01-01

    A nondestructive x-ray technique combining simultaneous transmission, fluorescence, and Compton microtomography has been developed. Simultaneous three-dimensional structural information and three-dimensional internal elemental composition maps down to trace concentration levels have been obtained by a helical scan of the sample through an x-ray microbeam. With this method quantitative three-dimensional chemical distributions can be obtained at (sub)micrometric resolution in a nondestructive and noninvasive way, opening unique possibilities for the microanalysis of rare and fragile samples from several research fields

  14. On the Stability of Three-Dimensional Boundary Layers. Part 1; Linear and Nonlinear Stability

    Science.gov (United States)

    Janke, Erik; Balakumar, Ponnampalam

    1999-01-01

    The primary stability of incompressible three-dimensional boundary layers is investigated using the Parabolized Stability Equations (PSE). We compute the evolution of stationary and traveling disturbances in the linear and nonlinear region prior to transition. As model problems, we choose Swept Hiemenz Flow and the DLR Transition Experiment. The primary stability results for Swept Hiemenz Flow agree very well with computations by Malik et al. For the DLR Experiment, the mean flow profiles are obtained by solving the boundary layer equations for the measured pressure distribution. Both linear and nonlinear results show very good agreement with the experiment.

  15. Simultaneous three-dimensional imaging and manipulation of grain boundaries in colloidal crystals

    Science.gov (United States)

    Edmond, Kazem V.; Liu, Yanyan; Curran, Arran; Aarts, Dirk G. A. L.; Sacanna, Stefano; Dullens, Roel P. A.

    Characterizing the properties of grains and grain boundaries is critical for understanding and controlling material properties. We investigate the dynamics of grain boundaries in crystalline materials using concentrated colloidal suspensions of microspheres. The micron-sized particles are suspended in a mixture of solvents whose refractive index and density nearly match those of the particles, enabling three-dimensional visualization and negating gravitational effects. Throughout the sample we disperse specially designed core-shell particles whose cores have a higher refractive index that can be optically trapped. Via optical tweezing, these core-shell particles enable us to directly interact with and probe grain boundaries in 3D within the colloidal crystal. We use a uniquely developed optical microscopy system that combines confocal imaging with holographic trapping, enabling quantitative imaging and precise manipulation simultaneously in three dimensions. Our experiments provide direct insight into the properties of grain boundaries in crystals.

  16. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  17. Three-dimensional digital approximations of grain boundary networks in polycrystals

    International Nuclear Information System (INIS)

    Lee, S-B; Rohrer, G S; Rollett, A D

    2014-01-01

    In this work, we offer a set of algorithms that convert a voxellated image to a conformal surface mesh that is targeted for polycrystalline materials containing grains with a wide range of sizes and complex shapes. More specifically, we propose a simple but effective algorithm for approximating the grain boundary networks that are implicit in three-dimensional digital images of polycrystals. The algorithm segments a three-dimensional digital image of a polycrystalline microstructure and then smoothes an interpolated conformal surface mesh of the grain boundary network while maintaining certain characteristic features of the microstructure. It is found that the proposed algorithm successfully approximates the grain boundary network based only on the digital, voxellated images of the polycrystal. Simulated microstructures are used to verify that the resulting mesh qualitatively and quantitatively approximates the true structure, in terms of the displacement of the nodes, the grain volume change and the dihedral angle distribution along triple junctions after smoothing. The effect of the use of the cubic grid for mapping digital microstructures on the grain boundary approximation is also discussed. (paper)

  18. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  19. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  20. Three-dimensional finite element simulation of a piezoelectric vibrator under gyration.

    Science.gov (United States)

    Kagawa, Y; Tsuchiya, T; Sakai, T

    2001-01-01

    A three-dimensional finite element modeling is applied to the characteristic evaluation of the piezoelectric gyroscopes. The Coriolis' effect is incorporated with the three-dimensional finite element code that we have already developed. There is no limitation for the vibrational modes and the direction of the gyratory axis. The piezoelectric thin plate gyroscope in plane vibration is again considered for the demonstration. The solution characteristics are compared with those of the two-dimensional modeling and also with the experimental results. Reasonable agreement is achieved. The application is then extended to a bimorph-type gyroscope vibrating out of plane, which is only numerically considered for another example of demonstration. The examination shows that, with this configuration, not only the rotation but also the gyratory axis can be detected in the three-dimensional space.

  1. Studies on the numerical solution of three-dimensional stationary diffusion equations using the finite element method

    International Nuclear Information System (INIS)

    Franke, H.P.

    1976-05-01

    The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de

  2. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  3. Optimal Layout Design using the Element Connectivity Parameterization Method: Application to Three Dimensional Geometrical Nonlinear Structures

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Joung, Young Soo; Kim, Yoon Young

    2005-01-01

    The topology design optimization of “three-dimensional geometrically-nonlinear” continuum structures is still a difficult problem not only because of its problem size but also the occurrence of unstable continuum finite elements during the design optimization. To overcome this difficulty, the ele...

  4. Three dimensional finite element analysis of layered fiber-reinforced composite materials

    Science.gov (United States)

    Lee, J. D.

    1980-01-01

    A three-dimensional finite element analysis was performed for a biaxially loaded composite laminate (with a centered hole) consisting of several fiber-reinforced composite layers each with a specified fiber orientation. The detailed stress distribution around the hole was determined. Also, the locations of initial damage zones due to different failure mechanisms were indicated.

  5. Finite Element Prediction of Multi-Size Particulate Flow through Three-Dimensional Channel: Code Validation

    OpenAIRE

    K. V. Pagalthivarthi; R. J. Visintainer

    2013-01-01

    Multi-size particulate dense slurry flow through three-dimensional rectangular channel is modeled using penalty finite elements with 8-noded hexahedral elements. The methodology previously developed for two-dimensional channel is extended. The computed eddy viscosity of the pure carrier flow is modified to account for the presence of solid particles. Predictions from Spalart-Almaras and k-ε turbulence models are compared to show consistency of trends in results. Results are also found to comp...

  6. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    Science.gov (United States)

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  7. Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators

    International Nuclear Information System (INIS)

    Dörr, P C; Kloker, M J

    2015-01-01

    The applicability of dielectric barrier discharge plasma actuators for controlling the crossflow-vortex-induced laminar breakdown in a three-dimensional swept-wing-type boundary-layer flow is investigated using direct numerical simulation. Similar to the classical application of suction at the wall the aim is to modify the quasi two-dimensional base flow and to weaken primary crossflow (CF) instability, mainly due to a reduction of the basic CF. Not only localised volumetric forcing by plasma actuators but also CF counter-blowing and spots with a moving wall are investigated to identify effective fundamental mechanisms. It is found that counter blowing always results in partial blockage of the flow and eventually increased CF velocity, whereas moving-wall spots can slightly reduce the CF and the amplitude of crossflow vortices. Using discrete volumetric forcing a significant attenuation even of finite-amplitude crossflow vortices and thus a distinct transition delay is achieved. (paper)

  8. Application of an engineering inviscid-boundary layer method to slender three-dimensional vehicle forebodies

    Science.gov (United States)

    Riley, Christopher J.

    1993-01-01

    An engineering inviscid-boundary layer method has been modified for application to slender three-dimensional (3-D) forebodies which are characteristic of transatmospheric vehicles. An improved shock description in the nose region has been added to the inviscid technique which allows the calculation of a wider range of body geometries. The modified engineering method is applied to the perfect gas solution over a slender 3-D configuration at angle of attack. The method predicts surface pressures and laminar heating rates on the windward side of the vehicle that compare favorably with numerical solutions of the thin-layer Navier-Stokes equations. These improvements extend the 3-D capabilities of the engineering method and significantly increase its design applications.

  9. Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    M. Ramzan

    2016-03-01

    Full Text Available The present research focuses on the three-dimensional flow of viscoelastic fluid in the presence of Soret and Dufour effects. Effects of thermophoresis and Brownian motion are taken into account. Appropriate similarity transformations lead to nonlinear ordinary differential equations. Solution expressions of velocity, temperature and nanoparticle concentration are computed via homotopy analysis method (HAM. Convergence of obtained solutions is analyzed graphically and numerically. Results are plotted and analyzed for the dimensionless velocities, temperature and nanoparticle concentration. Values of local Nusselt and Sherwood numbers are examined through tabular form. It is observed that Temperature field is enhanced for the larger Brownian motion parameter and an increase in Dufour number gives rise to the temperature and thermal boundary layer thickness.

  10. Emergence of three-dimensional flow structures in shock boundary layer interactions

    Science.gov (United States)

    Gs, Sidharth; Dwivedi, Anubhav; Nichols, Joseph; Jovanovic, Mihailo; Candler, Graham

    2017-11-01

    Experiments and computations point to the emergence of three-dimensional (3D) flow structures in laminar shock boundary layer interactions in various configurations. We examine a Mach 5 flow over a double compression ramp and reveal the presence of a bifurcation from a steady 2D to a steady 3D flow state. This is done by varying the relative angle of the two ramps which increases the interaction strength. We employ global linear stability analysis and direct numerical simulation to characterize this bifurcation and demonstrate that global instability induces 3D flow structures. We use the direct and adjoint linear equations to further investigate the origin of this instability and examine the influence of uncertainty (including the effect of geometric irregularities in the ramp and free-stream disturbances in wind tunnel) on this bifurcation. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  11. Three-dimensional finite element simulation of intermingled-fiber hybrid composite behavior

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite element methods and the intraply hybrid micromechanics equations are used to predict composite properties for a unidirectional graphite-epoxy primary composite with S-glass fibers used as hybridizing fibers. The micromechanics equations are embedded in a computer code ICAN (Integrated Composites Analyzer). The three-dimensional finite element model consists of three-by-three unit cell array, with a total fiber volume ratio of 0.54. There is a good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite element methods and micromechanics equations can be used to obtain the properties of intermingled hybrid composites needed for analysis/design of hybrid composite structures.

  12. [Three-dimensional finite element model of thoracolumbar spine with osteoporotic vertebral compression fracture].

    Science.gov (United States)

    Fei, Qi; Li, Qiu-jun; Yang, Yong; Li, Dong; Tang, Hai; Li, Jin-jun; Wang, Bing-qiang; Wang, Yi-peng

    2010-11-09

    To build a three-dimensional finite element model of thoracolumbar spine with osteoporotic vertebral compression fracture (OVCF) and analyze its biomechanical change. The T10-L2 segment data were obtained from computed tomography (CT) scans of an elderly female with a single T12 OVCF. A three-dimensional finite element model of thoracolumbar spine was constructed with the MIMICS and ABAQUS software. The model was composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments. The basic stress analysis of T10-L2 motion segment was made for different material properties of bone, ligaments and facet joints contacting frictional property. The stress on the annulus fiber, nucleus pulposus, endplate and facet joints under axial pressure (0.3 MPa, 1.0 MPa, 4.0 MPa) were analyzed. A three-dimensional finite element model of human T12-L2 motion segment had 617468 elements. And the stress was higher in vertebral body than posterior structure. The distribution of pressure stresses in intervertebral disc was asymmetrical. The stress increased with a rising axial pressure. 3D finite element model of thoracolumbar OVCF and adjacent segments are successfully established. The results of stress analysis are both feasible and reliable.

  13. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  14. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    Science.gov (United States)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  15. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    Energy Technology Data Exchange (ETDEWEB)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB, Amersfoort (Netherlands)

    2013-04-19

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 Multiplication-Sign 300 mm{sup 2}. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  16. Three-dimensional dynamic response modeling of floating nuclear plants using finite element methods

    International Nuclear Information System (INIS)

    Johnson, H.W.; Vaish, A.K.; Porter, F.L.; McGeorge, R.

    1976-01-01

    A modelling technique which can be used to obtain the dynamic response of a floating nuclear plant (FNP) moored in an artificial basin is presented. Hydrodynamic effects of the seawater in the basin have a significant impact on the response of the FNP and must be included. A three-dimensional model of the platform and mooring system (using beam elements) is used, with the hydrodynamic effects represented by added mass and damping. For an essentially square plant in close proximity to the site structures, the three-dimensional nature of the basin must be considered in evaluating the added mass and damping. However, direct solutions for hydrodynamic effects with complex basin geometry are not, as yet, available. A method for estimating these effects from planar finite element analysis is developed. (Auth.)

  17. An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows

    Science.gov (United States)

    Wu, J.; Shu, C.

    2010-07-01

    The recently proposed boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) [14] is improved in this work to simulate three-dimensional incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-calculated, and the non-slip boundary condition is not enforced as compared to body-fitted solvers. As a result, there is a flow penetration to the solid boundary. This drawback was removed by the new version of IB-LBM [14], in which the restoring force is considered as unknown and is determined in such a way that the non-slip boundary condition is enforced. Since Eulerian points are also defined inside the solid boundary, the computational domain is usually regular and the Cartesian mesh is used. On the other hand, to well capture the boundary layer and in the meantime, to save the computational effort, we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field. The final expression of TLLBM is an algebraic formulation with some weighting coefficients. These coefficients could be computed in advance and stored for the following computations. However, this way may become impractical for 3D cases as the memory requirement often exceeds the machine capacity. The other way is to calculate the coefficients at every time step. As a result, extra time is consumed significantly. To overcome this drawback, in this study, we propose a more efficient approach to solve lattice Boltzmann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed approach needs much less computational time and virtual storage. Its good accuracy and efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic cavity flow. To valid the combination of proposed approach with the new version of IBM [14] for 3D flows

  18. Three-dimensional finite element modelling of the uniaxial tension test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    . One of the most direct methods for determination of the σ-w relationship is the uniaxial tension test, where a notched specimen is pulled apart while the tensile load and the crack opening displacement is observed. This method is appealing since the interpretation is straightforward. The method...... is examined in this paper through three dimensional finite element analyses. It is concluded that the interpretation of the uniaxial tension test is indeed straightforward, if the testing machine stiffness is sufficiently high....

  19. Development of three-dimensional transport code by the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1985-01-01

    Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)

  20. Three-dimensional dynamic response modelling for floating nuclear power plants using finite element methods

    International Nuclear Information System (INIS)

    Johnson, H.W.; Vaish, A.K.; Porter, F.L.; McGeorge, R.

    1975-01-01

    A modelling technique which can be used to obtain the dynamic response of a floating nuclear plant (FNP) moored in an artificial basin is presented. Hydrodynamic effects of the seawater in the basin have a significant impact on the response of the FNP and must be included. A three dimensional model of the platform and mooring system (using beam elements) is used, with the hydrodynamic effects represented by added mass and damping. For an essentially square plant in close proximity to the site structures, the three dimensional nature of the basin must be considered in evaluating the added mass and damping. A method for estimating these effects from planer finite element analyses is developed. The accuracy of the planar finite element model in obtaining two-dimensional added mass and damping is shown through comparison with existing the documented results. In addition, a comparison is shown for open ocean added mass and damping with a three-dimensional solution using velocity potential functions. It is concluded that the overall technique results in a reasonable and conservative calculation of the dynamic response of the floating nuclear plant. (orig./HP) [de

  1. Finite Element Prediction of Multi-Size Particulate Flow through Three-Dimensional Channel: Code Validation

    Directory of Open Access Journals (Sweden)

    K. V. Pagalthivarthi

    2013-03-01

    Full Text Available Multi-size particulate dense slurry flow through three-dimensional rectangular channel is modeled using penalty finite elements with 8-noded hexahedral elements. The methodology previously developed for two-dimensional channel is extended. The computed eddy viscosity of the pure carrier flow is modified to account for the presence of solid particles. Predictions from Spalart-Almaras and k-ε turbulence models are compared to show consistency of trends in results. Results are also found to compare well with experimental results from the literature.

  2. A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions

    Science.gov (United States)

    Bediz, Bekir; Aksoy, Serdar

    2018-01-01

    This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.

  3. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  4. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  5. Three-dimensional radiative transfer modeling using the control volume finite element method

    International Nuclear Information System (INIS)

    Grissa, H.; Askri, F.; Ben Salah, M.; Ben Nasrallah, S.

    2007-01-01

    In the present study, a three-dimensional algorithm for the treatment of radiative heat transfer in emitting, absorbing and scattering media is developed. The approach is based on the utilization of control volume finite element method (CVFEM) which, to the knowledge of the authors, is applied at the first time to 3D radiative heat transfer in participating media. The accuracy of the present algorithm is tested by comparing its predictions to other published works. Comparisons show that CVFEM produces good results. Moreover, this approach permits compatibility with other numerical methods used for computational fluids mechanics problems

  6. Secondary Ion Mass Spectrometric Image Depth Profiling for Three-Dimensional Elemental Analysis.

    Science.gov (United States)

    1981-10-01

    69-74. 18. Hofker, W.K.; et al. Rad. Eff. 1973, 17, 83-90. 19. Lindhard , J .; Scharff, M.; Schiott, H.E. Mat. Fys. Medd. Dan . Vid. Selsk. 1963, 33, 1...7A-A1OS 092 CORNELL UNIV ITHACA NY DEPT OF CHEMISTRY F/9 7/4 SCONARY ION MASS SPECTROMETRIC MAGE DEPTH PROFILING FOR THKf-ETC LW OCT SI A . J PATKIN...SECONDARY ION MASS SPECTROMETRIC IMAGE DEPTH PROFILING FOR THREE-DIMENSIONAL ELEMENTAL ANALYSIS by Adam J . Patkin and George H. Morrison Prepared for

  7. Prediction of Three-Dimensional Milling Forces Based on Finite Element

    Directory of Open Access Journals (Sweden)

    Lida Zhu

    2014-01-01

    Full Text Available The model of milling force is mainly proposed to predict and analyze the cutting process based on finite element method in this paper. Firstly, milling finite element model is given based on orthogonal cutting principle, and then the influence laws of cutting parameters on chip formation are analyzed by using different simulation parameters. In addition, the three-dimensional milling forces are obtained from finite element models. Finally, the values of milling force by the milling experiment are also compared and analyzed with the simulation values to verify the feasibility and reasonability. It can be shown that milling forces match well between simulation and experiment results, which can provide many good basic data and analysis methods to optimize the machining parameters, reduce tool wear, and improve the workpiece surface roughness and adapt to the programming strategy of high speed machining.

  8. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  9. Three-dimensional soft tissue prediction using finite elements. Part I: Implementation of a new procedure.

    Science.gov (United States)

    Holberg, Christof; Schwenzer, Katja; Rudzki-Janson, Ingrid

    2005-03-01

    The prediction of soft tissue esthetics is important for achieving an optimal esthetic outcome in orthodontic treatment planning. Applicable procedures have so far been restricted to two-dimensional profile predictions that have not proven to be very reliable. The goal of this investigation was therefore to develop a novel finite element-based procedure that allows a three-dimensional, easily visualized, quantitative analysis and prediction of soft tissue behavior for the clinician. The procedure to be developed should be easy to handle and not entail any additional radiation exposure for the patient. Using a three-dimensional scanner, the facial surfaces of 20 probands were digitalized and individual FEM models were generated. After reduction of data redundancy via several conversion steps, a patient-specific simulation model was prepared consisting of 20,000 to 40,000 individual elements to which specific physical properties could be assigned. The average time required for generating a virtual model was 50 minutes. Problems occurring during model generation were rare (mainly shadowing phenomena and movement artifacts). The procedure outlined herein makes the reliable generation of patient-specific simulation models possible for facial soft tissue prediction in orthodontics.

  10. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    Science.gov (United States)

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM

  11. Construction and assessment of hierarchical edge elements for three-dimensional computations of eddy currents

    Energy Technology Data Exchange (ETDEWEB)

    Midtgaard, Ole-Morten

    1997-12-31

    This thesis considers the feasibility of doing calculations to optimize electrical machines without the need to build expensive prototypes. It deals with the construction and assessment of new, hierarchical, hexahedral edge elements for three-dimensional computations of eddy currents with the electric vector potential formulation. The new elements, five in all, gave up to second-order approximations for both the magnetic field and the current density. Theoretical arguments showed these elements to be more economical for a given polynomial order of the approximated fields than the serendipity family of nodal elements. Further it was pointed out how the support of a source field computed by using edge elements could be made very small provided that a proper spanning tree was used in the edge element mesh. This was exploited for the voltage forcing technique, where source fields were used as basis functions, with unknown total currents in voltage forced conductors as degrees of freedom. The practical assessment of the edge elements proved the accuracy to improve with increasing polynomial order, both for local and global quantities. The most economical element was, however, one giving only complete first-order approximations for both fields. Further, the edge elements turned out to be better than the nodal elements also in practice. For the voltage forcing technique, source field basis functions which had small support, resulted in large reduction of the CPU-time for solving the main equation system, compared to source fields which had large support. The new elements can be used in a p-type adaptive scheme, and they should also be applicable for other tangentially continuous field problems. 67 refs., 34 figs., 10 tabs.

  12. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  13. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  14. Three-dimensional stress analysis of threaded cups - a finite element analysis.

    Science.gov (United States)

    Witzel, U; Rieger, W; Effenberger, H

    2008-04-01

    A three-dimensional model of the left acetabulum with inserted threaded cup has been generated, based on the finite element method, to calculate stress patterns in the standing phase during walking. In this study, a hemispherical cup with sharp threads, a parabolic cup with flat threads and a conical cup with sharp threads were analysed and compared. Stress patterns in both implant components and adjacent bony structures were calculated in a directly postoperative situation. The different cups were found to induce different stress patterns, deformations and shifting tendencies. The inlays deform notably and show characteristic rotational movement patterns together with the shell. The inclination angle increases in the hemispherical cup and decreases in the parabolic cup. The conical cup levers outward almost parallel to the bone stock by approximately 0.05 mm. The pole surfaces of the various cups - especially the very convex area next to the threads - induce increased compressive stress in the superior section of the acetabular base. This is increased by a factor of three in the conical cup in comparison to the hemispherical cup and less so in comparison to the parabolic cup. This study illustrates that three-dimensional stress calculations are suitable for procuring additional biomechanical information to augment clinical studies, for evaluating implants and for establishing stability prognoses, especially for newly developed prototypes.

  15. Three-dimensional stress analysis of threaded cups – a finite element analysis

    Science.gov (United States)

    Witzel, U.; Rieger, W.

    2007-01-01

    A three-dimensional model of the left acetabulum with inserted threaded cup has been generated, based on the finite element method, to calculate stress patterns in the standing phase during walking. In this study, a hemispherical cup with sharp threads, a parabolic cup with flat threads and a conical cup with sharp threads were analysed and compared. Stress patterns in both implant components and adjacent bony structures were calculated in a directly postoperative situation. The different cups were found to induce different stress patterns, deformations and shifting tendencies. The inlays deform notably and show characteristic rotational movement patterns together with the shell. The inclination angle increases in the hemispherical cup and decreases in the parabolic cup. The conical cup levers outward almost parallel to the bone stock by approximately 0.05 mm. The pole surfaces of the various cups – especially the very convex area next to the threads – induce increased compressive stress in the superior section of the acetabular base. This is increased by a factor of three in the conical cup in comparison to the hemispherical cup and less so in comparison to the parabolic cup. This study illustrates that three-dimensional stress calculations are suitable for procuring additional biomechanical information to augment clinical studies, for evaluating implants and for establishing stability prognoses, especially for newly developed prototypes. PMID:17318551

  16. Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness

    Science.gov (United States)

    Liu, Chaoqun; Liu, Zhining; Mccormick, Steve

    1993-01-01

    The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.

  17. Material migration in tokamak plasmas with a three-dimensional boundary

    International Nuclear Information System (INIS)

    Laengner, Ruth

    2013-01-01

    In this work, the influence of a 3D boundary induced by resonant magnetic perturbations (RMPs) on the material migration, i.e. the erosion from wall material due to the plasma surface interaction and the transport of these impurities is investigated for the first time. With applied RMPs two new domains occur in the magnetic field structure. Three dimensional SOL flux tubes with predominantly transport parallel to short magnetic field lines and a region of longer stochastic field lines with diffusive gradient driven radial transport. The plasma wall interaction and the material transport in these domains were investigated. A globally higher radial electric field E r as well as local changes in the magnetic field structure such as pressure driven sonic flows or locally higher E r fields can potentially influence the material transport with applied RMPs. The experiments were performed at the tokamak TEXTOR, the RMPs were induced by the dynamic ergodic divertor (DED). The plasma discharges and DED application was chosen to have a spatially separated 3D structure to be able to investigate the underlying physics. Two spherical carbon test limiters were positioned in different poloidal and toroidal positions which allowed to analyse the material migration in a 3D SOL flux tube and a stochastic region at the same time. Methane doped with 13 C was injected through the test limiters during three different plasma scenarios, without RMPs, with static RMPs and an RMP sweep. The test limiters and the injected methane were monitored in situ with different cameras and spectrometers. The deposition of the injected particles was measured post mortem by colourimetry, nuclear reaction analysis and secondary ion mass spectrometry. The most profound change from no RMP to the RMP cases is a 90 re-direction of the low ionised carbon C + and C 2+ into the E r x B-drift direction. From a comparison of the experiments and numerical field line tracing it was found that this is a global effect

  18. Development of a three-dimensional neutron transport code DFEM based on the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1996-01-01

    A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)

  19. [Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].

    Science.gov (United States)

    Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi

    2015-10-01

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

  20. Fiber pushout test: A three-dimensional finite element computational simulation

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1990-01-01

    A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.

  1. Fiber pushout test - A three-dimensional finite element computational simulation

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1991-01-01

    A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computational very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictioal stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.

  2. Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals.

    Science.gov (United States)

    Goris, Bart; De Backer, Annick; Van Aert, Sandra; Gómez-Graña, Sergio; Liz-Marzán, Luis M; Van Tendeloo, Gustaaf; Bals, Sara

    2013-09-11

    A thorough understanding of the three-dimensional (3D) atomic structure and composition of core-shell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in core-shell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.

  3. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  4. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    Science.gov (United States)

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  5. Statistical investigation of avalanches of three-dimensional small-world networks and their boundary and bulk cross-sections

    Science.gov (United States)

    Najafi, M. N.; Dashti-Naserabadi, H.

    2018-03-01

    In many situations we are interested in the propagation of energy in some portions of a three-dimensional system with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-range links (α ) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two regimes of α are considered in this work. For sufficiently small α s the dominant behavior of the system is just like that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding ghost model) m2˜α for the three-dimensional system as well as its two-dimensional cross-sections.

  6. Structural dynamic modeling for rotating blades using three dimensional finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Young Jung; Shin, Sang Joon [Seoul National University, Seoul (Korea, Republic of)

    2015-04-15

    A precise analysis model was developed in this paper to investigate the dynamic characteristics of rotating composite blades. An eighteen-node solid-shell finite element was used to model the blade structures. This study is focused on geometrically nonlinear problems, because the material is assumed linear elastic. Incremental total Lagrangian approach was adopted to allow estimations on arbitrarily large rotations and displacements. The equations of motion for the finite element model were derived by using Hamilton's principle, and the resulting nonlinear equilibrium equations were solved by applying Newton-Raphson method combined with load control. A modified stress-strain relation was adopted to avoid the transverse shear locking problem, and fairly reliable results were obtained with no sign of locking phenomenon. The obtained numerical results were compared to several benchmark problems, and the results show a good correlation with the experimental data and other finite element analysis results. The vibration characteristics of shell- and beam-type blades were investigated. For shell-type blades, the dynamic characteristics may be significantly influenced by blade curvature, pre-twist, and geometric nonlinearity. For beam-type blades, one-dimensional beam and three-dimensional solid models offer comparable predictions for the straight and large aspect ratio blade. As blade aspect ratio decreases, considerable differences appear in the bending and torsion modes. The tip sweep angle tends to decrease the flap bending frequencies, but the torsion frequency increases with the tip sweep angle.

  7. Structural dynamic modeling for rotating blades using three dimensional finite elements

    International Nuclear Information System (INIS)

    Kee, Young Jung; Shin, Sang Joon

    2015-01-01

    A precise analysis model was developed in this paper to investigate the dynamic characteristics of rotating composite blades. An eighteen-node solid-shell finite element was used to model the blade structures. This study is focused on geometrically nonlinear problems, because the material is assumed linear elastic. Incremental total Lagrangian approach was adopted to allow estimations on arbitrarily large rotations and displacements. The equations of motion for the finite element model were derived by using Hamilton's principle, and the resulting nonlinear equilibrium equations were solved by applying Newton-Raphson method combined with load control. A modified stress-strain relation was adopted to avoid the transverse shear locking problem, and fairly reliable results were obtained with no sign of locking phenomenon. The obtained numerical results were compared to several benchmark problems, and the results show a good correlation with the experimental data and other finite element analysis results. The vibration characteristics of shell- and beam-type blades were investigated. For shell-type blades, the dynamic characteristics may be significantly influenced by blade curvature, pre-twist, and geometric nonlinearity. For beam-type blades, one-dimensional beam and three-dimensional solid models offer comparable predictions for the straight and large aspect ratio blade. As blade aspect ratio decreases, considerable differences appear in the bending and torsion modes. The tip sweep angle tends to decrease the flap bending frequencies, but the torsion frequency increases with the tip sweep angle.

  8. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  9. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  10. A three-dimensional finite element model for the mechanics of cell-cell interactions.

    Science.gov (United States)

    Viens, Denis; Brodland, G Wayne

    2007-10-01

    Technical challenges, including significant ones associated with cell rearrangement, have hampered the development of three-dimensional finite element models for the mechanics of embryonic cells. These challenges have been overcome by a new formulation in which the contents of each cell, assumed to have a viscosity mu, are modeled using a system of orthogonal dashpots. This approach overcomes a stiffening artifact that affects more traditional models, in which space-filling viscous elements are used to model the cytoplasm. Cells are assumed to be polyhedral in geometry, and each n-sided polygonal face is subdivided into n triangles with a common node at the face center so that it needs not remain flat. A constant tension gamma is assumed to act along each cell-cell interface, and cell rearrangements occur through one of two complementary topological transformations. The formulation predicts mechanical interactions between pairs of similar or dissimilar cells that are consistent with experiments, two-dimensional simulations, contact angle theory, and intracellular pressure calculations. Simulations of the partial engulfment of one tissue type by another show that the formulation is able to model aggregates of several hundred cells without difficulty. Simulations carried out using this formulation suggest new experimental approaches for measuring cell surface tensions and interfacial tensions. The formulation holds promise as a tool for gaining insight into the mechanics of isolated or aggregated embryonic cells and for the design and interpretation of experiments that involve them.

  11. Three-dimensional Simulation and Prediction of Solenoid Valve Failure Mechanism Based on Finite Element Model

    Science.gov (United States)

    Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao

    2018-01-01

    The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.

  12. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  13. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  14. On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements.

    Science.gov (United States)

    Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David

    2018-04-06

    The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens

  15. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  16. Anisotropic three-dimensional inversion of CSEM data using finite element techniques on unstructured grids

    Science.gov (United States)

    Wang, Feiyan; Petter Morten, Jan; Spitzer, Klaus

    2018-01-01

    In this paper, we present a recently developed anisotropic three-dimensional (3-D) inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multi-source problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parameterization of the inversion domain at a suitable scale. For a rapid simulation of multi-source EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  17. Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method

    Science.gov (United States)

    Xiao, Tiaojie; Liu, Yun; Wang, Yun; Fu, Li-Yun

    2018-02-01

    It is important to understand how magnetotelluric (MT) modeling can most effectively be performed in general anisotropic media. However, previous studies in this area have mainly focused on the use of one-dimensional (1D) and two-dimensional (2D) algorithms. Thus, building on earlier work, it is important to study the performance of three-dimensional (3D) modeling in arbitrary conductivity media; therefore, an edge-based finite element (FE) method has been developed for 3D MT modeling in arbitrary conductivity media. This approach is based on the initial derivation of a series of equivalent variational equations that are based on Maxwell equations, generated using the weighted residual method. Specific values were then obtained for coefficient matrixes of this edge-based FE method using hexahedral meshes, and the algorithm was verified by comparing its results with finite difference (FD) solutions generated using a 2D anisotropic model. Finally, the results of a 3D anisotropic model were analyzed detailed for three conditions; another 3D anisotropic model was designed and its results were compared with two isotropic models'.

  18. Application of equivalent elastic methods in three-dimensional finite element structural analysis

    International Nuclear Information System (INIS)

    Jones, D.P.; Gordon, J.L.; Hutula, D.N.; Holliday, J.E.; Jandrasits, W.G.

    1998-02-01

    This paper describes use of equivalent solid (EQS) modeling to obtain efficient solutions to perforated material problems using three-dimensional finite element analysis (3D-FEA) programs. It is shown that the accuracy of EQS methods in 3D-FEA depends on providing sufficient equivalent elastic properties to allow the EQS material to respond according to the elastic symmetry of the pattern. Peak stresses and ligament stresses are calculated from the EQS stresses by an appropriate 3D-FEA submodel approach. The method is demonstrated on the problem of a transversely pressurized simply supported plate with a central divider lane separating two perforated regions with circular penetrations arranged in a square pattern. A 3D-FEA solution for a model that incorporates each penetration explicitly is used for comparison with results from an EQS solution for the plate. Results for deflection and stresses from the EQS solution are within 3% of results from the explicit 3D-FE model. A solution to the sample problem is also provided using the procedures in the ASME B and PV Code. The ASME B and PV Code formulas for plate deflection were shown to overestimate the stiffening effects of the divider lane and the outer stiffening ring

  19. Application of three dimensional finite element modeling for the simulation of machining processes

    International Nuclear Information System (INIS)

    Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.

    2004-01-01

    For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed

  20. A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion.

    Science.gov (United States)

    Park, Jung-Chul; Shin, Hyun-Seung; Cha, Jung-Yul; Park, Jong-Tae

    2015-02-01

    The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.

  1. Multi-Scale Finite Element Analyses of Thermal Conductivities of Three Dimensional Woven Composites

    Science.gov (United States)

    Zhao, Yufen; Song, Leilei; Li, Jialu; Jiao, Yanan

    2017-12-01

    This paper summarizes an extensive experimental and prediction study of thermal conductivities of three-dimensional woven composites (3DWCs). Three kinds of innovative 3D woven architectures are examined, including 2.5D angle-interlock, 2.5D angle-interlock (with warp reinforcement), and 3D orthogonal woven architectures. The differences of thermal behaviors of 3DWCs in plane and out of plane are assessed by using multi-scale finite element analysis. For the validation of models, the thickness direction thermal conductivity of 3DWCs are measured. It is indicated that the predicted results are in good agreement with the experimental results. The effects of weave density and fabric architecture on the distribution of heat flux and temperature have been discussed in this work, which determined the thermal conductivities of 3DWCs. From this study, it can be expected that the need of thermal performance of 3DWCs can obtained according to optimize the weave parameters based on the high designability of 3DWCs.

  2. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  3. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis.

    Science.gov (United States)

    Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto

    2011-01-01

    The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.

  4. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.

    Science.gov (United States)

    Yang, Taiseung; Spilker, Robert L

    2007-06-01

    A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head

  5. A three-dimensional finite element analysis of the osseointegration progression in the human mandible

    Science.gov (United States)

    Esmail, Enas; Hassan, Noha; Kadah, Yasser

    2010-02-01

    In this study, three-dimensional (3D) finite element analysis was used to model the effect of the peri-implant bone geometry and thickness on the biomechanical behavior of a dental implant/supporting bone system. The 3D finite element model of the jaw bone, cancellous and cortical, was developed based on computerized tomography (CT) scan technology while the dental implant model was created based on a commercially available implant design. Two models, cylindrical and threaded, representing the peri-implant bone region were simulated. In addition, various thicknesses (0.1 mm, 0.3 mm, 0.5 mm) of the peri-implant bone region were modeled to account for the misalingnment during the drilling process. Different biomechanical properties of the peri-implant bone region were used to simulate the progression of the osseointegration process with time. Four stages of osseointegration were modeled to mimic different phases of tissue healing of the peri- implant region starting with soft connective tissue and ending with complete bone maturation. For the realistic threaded model of the peri-implant bone region, the maximum von Mises stress and displacement in the dental implant and jaw bone were higher than those computed for the simple cylindrical peri-implant bone region model. The average von Mises stress and displacement in the dental implant and the jaw bone decreased as the oseeointegration progressed with time for all thicknesses of the peri-implant bone region. On the other hand, the maximum absolute vertical displacement of the dental implant increased as the drilled thickness of the peri-implant bone region increased.

  6. Three Dimensional Stress-Strain Behavior of Soils Tested in the Danish Rigid Boundary True Triaxial Apparatus

    DEFF Research Database (Denmark)

    Praastrup, U.

    carried out. Obviously, the papers are related to the true triaxial apparatus, but they should actually be seen as steps towards the development of a cross-anisotropic constitutive model. The constitutive model has not been fully developed and it has not been published in any papers. The constitutive......Primarily, the Ph.D.-thesis "Three Dimensional Stress-Strain Behaviour of Soils Tested in the Danish Rigid Boundary True Triaxial Apparatus" deals with the improvement of the true triaxial apparatus designed and constructed at Aalborg University in Denmark. The thesis is published as a collection...

  7. Three-Dimensional Unsteady Laminar Shock-Wave/Boundary Layer Interaction

    National Research Council Canada - National Science Library

    Boin, J-P; Robinet, Jean-Christophe

    2004-01-01

    .... To this end, the authors decided to study the evolution of the interaction between an incident shock wave and a laminar boundary layer developing over a flat plate when the incident shock angle...

  8. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model

    Science.gov (United States)

    Oishi, Yusuke; Piggott, Matthew D.; Maeda, Takuto; Kramer, Stephan C.; Collins, Gareth S.; Tsushima, Hiroaki; Furumura, Takashi

    2013-06-01

    Large-scale tsunami propagation simulations from the fault region to the coast are conducted using a three-dimensional (3-D) parallel unstructured mesh finite element code (Fluidity-ICOM). Unlike conventional 2-D approximation models, our tsunami model solves the full 3-D incompressible Navier-Stokes (NS) equations. The model is tested against analytical solutions to simple dispersive wave propagation problems. Comparisons of our 3-D NS model results with those from linear shallow water and linear dispersive wave models demonstrate that the 3-D NS model simulates the dispersion of very short wavelength components more accurately than the 2-D models. This improved accuracy is achieved using only a small number (three to five) of vertical layers in the mesh. The numerical error in the wave velocity compared with the linear wave theory is less than 3% up to kH = 40, where k is the wave number and H is the sea depth. The same 2-D and 3-D models are also used to simulate two earthquake-generated tsunamis off the coast of Japan: the 2004 off Kii peninsula and the 2011 off Tohoku tsunamis. The linear dispersive and NS models showed good agreement in the leading waves but differed especially in their near-source, short wavelength dispersive wave components. This is consistent with the results from earlier tests, suggesting that the 3-D NS simulations are more accurate. The computational performance on a parallel computer showed good scalability up to 512 cores. By using a combination of unstructured meshes and high-performance computers, highly accurate 3-D tsunami simulations can be conducted in a practical timescale.

  9. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Soleimani, Manuchehr

    2013-01-01

    Electrical impedance tomography (EIT) utilizes electrodes on a medium's surface to produce measured data from which the conductivity distribution inside the medium is estimated. For the cases that relocation of electrodes is impractical or no a priori assumptions can be made to optimize the electrodes placement, a large number of electrodes may be needed to cover all possible imaging volume. This may occur in dynamically varying conductivity distribution in 3D EIT. Three-dimensional EIT then requires inverting very large linear systems to calculate the conductivity field, which causes significant problems regarding storage space and reconstruction time in addition to that data acquisition for a large number of electrodes will reduce the achievable frame rate, which is considered as major advantage of EIT imaging. This study proposes an idea to reduce the reconstruction complexity based on the well-known compressed sampling theory. By applying the so-called model-based CoSaMP algorithm to large size data collected by a 256 channel system, the size of forward operator and data acquisition time is reduced to those of a 32 channel system, while accuracy of reconstruction is significantly improved. The results demonstrate great capability of compressed sampling for overriding the challenges arising in 3D EIT. (paper)

  10. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  11. Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams

    Science.gov (United States)

    1992-04-01

    CTC HC TC.SS T CTE fRTE ZI Figure 5.7: Projection of stress paths on triaxial plane. 168 CHAPTER 5. THREE-DIMENSIONAL SOIL CONSTITUTIVE MODEL source of... CTE RTE Figure 5.8: Stress paths in q-p stress space. 170 CHAPTER 5. THREE-DIMENSIONAL SOIL CONSTITUTIVE MODEL 10.00 8.00 I0 SHEA ST.00.c Fiue59 ha...from Mt. Blue High School, Farmingtion, Maine where he excelled in mathematic and science and was a standout in football and wrestling. He attended

  12. On the instability of a three-dimensional attachment-line boundary layer - Weakly nonlinear theory and a numerical approach

    Science.gov (United States)

    Hall, P.; Malik, M. R.

    1986-01-01

    The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.

  13. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  14. DHMPIV and Tomo-PIV measurements of three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Amili, O.; Atkinson, C.; Soria, J.

    In turbulent boundary layers, a large portion of total turbulence production happens in the near wall region, y/δ memory intensive reconstruction algorithm. It is based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Application of MLOS-SART and MART to a turbulent boundary layer at Refθ=2200 using a 4 camera Tomo-PIV system with a volume of 1000×1000×160 voxels is discussed. In addition, near wall velocity measurement attempt made by digital holographic microscopic particle image velocimetry (DHMPIV). The technique provides a solution to overcome the poor axial accuracy and the low spatial resolution which are common problems in digital holography [5]. By reducing the depth of focus by at least one order of magnitude as well as increasing the lateral spatial resolution, DHMPIV provides the opportunity to resolve the small-scale structures existing in near wall layers.

  15. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    M. Nawaz

    Full Text Available In this article, we developed a computer code of Galerikan Finite Element method (GFEM for three dimensional flow equations of nano-plasma fluid (blood in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm’s law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8. Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood are influenced significantly by the inclusion of nano-particles of Copper (Cu and Silver (Ag. Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid. Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field. Keywords: Nanofluid, Grid independent study, Convergence, Error analysis, Skin friction, Joule heating, Viscous dissipation, Hall and ion currents

  16. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis.

    Science.gov (United States)

    Karatolios, Konstantinos; Wittek, Andreas; Nwe, Thet Htar; Bihari, Peter; Shelke, Amit; Josef, Dennis; Schmitz-Rixen, Thomas; Geks, Josef; Maisch, Bernhard; Blase, Christopher; Moosdorf, Rainer; Vogt, Sebastian

    2013-11-01

    Aortic wall strains are indicators of biomechanical changes of the aorta due to aging or progressing pathologies such as aortic aneurysm. We investigated the potential of time-resolved three-dimensional ultrasonography coupled with speckle-tracking algorithms and finite element analysis as a novel method for noninvasive in vivo assessment of aortic wall strain. Three-dimensional volume datasets of 6 subjects without cardiovascular risk factors and 2 abdominal aortic aneurysms were acquired with a commercial real time three-dimensional echocardiography system. Longitudinal and circumferential strains were computed offline with high spatial resolution using a customized commercial speckle-tracking software and finite element analysis. Indices for spatial heterogeneity and systolic dyssynchrony were determined for healthy abdominal aortas and abdominal aneurysms. All examined aortic wall segments exhibited considerable heterogenous in-plane strain distributions. Higher spatial resolution of strain imaging resulted in the detection of significantly higher local peak strains (p ≤ 0.01). In comparison with healthy abdominal aortas, aneurysms showed reduced mean strains and increased spatial heterogeneity and more pronounced temporal dyssynchrony as well as delayed systole. Three-dimensional ultrasound speckle tracking enables the analysis of spatially highly resolved strain fields of the aortic wall and offers the potential to detect local aortic wall motion deformations and abnormalities. These data allow the definition of new indices by which the different biomechanical properties of healthy aortas and aortic aneurysms can be characterized. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Reducing slab boundary artifacts in three-dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN).

    Science.gov (United States)

    Wu, Wenchuan; Koopmans, Peter J; Frost, Robert; Miller, Karla L

    2016-10-01

    To propose a method to reduce the slab boundary artifacts in three-dimensional multislab diffusion MRI. Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion-weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183-1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  19. Comparison between two and three-dimensional POD in a turbulent boundary layer using multi-plane stereoscopic PIV

    International Nuclear Information System (INIS)

    Liberzon, Alex; Gurka, Roi; Hetsroni, Gad

    2011-01-01

    A comparison between two- and three-dimensional analyses using proper orthogonal decomposition (POD) is performed. The investigated flow field is a turbulent boundary layer in a flume. The decomposition is applied to the vorticity fields measured using a multi-plane stereoscopic particle image velocimetry (PIV) measurement system. The decomposition was applied using two methods: A) two-dimensional slices of the data that were used separately in a so-called slice-POD, and B) as a volumetric dataset that provides 3D-POD modes. Linear combination of the first three modes, energy distribution and reconstruction of snapshots are compared. Both decompositions capture most of the turbulent flow patterns; yet, the lower order modes show significant discrepancies between the slice-POD and 3D-POD. Therefore, in order to characterize coherent structures in turbulent flows, it is essential to perform both two- and three-dimensional decompositions. These two methods complement each other and can provide an improved interpretation of various flow features.

  20. Measurements of surface shear stresses under a three-dimensional turbulent boundary layer using oil-film laser interferometry

    Science.gov (United States)

    Ailinger, K. G.; Simpson, R. L.

    1990-04-01

    Measurements of surface shear stress magnitude and direction are reported for a three-dimensional, pressure driven, turbulent boundary layer around a wing body junction. Measurements were made using a dual-beam oil film laser interferometer at 56 locations. An iterative procedure was developed which increased the precision of the data extracted from the data records. Skin friction directions computed using a least square error fit were compared to angles obtained from surface oil flows, hot wire anemometry, and LDV measurements. Also, the magnitude of the skin friction coefficients were compared to independently obtained skin friction coefficients. The data agreed to within experimental error outside the effects from the vortex legs present along the side of the wing-body. No accurate data was available for quantitative comparison under the effects of the vortex, but the magnitudes followed the qualitative trends expected. This method failed badly in the region of large three-dimensional effects and requires further study in this area of application.

  1. Three-dimensional free boundary calculations using a spectral Green's function method

    International Nuclear Information System (INIS)

    Hirshman, S.P.; van Rij, W.I.; Merkel, P.

    1986-01-01

    The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented

  2. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  3. The Three-Dimensional Elemental Distribution of 3D Printing Stainless Steel Gear via Confocal 3D–XRF Analysis

    Science.gov (United States)

    Qin, Min; Yi, Longtao; Wang, Jingbang; Han, Yue; Sun, Tianxi; Liu, Zhiguo

    2017-11-01

    The macroscopic mechanical properties of 3D printing product are closely related to their microstructure, it has significant importance to accurately characterize the micro-structure of 3D printing products. Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. Therefore, this technique is also very suitable for element distribution measurement of 3D printing product which is printed layer by layer. In this paper the 3D-XRF technique was used to study the spatial elemental distribution of a micro zone from the 3D printing stainless steel gear. An elemental mapping of two orthogonal sections in the depth direction and three dimensional elemental rendering of one micro-region were obtained. The result shows that elemental distribution of the sample is not uniform, the elemental layer structure is formed in the depth direction, the content of the element in measured area vary smoothly, and with no elemental mutation region. This indicates that the 3D printing sample are fused well between layers and layers, with no large pores or bubbles inside the sample. This study demonstrates that it is feasible to make assessment for micro-structure of 3D printing metal product by using confocal 3D-XRF.

  4. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    Science.gov (United States)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface

  5. [A three dimensional finite element study on stress distribution in maxillary central incisor restored with fiber post].

    Science.gov (United States)

    Kang, Cheng-rong; Wei, Su-hua; Zhang, Mei-chao; Zhang, Xin-chun

    2008-08-01

    To study the stress changes of maxillary central incisor restored with or without fiber post using three dimensional finite element method, and analysis the role of fiber post in determining the stress distribution in dentin. Three dimensional finite element models of maxillary central incisor with various remaining tooth structure were established by spiral CT, Mimics software and ANSYS software. Test samples were restored with all-ceramic crown and fiber post all-ceramic crown, respectively. The von Mises stress and maximal tensile stress of dentin were recorded. The stress level in dentin of maxillary central incisor restored with fiber post all-ceramic crown was smaller than that restored with all-ceramic crown, the stress distribution of both were similar. The apply of fiber post can reduce the stress level in dentin of maxillary central incisor and decrease the risk of tooth breakage, but not change the stress pattern.

  6. Slab profile encoding (PEN) for minimizing slab boundary artifact in three-dimensional diffusion-weighted multislab acquisition.

    Science.gov (United States)

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2015-02-01

    To propose a method for mitigating slab boundary artifacts in three-dimensional (3D) multislab diffusion imaging with no or minimal increases in scan time. The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. © 2014 Wiley Periodicals, Inc.

  7. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    Science.gov (United States)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  8. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  9. Three-Dimensional Rail-Bridge Coupling Element of Unequal Lengths for Analyzing Train-Track-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Zhi-Ping Zeng

    Full Text Available Abstract A three-dimensional rail-bridge coupling element of unequal lengths in which the length of the rail element is shorter than that of the bridge element is presented in this paper to investigate the spatial dynamic responses of a train-track-bridge interaction system. Formulation of stiffness and damping matrices for the fastener, ballast, and bearing, as well as the three-dimensional equations of motion in matrix form for a train-track-bridge interaction system using the proposed element are derived in detail using the energy principle. The accuracy of the proposed three-dimensional rail-bridge coupling element is verified using the existing two-dimensional element. Three examples of a seven-span continuous beam bridge are shown: the first investigates the influence of the efficiency and accuracy of the lengths of the rail and bridge elements on the spatial dynamic responses of the train-track-bridge interaction system, and the other two illustrate the influence of two types of track models and two types of wheel-rail interaction models on the dynamic responses of the system. Results show that (1 the proposed rail-bridge coupling element is not only able to help conserve calculation time, but it also gives satisfactory results when investigating the spatial dynamic responses of a train-track-bridge interaction system; (2 the double-layer track model is more accurate in comparison with the single-layer track model, particularly in relation to vibrations of bridge and rail; and (3 the no-jump wheel-rail interaction model is generally reliable and efficient in predicting the dynamic responses of a train-track-bridge interaction system.

  10. Three-dimensional acoustic-roughness receptivity of a boundary layer on an airfoil: experiment and direct numerical simulations

    Science.gov (United States)

    Würz, W.; Herr, S.; Wörner, A.; Rist, U.; Wagner, S.; Kachanov, Y. S.

    2003-03-01

    The paper is devoted to an experimental and numerical investigation of the problem of excitation of three-dimensional Tollmien Schlichting (TS) waves in a boundary layer on an airfoil owing to scattering of an acoustic wave on localized microscopic surface non-uniformities. The experiments were performed at controlled disturbance conditions on a symmetric airfoil section at zero angle of attack. In each set of measurements, the acoustic wave had a fixed frequency fac, in the range of unstable TS-waves. The three-dimensional surface non-uniformity was positioned close to the neutral stability point at branch I for the two-dimensional perturbations. To avoid experimental difficulties in the distinction of the hot-wire signals measured at the same (acoustic) frequency but having a different physical nature, the surface roughness was simulated by a quasi-stationary surface non-uniformity (a vibrator) oscillating with a low frequency fv. This led to the generation of TS-wavetrains at combination frequencies f1,2=fac [minus-or-plus sign] fv. The spatial behaviour of these wavetrains has been studied in detail for three different values of the acoustic frequency. The disturbances were decomposed into normal oblique TS-modes. The initial amplitudes and phases of these modes (i.e. at the position of the vibrator) were determined by means of an upstream extrapolation of the experimental data. The shape of the vibrator oscillations was measured by means of a laser triangulation device and mapped onto the Fourier space.

  11. A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics - User`s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Maker, B.N.

    1995-04-14

    This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.

  12. Three dimensional modelling of grain boundary interaction and evolution during directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Jain, T.; Lin, H. K.; Lan, C. W.

    2018-03-01

    The development of grain structures during directional solidification of multi-crystalline silicon (mc-Si) plays a crucial role in the materials quality for silicon solar cells. Three dimensional (3D) modelling of the grain boundary (GB) interaction and evolution based on phase fields by considering anisotropic GB energy and mobility for mc-Si is carried out for the first time to elucidate the process. The energy and mobility of GBs are allowed to depend on misorientation and the GB plane. To examine the correctness of our method, the known the coincident site lattice (CSL) combinations such as (∑ a + ∑ b → ∑ a × b) or (∑ a + ∑ b → ∑ a / b) are verified. We frther discuss how to use the GB normal to characterize a ∑ 3 twin GB into a tilt or a twist one, and show the interaction between tilt and twist ∑ 3 twin GBs. Two experimental scenarios are considered for comparison and the results are in good agreement with the experiments as well as the theoretical predictions.

  13. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  14. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    Science.gov (United States)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  15. Two and three-dimensional stress analysis of continua using the UNCLE finite element scheme

    International Nuclear Information System (INIS)

    Richardson, T.

    1982-04-01

    A description of the data requirements for the solution of stress analysis problems in bodies of complex shape using finite elements is given. The elements available include quadratic isoparametric elements in two- and three-dimensions. In addition to solving problems involving elastic deformation, calculations may be performed which involve creep or plasticity. It is also possible to carry out vibrational analysis of structures to find the natural frequencies and the corresponding modal shapes. (author)

  16. Flow Interactions of Two- and Three-Dimensional Networked Bio-Inspired Control Elements in an In-Line Arrangement.

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2018-04-19

    -dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.

  17. Gravimetric and dilatometric research of elements action on three dimensional filter by themal effects

    Directory of Open Access Journals (Sweden)

    B. K. Shayakhmetov

    2014-01-01

    Full Text Available In the work there are presented the results of studying the filtering elements weight changes when heated. For all the variants of filtering elements at the primary stages of heating there is characteristic increasing their linear dimensions due to their thermal expansion. It was established that using hydrolyzed ethyl silicate as a binder, as well as water solution of liquid glass with addition of aluminum powder in the refractory material permits to obtain filtering elements without high-temperature solid-phase sintering.

  18. Characteristics of sandwich-type structural elements built of advanced composite materials from three dimensional fabrics

    Directory of Open Access Journals (Sweden)

    Castejón, L.

    1997-12-01

    Full Text Available Sandwich-type structures have proved to be alternatives of great success for several fields of application, and specially in the building sector. This is due to their outstanding properties of .specific rigidity and strength against bending loads and other range of advantages like fatigue and impact resistance, attainment of flat and smooth surfaces, high electric and thermal insulation, design versatility and some others. However, traditional sandwich structures present problems like their tendency towards delamination, stress concentrations in bores or screwed Joints, and pre resistance. These problems are alleviated thanks to the use of new sandwich structures built using three dimensional structures of advanced composite materials, maintaining the present advantages for more traditional sandwich structures. At this rate, these new structures can be applied in several areas where conventional sandwich structures used to be like walls, partitions, floor and ceiling structures, domes, vaults and dwellings, but with greater success.

    Las estructuras tipo sándwich han demostrado ser alternativas de gran éxito para diversos campos de aplicación y, en concreto, en el sector de la construcción, listo es gracias a sus excelentes propiedades de rigidez y resistencia específica frente a cargas de flexión y otra larga lista de ventajas, a la que pertenecen, por ejemplo, su buena resistencia a fatiga, resistencia al impacto, obtención de superficies lisas y suaves, elevado aislamiento térmico y eléctrico, versatilidad de diseño y otras. Sin embargo, las estructuras sándwich, tradicionales presentan una problemática consistente en su tendencia a la delaminación, concentraciones de tensiones ¿aparecidas ante la existencia de agujeros o uniones atornilladas y resistencia al fuego. Estos problemas son pifiados gracias a la aplicación de estructuras novedosas tipo sándwich, construidas a partir de tejidos tridimensionales de materiales

  19. Global existence of strong solutions to the three- dimensional incompressible Navier-Stokes equations with special boundary conditions

    Science.gov (United States)

    Riley, Douglas A.

    We study the three-dimensional incompressible Navier- Stokes equations in a domain of the form W'×(0,e) . First, we assume W' is a C3 bounded domain and impose no-slip boundary conditions on 6W'×(0,e ) , and periodic conditions on W'×0,e . Physically, this models fluid flow through a pipe with cross-section W' where the inlet and outlet conditions are assumed periodic. Secondly, we assume W'=(0,l4) ×(0,l5) and impose periodic boundary conditions. This problem is of interest mathematically, and has been more widely considered than the pipe flow problem. For both sets of boundary conditions, we show that a strong solution exists for all time with conditions on the initial data and forcing. We start by recalling that if the forcing function and initial condition do not depend on x3, then a global strong solution exists which also does not depend on x3. Here (x1,x2,x3) ∈W≡W'×( 0,e) . With this observation as motivation, and using an additive decomposition introduced by Raugel and Sell, we split the initial data and forcing into a portion independent of x3 and a remainder. In our first result, we impose a smallness condition on the remainder and assume the forcing function is square- integrable in time as a function into L2(W) . With these assumptions, we prove a global existence theorem that does not require a smallness condition on e or on the portion of the initial condition and forcing independent of x3. However, these quantities do affect the allowable size of the remainder. For our second result, we assume the forcing is only bounded in time as a function into L2(W) . In this case, we need a smallness condition on the initial data, the forcing, and e to obtain global existence. The interesting observation is that the allowable sizes for the initial data and forcing grow as e-->0 . Thus, we obtain a `thin-domain' result as originally obtained by Raugel and Sell. In fact, our results allow the portion of the initial data and forcing independent of x3 to

  20. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  1. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  2. On Possible Similarity Solutions for Three-Dimensional Incompressible Laminar Boundary-Layer Flows Over Developable Surfaces and with Proportional Mainstream Velocity Components

    Science.gov (United States)

    Hansen, Arthur G.

    1958-01-01

    Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.

  3. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax

    Energy Technology Data Exchange (ETDEWEB)

    Panescu, D. (EP Technologies, Inc., Sunnyvale, CA (United States)); Webster, J.G.; Tompkins, W.J. (Univ. of Wisconsin, Madison, WI (United States)); Stratbucker, R.A. (Radiation Health Center of the State of Nebraska, Omaha, NE (United States))

    1995-02-01

    The goal of this study was to determine the optimal electrode placement and size to minimize myocardial damage during defibrillation while rendering refractory a critical mass of cardiac tissue of 100%. For this purpose, we developed a 3-D finite element model with 55 388 nodes, 50 913 hexahedral elements, and simulated 16 different organs and tissues, as well as the properties of the electrolyte. The model used a nonuniform mesh with an average spatial resolution of 0.8 cm in all three dimensions. To validate this model, we measured the voltage across 3-cm[sup 2] Ag-AgCl electrodes when currents of 5 mA at 50 kHz were injected into a human subject's thorax through the same electrodes. For the same electrode placements and sizes and the same injected current, the finite element analysis produced results in good agreement with the experimental data. For the optimization of defibrillation, we tested 12 different electrode placements and seven different electrode sizes. The finite element analyses showed that the anterior-posterior electrode placement and an electrode size of about 90 cm[sup 2] offered the least chance of potential myocardial damage and required a shock energy of less than 350 J for 5-ms defibrillation pulses to achieve 100% critical mass. 47 refs., 8 figs., 4 tabs.

  4. Seismic Analysis of Deep Water Pile Foundation Based on Three-Dimensional Potential-Based Fluid Elements

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2013-01-01

    Full Text Available This paper investigates the use of three-dimensional (3D ϕ-u potential-based fluid elements for seismic analyses of deep water pile foundation. The mathematical derivations of the potential-based formulations are presented for reference. The potential-based modeling technique is studied and validated through experimental data and analytical solutions. Earthquake time history analyses for a 9-pile foundation in dry and different water environments are conducted, respectively. The seismic responses are discussed to investigate the complex effect of earthquake-induced fluid-structure interaction. Through the analyses, the potential-based fluid and interface elements are shown to perform adequately for the seismic analyses of pile foundation-water systems, and some interesting conclusions and recommendations are drawn.

  5. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations

    International Nuclear Information System (INIS)

    Iskandarani, M.; Haidvogel, D.B.; Levin, J.C.

    2003-01-01

    We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of the model in the idealized/process-oriented limits

  6. Three-dimensionality of space in the structure of the periodic table of chemical elements

    International Nuclear Information System (INIS)

    Veremeichik, T. F.

    2006-01-01

    The effect of the dimension of the 3D homogeneous and isotropic Euclidean space, and the electron spin on the self-organization of the electron systems of atoms of chemical elements is considered. It is shown that the finite dimension of space creates the possibility of periodicity in the structure of an electron cloud, while the value of the dimension determines the number of stable systems of electrons at different levels of the periodic table of chemical elements and some characteristics of the systems. The conditions for the stability of systems of electrons and the electron system of an atom as a whole are considered. On the basis of the results obtained, comparison with other hierarchical systems (nanostructures and biological structures) is performed

  7. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations

    CERN Document Server

    Iskandarani, M; Levin, J C

    2003-01-01

    We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...

  8. Three-dimensional finite element analysis of implant-assisted removable partial dentures.

    Science.gov (United States)

    Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom

    2017-06-01

    Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Static Analysis of Thick Composite Plates Using Higher Order Three Dimensional Finite Elements

    Science.gov (United States)

    1990-12-01

    DERIVATION OF FINITE ELEMENT EQUILIBRIUM EQUATIONS The principle of virtual work is invoked for the general formulation of equilib- rium [Bathe, 1982...Cook, 19891. The principle of virtual work states that a body is in equilibrium, if and only if, the total virtual work done by the internal forces...is equal to the total virtual work done by the external forces. That is, 6WW.t = .t (2.1) This principle is equivalent to the minimum total potential

  10. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    OpenAIRE

    Ha, Seung-Ryong

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimens...

  11. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    Science.gov (United States)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  12. Three-dimensional parallel edge-based finite element modeling of electromagnetic data with field redatuming

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael

    2015-01-01

    This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...

  13. A three-dimensional finite element model of human atrial anatomy: new methods for cubic Hermite meshes with extraordinary vertices.

    Science.gov (United States)

    Gonzales, Matthew J; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M; Zhang, Yongjie; Segars, W Paul; McCulloch, Andrew D

    2013-07-01

    High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the "local-to-global" derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 mm, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Three dimensional finite element analysis of weld overlay application on a plastically formed feeder tube

    Energy Technology Data Exchange (ETDEWEB)

    Ku, F.H.; Riccardella, P.C.; Lashley, M.S. [Structural Integrity Associates Inc., California (United States); Chen, Y. [Structural Integrity Associates, Inc., Ontario (Canada); Yee, R.K. [San Jose State Univ., California (United States)

    2010-07-01

    This paper presents a finite element analysis (FEA) model to predict the residual stresses in a tight-radius warm bend feeder tube in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including feeder tube forming, Grayloc hub weld, and weld overlay application. The FEA employs 3-D elastic-plastic technology with large deformation capability to predict the residual stresses due to the feeder tube forming and various welding processes. The results demonstrate that the FEA method captures the residual stress trends resulted from warm bending and weld overlay with acceptable accuracy. (author)

  15. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis.

    Science.gov (United States)

    Gomez, Juan Pablo; Peña, Fabio Marcelo; Martínez, Valentina; Giraldo, Diana C; Cardona, Carlos Iván

    2015-05-01

    To describe, using a three-dimensional finite element (FE) model, the initial force system generated during bodily movement of upper canines with plastic aligners with and without composite attachments. A CAD model of an upper right canine, its alveolar bone and periodontal ligament, thermoformed plastic aligner, and two light-cured composite attachments were constructed. A FE model was used to analyze the effects of imposing a distal movement condition of 0.15 mm on the aligner (simulating the mechanics used to produce a distal bodily movement) with and without composite attachments. In terms of tension and compression stress distribution, without composite attachments a compression area in the cervical third of the distal root surface and a tension area in the apical third of the mesial surface were observed. With composite attachments, uniform compression areas in the distal root surface and uniform tension area in the mesial root surface were observed. Compression areas in the active surfaces of the composite attachments were also observed. In terms of movement patterns, an uncontrolled distal inclination, with rotation axis between the middle and cervical root thirds, was observed without composite attachment. Distal bodily movement (translation) was observed with composite attachment. In a three-dimensional FE analysis of a plastic aligner system biomechanically supplementary composite attachments generate the force system required to produce bodily tooth movement; the absence of biomechanically supplementary composite attachments favors the undesired inclination of the tooth during the translation movements.

  16. ImageParser: a tool for finite element generation from three-dimensional medical images.

    Science.gov (United States)

    Yin, H M; Sun, L Z; Wang, G; Yamada, T; Wang, J; Vannier, M W

    2004-10-01

    The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  17. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  18. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis.

    Science.gov (United States)

    El Gowini, Mohamed M; Moussa, Walied A

    2009-01-01

    A major problem that often arises in modeling Micro Electro Mechanical Systems (MEMS) such as Surface Acoustic Wave (SAW) sensors using Finite Element Analysis (FEA) is the extensive computational capacity required. In this study a new approach is adopted to significantly reduce the computational capacity needed for analyzing the response of a SAW sensor using the finite element (FE) method. The approach is based on the plane wave solution where the properties of the wave vary in two dimensions and are uniform along the thickness of the device. The plane wave solution therefore allows the thickness of the SAW device model to be minimized; the model is referred to as a Reduced 3D Model (R3D). Various configurations of this novel R3D model are developed and compared with theoretical and experimental frequency data and the results show very good agreement. In addition, two-dimensional (2D) models with similar configurations to the R3D are developed for comparison since the 2D approach is widely adopted in the literature as a computationally inexpensive approach to model SAW sensors using the FE method. Results illustrate that the R3D model is capable of capturing the SAW response more accurately than the 2D model; this is demonstrated by comparison of centre frequency and insertion loss values. These results are very encouraging and indicate that the R3D model is capable of capturing the MEMS-based SAW sensor response without being computationally expensive.

  19. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    Science.gov (United States)

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  20. Residual thermal stress simulation in three-dimensional molar crown systems: a finite element analysis.

    Science.gov (United States)

    Bonfante, Estevam A; Rafferty, Brian T; Silva, Nelson R F A; Hanan, Jay C; Rekow, Elizabeth Dianne; Thompson, Van P; Coelho, Paulo G

    2012-10-01

    To simulate coefficient of thermal expansion (CTE)-generated stress fields in monolithic metal and ceramic crowns, and CTE mismatch stresses between metal, alumina, or zirconia cores and veneer layered crowns when cooled from high temperature processing. A 3D computer-aided design model of a mandibular first molar crown was generated. Tooth preparation comprised reduction of proximal walls by 1.5 mm and of occlusal surfaces by 2.0 mm. Crown systems were monolithic (all-porcelain, alumina, metal, or zirconia) or subdivided into a core (metallic, zirconia, or alumina) and a porcelain veneer layer. The model was thermally loaded from 900°C to 25°C. A finite element mesh of three nodes per edge and a first/last node interval ratio of 1 was used, resulting in approximately 60,000 elements for both solids. Regions and values of maximum principal stress at the core and veneer layers were determined through 3D graphs and software output. The metal-porcelain and zirconia-porcelain systems showed compressive fields within the veneer cusp bulk, whereas alumina-porcelain presented tensile fields. At the core/veneer interface, compressive fields were observed for the metal-porcelain system, slightly tensile for the zirconia-porcelain, and higher tensile stress magnitudes for the alumina-porcelain. Increasingly compressive stresses were observed for the metal, alumina, zirconia, and all-porcelain monolithic systems. Variations in residual thermal stress levels were observed between bilayered and single-material systems due to the interaction between crown configuration and material properties. © 2012 by the American College of Prosthodontists.

  1. A comparison of two three-dimensional shell-element transient electromagnetics codes

    International Nuclear Information System (INIS)

    Yugo, J.J.; Williamson, D.E.

    1992-01-01

    Electromagnetic forces due to eddy currents strongly influence the design of components for the next generation of fusion devices. An effort has been made to benchmark two computer programs used to generate transient electromagnetic loads: SPARK and EddyCuFF. Two simple transient field problems were analyzed, both of which had been previously analyzed by the SPARK code with results recorded in the literature. A third problem that uses an ITER inboard blanket benchmark model was analyzed as well. This problem was driven with a self-consistent, distributed multifilament plasma model generated by an axisymmetric physics code. The benchmark problems showed good agreement between the two shell-element codes. Variations in calculated eddy currents of 1--3% have been found for similar, finely meshed models. A difference of 8% was found in induced current and 20% in force for a coarse mesh and complex, multifilament field driver. Because comparisons were made to results obtained from literature, model preparation and code execution times were not evaluated

  2. Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake

    Science.gov (United States)

    Ubaidillah; Permata, A. N. S.; Mazlan, S. A.; Tjahjana, D. D. D. P.; Widodo, P. J.

    2017-10-01

    This research delivers a finite element magnetic simulation of a novel disk type multi-coil magnetorheological brake (MR brake). The MR brake axial design had more than one coil located outside of the casing. This design could simplify the maintenance process of brakes. One pair of coils was used as the representative of the entire coil in the simulation process, and it could distribute magnetic flux in all parts of the electromagnetic. The objective of this simulation was to produce magnetic flux on the surface of the disc brake rotor. The value of the MR brake magnetic flux was higher than that of the current MR brake having one coil with a larger size. The result of the simulation would be used to identify the effect of different fluids on each variation. The Magneto-rheological fluid MRF-132DG and MRF-140CG were injected in each gap as much as 0.50, 1.00, and 1.50 mm, respectively. On the simulation process, the coils were energized at 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 A, respectively. The magnetic flux produced by MRF-140CG was 336 m Tesla on the gap of 0.5 mm. The result of the simulation shows that the smaller the gap variation was, the higher the magnetic value was.

  3. The Importance of a Conchal Bowl Element in the Fabrication of a Three-Dimensional Framework in Total Auricular Reconstruction

    Directory of Open Access Journals (Sweden)

    Young Soo Kim

    2013-05-01

    Full Text Available BackgroundTo construct a sophisticated three-dimensional framework, numerous modifications have been reported in the literature. However, most surgeons have paid little attention to the anatomical configuration of the concha and more to its deepness and hollowness, leading to unsatisfactory outcomes.MethodsFor a configuration of the concha that is definitely anatomical, the author further developed and employed the conchal bowl element, which has been used by several surgeons although the results have not been published elsewhere. The author constructed the conchal bowl element in one of three patterns according to the amount of available cartilages: one block, two-pieces, or a cymba bowl element only. A total of 20 patients underwent auricular reconstruction using a costal cartilage framework between 2009 and 2012. The 8 earliest reconstructions were performed without a conchal bowl element and the latter 12 with a conchal bowl element. The patients were followed up for more than 1 year. The aesthetic results were scored by evaluating characteristics involving the stability of the crus helicis, the conchal definition, and the smoothness of the helical curve.ResultsThe ears reconstructed early without a conchal bowl element showed a shallow and one or two incompletely separated concha with an obliterated cymba conchal space. They also did not have a realistic or smooth curve of the helix because of an unstable crus helicis. However, ears reconstructed later with the concha bowl element showed a definite crus helicis, deep cymba conchal space, and smooth helical curve.ConclusionsThe construction of the conchal bowl element is simple, not time-consuming procedure. It is suggested that the conchal bowl element must be constructed and attached to the main framework for natural configuration of the reconstructed ear.

  4. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2015-07-01

    Full Text Available Based on airborne spectral imaging observations, three-dimensional (3-D radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength. The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0–200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500–1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field. The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500–1000 m cloud altitude, which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical

  5. Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads.

    Science.gov (United States)

    Çelik Köycü, Berrak; Imirzalioğlu, Pervin; Özden, Utku Ahmet

    2016-01-01

    Functional occlusal loads and intraoral temperature changes create stress in teeth. The purpose of this study was to evaluate the impact of simultaneous thermomechanical loads on stress distribution related to inlay restored teeth by three-dimensional finite element analysis. A mandibular first molar was constructed with tooth structures, surrounding bone and inlays of Type II gold alloy, ceramic, and composite resin. Stress patterns on the restorative materials, adhesive resin, enamel and dentin were analyzed after simulated temperature changes from 36°C to 4 or 60°C for 2 s with 200-N oblique loading. The results showed that the three types of inlays had similar stress distribution in the tooth structures and restorative materials. Concerning the adhesive resin, the composite resin inlay model exhibited lower stresses than ceramic and gold alloy inlays. Simultaneous thermomechanical loads caused high stress patterns in inlay-restored teeth. Composite resin inlays may be the better choice to avoid adhesive failure.

  6. Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2014-10-01

    Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.

  7. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials

    International Nuclear Information System (INIS)

    Yue-Feng, Gong; Zhi-Tang, Song; Yun, Ling; Yan, Liu; Yi-Jin, Li; Song-Lin, Feng

    2010-01-01

    Simulation of the heat consumption in phase change random access memories (PCRAMs) is investigated by a three-dimensional finite element model. It is revealed that the thermal conductivity and electrical conductivity of the buffer layer are crucial in controlling the heating efficiency in RESET process. The buffer layer materials W, TiN, WO 3 , TiO 2 and poly-germanium (poly-Ge) are applied in the simulation respectively, and compared with each other. The simulation results show that limitation of electrical conductivity is effective on heating efficiency and the limitation of thermal conductivity is important on the reliable RESET process. (cross-disciplinary physics and related areas of science and technology)

  8. On the development of a three-dimensional finite-element groundwater flow model of the saturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Faunt, C.C.; Gable, C.W.; Zyvoloski, G.A.

    1996-01-01

    Development of a preliminary three-dimensional model of the saturated zone at Yucca Mountain, the potential location for a high-level nuclear waste repository, is presented. The development of the model advances the technology of interfacing: (1)complex three-dimensional hydrogeologic framework modeling; (2) fully three-dimensional, unstructured, finite-element mesh generation; and (3) groundwater flow, heat, and transport simulation. The three-dimensional hydrogeologic framework model is developed using maps, cross sections, and well data. The framework model data are used to feed an automated mesh generator, designed to discretize irregular three-dimensional solids,a nd to assign materials properties from the hydrogeologic framework model to the tetrahedral elements. The mesh generator facilitated the addition of nodes to the finite-element mesh which correspond to the exact three-dimensional position of the potentiometric surface based on water-levels from wells. A ground water flow and heat simulator is run with the resulting finite- element mesh, within a parameter-estimation program. The application of the parameter-estimation program is designed to provide optimal values of permeability and specified fluxes over the model domain to minimize the residual between observed and simulated water levels

  9. Biomechanical effect of a zirconia dental implant-crown system: a three-dimensional finite element analysis.

    Science.gov (United States)

    Chang, Chih-Ling; Chen, Chen-Sheng; Yeung, Tze Cheung; Hsu, Ming-Lun

    2012-01-01

    The objective of this study was to analyze and compare the stresses in two different bone-implant interface conditions in anisotropic three-dimensional finite element models (FEMs) of an osseointegrated implant of either commercially pure titanium or yttrium-partially stabilized zirconia (Y-PSZ) in combination with different superstructures (gold alloy or Y-PSZ crown) in the posterior maxilla. Three-dimensional FEMs were created of a first molar section of the maxilla into which was embedded an implant, connected to an abutment and superstructure, using commercial software. Two versions of the FEM were constructed; these allowed varying assignment of properties (either a bonded and or a contact interface), so that all experimental variables could be investigated in eight groups. Compact and cancellous bone were modeled as fully orthotropic and transversely isotropic, respectively. Oblique (200-N vertical and 40-N horizontal) occlusal loading was applied at the central and distal fossae of the crown. Maximum von Mises and compressive stresses in the compact bone in the two interfaces were lower in the zirconia implant groups than in the titanium implant groups. A similar pattern of stress distribution in cancellous bone was observed, not only on the palatal side of the platform but also in the apical area of both types of implants. The biomechanical parameters of the new zirconia implant generated a performance similar to that of the titanium implant in terms of displacement, stresses on the implant, and the bone-implant interface; therefore, it may be a viable alternative, especially for esthetic regions.

  10. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part I: theoretical formulation

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to present a method for solving the time-domain three-dimensional Maxwell equations. This method is based on a variational formulation and can be easily coupled with a particle solver for the Vlasov equation. The necessity to take into account complex three-dimensional geometries and to have a spatial resolution fitted to the various computation zones, leads to choose a finite element method built on tetrahedral unstructured meshes. 12 refs

  12. Comparison of five different fixation techniques of sagittal split ramus osteotomy using three-dimensional finite elements analysis.

    Science.gov (United States)

    Sato, F R L; Asprino, L; Noritomi, P Y; da Silva, J V L; de Moraes, M

    2012-08-01

    The aim of this study was to compare the mechanical stress over hemimandible substrate and hardware after sagittal split ramus osteotomy (SSRO) fixed with five different techniques using three-dimensional (3D) finite element analysis. A 3D finite element model of a hemimandible was created and a 5mm advancement SSRO was simulated on a computer model. The model was fixed with five different techniques: 3 linear 60° screw arrangement; 3 linear 90° screw arrangement; 3 inverted L screw arrangement; 1 conventional miniplate; and 1 locking miniplate with four monocortical screws. Load was applied until 3mm displacement was reached and the results were compared with previous mechanical and photoelastic tests, thus analysing the mechanical stresses developed in the proximity of miniplates and screws and within the fixation system itself. The maximum principal stress values demonstrate a lower mechanical stress rate in bone and in the fixation system with the inverted L arrangement, followed by the linear 90° and linear 60° arrangements. The locking miniplate/screw system presented lower maximum principal stress and better stress distribution compared with the conventional system. Under the conditions tested, the reversed L arrangement provided the most favourable stress dissipation behaviour. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  14. Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation non-uniformities

    Directory of Open Access Journals (Sweden)

    M. Shariyat

    Full Text Available Three-dimensional bending and stress analyses of the rotating two-directional functionally graded annular/circular plates or disks have not been accomplished so far. This task is performed in the present paper, employing a finite element formulation with a C¹-continuity. Therefore, both transversely graded and radiallygraded plates may be analyzed as special cases of the present research. Distribution of the transverse loads as well as coefficients of the elastic foundation may be non-uniform. Mixed stress-based and displacement-based edge conditions are considered to cover many practical applications. Compatible Hermitian elements are employed to develop a consistent formulation and avoid jumps in the stress components at the elements interfaces. In contrast to the very limited works presented for the rotating functionally graded circular plates so far, the transverse flexibility and the transverse stress components are also considered in the present research. Finally, influences of the material properties distribution, angular speed, geometric parameters, and the elastic foundation on distributions of the stress and displacement components are investigated for a variety of edge and boundary conditions and some design criteria are extracted.

  15. Efficacy of transpalatal arch as an anchorage reinforcing unit during orthodontic space closure: A three-dimensional finite element study

    Directory of Open Access Journals (Sweden)

    Vishal Shrishail Kudagi

    2017-01-01

    Full Text Available Background and Objectives: Connecting the contralateral upper molars by means of a transpalatal arch (TPA is thought to decrease the tendency of the molars to move mesially in response to orthodontic force (i.e., provide orthodontic anchorage. This study was hence conducted to investigate the effects of the TPA on the displacement of the molars and stresses generated in the periodontium during orthodontic tooth movement using the finite element method (FEM. Materials and Methods: A three-dimensional (3D model was generated using medical modeling software (Mimics using the computed tomography slice images of the skull which were obtained at a slice thickness of 1 mm. From this, the finite element model was built using HyperMesh and analysis was performed using PATRAN software (MSC Software Corporation, 4675 MacArthur Court, Newport Beach, California 92660. The 3D finite element models were fabricated in two versions such as maxillary first molars including their associated periodontal ligament and alveolar bone one with TPA and another without TPA. Both were subjected to orthodontic forces, and the resultant stress patterns and displacements between the models with and without TPA were determined. Results: The stress and displacement plots in this study failed to show any significant differences in stress and displacement within the periodontium of molars, between the two models – one with TPA and the other without, in response to the orthodontic force. Interpretation and Conclusion: The results of the current finite element analysis, therefore, suggest that the presence of a TPA brings about no change in the initial dental and periodontal stress distribution and displacement.

  16. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.

    Science.gov (United States)

    Zhao, Wen-Tao; Qin, Da-Ping; Zhang, Xiao-Gang; Wang, Zhi-Peng; Tong, Zun

    2018-02-08

    Clinical results have shown that different vertebral heights have been restored post-augmentation of osteoporotic vertebral compression fractures (OVCFs) and the treatment results are consistent. However, no significant results regarding biomechanical effects post-augmentation have been found with different types of vertebral deformity or vertebral heights by biomechanical analysis. Therefore, the present study aimed to investigate the biomechanical effects between different vertebral heights of OVCFs before and after augmentation using three-dimensional finite element analysis. Four patients with OVCFs of T12 underwent computed tomography (CT) of the T11-L1 levels. The CT images were reconstructed as simulated three-dimensional finite-element models of the T11-L1 levels (before and after the T12 vertebra was augmented with cement). Four different kinds of vertebral height models included Genant semi-quantitative grades 0, 1, 2, and 3, which simulated unilateral augmentation. These models were assumed to represent vertical compression and flexion, left flexion, and right flexion loads, and the von Mises stresses of the T12 vertebral body were assessed under different vertebral heights before and after bone cement augmentation. Data showed that the von Mises stresses significantly increased under four loads of OVCFs of the T12 vertebral body before the operation from grade 0 to grade 3 vertebral heights. The maximum stress of grade 3 vertebral height pre-augmentation was produced at approximately 200%, and at more than 200% for grade 0. The von Mises stresses were significantly different between different vertebral heights preoperatively. The von Mises stresses of the T12 vertebral body significantly decreased in four different loads and at different vertebral body heights (grades 0-3) after augmentation. There was no significant difference between the von Mises stresses of grade 0, 1, and 3 vertebral heights postoperatively. The von Mises stress significantly

  17. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  18. [Three-dimensional finite element investigation of lateral mass screw fixation and transarticular screw fixation in lower cervical spine].

    Science.gov (United States)

    Duan, Yang; Jin, Anmin; Zhang, Hui; Min, Shaoxiong; Hu, Konghe

    2010-12-01

    To establish sophisticated three-dimensional finite element model of the lower cervical spine and reconstruct lower cervical model by different fixation systems after three-column injury, and to research the stress distribution of the internal fixation reconstructed by different techniques. The CT scan deta were obtained from a 27-year-old normal male volunteer. Mimics 10.01, Geomagic Studio10.0, HyperMesh10.0, and Abaqus 6.9.1 softwares were used to obtain the intact model (C3-7), the model after three-column injury, and the models of reconstructing the lower cervical spine after three-column injury through different fixation systems, namely lateral mass screw fixation (LSF) and transarticular screw fixation (TSF). The skull load of 75 N and torsion preload of 1.0 N*m were simulated on the surface of C3. Under conditions of flexion, extension, lateral bending, and rotation, the Von Mises stress distribution regularity of internal fixation system was evaluated. The intact model of C3-7 was successfully established, which consisted of 177 944 elements and 35 668 nodes. The results of the biomechanic study agreed well with the available cadaveric experimental data, suggesting that they were accord with normal human body parameters and could be used in the experimental research. The finite element models of the lower cervical spine reconstruction after three-column injury were established. The stress concentrated on the connection between rod and screw in LSF and on the middle part of screw in TSF. The peak values of Von Mises stress in TSF were higher than those in LSF under all conditions. For the reconstruction of lower cervical spine, TSF has higher risk of screw breakage than LSF.

  19. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution.

    Science.gov (United States)

    Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.

  20. Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips

    Directory of Open Access Journals (Sweden)

    Junjie Zeng

    2018-03-01

    Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.

  1. The effect of implant and abutment diameter on peri-implant bone stress: A three-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Helen Mary Abraham

    2016-01-01

    Full Text Available Introduction: Load transfer mechanisms from the implant to surrounding bone and failure of osseointegrated implants are affected by implant geometry and mechanical properties of the site of placement as well as crestal bone resorption. Estimation of such effects allows for a correct design of implant geometry to minimize crestal bone loss and implant failure. Objectives: To evaluate the effect of implant and abutment diameter on stress distribution in the peri-implant area. Materials and Methods: Three-dimensional finite element models created to replicate completely osseointegrated endosseous titanium implants and were used for the purpose of stress analysis. Two study groups that consisting of a regular platform (RP group and narrow platform (NP group were used with a standard bone density and loaded using the ANSYS Workbench software to calculate the von Mises and Principal (maximum tensile and minimum compressive stress. Results: The von Mises, compressive, and tensile stresses in the peri-implant bone were lower in the RP model compared to the NP model. Conclusion: RP model yielded a positive result with regard to lowering of peri-implant bone stress levels, in healthy as well as compromised bone qualities when compared to NP designs.

  2. Three-dimensional finite element analysis of stress distribution in composite resin cores with fiber posts of varying diameters.

    Science.gov (United States)

    Okamoto, Kazuhiko; Ino, Teruno; Iwase, Naoki; Shimizu, Eitaroh; Suzuki, Megumi; Satoh, Goh; Ohkawa, Shuji; Fujisawa, Masanori

    2008-01-01

    Using three-dimensional finite element analysis (3D-FEA), stress distributions in the remaining radicular tooth structure were investigated under the condition of varying diameters of fiber post for fiber post-reinforced composite resin cores (fiber post and core) in maxillary central incisors. Four 3D-FEA models were constructed: (1) fiber post (ø1.2, ø1.4, and ø1.6 mm) and composite resin core; and (2) gold-cast post and core. Maximum stresses in the tooth structure for fiber post and core were higher than that for gold-cast post and core. In the former models, stresses in the tooth structure as well as in the composite resin were slightly reduced with increase in fiber post diameter. These results thus suggested that to reduce stress in the remaining radicular tooth with a large coronal defect, it is recommended to accompany a composite resin core with a fiber post of a large diameter.

  3. Three-dimensional finite element analysis of zirconia all-ceramic cantilevered fixed partial dentures with different framework designs.

    Science.gov (United States)

    Miura, Shoko; Kasahara, Shin; Yamauchi, Shinobu; Egusa, Hiroshi

    2017-06-01

    The purpose of this study were: to perform stress analyses using three-dimensional finite element analysis methods; to analyze the mechanical stress of different framework designs; and to investigate framework designs that will provide for the long-term stability of both cantilevered fixed partial dentures (FPDs) and abutment teeth. An analysis model was prepared for three units of cantilevered FPDs that assume a missing mandibular first molar. Four types of framework design (Design 1, basic type; Design 2, framework width expanded buccolingually by 2 mm; Design 3, framework height expanded by 0.5 mm to the occlusal surface side from the end abutment to the connector area; and Design 4, a combination of Designs 2 and 3) were created. Two types of framework material (yttrium-oxide partially stabilized zirconia and a high precious noble metal gold alloy) and two types of abutment material (dentin and brass) were used. In the framework designs, Design 1 exhibited the highest maximum principal stress value for both zirconia and gold alloy. In the abutment tooth, Design 3 exhibited the highest maximum principal stress value for all abutment teeth. In the present study, Design 4 (the design with expanded framework height and framework width) could contribute to preventing the concentration of stress and protecting abutment teeth. © 2017 Eur J Oral Sci.

  4. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification

    Science.gov (United States)

    Zhao, Y.; Qin, R. S.; Chen, D. F.

    2013-08-01

    A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.

  5. Three-Dimensional Finite Element Analysis of Phase Change Memory Cell with Thin TiO2 Film

    International Nuclear Information System (INIS)

    Yan, Liu; Zhi-Tang, Song; Yun, Ling; Song-Lin, Feng

    2010-01-01

    A thin TiO 2 layer inserted in a phase change memory (PCM) cell to form a deep sub-micro bottom electrode (DBE) is proposed and its electro-thermal characteristics are investigated with the three-dimensional finite element analysis. Compared with the conventional PCM cell with a SiN stop layer, the reset threshold current of the PCM cell with the TiO 2 layer is reduced from 1.8 mA to 1.2 mA and the ratio of the amorphous resistance and crystalline resistive increases from 65 to 100. The optimum thickness of the TiO 2 layer and the optimum height of DBE are 10 nm and 200 nm, respectively. Therefore, the PCM cell with the TiO 2 layer can decrease the programming power consumption and increase heating efficiency. The TiO 2 film is a better candidate for the SiN film in the PCM cell structure to prepare DBE and to reduce programming power in the reset operation. (cross-disciplinary physics and related areas of science and technology)

  6. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.

    Science.gov (United States)

    Protopappas, Vasilios C; Kourtis, Iraklis C; Kourtis, Lampros C; Malizos, Konstantinos N; Massalas, Christos V; Fotiadis, Dimitrios I

    2007-06-01

    The use of guided waves has recently drawn significant interest in the ultrasonic characterization of bone aiming at supplementing the information provided by traditional velocity measurements. This work presents a three-dimensional finite element study of guided wave propagation in intact and healing bones. A model of the fracture callus was constructed and the healing course was simulated as a three-stage process. The dispersion of guided modes generated by a broadband 1-MHz excitation was represented in the time-frequency domain. Wave propagation in the intact bone model was first investigated and comparisons were then made with a simplified geometry using analytical dispersion curves of the tube modes. Then, the effect of callus consolidation on the propagation characteristics was examined. It was shown that the dispersion of guided waves was significantly influenced by the irregularity and anisotropy of the bone. Also, guided waves were sensitive to material and geometrical changes that take place during healing. Conversely, when the first-arriving signal at the receiver corresponded to a nondispersive lateral wave, its propagation velocity was almost unaffected by the elastic symmetry and geometry of the bone and also could not characterize the callus tissue throughout its thickness. In conclusion, guided waves can enhance the capabilities of ultrasonic evaluation.

  7. Boundary Inheritance Codec for high-accuracy structured light three-dimensional reconstruction with comparative performance evaluation.

    Science.gov (United States)

    Bui, Lam Quang; Lee, Sukhan

    2013-08-01

    This paper presents a new method of structured light-based 3D reconstruction, referred to here as Boundary Inheritance Codec, that provides high accuracy and low noise in projector-camera correspondence. The proposed method features (1) real-boundary recovery: the exact locations of region boundaries, defined by a coded pattern, are identified in terms of their real coordinates on the image plane. To this end, a radiance independent recovery of accurate boundaries and a disambiguation of true and false boundaries are presented. (2) Boundary inheritance: the consistency among the same boundaries of different layers in pattern hierarchy is exploited to further enhance the accuracy of region correspondence and boundary estimation. Extensive experimentations are carried out to verify the performance of the proposed Boundary Inheritance Codec, especially, in comparison with a number of well-known methods currently available, including Gray-code (GC) plus line/phase shift (LS/PS). The results indicate that the proposed method of recovering real boundaries with boundary inheritance is superior in accuracy and robustness to Gray-code inverse (GCI), GC+LS/PS. For instance, the error standard deviation and the percentile of outliers of the proposed method were 0.152 mm and 0.089%, respectively, while those of GCI were 0.312 mm and 3.937%, respectively, and those of GC+LS/PS were 0.280/0.321 mm and 0.159/7.074%, respectively.

  8. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  9. Biomechanical Effects of Platform Switching in Two Different Implant Systems: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mahasti Sahabi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to determine the influence of platform switching on stress distribution of two different implant systems, using three-dimensional (3D finite element models.Methods: Six 3D finite element models were created to replicate two different implant systems with peri-implant bone tissue, in which six different implant-abutment configurations were represented: model XiVE-a: 3.8-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-b (platform-switching model: 4.5-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-c: 4.5-mm-diameter implant and 4.5-mm-diameter abutment; model 3i-a: 4.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-b (platform-switching model: 5.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-c: 5.0-mm-diameter implant and 5.0-mm-diameter abutment. Axial and oblique loads of 100 were applied to all models.Results: While the pattern of stress distribution was similar for both loading situations, oblique loading resulted in higher intensity and greater distribution of stress than axial loading in both cortical bone and abutment-implant interface. Stress distribution at peri-implant bone was almost identical with similar magnitudes for all six models. In both implant systems, platform switching models demonstrated lower maximum von Mises stress in cortical bone than conventional models. However, in both implant systems and under both loading situation, platform switching models showed higher stresses at the abutment-implant interface than conventional models.Conclusion: In both implant systems, platform switching design reduced the stress concentration in the crestal bone and shifted it towards the area of implant-abutment interface

  10. Correlation between cuspal inclination and tooth cracked syndrome: a three-dimensional reconstruction measurement and finite element analysis.

    Science.gov (United States)

    Qian, Yunzhu; Zhou, Xuefeng; Yang, Jianxin

    2013-06-01

    This paper explored the correlation between cuspal inclination and tooth cracked syndrome by measuring and reconstructing the cuspal inclinations of cracked maxillary first molars through three-dimensional (3D) finite element analysis (FEA). The cuspal inclinations of 11 maxillary left first molars with cracked tooth syndrome and 22 intact controls were measured by 3D reconstruction. The mean values of each group were used to construct two 3D finite element models of maxillary first molar for comparing stress distribution under the loads of 200N at 0°, 45°, and 90°, respectively, to the tooth axis. There was statistically significant difference in the cuspal inclination between the incompletely fractured group and the intact control group ( P  < 0.001), which was 5.5-6.7 degrees steeper. The model from the mean cuspal inclinations of the incompletely fractured molars showed the maximum tensile stress of 5.83, 10.87, and 25.32 MPa, respectively, in comparison with 5.40, 8.49, and 22.76 MPa for the model of the control group. Besides, the tensile stress was mainly at the center groove and cervical region of the molar model. Steeper cuspal inclinations resulted in an increment in tensile stress that was mainly at the center groove and cervical region of the molar model under equivalent loads. Higher unfavorable tensile stress was generated with the increasing horizontal component load on the cuspal incline. This indicates an effective reduction of cuspal inclination to the compromised teeth for dentists. © 2012 John Wiley & Sons A/S.

  11. Three-dimensional finite element analysis of the stress distribution in the endodontically treated maxillary central incisor by glass fiber post and dentin post.

    Science.gov (United States)

    Memon, Sarfaraz; Mehta, Sonal; Malik, Salim; Nirmal, Narendra; Sharma, Deeksha; Arora, Himanshu

    2016-01-01

    From the point of dental practice, the restoration of endodontically treated teeth has become an important aspect as it involves a range of treatment options of variable complexity. Restoring teeth with insufficient coronal tooth structure, it is always indicated to use the post to retain a core for definitive restoration. Fiber post has a modulus of elasticity in analogs to dentin structure, thus reducing the stress areas at the dowel dentin interface. However, the only material that can substantiate all these properties can be none other than dentin itself. Three-dimensional (3D) models of the maxillary central incisor were developed incorporating all the nonlinearities. Continuum 3D elements were used in three dimensions. Maxillary central incisor was laser scanned, duplicated with the help of reverse engineering into STL format, and it was converted into 3D model for finite element analysis (FEA). For the model, fixed boundary conditions were applied at the outer bone, while 100 N static vertical occlusal loads were prescribed at 135° on the loading component of the simulated tooth. The stress distribution was evaluated using dentin and fiber post with prescribed materials, loading and boundary conditions in endontically treated teeth by 3D FEA. The analysis for von Misses stress for dentin post showed that the stress in the dentin post at the cervical area was 127 MPa. The displacement in the dentin post was fiber post at the cervical area was approximately 182 MPa and the displacement was fiber post when compared to dentin post, and maximum displacement values were less for dentin post in comparison to fiber post.

  12. The response of an elastic three-dimensional half-space to random correlated displacement perturbations on the boundary

    Science.gov (United States)

    Shalimova, I. A.; Sabelfeld, K. K.

    2010-11-01

    The response of an elastic half-space to random excitations of displacements on the boundary under the condition of no shearing forces is studied. We analyze the white noise excitations and general random fluctuations of displacements prescribed on the boundary. We consider the case of partially ordered defects on the boundary whose positions are governed by an exponential-cosine-type correlation function. The analysis is based on a Poisson-type integral formula which we derive here for the case of zero shearing forces on the boundary. We obtain exact representations for the displacement correlation tensor and the Karhunen-Loève expansion for the solution of the Lamé equation itself, and analyze some features of the correlation structure of the displacements. The Monte Carlo technique developed can be applied to a wide class of differential equations with random boundary conditions.

  13. Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models

    Science.gov (United States)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; Li, Bing; He, Zhengjia

    2015-10-01

    A novel reduced-order modeling method is presented in this paper for dynamics analysis of rotating impeller-shaft-bearing assembly with cracked impellers. Based on three-dimensional finite element model, the complex component mode synthesis (CMS) method is employed to generate an efficient reduced-order model (ROM) for studying the effects of crack on the global vibration of the rotating assembly. First, a modeling framework for impeller-shaft-bearing systems in rotating frame is presented. Rotational effects, including Coriolis matrix and centrifugal softening, have been taken into account. Then, the governing equation of motion of the damped gyroscopic system is reduced by the complex CMS method. Finally, the obtained ROM is employed to study the effects of crack on assembly's vibration. During the steady-state response analysis, external excitations on the impeller due to rotor-stator interactions have been taken into account, which was however neglected in previous investigations on rotordynamics. Numerical results show that the lower-order eigenvalues and the unbalance response of the assembly are not sensitive to the local crack on impeller. Nevertheless, the flexible coupling between impeller and shaft becomes more complex when the air flow-induced excitations are considered. Under EO1 traveling wave excitations, a crack leads to slight changes in the assembly's response. In contrast, the effect of crack becomes significant when the assembly is excited by EO2 and higher EO excitations. Moreover, the nonlinear crack breathing effects affect the assembly's response obviously. Finally, a potential technique for detecting the crack on impeller during operation is discussed.

  14. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study.

    Science.gov (United States)

    Abe, Shinya; Narra, Nathaniel; Nikander, Riku; Hyttinen, Jari; Kouhia, Reijo; Sievänen, Harri

    2016-11-01

    Over 90% of hip fractures are caused by falls. Due to a fall-induced impact on the greater trochanter, the posterior part of the thin superolateral cortex of the femoral neck is known to experience the highest stress, making it a fracture-prone region. Cortical geometry of the proximal femur, in turn, reflects a mechanically appropriate form with respect to habitual exercise loading. In this finite element (FE) modeling study, we investigated whether specific exercise loading history is associated with femoral neck structural strength and estimated fall-induced stresses along the femoral neck. One hundred and eleven three-dimensional (3D) proximal femur FE models for a sideways falling situation were constructed from magnetic resonance (MR) images of 91 female athletes (aged 24.7±6.1years, >8years competitive career) and 20 non-competitive habitually active women (aged 23.7±3.8years) that served as a control group. The athletes were divided into five distinct groups based on the typical loading pattern of their sports: high-impact (H-I: triple-jumpers and high-jumpers), odd-impact (O-I: soccer and squash players), high-magnitude (H-M: power-lifters), repetitive-impact (R-I: endurance runners), and repetitive non-impact (R-NI: swimmers). The von Mises stresses obtained from the FE models were used to estimate mean fall-induced stresses in eight anatomical octants of the cortical bone cross-sections at the proximal, middle, and distal sites along the femoral neck axis. Significantly (pexercise loading history comprising various impacts in particular is associated with a stronger femoral neck in a falling situation and may have potential to reduce hip fragility. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    Science.gov (United States)

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  16. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  17. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  18. Three-dimensional boundary-layer flow and heat transfer of a Cu-water nanofluid over a stretching surface

    Science.gov (United States)

    Xu, Hang; Fan, Tao; You, Xiang Cheng

    2012-09-01

    The steady, three dimensional mixed convection flow of a Cu-water nanofluid past a stretching sheet is investigated. The homogenous model is adopted to simplify the physical problem. With a set of similarity transformations, the governing equations are reduced to a set of ordinary differential equations, which are then solved by means of the homotopy analysis method (HAM). The novel HAM technique for the choice of the convergent control auxiliary parameters ħ and optimal parameters of the initial guesses, as well as the new approach of the computational errors are introduced. with the help of these novel methods, the highly accurate analytical approximations are obtained for both the velocity and the temperature profiles. Besides, the effects of the nanoparticle volume fraction φ on the local skin friction and the local Nusselt number are presented and discussed. It is found that the nanofluid can improve on the heat transfer characteristics to a large extent. As far as we know, this problem has not been considered before and the results are new and original.

  19. OPERATOR-RELATED FORMULATION OF THE EIGENVALUE PROBLEM FOR THE BOUNDARY PROBLEM OF ANALYSIS OF A THREE-DIMENSIONAL STRUCTURE WITH PIECEWISE-CONSTANT PHYSICAL AND GEOMETRICAL PARAMETERS ALONGSIDE THE BASIC DIRECTION WITHIN THE FRAMEWORK OF THE DISCRETE-CON

    Directory of Open Access Journals (Sweden)

    Akimov Pavel Alekseevich

    2012-10-01

    Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.

  20. Report on 1981 research result on the R and D of three-dimensional circuit element; 1981 nendo sanjigen kairo soshi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    For the purpose of contributing to the efficient R and D of three-dimensional circuit element technologies (laminated high density integrated element technology, laminated high-speed multi-functional integrated element technology, and laminated large capacity multi-functional integrated element technology), conducted were the survey of domestic and overseas technological trend, investigation of progress status of R and D, and extraction and analysis of problems concerning R and D. In the technological trend survey, the technologies that could sprout in the future were investigated and examined. In addition, examined as much as possible at the present time were the appearance as a device imaginable at the time of the development of the three-dimensional circuit element technology, the point at issue, essential technologies for the development of the element, etc., with the results reported. A report was made on the technology of obtaining a silicon crystal layer on an insulating object. The status quo of a technology for forming an insulated film suitable for a silicon multi-layer structure and of a technology for forming an electrode material was explained, as was a layer forming technology for an insulating object and a metallic material concerning a compound semiconductor layer technology. With the present status summarized on an image sensor in two dimensions, the transmission electron microscope method was introduced. Last of all, investigation results were compiled on the state of progress of each research for the three-dimensional circuit element technology. (NEDO)

  1. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    Science.gov (United States)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  2. An engineering method for interactive inviscid-boundary layers in three-dimensional hypersonic flows. Ph.D. Thesis - North Carolina State Univ., Raleigh

    Science.gov (United States)

    Riley, Christopher J.

    1992-01-01

    An engineering method has been developed that couples an approximate three dimensional inviscid technique with the axisymmetric analog and a set of approximate convective heating equations. The displacement effect on the boundary layer on the outer inviscid flow is calculated and included as a boundary condition in the inviscid technique. This accounts for the viscous interaction present at lower Reynolds numbers. The method is applied to blunted axisymmetric and three dimensional elliptic cones at angle of attack for the laminar hypersonic flow of a perfect gas. The method is applied to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates, pressures, and shock shapes that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes and viscous shock-layer equations. In addition, the inclusion of viscous interaction significantly improves results obtained at lower Reynolds numbers. The new technique represents a major improvement over current engineering aerothermal methods with only a modest increase in computational effort.

  3. Association between implant apex and sinus floor in posterior maxilla dental implantation: A three-dimensional finite element analysis

    Science.gov (United States)

    YAN, XU; ZHANG, XINWEN; CHI, WEICHAO; AI, HONGJUN; WU, LIN

    2015-01-01

    The aim of the present study was to evaluate the effect of the association between the implant apex and the sinus floor in posterior maxilla dental implantation by means of three-dimensional (3D) finite element (FE) analysis. Ten 3D FE models of a posterior maxillary region with a sinus membrane and different heights of alveolar ridge with different thicknesses of sinus floor cortical bone were constructed according to anatomical data of the sinus area. Six models were constructed with the same thickness of crestal cortical bone and a 1-mm thick sinus floor cortical bone, but differing heights of alveolar ridge (between 10 and 14 mm). The four models of the second group were similar (11-mm-high alveolar ridge and 1-mm-thick crestal cortical bone) but with a changing thickness of sinus floor cortical bone (between 0.5 and 2.0 mm). The standard implant model based on the Nobel Biocare® implant system was created by computer-aided design (CAD) software and assembled into the models. The materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. The maximum von Mises stress, stress distribution, implant displacement and resonance frequencies were calculated using CAD software. The von Mises stress was concentrated on the surface of the crestal cortical bone around the implant neck with the exception of that for the bicortical implantation. For immediate loading, when the implant apex broke into or through the sinus cortical bone, the maximum displacements of the implant, particularly at the implant apex, were smaller than those in the other groups. With increasing depth of the implant apex in the sinus floor cortical bone, the maximum displacements decreased and the implant axial resonance frequencies presented a linear upward tendency, but buccolingual resonance frequencies were hardly affected. This FE study on the association between implant apex and sinus floor showed that having the implant apex in contact with, piercing

  4. Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

    Directory of Open Access Journals (Sweden)

    Seyed Abolfazl Hosseini

    2016-02-01

    Full Text Available In the present paper, development of the three-dimensional (3D computational code based on Galerkin finite element method (GFEM for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA-3D and Water-Water Energetic Reactor (VVER-1000 reactor cores. In addition, validation of the calculations against the P1 approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

  5. A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid

    International Nuclear Information System (INIS)

    Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H.

    2003-01-01

    A method is presented for representing curved boundaries for the solution of the Navier-Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel 'cell-linking' method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow

  6. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  7. Autologous nerve graft repair of different degrees of sciatic nerve defect: stress and displacement at the anastomosis in a three-dimensional fnite element simulation model

    Directory of Open Access Journals (Sweden)

    Cheng-dong Piao

    2015-01-01

    Full Text Available In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.

  8. A three dimensional tsunami propagation simulation of the 2011 off Tohoku earthquake using an unstructured finite element model

    Science.gov (United States)

    Oishi, Y.; Piggott, M. D.; Maeda, T.; Nelson, R. B.; Gorman, G. J.; Kramer, S. C.; Collins, G. S.; Tsushima, H.; Furumura, T.

    2011-12-01

    Most present tsunami simulations are based on the two dimensional linear or non-linear long-wave equations which assume the wavelength of the disturbance is large in comparison to the ocean depth. On the other hand, a few recent studies have tried to solve the three dimensional (3D) Navier-Stokes equations employing high-performance computers and finite difference methods with orthogonal meshes to achieve more accurate tsunami generation and propagation (e.g., Saito and Furumura, 2009). The goal of our current research is to develop highly accurate tsunami simulation models which will make full use of current and future high-performance supercomputers and appropriate numerical methods for the purpose of contributing to tsunami disaster mitigation. In the present study, we adopt high-resolution unstructured meshes and solve the 3D Navier-Stokes equations using finite element methods. In this simulation we employ the Fluidity-ICOM (http://amcg.ese.ic.ac.uk/fluidity) simulation code, which is a multi-purpose finite element / control volume based CFD and ocean dynamics code. Fluidity-ICOM is optimized to run in parallel on supercomputers. Our complete fluid dynamical equations in three dimensions will lead to more accurate results than the conventional two dimensional equations. The unstructured meshes make it possible to accurately and efficiently represent complex coastlines and bathymetry due to their flexibility and their multi-scale resolution capabilities. This is the key advantage of the present model over existing 3D models based upon the finite difference method with uniform orthogonal meshes. Using our tsunami simulation model together with high-performance computers, we expect an accurate representation of tsunami generation due to seafloor deformation caused by earthquakes, propagation of the tsunami in the deep ocean with accurate tsunami dispersion properties, and amplification of the tsunami onshore due to the irregular shape of coastlines. To validate

  9. 4. Analysis of Three Dimensional Flow around Marine Propeller by Direct Formulation of Boundary Element Method

    OpenAIRE

    Zhi-Hao, LING; Yasuo, SASAKI; Michio, TAKAHASHI; Nippon Kaiji Kyokai; Nippon Kaiji Kyokai; Nippon Kaiji Kyokai

    1987-01-01

    In recent years, the fatigue fracture at the blade's root of propeller of motorcar carriers and refrigerated cargo carriers has become an important problem awaiting to be solved. Further the use of the highly skewed propeller for the reduction of ship vibration and noise leads to the strength problem of propeller. On the other hand, the demand for greater energy saving, lower propeller exciting forces and noise is growing more and more in the design of marine propeller. With such technical ba...

  10. Analysis of Three-Dimensional Flow around Marine Propeller by Direct Formulation of Boundary Element Method

    OpenAIRE

    Zhi-Hao, Ling; Yasuo, Sasaki; Michio, Takahashi; Research Institute; Research Institute; Research Institute

    1988-01-01

    In recent years, the fatigue fracture at the blade's root of propeller of motorcar carriers and refrigerated cargo carriers has become an important problem awaiting to be solved. Further the use of the highly skewed propeller for the reduction of ship vibration and noise leads to the strength problem of propeller. On the other hand, the demand for greater energy saving, lower propeller exciting forces and noise is growing more and more in the design of marine propeller. With such technical ba...

  11. Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements.

    Science.gov (United States)

    Saric, William S; Carpenter, Andrew L; Reed, Helen L

    2011-04-13

    A brief review of laminar flow control techniques is given and a strategy for achieving laminarization for transonic transport aircraft is discussed. A review of some flight-test results on swept-wing transition is presented. It is also shown that polished leading edges can create large regions of laminar flow because the flight environment is relatively turbulence free and the surface finish reduces the initial amplitude of the stationary crossflow vortex.

  12. The Role of Three-Dimensional Boundary Stresses in Limiting the Occurrence and Size of Experimental Landslides

    Science.gov (United States)

    Prancevic, Jeffrey P.; Lamb, Michael P.; Palucis, Marisa C.; Venditti, Jeremy G.

    2018-01-01

    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size.

  13. Assessment of neurovascular compression in patients with trigeminal neuralgia with a boundary fusion three-dimensional magnetic resonance cisternogram/angiogram

    International Nuclear Information System (INIS)

    Satoh, Toru; Omi, Megumi; Ohsako, Chika; Onoda, Keisuke; Date, Isao

    2007-01-01

    Precise assessment of the complex nerve-vessel relationship at the root entry zone (REZ) of the trigeminal nerve is useful for the planning of the microvascular decompression (MVD) in patients with trigeminal neuralgia. We have applied a boundary imaging of fusion three-dimensional (3D) magnetic resonance (MR) cisternogram/angiogram. The boundary imaging allows virtual assessment of the spatial relationship of the neurovascular compression at the REZ of the trigeminal nerve. The boundary images depicted complex anatomical relationship of the offending vessels to the trigeminal nerve REZ. The presence of offending vessels, compressive site, and degree of neurovascular compression were assessed from various viewpoints in the cistern and virtually through the brainstem and trigeminal nerve per se. The 3D visualization of the nerve-vessel relationship with fusion images was consistent with the intraoperative findings. The boundary fusion 3D MR cisternogram/angiogram may prove a useful adjunct for the diagnosis and decision-marking process to execute the MVD in patients with trigeminal neuralgia. (author)

  14. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    Science.gov (United States)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  15. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  16. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  17. A numerical method for the solution of three-dimensional incompressible viscous flow using the boundary-fitted curvilinear coordinate transformation and domain decomposition technique

    International Nuclear Information System (INIS)

    Umegaki, Kikuo; Miki, Kazuyoshi

    1990-01-01

    A numerical method is developed to solve three-dimensional incompressible viscous flow in complicated geometry using curvilinear coordinate transformation and domain decomposition technique. In this approach, a complicated flow domain is decomposed into several subdomains, each of which has an overlapping region with neighboring subdomains. Curvilinear coordinates are numerically generated in each subdomain using the boundary-fitted coordinate transformation technique. The modified SMAC scheme is developed to solve Navier-Stokes equations in which the convective terms are discretized by the QUICK method. A fully vectorized computer program is developed on the basis of the proposed method. The program is applied to flow analysis in a semicircular curved, 90deg elbow and T-shape branched pipes. Computational time with the vector processor of the HITAC S-810/20 supercomputer system, is reduced to 1/10∼1/20 of that with a scalar processor. (author)

  18. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  19. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    Science.gov (United States)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  20. Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method.

    Science.gov (United States)

    Xue, Ming-Feng; Kang, Young Mo; Arbabi, Amir; McKeown, Steven J; Goddard, Lynford L; Jin, Jian-Ming

    2014-02-24

    A fast and accurate full-wave technique based on the dual-primal finite element tearing and interconnecting method and the second-order transmission condition is presented for large-scale three-dimensional photonic device simulations. The technique decomposes a general three-dimensional electromagnetic problem into smaller subdomain problems so that parallel computing can be performed on distributed-memory computer clusters to reduce the simulation time significantly. With the electric fields computed everywhere, photonic device parameters such as transmission and reflection coefficients are extracted. Several photonic devices, with simulation volumes up to 1.9×10(4) (λ/n(avg))3 and modeled with over one hundred million unknowns, are simulated to demonstrate the application, efficiency, and capability of this technique. The simulations show good agreement with experimental results and in a special case with a simplified two-dimensional simulation.

  1. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  2. Study of a method to solve the one speed, three dimensional transport equation using the finite element method and the associated Legendre function

    International Nuclear Information System (INIS)

    Fernandes, A.

    1991-01-01

    A method to solve three dimensional neutron transport equation and it is based on the original work suggested by J.K. Fletcher (42, 43). The angular dependence of the flux is approximated by associated Legendre functions and the finite element method is applied to the space components is presented. When the angular flux, the scattering cross section and the neutrons source are expanded in associated Legendre functions, the first order neutron transport equation is reduced to a coupled set of second order diffusion like equations. These equations are solved in an iterative way by the finite element method to the moments. (author)

  3. The analysis of three-dimensional effects of nitanium palatal expander 2 and hyrax maxillary expansion appliances on craniofacial structures: A finite element study

    Directory of Open Access Journals (Sweden)

    Avinash Kumar

    2017-01-01

    Full Text Available Objectives: To analyze three-dimensional effects of stress distribution and displacement on the craniofacial structures, following the application of forces from Nitanium Palatal Expander 2 (NPE2 and Hyrax appliance in early mixed dentition period using finite element analysis. Materials and Methods: Three-dimensional finite element models of the young dried human skull, NPE2 and Hyrax were constructed, and the initial activation of the expanders was simulated to carry out the analysis and to evaluate the von misses stresses and displacement on the craniofacial structures. Results: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The inferior nasal floor showed highest downward displacement and point A showed outward, backward, and upward displacement in both the models. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than Hyrax. The cusp of the erupting canine and the mesiobuccal cusp of the second molar showed outward, backward, and downward displacement signifying eruption pattern following maxillary expansion. Conclusions: Nickel titanium palatal expander-2 and Hyrax produced similar stress pattern in early mixed dentition period finite element model. We conclude from this finite element method study that NPE2 is equally effective as Hyrax when used in early mixed dentition period as it exhibits orthopedic nature of expansion with minimal residual stresses in the craniofacial structures.

  4. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom

    2011-01-01

    Regulation of gene expression involves long-distance communication between regulatory elements and target promoters, but how this is achieved remains unknown. Insulator elements have been proposed to modulate the communication between regulatory elements and promoters due to their ability to insu...... histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology.......Regulation of gene expression involves long-distance communication between regulatory elements and target promoters, but how this is achieved remains unknown. Insulator elements have been proposed to modulate the communication between regulatory elements and promoters due to their ability...... to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...

  5. 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1987-08-01

    The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivity components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples.

  6. Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A Three-dimensional finite element analysis - In vitro study

    OpenAIRE

    Anupama Aradya; U Krishna Kumar; Ramesh Chowdhary

    2016-01-01

    Purpose of the Study: The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. Materials and Methods: A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the...

  7. A Dataset for Three-Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment.

    Science.gov (United States)

    Wu, B; Wiekenkamp, I; Sun, Y; Fisher, A S; Clough, R; Gottselig, N; Bogena, H; Pütz, T; Brüggemann, N; Vereecken, H; Bol, R

    2017-11-01

    Quantification and evaluation of elemental distribution in forested ecosystems are key requirements to understand element fluxes and their relationship with hydrological and biogeochemical processes in the system. However, datasets supporting such a study on the catchment scale are still limited. Here we provide a dataset comprising spatially highly resolved distributions of 39 elements in soil profiles of a small forested headwater catchment in western Germany () to gain a holistic picture of the state and fluxes of elements in the catchment. The elements include both plant nutrients and other metals and metalloids that were predominately derived from lithospheric or anthropogenic inputs, thereby allowing us to not only capture the nutrient status of the catchment but to also estimate the functional development of the ecosystem. Soil samples were collected at high lateral resolution (≤60 m), and element concentrations were determined vertically for four soil horizons (L/Of, Oh, A, B). From this, a three-dimensional view of the distribution of these elements could be established with high spatial resolution on the catchment scale in a temperate natural forested ecosystem. The dataset can be combined with other datasets and studies of the TERENO (Terrestrial Environmental Observatories) Data Discovery Portal () to reveal elemental fluxes, establish relations between elements and other soil properties, and/or as input for modeling elemental cycling in temperate forested ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Three dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model

    NARCIS (Netherlands)

    Yucesoy, C.A.; Huijing, P.A.J.B.M.; Koopman, Hubertus F.J.M.; Grootenboer, H.J.

    2002-01-01

    In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support

  9. Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging

    Science.gov (United States)

    Kang, Ho-Hyun; Lee, Byung-Gook; Kim, Eun-Soo

    2011-06-01

    In this paper, an approach to efficiently compress the time-multiplexed EIAs picked up from the MALT-based integral imaging system is proposed. In this method, the time-multiplexed EIAs are rearranged by collecting the elemental images occupied at the same position in each EIA to enhance the similarity among the elemental images. Then, MPEG-4 is applied to these rearranged elemental images for compression. From the experimental results, it is shown that the average correlation quality ( ACQ) value representing a degree of similarity between the elemental images, and the resultant compression efficiency have been enhanced by 11.50% and 9.97%, respectively on the average for three kinds of test scenarios in the proposed method, compared to those of the conventional method. Good experimental results finally confirmed the feasibility of the proposed scheme.

  10. The Importance of a Conchal Bowl Element in the Fabrication of a Three-Dimensional Framework in Total Auricular Reconstruction

    Directory of Open Access Journals (Sweden)

    Young Soo Kim

    2013-05-01

    Full Text Available Background  To construct a sophisticated three-dimensionalframework, numerousmodifications have been reported in the literature. However, mostsurgeons have paid little attentionto the anatomical configuration of the concha and more to its deepness and hollowness,leading to unsatisfactory outcomes.Methods  For a configuration ofthe concha thatis definitely anatomical,the authorfurtherdeveloped and employed the conchal bowl element,which has been used by severalsurgeonsalthough the results have not been published elsewhere. The author constructed the conchalbowl element in one of three patterns according to the amount of available cartilages: oneblock,two-pieces, or a cymba bowl element only. A total of 20 patients underwent auricularreconstruction using a costal cartilage framework between 2009 and 2012. The 8 earliestreconstructionswere performedwithout a conchal bowl element and the latter 12with a conchalbowl element. The patientswere followed up for more than 1 year. The aesthetic resultswerescored by evaluating characteristicsinvolving the stability ofthe crus helicis,the conchal definition, and the smoothness ofthe helical curve.Results  The earsreconstructed earlywithout a conchal bowl elementshowed a shallowandone or two incompletely separated concha with an obliterated cymba conchal space. Theyalso did not have a realistic orsmooth curve ofthe helix because of an unstable crus helicis.However, earsreconstructed laterwith the concha bowl elementshowed a definite crus helicis,deep cymba conchalspace, and smooth helical curve.Conclusions  The construction of the conchal bowl element is simple, not time-consumingprocedure. It is suggested that the conchal bowl element must be constructed and attachedto themain framework for natural configuration ofthe reconstructed ear.

  11. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow.

  12. Influence of Different Abutment Designs on the Biomechanical Behavior of Dental Root-Analog Implant: A Three-Dimensional Finite Element Analysis.

    Science.gov (United States)

    He, Ling; Li, Deli; Zhang, Jiwu; Li, Xiucheng; Lu, Songhe; Tang, Zhihui

    2016-12-01

    The aim of this study was to evaluate cross-sectional area of the abutments, strain distribution in the periimplant bone, stress in the abutments and dental root-analog implant by different abutment design under different loading conditions, through three-dimensional finite element analysis. Two three-dimensional finite element models were established. Two types of abutments, oval cross section abutment (OCSA) and circular cross section abutment (CCSA) were designed, keeping the size of the thinnest implant wall 0.75 mm. Two types of load were applied to the abutment in each model: 100 N vertical load (V), 100 N vertical/50 N horizontal load (VH). The biomechanical behaviors of abutments, implants, and periimplant bone were recorded. The cross-section area of OCSA is 36.5% larger than that of CCSA. In implants, the maximum von Mises stress value in OCSA design was 24.6% lower than that in CCSA design under V and under VH. In abutments, the maximum von Mises stress value in OCSA design was 40.0% lower than that in CCSA design under V, the maximum von Mises stress value in OCSA design was 12.2% lower than that in CCSA design under VH. The irregular design offers advantages over regular design.

  13. Efficient compression scheme by use of the region division of elemental images on MALT in three-dimensional integral imaging

    Science.gov (United States)

    Kang, Ho-Hyun; Lee, Jung-Woo; Shin, Dong-Hak; Kim, Eun-Soo

    2010-02-01

    This paper addresses the efficient compression scheme of elemental image array (EIA) generated from the moving array lenslet technique (MALT) based on MPEG-4. The EIAs are picked-up by MALT controlling the spatial ray sampling of ray and which produces few EIAs that the positions of the lenslet arrays are rapidly vibrated in the lateral directions within the retention time of the afterimage of human eye. To enhance the similarity in each EIA picked-up by MALT, several EIAs obtained from MALT are regenerated by the collection of an elemental image occupied at the same position in each EIA. The newly generated each EIA has high similarity among adjacent elemental images. To illustrate the feasibility of the proposed scheme, some experiments are carried out to show the increased compression efficiency and we obtained the improved compression ratio of 12% compared to the unhandled compression scheme.

  14. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin ractor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature dependent yield surface. The temperature dependency of the yield surface is based upon a temperature-dependent, material-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal uniaxial stress-strain data. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. The temperature field is described through time-dependent values at mesh node points; the temperature fields in each element are then obtained by interpolation formulas. Hence, problems with both spatial and temporal dependent temperature fields can easily be treated. The above developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analysis Code. STRAW is a two-dimensional code with a plane stress/plane strain beam element. The 3D Implicit code has a triangular flat plate element which is capable of sustaining both membrane and bending loads. To insure numerical stability both codes are based on an iterative-incremental solution procedure with equilibrium checks based on an error in energy

  15. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential and a temperature dependent surface. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. These developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analaysis code. A set of problems is presented to validate both the 3D and 2D programs and to illustrate their applicability to a variety of problems. (Auth.)

  16. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Hybrid finite-element/rigorous coupled wave analysis for scattering from three-dimensional doubly periodic structures.

    Science.gov (United States)

    Kuloglu, Mustafa; Lee, Robert

    2012-07-01

    A new hybrid finite-element/rigorous coupled wave analysis formulation is presented for the modeling of electromagnetic wave interactions with doubly periodic structures. The structures under investigation are periodic in two dimensions and have a finite extent in the third dimension. The proposed model can handle structures that have material properties varying arbitrarily in any of the dimensions within the unit cell. Employment of Fourier series expansion and Floquet's theory in one of the periodic dimensions helps to reduce the dimension of the mesh. Results obtained from alternative methods are used to verify the proposed method's validity.

  18. Three-Dimensional Finite Element Analysis of Maxillary Sinus Floor Augmentation with Optimal Positioning of a Bone Graft Block

    Directory of Open Access Journals (Sweden)

    Peter Schuller-Götzburg

    2018-01-01

    Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for

  19. [Three-dimensional finite element analysis of the upper cervical-defected incisor with labial access or lingual access].

    Science.gov (United States)

    Su, Fan; Zhao, Ying; Su, Qin

    2013-08-01

    To evaluate the stress distribution of the cervical-defected incisor with labial or lingual endodontic access with finite element analysis (FEA), and to explore the advantage of resistance in labial endodontic access. 3-D finite element models of upper cervical-defected incisor were established using cone-beam CT (CBCT), Mimics Catia, and Ansys software. The subjects were categorized according to the two endodontic accesses and three restorative ways, which were composite resin, glass fiber-reinforced composite resin and glass fiber-reinforced post-crown. All the models were loaded.The von Mises stress values and distribution were recorded and analyzed with Ansys 10.0 software. In this study, direct composite resin restoration showed no significant difference between the labial and lingual access. In glass fiber-reinforced composite resin, labial access could transfer the stress concentration area. It could reduce the incidence of fracture of the cervical lesion but increase the incidence of root fracture. Post-crown restoration could obviously reduce the incidence of fracture of the cervical lesion. When the cervical-defected incisor is restored with composite resin, labial and lingual accesses can be considered. Labial access with glass fiber-reinforced composite resin or post-crown restoration is a good choice.

  20. [Three-dimensional finite element analysis of one-piece computer aided design and computer aided manufacture involved zirconia post and core].

    Science.gov (United States)

    Zhou, Tuan-feng; Zhang, Xiang-hao; Wang, Xin-zhi

    2015-02-18

    To analyze the biomechanics trait of one-piece computer aided design and computer aided manufacture (CAD/CAM) zirconia post and core by the Three-dimensional finite element. The Three-dimensional finite element models of three upper central incisors restored with one-piece CAD/CAM zirconia post and core (group 1), refabricated zirconia post and hot-pressed porcelain core (group 2), and cast gold alloy post and core (group 3) were built by geometry method respectively. 100 N vertical loading through the central incisor models long axis and 100 N loading along directing at an angle of 45° with the models long axis were used to imitate the central incisor stress state in biting and mandible physiological protraction movement. Under vertical loading, the restored teeth without dentin ferrule, the maximum Von-Mises stress value of the tooth root in group 1 was the least(11.02 N), which was the largest (13.17 N)in group 2. The stress became weaker from the upper to the lower of the tooth root. The maximum Von-Mises stress value of the tooth root, post and core became smaller while the restored teeth with the 2.0 mm high dentin ferrule. Under directing at an angle of 45° loading, without the design of dentin ferrule in the restored teeth, the maximum Von-Mises stress value of the post and core in group 1 was the greatest(20.45 N), while that stress of post and core in group 3 was the smallest(13.61 N). With 2.0 mm high dentin ferrule design in the restored teeth, the tooth root stress became weaker. The maximum Von-Mises stress value of the tooth root was the greatest (14.10 N) in group 3, but which was the lowest (13.38 N) in group 1. The results of the Three-dimensional finite element analysis infers that one-piece zirconia post and core restoration is more beneficial to disperse the bite force than the prefabricated zirconia post and the cast gold alloy post and core. The one-piece of zirconia post and core is good to protect the teeth and keep the restoration intact.

  1. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 2: Application to experimental data

    Science.gov (United States)

    Harris, William M.; Chiu, Wilson K. S.

    2015-05-01

    Improved microstructural imaging and characterization methods have recently opened the door for quantitative evaluation of microstructures of such functional materials as solid oxide fuel cell and battery electrodes and composite gas separation membranes. Accurate quantitative characterization of these structures relies on the concept of a representative volume element (RVE) to provide a sufficiently large sample to be statistically representative of the material. In Part 1 of this work, several models were described to determine the RVE size for several common microstructural properties: volume fraction, particle size, and network contiguity. In this work, extensive synchrotron X-ray nanotomography imaging of a multiphase composite gas separation membrane is used to provide an experimental comparison to the model predictions. Results suggest that the models provide a reasonable estimate of RVE size, and can serve as a starting point for researchers planning imaging and characterization experiments.

  2. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  3. Some Remarks on the Three Dimensionality of Hydrofoil Cavitation

    Directory of Open Access Journals (Sweden)

    Mehmet Salih KARAALİOĞLU

    2017-12-01

    Full Text Available As it is well-known that cavitation is a very important physical phenomenon that affects significantly the performance of three-dimensional hydrofoils. Prediction of cavitation on three-dimensional hydrofoils is very important in the design stage. In this study, some approaches have been verified for hydrofoil cavitation. The main aim of this paper is to compare the mid-section pressure distribution of three-dimensional cavitating rectangular hydrofoil for increasing aspect ratios, with the pressure distribution of two-dimensional cavitating hydrofoil having the same section geometry as in the three-dimensional hydrofoil. In this study, a boundary element (panel method (BEM has been applied to investigate the hydrofoil cavitation for both two- and three-dimensional cases. Two-dimensional analytical solution in case of cavitating flat-plate has also been applied for comparison. It has been shown that the pressure distributions on the mid-section of three-dimensional cavitating and non-cavitating hydrofoil for increasing aspect ratios have converged to the solutions in two-dimensional case.

  4. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials.

    Science.gov (United States)

    Tribst, João Paulo Mendes; de Morais, Dayana Campanelli; Alonso, Alexandre Abhdala; Piva, Amanda Maria de Oliveira Dal; Borges, Alexandre Luis Souto

    2017-01-01

    The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic infrastructure. The aim of this study was to evaluate the influence of two different framework materials on stress distribution over a bone tissue-simulating material. Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element analysis. According to MS, both models showed strains on peri-implant region of the penultimate (same side of the load application) and central implants. For MPS, more stress concentration was slightly higher in the left posterior region for Ti's bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, while for zirconia's bar, the cervical of the penultimate implant was the one that highlighted larger areas of possible damages. The stress generated in all constituents of the system was not significantly influenced by the framework's material. This allows suggesting that in cases without components, the use of a framework in zirconia has biomechanical behavior similar to that of a Ti bar.

  5. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs

    Science.gov (United States)

    Zarrati, Simindokht; Heidari, Fatemeh; Kashani, Jamal

    2015-01-01

    Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis. PMID:26884772

  6. Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis.

    Science.gov (United States)

    Er, Ozgur; Kilic, Kerem; Esim, Emir; Aslan, Tugrul; Kilinc, Halil Ibrahim; Yildirim, Sahin

    2013-11-01

    The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of 45° to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the post-dentin interface.

  7. Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer

    Science.gov (United States)

    Franklin, A.; Marzo, A.; Malkin, R.; Drinkwater, B. W.

    2017-08-01

    We report a simple and compact piezoelectric transducer capable of stably trapping single and multiple micro-particles in water. A 3D-printed Fresnel lens is bonded to a two-element kerfless piezoceramic disk and actuated in a split-piston mode to produce an acoustic radiation force trap that is stable in three-dimensions. Polystyrene micro-particles in the Rayleigh regime (radius λ/14 to λ/7) are trapped at the focus of the lens (F# = 0.4) and manipulated in two-dimensions on an acoustically transparent membrane with a peak trap stiffness of 0.43 mN/m. Clusters of Rayleigh particles are also trapped and manipulated in three-dimensions, suspended in water against gravity. This transducer represents a significant simplification over previous acoustic devices used for micro-particle manipulation in liquids as it operates at relatively low frequency (688 kHz) and only requires a single electrical drive signal. This simplified device has potential for widespread use in applications such as micro-scale manufacturing and handling of cells or drug capsules in biomedical assays.

  8. Selection of the implant transgingival height for optimal biomechanical properties: a three-dimensional finite element analysis.

    Science.gov (United States)

    Sun, Yingying; Kong, Liang; Hu, Kaijin; Xie, Cheng; Zhou, Hongzhi; Liu, Yanpu; Liu, Baolin

    2009-07-01

    We evaluated the effects of the transgingival height of an implant on the maximum equivalent stress in jaw bones and the maximum displacement in implant-abutment complex by a finite element method. The transgingival height ranged from 1.0-4.0 mm. Under axial load, the maximum equivalent stress in the cortical bone could be reduced by up to 4.7%, and under a buccolingual load, the maximum equivalent stresses in the cortical and the cancellous bones could be reduced by 17.3% and 18.5%, respectively. The maximum displacement of the implant-abutment complex could be reduced by 4.1% and 48.9% under axial and buccolingual loads, respectively. When the transgingival height was in the range of 1.7-2.8 mm, there was minimum stress in the jaw bones and minimum displacement in the implant-abutment complex. Data indicated that transgingival height played a more important part in protecting a dental implant under a buccolingual load than under an axial load; and transgingival heights ranging from 1.7-2.8 mm were biomechanically optimal for a screwed implant.

  9. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis.

    Science.gov (United States)

    Li, T; Kong, L; Wang, Y; Hu, K; Song, L; Liu, B; Li, D; Shao, J; Ding, Y

    2009-10-01

    This study aimed to create a 3D finite element model for continuous variation of implant diameter and length, thereby identifying their optimal range in type IV bone under biomechanical consideration. Implant diameter ranged from 3.0 to 5.0mm, and implant length ranged from 6.0 to 14.0mm. The results suggest that under axial load, the maximum Von Mises stresses in cortical and cancellous bones decrease by 50% and 27%, respectively; and under buccolingual load, by 52% and 60%, respectively. Under these two loads, the maximum displacements of implant-abutment complex decrease by 39% and 43%, respectively. These results indicate that in type IV bone, implant length is more crucial in reducing bone stress and enhancing the stability of implant-abutment complex than implant diameter. Biomechanically, implant diameter exceeding 4.0mm and implant length exceeding 9.0mm are the combination with optimal properties for a screwed implant in type IV bone.

  10. Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Mansi Manish Oswal

    2016-01-01

    Full Text Available Purpose: Clinical success of implant prosthodontics is dependent in part upon the type of implant thread design. The selection of implant thread design plays an important role in the outcome of the treatment. This study was undertaken to evaluate the pattern of stress distribution using a finite element analysis; hence, the area which would be bearing maximum load for a given design would be arrived. Materials and Methods: Three implants with different thread designs, namely V-thread, buttress, and reverse buttress thread designs were considered and dimensions were standardized. The site considered was the mandibular molar region with cortical and trabecular bone assuming to be isotropic and homogeneous. The implant modeling was done with the CATIA software. Vertical loads of 100N were applied. The stresses were calculated as Von Mises stress criterion. Results: Maximum stresses were seen at the cortical bone and were transferred to the implant. Minimum Von Mises stresses were seen with reverse buttress thread design at the cortical bone. The stresses were observed least at the cancellous bone and maximum at the implant. Conclusion: Hence, within the limitations of this study the results obtained can be applied clinically for appropriate selection of implant thread design for a predictable success of implant therapy.

  11. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials.

    Science.gov (United States)

    Dejak, Beata; Młotkowski, Andrzej; Langot, Cezary

    2012-04-01

    The aim of the study was to compare the strength of thin-walled molar crowns made of various materials under simulation of mastication. Five 3D FE models of the first lower molar with the use of contact elements were created: intact tooth; tooth with a zirconia crown; tooth with a porcelain crown; tooth with a gold alloy crown and tooth with a composite crown. The computer simulations of mastication were conducted. For the models, equivalent stresseswere calculated using the modified von Mises failure criterion (mvM). Contact stresses at the adhesive interface between the cement and tooth structure under the crowns were analyzed. Equivalent stresses in the crowns, did not exceed the tensile strength of their material. The mvM stresses in resin cement under the zirconia crown were 1.3 MPa, and under the composite crown they increased over 6 times. The tensile and shear contact stressesunder the stiff crowns (ceramics and gold alloy), were several times lower than those under the composite one. The maximum mvM stresses in the tooth structure for the zirconia crown were only 2.8 MPa, whereas for the composite crown were 6.4 MPa. The higher elastic modulus the crown was, the lower the equivalent stresses occurred in the composite luting cement and in the tooth structures. Also contact stresses decreased with the increasing stiffness of the crowns. Under physiological loads, the thin-walled crowns perfectly luted to molars, made of zirconia ceramic, gold alloys and composite resin are resistant to failure. Prosthetic crowns made of stiff materials are less prone to debonding than those made of composite resin. Prosthetic crowns made of a material with a higher elastic modulus than enamel will strengthen the dental structures of molar teeth. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs

    Directory of Open Access Journals (Sweden)

    Simindokht Zarrati

    2015-11-01

    Full Text Available Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs and the same RPD abutment tooth (not isolated.Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated; 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software.Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate.Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.      

  13. The Effects of Post Diameter on Stress Distribution in Maxillary Central Incisor, A Three Dimensional Finite Element Study

    Directory of Open Access Journals (Sweden)

    A. Monzavi

    2004-06-01

    Full Text Available Statement of Problem: Currently there are three recognized theories about the diameter of prepared dowel space in endodontically treated teeth. Diameter of the dowel is commonly contributed to the root fracture.Purpose: This study used a 3 dimensional (3D finite element method to predict stress distribution in endodontically treated central maxillary tooth with cast post and core with various post diameter according to three philosophies about post diameter (Conservational,Proportional, Preservational.Materials and Methods: In this study three 3D models of central maxillary incisors with different post diameter were created and depend on the size of post called narrow, medium and thick model with post diameter of 1.1mm, 1.7 mm and 2.6 mm of in (CEJrespectively. A load of 100 N was applied to cingulum fossa from lingual direction with 45-degree angle to long axis of tooth and maximum tensile, compressive and Von Misses stresses and their distribution in dentin and post was studied.Results: The post in narrow, medium and thick models produced a similar magnitude of tensile, compressive and Von Misses stresses in dentin. Stress distribution was also similar in all models. Peak stresses in dentin were slightly decreased when post diameter increased from narrow to thick model. In all models peak tensile stresses in dentin occurred in the coronally one third of the lingual surface of the root, whereas peak compressive stresseswere evident in the coronal one third of the facial surface of the root.Conclusion: There were not significant differences stress distribution pattern and magnitude in dentin between the three theories of post diameter.

  14. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    Science.gov (United States)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  15. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    International Nuclear Information System (INIS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2016-01-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  16. Three-dimensional stress and free vibration analyses of functionally graded plates with circular holes by the use of the graded finite element method

    Science.gov (United States)

    Asemi, K.; Ashrafi, H.; Shariyat, M.

    2016-07-01

    Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori-Tanaka homogenization method. A graded finite element method based on the Rayleigh-Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.

  17. Optical three-dimensional refocusing from elemental images based on a sifting property of the periodic δ-function array in integral-imaging.

    Science.gov (United States)

    Jang, Jae-Young; Shin, Donghak; Kim, Eun-Soo

    2014-01-27

    We propose a novel approach to optically refocus three-dimensional (3-D) objects on their real depth from the captured elemental image array (EIA) by using a sifting property of the periodic δ-function array (PDFA) in integral-imaging. By convolving the PDFAs whose spatial periods correspond to each object's depth with the sub-image array (SIA) transformed from the EIA, a set of spatially filtered-SIAs (SF-SIAs) for each object's depth can be extracted. These SF-SIAs are then inverse-transformed into the corresponding versions of the EIAs, and from these, 3-D objects with their own perspectives can be reconstructed to be refocused on their depth in the space. The feasibility of the proposed method has been confirmed through optical experiments as well as ray-optical analysis.

  18. [Comparison between one-step and two-step space closing methods of sliding mechanics using three-dimensional finite element].

    Science.gov (United States)

    Han, Yaohui; Mou, Lan; Xu, Gengchi; Yang, Yiqiang; Ge, Zhenlin

    2015-03-01

    To construct a three-dimensional finite element model comparing between one-step and two-step methods in torque control of anterior teeth during space closure. Dicom image data including maxilla and upper teeth were obtained though cone-beam CT. A three-dimensional model was set up and the maxilla, upper teeth and periodontium were separated using Mimics software. The models were instantiated using Pro/Engineer software, and Abaqus finite element analysis software was used to simulate the sliding mechanics by loading 1.47 Nforce on traction hooks with different heights (2, 4, 6, 8, 10, 12 and 14 mm, respectively) in order to compare the initial displacement between six maxillary anterior teeth (one-step method) and four maxillary anterior teeth (two-step method). When moving anterior teeth bodily, initial displacements of central incisors in two-step method and in one-step method were 29.26 × 10⁻⁶ mm and 15.75 × 10⁻⁶ mm, respectively. The initial displacements of lateral incisors in two-step method and in one-step method were 46.76 × 10(-6) mm and 23.18 × 10(-6) mm, respectively. Under the same amount of light force, the initial displacement of anterior teeth in two-step method was doubled compared with that in one-step method. The root and crown of the canine couldn't obtain the same amount of displacement in one-step method. Two-step method could produce more initial displacement than one-step method. Therefore, two-step method was easier to achieve torque control of the anterior teeth during space closure.

  19. Geodetic Inversion Analysis Method of Coseismic Slip Distribution Using a Three-dimensional Finite Element High-fidelity Model

    Science.gov (United States)

    Agata, R.; Ichimura, T.; Hirahara, K.; Hori, T.; Hyodo, M.; Hori, M.

    2013-12-01

    Many studies have focused on geodetic inversion analysis method of coseismic slip distribution with combination of observation data of coseismic crustal deformation on the ground and simplified crustal models such like analytical solution in elastic half-space (Okada, 1985). On the other hand, displacements on the seafloor or near trench axes due to actual earthquakes has been observed by seafloor observatories (e.g. the 2011 Tohoku-oki Earthquake (Tohoku Earthquake) (Sato et. al. 2011) (Kido et. al. 2011)). Also, some studies on tsunamis due to the Tohoku Earthquake indicate that large fault slips near the trench axis may have occurred. Those facts suggest that crustal models considering complex geometry and heterogeneity of the material property near the trench axis should be used for geodetic inversion analysis. Therefore, our group has developed a mesh generation method for finite element models of the Japanese Islands of higher fidelity and a fast crustal deformation analysis method for the models. Degree-of-freedom of the models generated by this method is about 150 million. In this research, the method is extended for inversion analyses of coseismic slip distribution. Since inversion analyses need computation of hundreds of slip response functions due to a unit fault slip assigned for respective divided cells on the fault, parallel computing environment is used. Plural crustal deformation analyses are simultaneously run in a Message Passing Interface (MPI) job. In the job, dynamic load balancing is implemented so that a better parallel efficiency is obtained. Submitting the necessary number of serial job of our previous method is also possible, but the proposed method needs less computation time, places less stress on file systems, and allows simpler job management. A method for considering the fault slip right near the trench axis is also developed. As the displacement distribution of unit fault slip for computing response function, 3rd order B

  20. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  1. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  2. Evaluation of stress patterns on maxillary posterior segment when intruded with mini implant anchorage: A three-dimensional finite element study

    Directory of Open Access Journals (Sweden)

    Nikhita Pekhale

    2016-01-01

    Full Text Available Introduction: The aim of this study is to evaluate stress and displacement effects of maxillary posterior intrusion mechanics with mini-implant anchorage by using finite element method. Materials and Methods: A computer stimulation of three-dimensional model maxilla with all teeth, PDL, bone, mini-implants, brackets, arch wire, force element, and transpalatal arch was constructed on the basis of average anatomic morphology. Finite element analysis was done to evaluate the amount of stress and its distribution during orthodontic intrusive force. Results: Increased Von Mises stress values were observed in mesio-cervical region of first molar. The middle third of second premolar and second molar and regions adjacent to force application sites also showed relatively high stress values. Minimum stress values were observed in apical region of first premolar as it is away from force application. Conclusion: Using three mini-implant and transpalatal arches, this study demonstrates that significant amount of true intrusion of maxillary molars could be obtained with lesser concentration of stresses in the apical area recorded.

  3. THE LINEAR INVERSE PROBLEM FOR THE MIXED TYPE EQUATION OF THE SECOND KIND OF THE SECOND ORDER WITH NONLOCAL BOUNDARY CONDITIONS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Djamalov

    2016-12-01

    Full Text Available In the present work the problems of correctness of a linear inverse problem for the mixed type equation of the second kind of the second order in three-dimensional space are considered. For this problem, the theorems on existence and uniqueness of the solution are proved in certain class by «ε-regularization», Galerkin’s and of successive approximations methods.

  4. Three-dimensional method for integrated transient analysis of reactor-piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1981-01-01

    A three-dimensional method for integrated hydrodynamic, structural, and thermal analyses of reactor-piping systems is presented. The hydrodynamics are analyzed in a reference frame fixed to the piping and are treated with a two-dimensional Eulerian finite-difference technique. The structural responses are calculated with a three-dimensional co-rotational finite-element methodology. Interaction between fluid and structure is accounted for by iteratively enforcing the interface boundary conditions

  5. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  6. Using reciprocity in Boundary Element Calculations

    DEFF Research Database (Denmark)

    Juhl, Peter Møller; Cutanda Henriquez, Vicente

    2010-01-01

    The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated as the recip......The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...

  7. Stress and displacement pattern evaluation using two different palatal expanders in unilateral cleft lip and palate: a three-dimensional finite element analysis.

    Science.gov (United States)

    Mathew, Anoop; Nagachandran, K S; Vijayalakshmi, Devaki

    2016-12-01

    In this finite element (FE) study, the stress distribution and displacement pattern was evaluated in the mid-palatal area and around circum-maxillary sutures exerted by bone-borne palatal expander (BBPE) in comparison with conventional HYRAX rapid palatal expander in unilateral cleft lip and palate. Computed tomography scan images of a patient with unilateral cleft palate was used to create a FE model of the maxillary bone along with circum-maxillary sutures. A three-dimensional model of the conventional HYRAX (Hygienic Rapid Expander) expander and custom-made BBPE was created by laser scanning and programmed into the FE model. With the BBPE, the maximum stress was observed at the implant insertion site, whereas with the conventional HYRAX expander, it was at the dentition level. Among the circum-maxillary sutures, the zygomaticomaxillary suture experienced maximum stress followed by the zygomaticotemporal and nasomaxillary sutures. Displacement in the X-axis (transverse) was highest on the cleft side, and in the Y-axis (antero-posterior), it was highest in the posterior region in the BBPE. The total displacement was observed maximum in the mid-palatal cleft area in the BBPE, and it produced true skeletal expansion at the alveolar level without any dental tipping when compared with the conventional HYRAX expander.

  8. Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: A three-dimensional finite element analysis.

    Science.gov (United States)

    Singh, S Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet

    2015-01-01

    A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post.

  9. Influence of intramuscular fiber orientation on the Achilles tendon curvature using three-dimensional finite element modeling of contracting skeletal muscle.

    Science.gov (United States)

    Kinugasa, Ryuta; Yamamura, Naoto; Sinha, Shantanu; Takagi, Shu

    2016-10-03

    Tendon curvature plays a key role in mechanical gain (amplifying the joint excursion relative to fiber length change) during joint motion, but the mechanism remains unresolved. A three-dimensional finite element (FE) model was used to investigate the influence of intramuscular fiber orientation upon the curvature pattern of the Achilles tendon during active muscular contraction. Two simulation models, with fiber pennation angles of θ = 25° and 47° were tested for the gastrocnemius and soleus muscles. A smaller pennation angle (25°) of the soleus muscle fibers was accompanied by a large change in curvature whereas a larger pennation angle (47°) of the soleus muscle was accompanied by small effects. These results suggest that the fiber pennation angle determines the curvature of the tendon, and the magnitude of the curvature varies along the length of the aponeurosis. Such FE modeling has the potential of determining changes in force output consequent to changes in intramuscular fiber orientation arising from resistance training or unloading, and provides mechanism for predicting the risk of Achilles tendon ruptures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Three-dimensional finite element analysis of posterior fiber-reinforced composite fixed partial denture Part 2: influence of fiber reinforcement on mesial and distal connectors.

    Science.gov (United States)

    Aida, Nobuhisa; Shinya, Akikazu; Yokoyama, Daiichiro; Lassila, Lippo V J; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2011-01-01

    The aim of this study was to evaluate the influence of connectors under two different loading conditions on displacement and stress distribution generated in isotropic hybrid composite fixed partial denture (C-FPD) and partially anisotropic fiber-reinforced hybrid composite fixed partial denture (FRC-FPD). To this end, two three-dimensional finite element (FE) models of three-unit FPD from mandibular second premolar to mandibular second molar - intended to replace the mandibular first molar - were developed. The two loading conditions employed were a vertical load of 629 N (applied to eight points on the occlusal surface) and a lateral load of 250 N (applied to three points of the pontic). The results suggested that the reinforcing fibers in FRC framework significantly improved the rigidity of the connectors against any twisting and bending moments induced by loading. Consequently, maximum principal stress and displacement generated in the connectors of FRC-FPD were significantly reduced because stresses generated by vertical and lateral loading were transferred to the reinforcing fibers.

  11. Three-dimensional finite element analysis of stress distribution in a tooth restored with metal and fiber posts of varying diameters: An in-vitro study.

    Science.gov (United States)

    Kumar, Pradeep; Rao, R Nageswar

    2015-01-01

    To compare stress distribution in a tooth restored with metal and fiber posts of varying diameters (1.2 and 1.4 mm) by means of three-dimensional finite element analysis (3D-FEA). Four 3D-FEA models were constructed: (1) fiber post (1.2 and 1.4 mm) and (2) metal post (1.2 and 1.4 mm). The material properties were assigned and a force of 100 N was applied at 45° angle to the longitudinal axis of the tooth onto the palatal surface incisal to the cingulum. Analysis was run and stress distribution pattern was studied. Maximum stresses in the radicular tooth structure for fiber post were higher than that for metal post. In the former models, stresses in the tooth structure were slightly reduced with increase in fiber post diameter. To reduce stress in the remaining radicular tooth structure, it is better to use a fiber post of a large diameter.

  12. Three-dimensional finite element analysis of glass fiber and cast metal posts with different alloys for reconstruction of teeth without ferrule.

    Science.gov (United States)

    Verri, Fellippo Ramos; Okumura, Marlice Hayumi Theles; Lemos, Cleidiel Aparecido Araujo; Almeida, Daniel Augusto de Faria; de Souza Batista, Victor Eduardo; Cruz, Ronaldo Silva; Oliveira, Hiskell Francine Fernandes; Pellizzer, Eduardo Piza

    2017-11-01

    The aim of this study was to evaluate different materials for restoration of teeth without ferrule by three-dimensional (3D) finite element analysis (FEA). Five models simulating the maxillary central incisor and surrounding bone were simulated according to the type of post: glass fibre post (GFP) or cast metal post (CMP) with different alloys such as gold (Au), silver-palladium (AgPd), copper-aluminum (CuAl) and nickel-chromium (NiCr). Models were designed using Invesalius and Rhinoceros. FEAs were made using FEMAP and NeiNastran, with an applied axial force of 100 N and oblique occlusal load at 45°. Stress distribution among groups was analysed by two-way analysis of variance (ANOVA), followed by post-hoc Tukey's test. The GFP showed the best stress distribution in the post, followed by CMP with Au, AgPd, CuAl and NiCr alloys, respectively (p  .05). Under oblique load, the GFP generated the highest values of tension among the models, followed by the CMP with NiCr alloy than other models (p < .001). The use of GFP resulted in a lower stress concentration in the post, but increased stress in the tooth without ferrule. The CMP with NiCr alloy exhibited the highest stress distribution among other CMP. To avoid higher stress in teeth, alloys of Au, AgPd and CuAl, respectively, are recommended.

  13. Fracture analysis of a presure vessel with a semi-elliptical surface crack by three-dimensional elastic-plastic finite element calculations

    International Nuclear Information System (INIS)

    Aurich, D.; Brocks, W.; Noack, D.; Veith, H.

    1982-01-01

    A three-dimensional elastic-plastic analysis for stresses and strains in a pressure vessel containing two semi-elliptical surface cracks was carried out by finite element (FE) method. Results for stress distribution, spreading of plastic zones and crack opening displacements are presented and discussed. The variation of the stress intensity factor along the crack front as gained from a linear elastic FE-analysis is compared with solutions of various authors. First, the FE results are discussed according to the stress intensity concept using a plastic zone correction for small scale yielding. A Ksub(Ic) of 6900 Nmm -3 / 2 for an operating temperature of 314 K, which was taken from the ASME code, resulted in a critical pressure of 280 bar. If the zone correction is done with plane stress approximations of IRWIN and DUGDALE, just slightly lower critical values are gained. Introducing the same two dimensional models in the COD concept gives far too conservative estimations for the critical pressure, whereas the plane strain solution agrees quite well with the FE computations. All together, the COD concept is very sensitive to different methods of determining delta. (orig.) [de

  14. Influences of internal tapered abutment designs on bone stresses around a dental implant: three-dimensional finite element method with statistical evaluation.

    Science.gov (United States)

    Chu, Chun-Ming; Huang, Heng-Li; Hsu, Jui-Ting; Fuh, Lih-Jyh

    2012-01-01

    The aim of this study is to determine the effects of various designs of internal tapered abutment joints on the stress induced in peri-implant crestal bone by using the three-dimensional finite element method and statistical analyses. Thirty-six models with various internal tapered abutment-implant interface designs including different abutment diameters (3.0, 3.5, and 4.0 mm), connection depths (4, 6, and 8 mm), and tapers (2°, 4°, 6°, and 8°) were constructed. A force of 170 N was applied to the top surface of the abutment either vertically or 45° obliquely. The maximum von Mises bone-stress values in the crestal bone surrounding the implant were statistically analyzed using analysis of variance. In addition, patterns of bone stress around the implant were examined. The results demonstrate that a smaller abutment diameter and a longer abutment connection significantly reduced the bone stresses (P implant interfaced connection was more parallel, bone stresses under vertical loading were less (P = 0.0002), whereas the abutment taper did not show significant effects on bone stresses under oblique loading (P = 0.83). Bone stresses were mainly influenced by the abutment diameter, followed by the abutment connection depth and the abutment taper. For an internal tapered abutment design, it was suggested that a narrower and deeper abutment-implant interface produced the biomechanical advantage of reducing the stress concentration in the crestal region around an implant.

  15. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  16. A three-dimensional finite element analysis of molar distalization with a palatal plate, pendulum, and headgear according to molar eruption stage

    Science.gov (United States)

    Kang, Ju-Man; Park, Jae Hyun; Bayome, Mohamed; Oh, Moonbee; Park, Chong Ook; Mo, Sung-Seo

    2016-01-01

    Objective This study aimed to (1) evaluate the effects of maxillary second and third molar eruption status on the distalization of first molars with a modified palatal anchorage plate (MPAP), and (2) compare the results to the outcomes of the use of a pendulum and that of a headgear using three-dimensional finite element analysis. Methods Three eruption stages were established: an erupting second molar at the cervical one-third of the first molar root (Stage 1), a fully erupted second molar (Stage 2), and an erupting third molar at the cervical one-third of the second molar root (Stage 3). Retraction forces were applied via three anchorage appliance models: an MPAP with bracket and archwire, a bone-anchored pendulum appliance, and cervical-pull headgear. Results An MPAP showed greater root movement of the first molar than crown movement, and this was more noticeable in Stages 2 and 3. With the other devices, the first molar showed distal tipping. Transversely, the first molar had mesial-out rotation with headgear and mesial-in rotation with the other devices. Vertically, the first molar was intruded with an MPAP, and extruded with the other appliances. Conclusions The second molar eruption stage had an effect on molar distalization, but the third molar follicle had no effect. The application of an MPAP may be an effective treatment option for maxillary molar distalization. PMID:27668192

  17. Three-Dimensional Microstructure Reconstruction and Finite Element Simulation of Gas Pores in the High-Pressure Die-Casting AZ91 Mg Alloy.

    Science.gov (United States)

    Jiang, Wei; Cao, Zhanyi; Sun, Xu; Liu, Haifeng

    2015-12-01

    High-pressure die-casting (HPDC) AZ91 tensile specimens were used to investigate characteristics of gas pores and their effects on mechanical properties of HPDC AZ91 magnesium (Mg) alloy. Combining the stereoscopic morphology of gas pores obtained from a three-dimensional (3D) reconstruction technique with the experimental data from uniaxial tensile testing, we worked on finite element simulation to find the relationship between gas pores and the mechanical properties of HPDC AZ91 Mg alloy. Results indicate that the 2D metallography images have one-sidedness. Moreover, gas pores >100 µm in the center region have a remarkable negative influence on the ultimate tensile strength (UTS) and elongation. With an increase in the size of large gas pores in the center region, the UTS and elongation of the material decreases. In addition, the distribution of gas pores in the specimens and the areal fraction of gas pores >100 µm on cross sections can also affect the UTS and elongation to some extent.

  18. Fluid-structure interaction of three-dimensional magnetic artificial cilia

    NARCIS (Netherlands)

    Khaderi, S. N.; Onck, P. R.

    2012-01-01

    A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The

  19. [Three-dimensional finite element analysis on mechanical behavior of the bone remodeling and bone integration between the bone-implant interface after hip replacement].

    Science.gov (United States)

    Li, Yong-Jiang; Zhang, Li-Cheng; Zhang, Mei-Chao; Yang, Guo-Jing; Lin, Rui-Xin; Cai, Chun-Yuan; Zhong, Shi-Zhen

    2014-04-01

    To discuss the primary stability of the fixed interface between the cementless prosthesis and femur, and its influence on bone ingrowth and secondary stability under the roughened surface and press fit of different prostheses by finite element analysis. :A three-dimensional finite element module of total hip arthroplasty (THA) was developed with Mimics software. There was a collection of data when simulating hip arthroplasty. The frictional coefficient between the fixed interface was 0,0.15,0.40 and 1.00 representing the roughness of prosthesis surface. The press fit was 0, 0.01,0.05 and 0.10 mm according to the operation. The Vion Mises stress distribution and the contact pressure,friction stress and relative sliding displacement between the interface were analysed and compared when simulating the maneuver of climbing stairs. At a fixed press fit of 0.05 mm,the contact pressure between the interface was 230 , 231, 222 and 275 MN under four different frictional coefficient (0,0. 15,0.40 and 1.00) with little change; the relative sliding displacement was 0.529, 0.129, 0.107 and 0.087 mm with a consistent and obvious decline. As the fixed frictional coefficient was 0.40,the contact pressure between the interface were 56.0,67.7 ,60.4 and 49.6 MN under four different press fit (0, 0.01, 0.05 and 0.10 mm) with a reduction; the relative sliding displacement was 0.064,0.062,0.043 and 0.042 mm with an obvious decline, and there was a maximal friction stress when press fit of 0.01 mm. There is a dynamic process of the bone remodeling and bone integration between the interface after hip replacement, determining the long-term outcome. The interface clearance and the frictional coefficient are the key factors of the bone integration.

  20. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  1. Three-dimensional metamaterials

    Science.gov (United States)

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  2. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study.

    Science.gov (United States)

    Kaleli, Necati; Sarac, Duygu; Külünk, Safak; Öztürk, Özgür

    2018-03-01

    In recent years, the use of resin-matrix ceramics and polyetheretherketone (PEEK) abutments has been suggested to absorb excessive stresses on dental implants. However, only a few studies have evaluated the effect of these materials on stress distribution in implants and peripheral bone structure. The purpose of this finite element analysis was to evaluate the biomechanical behaviors of resin-matrix ceramics and PEEK customized abutments in terms of stress distribution in implants and peripheral bone. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created by using the standard tessellation language (STL) data of original implant components. An anatomic customized abutment and a maxillary right second premolar crown were then modeled over the titanium base abutment. A bone block representing the maxillary right premolar area was created, and the implant was placed in the bone block with 100% osseointegration. Six different models were created according to combinations of restoration materials (translucent zirconia [TZI], lithium disilicate glass ceramic [IPS], polymer-infiltrated hybrid ceramic [VTE]), and customized abutment materials (PEEK and zirconia). In each model, the implants were loaded vertically (200 N) and obliquely (100 N). The stress distribution in the crown, implant, and abutments was evaluated through the von Mises stress analysis, and the stress distribution in the peripheral bone was examined through the maximum and minimum principal stress analyses. The oblique load resulted in high stress values in the implant components, restorative crown, and cortical bone. Low stress values were observed in the VTE crowns. Zirconia customized abutments exhibited higher stress values than PEEK customized abutments. The stress distributions in the implant and peripheral bone were similar in all models. Changes in restoration and customized abutment material did not affect stress distribution in the implant and

  3. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses.

    Science.gov (United States)

    Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li

    2016-09-01

    Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.

  4. Selection of optimal expansion angle and length of an expandable implant in the osteoporotic mandible: a three-dimensional finite element analysis.

    Science.gov (United States)

    Xiao, Jian-Rui; Kong, Liang; Chen, Yu-Xuan; Han, Xiao-Xian; Li, Yong-Feng

    2013-01-01

    To identify from a biomechanical point of view the optimal parameters for an expandable implant in the osteoporotic mandible, a three-dimensional finite element model (FEM) of an expandable implant was created with variations in expansion angle and expansion length. FEMs of osteoporotic posterior mandibular segments with an expandable implant were created. An axial load of 100 N and a buccolingual load of 30 N were applied to the implant. The expansion angle ranged from 0 to 4 degrees, and the expansion length ratio ranged from 1/6 to 5/6. The maximum equivalent stress (max EQV stress) in jawbone and the implant-abutment complex and the maximum displacement in the implant-abutment complex were evaluated. With changes in the expansion angle and expansion length ratio, the max EQV stress in cortical and cancellous bone increased by 12.4% and 73.9%, respectively, under axial loading, respectively, and by 38.6% and 69.1%, respectively, under buccolingual loading. The max EQV stress in the implant-abutment complex increased by 65.3% and 160% under axial and buccolingual loading, respectively. Maximum displacement in the implant-abutment complex increased by 3.66% and 19.73% under axial and buccolingual loading, respectively. Expansion angles and the expansion length ratio favored stress distribution in jawbone under axial and buccolingual loads, respectively. An expansion angle between 1.5 and 2.5 degrees and an expansion length ratio between 2/6 and 3/6 provided optimal biomechanical properties for an expandable implant in the osteoporotic mandible.

  5. Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A three-dimensional finite element analysis--In vitro study.

    Science.gov (United States)

    Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh

    2016-01-01

    The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.

  6. Influences of implant neck design and implant-abutment joint type on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis.

    Science.gov (United States)

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2012-11-01

    Occlusal overloading is one of the causes of peri-implant bone resorption, and many studies on stress distribution in the peri-implant bone by three-dimensional finite element analysis (3D FEA) have been performed. However, the FEA models previously reported were simplified and far from representing what occurs in clinical situations. In this study, 3D FEA was conducted with simulation of the complex structure of dental implants, and the influences of neck design and connections with an abutment on peri-implant bone stress and abutment micromovement were investigated. Three types of two-piece implant CAD models were designed: external joint with a conical tapered neck (EJ), internal joint with a straight neck (IJ), and conical joint with a reverse conical neck (CJ). 3D FEA was performed with the setting of a "contact" condition at the component interface, and stress distribution in the peri-implant bone and abutment micromovement were analyzed. The shear stress was concentrated on the mesiodistal side of the cortical bone for EJ. EJ had the largest amount of abutment micromovement. While the von Mises and shear stresses around the implant neck were concentrated on the labial bone for IJ, they were distributed on the mesiodistal side of the cortical bone for CJ. CJ had the least amount of abutment micromovement. Implants with a conical joint with an abutment and reverse conical neck design may effectively control occlusal overloading on the labial bone and abutment micromovement. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    Science.gov (United States)

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  8. Biomechanical Influence of Implant Neck Designs on Stress Distribution over Adjacent Bone: A Three-Dimensional Non-Linear Finite Element Analysis

    Science.gov (United States)

    Ikman Ishak, Muhammad; Shafi, Aisyah Ahmad; Mohamad, Su Natasha; Jizat, Noorlindawaty Md

    2018-03-01

    The design of dental implant body has a major influence on the stress dissipation over adjacent bone as numbers of implant failure cases reported in past clinical studies. Besides, the inappropriate implant features may cause excessive high or low stresses which could possibly contribute to pathologic bone resorption or atrophy. The aim of this study is to evaluate the effect of different configurations of implant neck on stress dispersion within the adjacent bone via three-dimensional (3-D) finite element analysis (FEA). A set of computed tomography (CT) images of craniofacial was used to reconstruct a 3-D model of mandible using an image-processing software. The selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone model consisted of both compact (cortical) and porous (cancellous) structures. Three dental implant sets (crown, implant body, and abutment) with different designs of implant neck – straight, tapered with 15°, and tapered with 30° were modelled using a computer-aided design (CAD) software and all models were then analysed via 3-D FEA software. Top surface of first molar crown was subjected to occlusal forces of 114.6 N, 17.2 N, and 23.4 N in the axial, lingual, and mesio-distal directions, respectively. All planes of the mandible model were rigidly constrained in all directions. The result has demonstrated that the straight implant body neck is superior in attributing to high stress generation over adjacent bone as compared to others. This may associate with lower frictional resistance produced than those of tapered designs to withstand the applied loads.

  9. Three Dimensional Finite Element Analysis of Stress Distribution and Displacement of the Maxilla Following Surgically Assisted Rapid Maxillary Expansion with Tooth- and Bone-Borne Devices

    Directory of Open Access Journals (Sweden)

    Mohsen Dalband

    2015-10-01

    Full Text Available Objectives: The aim of this study was to investigate the displacement and stress distri- bution during surgically assisted rapid maxillary expansion under different surgical conditions with tooth- and bone-borne devices.Materials and Methods: Three-dimensional (3D finite element model of a maxilla was constructed and an expansion force of 100 N was applied to the left and right molars and premolars with tooth-borne devices and the left and right of mid-palatal sutures at the first molar level with bone-borne devices. Five CAD models were simulated as fol- lows and surgical procedures were used:  G1: control group (without surgery; G2: Le Fort I osteotomy; G3: Le Fort I osteotomy and para-median osteotomy; G4: Le Fort I osteotomy and pterygomaxillary separation; and G5: Le Fort I osteotomy, para-median osteotomy, and pterygomaxillary separation.Results: Maxillary displacement showed a gradual increase from group 1 to group 5 in all three planes of space, indicating that Le Fort I osteotomy combined with para-me- dian osteotomy and pterygomaxillary separation produced the greatest displacement of the maxilla with both bone- and tooth-borne devices. Surgical relief and bone-borne devices resulted in significantly reduced stress on anchored teeth.Conclusion: Combination of Le Fort I and para-median osteotomy with pterygomaxil-lary separation seems to be an effective procedure for increasing maxillary expansion, and excessive stress side effects are lowered around the anchored teeth with the use of bone-borne devices.

  10. Using reciprocity in Boundary Element Calculations

    DEFF Research Database (Denmark)

    Juhl, Peter Møller; Cutanda Henriquez, Vicente

    2010-01-01

    The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated as the recip......The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...

  11. Effects of labial and lingual retraction and intrusion force on maxillary central incisor with varying collum angles: A three-dimensional finite elemental analysis

    Directory of Open Access Journals (Sweden)

    Sandesh S Pai

    2017-01-01

    Full Text Available Aims: This study aims to analyze the effects of intrusive force, retraction force, and torque control on the maxillary central incisors with varying degrees of collum angle in labial and lingual orthodontic treatment procedures using finite element analysis. Subjects and Methods: Four pairs of three-dimensional finite element models (FEMs representative of maxillary central incisor with periodontal ligament (PDL and alveolar bone were constructed using ANSYS software (version 5.4, ANSYS Inc., Canonsburg, PA, USA. The models with 0°, 5°, 10°, and 15° were created based on crown root angulation. Four models for labial and four models for lingual orthodontic procedure were constructed. Each model was subjected to three forces, i.e., retraction force of 1 N, lingual root torque of −5 × 10−3 N and intrusive force of 0.64 N on crown with labially and lingually positioned brackets. Principal stress and strain, center of rotation and root apex displacement were monitored. Statistical Analysis Used: Not required (FEM study. Results: With the increase in collum angle, the stress-strain distribution in PDL was increased in both labial orthodontics (LaO and lingual orthodontics (LiO. Stress-strain distribution in the PDL with LiO was more in all the models as compared to LaO. There was more of tipping movement as collum angle increased from 0° to 15° in both LaO and LiO. The amount of intrusion reduced as the collum angle increased in both the systems. However, more of intrusion was seen in LaO. With increase in collum angle, the center of rotation moved cervically in both the systems. Conclusions: From the present study, we conclude that as the collum angle increased, the stress-strain distribution increased in LaO and LiO. The center of rotation shifted cervically, and the intrusion decreased when collum angle increased. The values were more marked in LiO.

  12. Zirconia-based dental crown to support a removable partial denture: a three-dimensional finite element analysis using contact elements and micro-CT data.

    Science.gov (United States)

    Rocha, Eduardo Passos; Anchieta, Rodolfo Bruniera; de Almeida, Erika Oliveira; Freitas, Amilcar Chagas; Martini, Ana Paula; Sotto-Maior, Bruno Sales; Luersen, Marco Antonio; Ko, Ching Chang

    2015-01-01

    Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.

  13. Introducing the Boundary Element Method with MATLAB

    Science.gov (United States)

    Ang, Keng-Cheng

    2008-01-01

    The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…

  14. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach.

    Science.gov (United States)

    Baggi, Luigi; Pastore, Simone; Di Girolamo, Michele; Vairo, Giuseppe

    2013-01-01

    Complete-arch restorations supported by fewer than 5 dental implants can induce unbalanced load transfer and tissue overloading, leading to excessive bone resorption and possible clinical failure. This is primarily affected by the cantilever length, the implant design and positioning, and the morphology and properties of the bone. The purpose of this study was to compare 2 different restorative techniques for complete-arch rehabilitations supported by 4 implants. The primary purpose was to highlight the possible risks of excessive stress and unbalanced load transfer mechanisms and to identify the main biomechanical factors affecting loading transmission. Three-dimensional (3D) numerical models of edentulous maxillae and mandibles restored with 2 techniques using 4 implants were generated from computed tomography (CT) images and analyzed with linear elastic finite-element simulations with 3 different static loads. The first technique used 2 vertical mesial implants and 2 tilted distal implants (at a 30 degree angle), and the second used vertical implants that fulfilled platform switching concepts. Bone-muscle interactions and temporomandibular joints were included in the mandibular model. Complete implant osseous integration was assumed and different posthealing crestal bone geometries were modeled. Stress measures (revealing risks of tissue overloading) and a performance index (highlighting the main features of the loading partition mechanisms) were introduced and computed to compare the 2 techniques. Dissimilar load transfer mechanisms of the 2 restorative approaches when applied in mandibular and maxillary models were modeled. Prostheses supported by distally tilted implants exhibited a more effective and uniform loading partition than all vertical implants, except in the simulated maxilla under a frontal load. Tilted distal implants reduced compressive states at distal bone-implant interfaces but, depending on bone morphology and loading type, could induce high

  15. A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm's law boundary condition in global magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    M. L. Goodman

    1995-08-01

    Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary

  16. HADY-I, a FORTRAN program for the compressible stability analysis of three-dimensional boundary layers. [on swept and tapered wings

    Science.gov (United States)

    El-Hady, N. M.

    1981-01-01

    A computer program HADY-I for calculating the linear incompressible or compressible stability characteristics of the laminar boundary layer on swept and tapered wings is described. The eigenvalue problem and its adjoint arising from the linearized disturbance equations with the appropriate boundary conditions are solved numerically using a combination of Newton-Raphson interative scheme and a variable step size integrator based on the Runge-Kutta-Fehlburh fifth-order formulas. The integrator is used in conjunction with a modified Gram-Schmidt orthonormalization procedure. The computer program HADY-I calculates the growth rates of crossflow or streamwise Tollmien-Schlichting instabilities. It also calculates the group velocities of these disturbances. It is restricted to parallel stability calculations, where the boundary layer (meanflow) is assumed to be parallel. The meanflow solution is an input to the program.

  17. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  18. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  19. A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm's law boundary condition in global magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    M. L. Goodman

    Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out

  20. 9th International Conference on Boundary Elements

    CERN Document Server

    Wendland, W; Kuhn, G

    1987-01-01

    This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...

  1. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  2. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  3. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  4. Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows.

    Science.gov (United States)

    1980-03-01

    distributions could be obtained. The pressure tappings were sampled using two computer controlled 48 port Model 48J4 Scanivalves equipped with Druck ...the boundary layer becomes turbulent, the upstream in- fluence drops to between 2 and 3D . 3.2 Pressure Distributions Off the Plane of Symmetry 3.2.1...upstream influence varies between 0.3 cm (0.12") and 7.6 cm (3.0"), a ratio of about 25, yet in terms of D , Iu lies between 2 and 3D . The figure shows

  5. Three dimensional moire pattern alignment

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1991-01-01

    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  6. The Three-Dimensional Sign.

    Science.gov (United States)

    Davis, Daniel R.

    1997-01-01

    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  7. A comparison of stress distribution and flexion among various designs of bar attachments for implant overdentures: A three dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Prakash Vijay

    2009-01-01

    Full Text Available Context: Bar overdentures are popular choices among clinicians worldwide but configurations that provide an optimal biomechanical distribution of stress are still debatable. Aims: To compare the stresses and elastic flexion between implant supported bar overdentures in various configurations using finite element analysis. Settings and Design: A CAT scan of a human mandible was used to generate an anatomically accurate mechanical model. Materials and Methods: Three models with bars and clips in three different configurations were constructed. Model 1 had a single bar connecting two implants, Model 2 had three bars connecting all the four implants, and Model 3 had two bars connecting the medial and distal implants on the sides only. The models were loaded under static conditions with 100N load distributed at the approximate position of the clip. The mandibular boundary conditions were modeled considering the real geometry of its muscle supporting system. Maximum von Mises stress at the level of the bar and at the bone implant interface were compared in all three models. The flexion of mandible and the bar was also compared qualitatively. Statistical Analysis Used: The analyses were accomplished using the ANSYS software program and were processed by a personal computer. Stress on these models was analyzed after loading conditions. Results: Qualitative comparisons showed that stress at the level of the bar and at the bone implant interface were in the following order: Model 1> Model 3> Model 2. The flexion of the mandible and the bar were in the following order: Model 2 > Model 1 > Model 3. Conclusions: Four implant bar systems connected by bars on the sides only is a better choice than two implant bar systems and four implant bar systems with bars connecting all four implants.

  8. Boundary element methods for electrical engineers

    CERN Document Server

    POLJAK, D

    2005-01-01

    In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B

  9. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  10. Three-dimensional analysis of 0/90s and 90/0s laminates with a central circular hole

    Science.gov (United States)

    Raju, I. S.; Crews, J. H., Jr.

    1982-01-01

    Stress distributions were calculated near a circular hole in laminates, using a three dimensional finite element analysis. These stress distributions were presented three ways: through the thickness at the hole boundary, along radial lines at the 0/90 and 90/0 interfaces, and around the hole at these interfaces. The interlaminar normal stress, and the shear stress, distributions had very steep gradients near the hole boundary, suggesting interlaminar stress singularities. The largest compressive stress occurred at about 60 deg from the load axis. A simple procedure was introduced to calculate interlaminar stresses near the hole boundary. It used stresses calculated by an exact two dimensional analysis of a laminate with a hole as input to a quasi three dimensional model. It produced stresses that agreed closely with those from the three dimensional finite element model.

  11. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    Science.gov (United States)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  12. Boundary Element Analysis of the Steady-state Response of an Elastic Half-Space to a Moving Force on its Surface

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2003-01-01

    The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source. This i...

  13. Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Heerikhuisen, J. [Department of Space Science, The University of Alabama in Huntsville, AL 35805 (United States); Roytershteyn, V. [Space Science Institute, Boulder, CO 80301 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gurnett, D. A.; Kurth, W. S., E-mail: nikolai.pogorelov@uah.edu [Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-08-10

    The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. It is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .

  14. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model

    NARCIS (Netherlands)

    Yucesoy, C.; Huijing, P.A.J.B.M.; Koopman, H.F.J.M.; Grootenboer, H.J.

    2002-01-01

    In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support

  15. Geometric actions for three-dimensional gravity

    Science.gov (United States)

    Barnich, G.; González, H. A.; Salgado-Rebolledo, P.

    2018-01-01

    The solution space of three-dimensional asymptotically anti-de Sitter or flat Einstein gravity is given by the coadjoint representation of two copies of the Virasoro group in the former and the centrally extended BMS3 group in the latter case. Dynamical actions that control these solution spaces are usually constructed by starting from the Chern–Simons formulation and imposing all boundary conditions. In this note, an alternative route is followed. We study in detail how to derive these actions from a group-theoretical viewpoint by constructing geometric actions for each of the coadjoint orbits, including the appropriate Hamiltonians. We briefly sketch relevant generalizations and potential applications beyond three-dimensional gravity.

  16. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  17. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  18. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  19. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  20. Three-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements, direct solvers and data space Gauss-Newton, parallelized on SMP computers

    Science.gov (United States)

    Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.

    2014-12-01

    We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic

  1. A three-dimensional finite element study on the effect of hydroxyapatite coating thickness on the stress distribution of the surrounding dental implant-bone interface

    Directory of Open Access Journals (Sweden)

    Hadi Asgharzadeh Shirazi

    2014-06-01

    Full Text Available   Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method.   Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studied using finite element method in the range between 0 to 200 microns. A 3D model including one section of mandible bone was modeled by a thick layer of cortical surrounding dense cancellous and a Nobel Biocare commercial brand dental implant was simulated and analyzed under static load in the Abaqus software.   Results The diagram of maximum von Mises stress versus coating thickness was plotted for the cancellous and cortical bones in the range between 0 to 200 microns. The obtained results showed that the magnitude of maximum von Mises stress of bone decreased as the hydroxyapatite coating thickness increased. Also, the thickness of coating exhibited smoother stress distribution and milder variations of maximum von Mises stress in a range between 60 to 120 microns.   Conclusion: In present study, the stress was decreased in the mandible bone where hydroxyapatite coating was used. This stress reduction leads to a faster stabilization and fixation of implant in the mandible bone. Using hydroxyapatite coating as a biocompatible and bioactive material could play an important role in bone formation of implant- bone interface.

  2. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  3. Microlocal methods in the analysis of the boundary element method

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...

  4. Finite element and boundary element applications in quantum mechanics

    International Nuclear Information System (INIS)

    Ueta, Tsuyoshi

    2003-01-01

    Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to

  5. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    International Nuclear Information System (INIS)

    Aidun, John B.; Robinson, Allen C.; Weatherby, Joe R.

    1999-01-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given

  6. Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems

    Science.gov (United States)

    Li, ShanDe; Gao, GuiBing; Huang, QiBai; Liu, WeiQi; Chen, Jun

    2011-08-01

    We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to overcome non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.

  7. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  8. Comparison of forces generated during root canal shaping and residual stresses of three nickel-titanium rotary files by using a three-dimensional finite-element analysis.

    Science.gov (United States)

    Kim, Hyeon-Cheol; Cheung, Gary Shun-Pan; Lee, Chan-Joo; Kim, Byung-Min; Park, Jeong-Kil; Kang, Soon-Il

    2008-06-01

    The study was aimed to compare the stress distribution during simulated root canal shaping and to estimate the residual stress thereafter for some nickel-titanium rotary instruments. Three brands of instruments (ProFile, ProTaper, and ProTaper Universal; Dentsply Maillefer) were scanned with micro-computed tomography to produce a real-size, 3-dimensional model for each. The stresses on the instrument during simulated shaping of a root canal were analyzed numerically by using a 3-dimensional finite-element package, taking into account the nonlinear mechanical behavior of the nickel-titanium material. From the simulation, the original ProTaper design showed the greatest pull in the apical direction and the highest reaction torque from the root canal wall, whereas ProFile showed the least. In ProTaper, stresses were concentrated at the cutting edge, and the residual stress reached a level close to the critical stress for phase transformation of the material. The residual stress was highest in ProTaper followed by ProTaper Universal and ProFile.

  9. Three-Dimensional Finite Element Analysis of Compressive Behavior of Circular Steel Tube-Confined Concrete Stub Columns by New Confinement Relationships

    Directory of Open Access Journals (Sweden)

    Akbar Haghinejada

    Full Text Available Abstract This paper presents a nonlinear analysis of axially loaded steel tube-confined concrete (STCC stub columns with new confinement relationships. For this aim, a 3-D finite element model of STCC columns using ABAQUS program is developed and validated against the experimental data. Proper material constitutive models are proposed and the confinement parameters of confined concrete are determined by matching the numerical results via trial and error. The parameters considered for quantitative verification of the FE model include five different factors indicating the behavior of STCC columns: compressive strength corresponding to steel yielding point, initial peak strength and ultimate strength as well as longitudinal to circumferential stress ratio of steel tube at steel yielding point and initial peak point. For the qualitative verification, the axial and lateral stress-strain relationships of STCC columns are taken into account. The comparison results indicate that the model can accurately predict the compressive behavior of STCC stub columns. Finally, a parametric study is also performed to evaluate the effect of tube diameter-to-wall thickness ratio (D/t, concrete compressive strength (fc and steel yield strength (fy on the compressive behavior of STCC columns. According to the results of the parametric study, the interface shear stress and lateral confining pressure are not affected by fc while significantly increase with decreasing D/t.

  10. Stress Distribution Evaluation of the Periodontal Ligament in the Maxillary Canine for Retraction by Different Alveolar Corticotomy Techniques: A Three-dimensional Finite Element Analysis.

    Science.gov (United States)

    Pacheco, Ariel Adriano Reyes; Saga, Armando Yukio; de Lima, Key Fonseca; Paese, Victor Nissen; Tanaka, Orlando M

    2016-01-01

    By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circular-shaped corticotomy in the cortical bone of the edentulous space of the first premolar. There was no difference in stress distribution among the different corticotomy formats. Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs.

  11. Inclusion of the periodontal ligament in studies on the biomechanical behavior of fiber post-retained restorations: An in vitro study and three-dimensional finite element analysis.

    Science.gov (United States)

    González-Lluch, Carmen; Rodríguez-Cervantes, Pablo-Jesús; Forner, Leopoldo; Barjau, Amaya

    2016-03-01

    Endodontically treated teeth are known to have reduced structural strength. Periodontal ligament may influence fracture resistance. The purpose of this study was to assess the influence of including the periodontal ligament in biomechanical studies about endodontically treated and restored teeth. Forty human maxillary central incisors were treated endodontically and randomly divided into four groups: non-crowned (with and without an artificial ligament) and crowned (with and without an artificial ligament) with glass-ceramic crowns. All groups received prefabricated glass-fiber posts and a composite resin core. Specimens were tested, under a flexural-compressive load, until failure occurred. The failure mode was registered for all specimens. The failure loads were recorded and analyzed using an analysis of variance test (p finite element model. The analysis of variance did not show significant differences between the use of crown on the failure load (p = 0.331) and the use of periodontal ligament (p = 0.185). A cohesive mode in crown appeared in crowned teeth and in core in non-crowned groups. For non-crowned teeth, adhesive failure occurred along the cement-enamel junction with a slight tendency in specimens without periodontal ligament. Furthermore, an unfavorable failure mode affects partially the root with no differences regarding non-crown specimens. In crowned teeth, the tendency was an adhesive failure along the cement-enamel junction. The model predicted a distribution of the safety factor consistent with these results. This study showed that inclusion of periodontal ligament is not particularly important on biomechanical behavior of post-retained restorations. However, we recommend its inclusion in fatigue studies. © IMechE 2016.

  12. Influence of transmucosal height in abutments of single and multiple implant-supported prostheses: a non-linear three-dimensional finite element analysis.

    Science.gov (United States)

    Borie, Eduardo; Leal, Eduardo; Orsi, Iara Augusta; Salamanca, Carlos; Dias, Fernando José; Weber, Benjamin

    2018-01-01

    The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.

  13. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.

    Science.gov (United States)

    Baggi, Luigi; Cappelloni, Ilaria; Di Girolamo, Michele; Maceri, Franco; Vairo, Giuseppe

    2008-12-01

    Load transfer mechanisms and possible failure of osseointegrated implants are affected by implant shape, geometrical and mechanical properties of the site of placement, as well as crestal bone resorption. Suitable estimation of such effects allows for correct design of implant features. The purpose of this study was to analyze the influence of implant diameter and length on stress distribution and to analyze overload risk of clinically evidenced crestal bone loss at the implant neck in mandibular and maxillary molar periimplant regions. Stress-based performances of 5 commercially available implants (2 ITI, 2 Nobel Biocare, and 1 Ankylos implant; diameters of 3.3 mm to 4.5 mm, bone-implant interface lengths of 7.5 mm to 12 mm) were analyzed by linearly elastic 3-dimensional finite element simulations, under a static load (lateral component: 100 N; vertical intrusive component: 250 N). Numerical models of maxillary and mandibular molar bone segments were generated from computed tomography images, and local stress measures were introduced to allow for the assessment of bone overload risk. Different crestal bone geometries were also modelled. Type II bone quality was approximated, and complete osseous integration was assumed. Maximum stress areas were numerically located at the implant neck, and possible overloading could occur in compression in compact bone (due to lateral components of the occlusal load) and in tension at the interface between cortical and trabecular bone (due to vertical intrusive loading components). Stress values and concentration areas decreased for cortical bone when implant diameter increased, whereas more effective stress distributions for cancellous bone were experienced with increasing implant length. For implants with comparable diameter and length, compressive stress values at cortical bone were reduced when low crestal bone loss was considered. Finally, dissimilar stress-based performances were exhibited for mandibular and maxillary

  14. Fully three-dimensional analysis of high-speed traintracksoil-structure dynamic interaction

    OpenAIRE

    Galvín, Pedro; Romero Ordoñez, Antonio; Domínguez Abascal, José

    2010-01-01

    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the ...

  15. A novel three-dimensional mesh deformation method based on sphere relaxation

    International Nuclear Information System (INIS)

    Zhou, Xuan; Li, Shuixiang

    2015-01-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations

  16. A novel three-dimensional mesh deformation method based on sphere relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  17. Real three-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)

    2010-09-07

    We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.

  18. Three-dimensional turbopump flowfield analysis

    Science.gov (United States)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  19. Boundary Element Method Applied to Added Mass Coefficient Calculation of the Skewed Marine Propellers

    Directory of Open Access Journals (Sweden)

    Yari Ehsan

    2016-04-01

    Full Text Available The paper mainly aims to study computation of added mass coefficients for marine propellers. A three-dimensional boundary element method (BEM is developed to predict the propeller added mass and moment of inertia coefficients. Actually, only few experimental data sets are available as the validation reference. Here the method is validated with experimental measurements of the B-series marine propeller. The behavior of the added mass coefficients predicted based on variation of geometric and flow parameters of the propeller is calculated and analyzed. BEM is more accurate in obtaining added mass coefficients than other fast numerical methods. All added mass coefficients are nondimensionalized by fluid density, propeller diameter, and rotational velocity. The obtained results reveal that the diameter, expanded area ratio, and thickness have dominant influence on the increase of the added mass coefficients.

  20. MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS

    Science.gov (United States)

    2017-09-01

    MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS ECBC-TR-1459 James D. Wright Jr. Mary...REPORT DATE (DD-MM-YYYY) XX-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2016 – Dec 2016 4. TITLE AND SUBTITLE Materials ...Compatibility Study for Three-Dimensional Printer Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wright

  1. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  2. A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants.

    Science.gov (United States)

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Rodrigues, Renata Cristina; Ribeiro, Ricardo Faria; de Mattos, Maria G

    The aim of this study was to compare the biomechanical performance of splinted or nonsplinted prostheses over short- or regular-length Morse taper implants (5 mm and 11 mm, respectively) in the posterior area of the mandible using finite element analysis. Three-dimensional geometric models of regular implants (Ø 4 × 11 mm) and short implants (Ø 4 × 5 mm) were placed into a simulated model of the left posterior mandible that included the first premolar tooth; all teeth posterior to this tooth had been removed. The four experimental groups were as follows: regular group SP (three regular implants were rehabilitated with splinted prostheses), regular group NSP (three regular implants were rehabilitated with nonsplinted prostheses), short group SP (three short implants were rehabilitated with splinted prostheses), and short group NSP (three short implants were rehabilitated with nonsplinted prostheses). Oblique forces were simulated in molars (365 N) and premolars (200 N). Qualitative and quantitative analyses of the minimum principal stress in bone were performed using ANSYS Workbench software, version 10.0. The use of splinting in the short group reduced the stress to the bone surrounding the implants and tooth. The use of NSP or SP in the regular group resulted in similar stresses. The best indication when there are short implants is to use SP. Use of NSP is feasible only when regular implants are present.

  3. Three dimensional magnetic abacus memory.

    Science.gov (United States)

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  4. Three-Dimensional Laser Microvision

    Science.gov (United States)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  5. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  6. Three dimensional magnetic abacus memory

    Science.gov (United States)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  7. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  8. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Three-dimensional free vibration analysis of thick laminated circular plates. Sumit Khare, N.D. Mittal. Abstract. In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as well as simply-supported boundary conditions at outer edges of plates is presented.

  9. A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye.

    Science.gov (United States)

    Ooi, E H; Ang, W T; Ng, E Y K

    2009-08-01

    A three-dimensional boundary element model of the human eye is developed to investigate the thermal effects of eye tumor on the ocular temperature distribution. The human eye is modeled as comprising several regions which have different thermal properties. The tumor is one of these regions. The thermal effects of the tumor are simulated by taking it to have a very high metabolic heat generation and blood perfusion rate. Inside the tumor, the steady state temperature is governed by the Pennes bioheat equation. Elsewhere, in normal tissues of the eye, the temperature satisfies the Laplace's equation. To compute the temperature on the corneal surface, the surface boundary of each region is divided into triangular elements.

  10. A Novel Mesh Quality Improvement Method for Boundary Elements

    Directory of Open Access Journals (Sweden)

    Hou-lin Liu

    2012-01-01

    Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.

  11. Boundary element methods for dielectric cavity construction and integration

    Science.gov (United States)

    Chen, Feiwu; Chipman, Daniel M.

    2003-11-01

    Improvements in boundary element methods are described for solution of reaction field equations that incorporate important dielectric effects of solvation, including influences of volume polarization, into electronic structure calculations on solute properties. Most current implementations assume constant boundary elements on the cavity surface separating solvent from solute, often employing an empirical parameter to enhance slow convergence associated with the treatment of singularities. In this work we describe a scheme for the linear interpolation of boundary elements and the analytic treatment of singularities that improves convergence without the need for any empirical parameter. Another advance is described for isodensity surface triangulation that succeeds even with molecular surfaces having prominent pockets, which cause the failure of previous simpler methods. Numerical examples are presented to demonstrate the efficacy of these new procedures in practice.

  12. Three-dimensional analysis of anisotropic spatially reinforced structures

    Science.gov (United States)

    Bogdanovich, Alexander E.

    1993-01-01

    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.

  13. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto

    2012-01-01

    This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the oth......, causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011....

  14. Three-Dimensional Laminar Separation.

    Science.gov (United States)

    1983-12-01

    and angles of aBack a = 50, 100 and 15. Stock , ----- , Geissler ; 0, present method... 32 Fig. 7 Lines of separation for a prolate spheroid with axes...spheroid with axes rattog a/b = 2 and angl? 9of attack a = 200. Stock ; ------ Geissler ;C, present method .......... 34 Fig. 9 Lines of separation and...shapes is a difficult problem requiring the solution of the boundary-layer equation or the full Navier -Stokes equations. A good number of careful

  15. A boundary element method for Stokes flows with interfaces

    Science.gov (United States)

    Alinovi, Edoardo; Bottaro, Alessandro

    2018-03-01

    The boundary element method is a widely used and powerful technique to numerically describe multiphase flows with interfaces, satisfying Stokes' approximation. However, low viscosity ratios between immiscible fluids in contact at an interface and large surface tensions may lead to consistency issues as far as mass conservation is concerned. A simple and effective approach is described to ensure mass conservation at all viscosity ratios and capillary numbers within a standard boundary element framework. Benchmark cases are initially considered demonstrating the efficacy of the proposed technique in satisfying mass conservation, comparing with approaches and other solutions present in the literature. The methodology developed is finally applied to the problem of slippage over superhydrophobic surfaces.

  16. Boundary element solutions for plates on elastic foundations

    International Nuclear Information System (INIS)

    Puttonen, J.; Varpasuo, P.

    1983-01-01

    Applications of the boundary element method to plate bending problems are quite sparse. The usual approach has been to treat same specific problems or types of problems. However, many practically important problems have been left without consideration. Plates on elastic foundations is one of these practically important areas and, moreover, it seems to be especially suitable to be treated with boundary element method. The analysis presented in this paper is based on the Kirchhoff plate bending theory and a fundamental singular solution is a displacement field caused by a unit lateral load acting at a point of an infinite plate resting on a linearly elastic foundation, which can be either of Winkler or Pasternak types or an elastic half space or, more generally, a foundation for which an axisymmetric external stress will result in an axisymmetric state of deformation. The derived integral equations base on the so-called direct formulation of the boundary element method. The two solution equations are formulated in terms of displacement rotation, moment and resultant boundary shear in every boundary nodal point. From these four unknown variables in every boundary node at least two has to be prescribed. The considered boundary conditions are free, simply supported and rotationally restrained edges. The developed computer code was designed to include the singular solutions for plates on Winkler, Pasternak and elastic half space foundations. These solutions were plotted and compared with each other and with available solutions in literature. The developed method has the advantage that the treatment of plates with finite dimensions and varying boundary conditions will be greatly facilitated. The analytic solution for these types of problems are rare and, moreover, the evaluating of numerical results from these solutions is a cumbersome task. (orig.)

  17. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  18. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r....... The overall presentation is supported by numerical simulations of electrode misalignment caused by the flexibility of the welding machine arms and electrical shunting due to consecutive welds in the resistance spot welding of two sheets.......This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...

  19. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...

  20. Sound source reconstruction using inverse boundary element calculations

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo

    2003-01-01

    Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited ...

  1. Sound source reconstruction using inverse boundary element calculations

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo

    2001-01-01

    Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim of the present work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form ...

  2. A posteriori pointwise error estimates for the boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Paulino, G.H. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Gray, L.J. [Oak Ridge National Lab., TN (United States); Zarikian, V. [Univ. of Central Florida, Orlando, FL (United States). Dept. of Mathematics

    1995-01-01

    This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.

  3. Coupled NASTRAN/boundary element formulation for acoustic scattering

    Science.gov (United States)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  4. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  5. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  6. Three dimensional rigorous model for optical scattering problems

    NARCIS (Netherlands)

    Wei, X.

    2006-01-01

    We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We

  7. Shape memory polymers: three-dimensional isotropic modeling

    Science.gov (United States)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  8. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Gang, E-mail: g.sha@usyd.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, NSW 2006 (Australia); Yao, Lan [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Liao, Xiaozhou [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, NSW 2006 (Australia); Chao Duan, Zhi [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Langdon, Terence G. [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2011-05-15

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 {sup o}C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: {yields} Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. {yields} Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 {sup o}C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm{sup 2}. Si appeared selectively segregated at some of the GBs. {yields} The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. {yields} The change of plane normal of a grain boundary within 30{sup o} only leads to a slight change in the solute segregation level.

  9. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  10. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1997-01-01

    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r......The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance...... is with respect to the scattering. We find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will. still be at integer positions. The effect...

  11. Microlaser-based three-dimensional display

    Science.gov (United States)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.

    1999-08-01

    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  12. Green's function and boundary elements of multifield materials

    CERN Document Server

    Qin, Qing-Hua

    2007-01-01

    Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.

  13. Parallel fast multipole boundary element method applied to computational homogenization

    Science.gov (United States)

    Ptaszny, Jacek

    2018-01-01

    In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.

  14. 8th International Conference on Boundary Element Methods

    CERN Document Server

    Brebbia, C

    1986-01-01

    The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...

  15. Parallelization method for three dimensional MOC calculation

    International Nuclear Information System (INIS)

    Zhang Zhizhu; Li Qing; Wang Kan

    2013-01-01

    A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance. (authors)

  16. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  17. Boundary element method solution for large scale cathodic protection problems

    Science.gov (United States)

    Rodopoulos, D. C.; Gortsas, T. V.; Tsinopoulos, S. V.; Polyzos, D.

    2017-12-01

    Cathodic protection techniques are widely used for avoiding corrosion sequences in offshore structures. The Boundary Element Method (BEM) is an ideal method for solving such problems because requires only the meshing of the boundary and not the whole domain of the electrolyte as the Finite Element Method does. This advantage becomes more pronounced in cathodic protection systems since electrochemical reactions occur mainly on the surface of the metallic structure. The present work aims to solve numerically a sacrificial cathodic protection problem for a large offshore platform. The solution of that large-scale problem is accomplished by means of “PITHIA Software” a BEM package enhanced by Hierarchical Matrices (HM) and Adaptive Cross Approximation (ACA) techniques that accelerate drastically the computations and reduce memory requirements. The nonlinear polarization curves for steel and aluminium in seawater are employed as boundary condition for the under protection metallic surfaces and aluminium anodes, respectively. The potential as well as the current density at all the surface of the platform are effectively evaluated and presented.

  18. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  19. Finite-element numerical modeling of atmospheric turbulent boundary layer

    Science.gov (United States)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  20. Ultrafast three-dimensional x-ray computed tomography

    International Nuclear Information System (INIS)

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg

    2011-01-01

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s -1 . Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  1. Advances in boundary elements. Vol. 1-3

    International Nuclear Information System (INIS)

    Brebbia, C.A.; Connor, J.J.

    1989-01-01

    This book contains some of the edited papers presented at the 11th Boundary Element Conference, held in Cambridge, Massachusetts, during August 1989. The papers are arranged in three different books comprising the following topics: Vol. 1: Computations and Fundamentals - comprises sections on fundamentals, adaptive techniques, error and convergence, numerical methods and computational aspects. (283 p.). Vol. 2: Field and fluid flow solutions - includes the following topics: potential problems, thermal studies, electrical and electromagnetic problems, wave propagation, acoustics and fluid flow. (484 p.). Vol. 3: Stress analysis - deals with advances in linear problems, nonlinear problems, fracture mechanics, contact mechanics, optimization, geomechanics, plates and shells, vibrations and industrial applications. (450 p). (orig./HP)

  2. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  3. Towards three-dimensional optical metamaterials.

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-01-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  4. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  5. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  6. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  7. A novel boundary element method for nonuniform neutron diffusion problems

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Nisiyama, Shusuke; Tomioka, Satoshi; Enoto, Takeaki

    1999-01-01

    An advanced boundary element formulation has been proposed to solve the neutron diffusion equation (NDE) for a 'nonuniform' system. The continuous spatial distribution of a nuclear constant is assumed to be described using a polynomial function. Part of the constant term in the polynomial is left on the left-hand-side of the NDE, while the reminding is added to the fission source term on the right-hand-side to create a fictitious source. When the neutron flux is also expanded using a polynomial, the boundary integral equation corresponding to the NDE contains a domain integral related to the polynomial source. This domain integral is transformed into an infinite series of boundary integrals, by repeated application of the particular solution for a Poisson-type equation with the polynomial source. In two-dimensional, one-group test calculations for rectangular domains, the orthogonality of Legendre polynomials was used to determine the polynomial expansion coefficients. The results show good agreement with those obtained from finite difference computations in which the nonuniformity was approximated by a large number of material regions. (author)

  8. The influence of three dimensional dunes on river flows and fluxes

    Science.gov (United States)

    Hardy, R. J.; Parsons, D. R.; Ockelford, A.; Ashworth, P. J.; Reesink, A.; Best, J.

    2015-12-01

    Fluvial systems in large river basins experience temporal variations in flow discharge, which creates unsteady changes in the flow field and sediment fluxes. The sediment-water interface responds and organizes to these changes over a wide range of spatial and temporal scales, primarily through adjustment of a variety of bed roughness elements. These roughness elements are the key component of overall flow resistance and the magnitude of their form drag significantly influences river stage levels for given discharge and determines the state and functioning of river systems and sediment fluxes. Here we present three dimensional numerically predicted flow results to demonstrate the importance of complex morphology on flow and sediment fluxes. Model boundary conditions and validation data were taken from two sources. Initially, they were collected from a field campaign on a 1.5 by 0.3 km stretch of the Mississippi near Alton, Illinois. Secondly, a series of flume experiments were undertaken that applied unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms, which were scaled on the data collected in the field. The numerical flow results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for sediment flux dynamics during bed form adjustment.

  9. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  10. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  11. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...

  12. Three-dimensional chiral photonic superlattices.

    Science.gov (United States)

    Thiel, M; Fischer, H; von Freymann, G; Wegener, M

    2010-01-15

    We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.

  13. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  14. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  15. Three-dimensional patterning methods and related devices

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  16. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  17. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  18. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  19. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  20. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods solve...... for the unknown normal velocities of the structure at the relatively large number of nodes in the numerical model. Efficiently the regularization technique smoothes the solution spatially, since a fast spatial variation is associated with high index singular values, which is filtered out or damped...... in the regularization. Hence, the effective number of degrees of freedom in the model is often much lower than the number of nodes in the model. The present paper deals with an alternative formulation possible for the subset of radiation problems in which a (structural) modal expansion is known for the structure...

  1. Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction

    Science.gov (United States)

    Galvín, P.; Romero, A.; Domínguez, J.

    2010-11-01

    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.

  2. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    Pereira, Luis Carlos Martins

    1998-06-01

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  3. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  4. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  5. Arching in three-dimensional clogging

    Directory of Open Access Journals (Sweden)

    Török János

    2017-01-01

    Full Text Available Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based. The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  6. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  7. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  8. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  9. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  10. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  11. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  12. Analysis of three-dimensional transonic compressors

    Science.gov (United States)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  13. Three-dimensional display of document set

    Science.gov (United States)

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  14. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  15. Three-Dimensional Dynamic Loading of Sand

    Science.gov (United States)

    2011-02-01

    oading conditions exist at the bulk scale, and exam ples include planetary impact and crater formation, tectonic plate movement , ballistic im pact and...found further way from an impact event, where the bulk material does not necessarily experience uniform loading in excess of the Hugoniot elastic li...either as a collection of quartz spheres in a three-dimensional rectilinear dom ain for t he mesoscale simulations or as a single representative material

  16. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  17. Three-Dimensional Ocean Noise Modeling

    Science.gov (United States)

    2015-03-01

    realistic and complex three-dimensional bathymetry. This is achieved by using a parabolic equation [PE) propagation model and the reciprocity principle...explain the horizontal noise directionality observed in the Tonga Trench [Barclay, 2014], which was found not to be a 3D effect, but rather due to...modeled noise arriving on the axis of the canyon has significantly perturbed zero-crossings when compared to the equivalent Nx2D result. Theoretical

  18. Three-dimensional accelerating electromagnetic waves.

    Science.gov (United States)

    Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai

    2013-06-17

    We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  19. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  20. Three-Dimensional Audio Client Library

    Science.gov (United States)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  1. Modeling flow and shear stress fields over unsteady three dimensional dunes

    Science.gov (United States)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim

    2014-05-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  2. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  3. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  4. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  5. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

    Science.gov (United States)

    Ismail, N. A.; Cartmell, M. P.

    2016-03-01

    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  6. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    International Nuclear Information System (INIS)

    BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.

    1999-01-01

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance

  7. The three-dimensional origin of the classifying algebra

    International Nuclear Information System (INIS)

    Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl

    2010-01-01

    It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.

  8. Three-dimensional force-free looplike magnetohydrodynamic equilibria

    Science.gov (United States)

    Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel

    1994-01-01

    Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.

  9. Imposed-Solution Boundaries for Three-Dimensional Hull.

    Science.gov (United States)

    1986-03-01

    STOP$ * ABORT IN NXTIM. CANNOT FIND CSTART.’ 15 FORMAT(//$ ** HAVE READ CYCLE’I5#1 WITHOUT FINDING CSTART e6,15l 20 NTRY a NTRY + 1 IFINTRY eLE . I0...FTN,#IwSAIL, B=KEEL,PPLs50000,fPT*2j,SL-0,R.0, EL -F) RE TURN (PL, SAIL) KEEL. CATALOG(TAPE4pHULL8416P20, ID.JOWl CATALOG(TAPE9# STA8416P20t IDaJDW) *E...THTSHIFTTTI1,TI2 STOPI ABORT# RbND9D3. END OF FILE BEFORE T.0 165 FORMATI’ ABORTo RBNDQD3o END OF FILE BEFORE To’/ I ’ THPTSHIFT#TPTI1,T12- tplP5E15,71 END

  10. Essential Boundary Conditions with Straight C1 Finite Elements in Curved Domains

    International Nuclear Information System (INIS)

    Ferraro, N.M.; Jardin, S.C.; Luo, X.

    2010-01-01

    The implementation of essential boundary conditions in C1 finite element analysis requires proper treatment of both the boundary conditions on second-order differentials of the solution and the curvature of the domain boundary. A method for the imposition of essential boundary conditions using straight elements (where the elements are not deformed to approximate a curved domain) is described. It is shown that pre-multiplication of the matrix equation by the local rotation matrix at each boundary node is not the optimal transformation. The uniquely optimal transformation is found, which does not take the form of a similarity transformation due to the non-orthogonality of the transformation to curved coordinates.

  11. Field theoretical finite element method to provide theoretical calibration curves for the electrical direct-current potential crack-monitoring system as applied to a three-dimensional fracture mechanics specimen with surface crack

    International Nuclear Information System (INIS)

    Dietrich, R.

    1984-01-01

    The basic concepts of the finite element method are explained. The results are compared to existing calibration curves for such test piece geometries derived using experimental procedures. (orig./HP) [de

  12. Three-dimensional analysis of two-pile caps

    Directory of Open Access Journals (Sweden)

    T.E.T. Buttignol

    Full Text Available This paper compares the results between a non-linear three-dimensional numerical analysis of pile caps with two piles and the experimental study conducted by Delalibera. It is verified the load-carrying capacity, the crack pattern distribution, the principal stress in concrete and steel, the deflection and the fracture of the pile cap. The numerical analysis is executed with the finite-element software ATENA 3D, considering a perfect bond between concrete and steel. The numerical and experimental results are presented and have demonstrated a good approximation, reasserting the results of the experimental model and corroborating the theory.

  13. Three-dimensional positioning with optofluidic microscope

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric

    2010-01-01

    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...... a conventional fluorescence microscope as readout. The size separated microspheres are detected by OFM with an accuracy of ≤ 0.92 μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4 μm and 0.08 mm/s respectively. Throughout...

  14. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  15. Three-Dimensional Printing in Orthopedic Surgery.

    Science.gov (United States)

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  16. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  17. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  18. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  19. Space-dependent core/reflector boundary conditions generated by the boundary element method for pressurized water reactors

    International Nuclear Information System (INIS)

    Itagaki, M.; Brebbia, C.A.

    1991-01-01

    This paper reports on the boundary element method used to generate energy-dependent matrix-type boundary conditions along core/reflector interfaces and along baffle-plate surfaces of pressurized water reactors. This method enables one to deal with all types of boundary geometries including convex and concave corners. The method is applicable to neutron diffusion problems with more than two energy groups and also can be used to model a reflector with or without a baffle plate. Excellent eigenvalue and flux shape results can be obtained when the boundary conditions generated by this technique are coupled with core-only finite difference calculations

  20. Novel TMS coils designed using an inverse boundary element method

    Science.gov (United States)

    Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David

    2017-01-01

    In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.

  1. Solving the stationary Liouville equation via a boundary element method

    Science.gov (United States)

    Chappell, David J.; Tanner, Gregor

    2013-02-01

    Energy distributions of linear wave fields are, in the high frequency limit, often approximated in terms of flow or transport equations in phase space. Common techniques for solving the flow equations in both time dependent and stationary problems are ray tracing and level set methods. In the context of predicting the vibro-acoustic response of complex engineering structures, related methods such as Statistical Energy Analysis or variants thereof have found widespread applications. We present a new method for solving the transport equations for complex multi-component structures based on a boundary element formulation of the stationary Liouville equation. The method is an improved version of the Dynamical Energy Analysis technique introduced recently by the authors. It interpolates between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. We demonstrate that the method can be used to efficiently deal with complex large scale problems giving good approximations of the energy distribution when compared to exact solutions of the underlying wave equation.

  2. Microfluidic tactile sensors for three-dimensional contact force measurements.

    Science.gov (United States)

    Nie, Baoqing; Li, Ruya; Brandt, James D; Pan, Tingrui

    2014-11-21

    A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to resolve normal mechanical loads but also to measure forces tangent to the surface upon contact. In response to normal or shear loads, the membrane surface deforms the underlying sensing elements uniformly or differentially. The corresponding variation in interfacial capacitance can be detected from each sensing unit, from which the direction and magnitude of the original load can be determined. Benefiting from the highly sensitive and adaptive MICS principle, the microfluidic sensor is capable of detecting normal forces with a device sensitivity of 29.8 nF N(-1) in a 7 mm × 7 mm × 0.52 mm package, which is at least a thousand times higher than its solid-state counterparts to our best knowledge. In addition, the microfluidic sensing elements enable facilitated relaxation response/time in the millisecond range (up to 12 ms). To demonstrate the utility and flexibility of the three-dimensional microfluidic sensor, it has been successfully configured into a fingertip-amounted setting for continuous tracing of the fingertip movement and contact force measurement.

  3. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  4. Carotid plaque segmentation from three-dimensional ultrasound images by direct three-dimensional sparse field level-set optimization.

    Science.gov (United States)

    Cheng, Jieyu; Chen, Yimin; Yu, Yanyan; Chiu, Bernard

    2018-03-01

    Total plaque volume (TPV) measured from 3D carotid ultrasound has been shown to be able to predict cardiovascular events and is sensitive in detecting treatment effects. Manual plaque segmentation was performed in previous studies to quantify TPV, but is tedious, requires long training times and is prone to observer variability. This article introduces the first 3D direct volume-based level-set algorithm to segment plaques from 3D carotid ultrasound images. The plaque surfaces were first initialized based on the lumen and outer wall boundaries generated by a previously described semi-automatic algorithm and then deformed by a direct three-dimensional sparse field level-set algorithm, which enforced the longitudinal continuity of the segmented plaque surfaces. This is a marked advantage as compared to a previously proposed 2D slice-by-slice plaque segmentation method. In plaque boundary initialization, the previous technique performed a search on lines connecting corresponding point pairs of the outer wall and lumen boundaries. A limitation of this initialization strategy was that an inaccurate initial plaque boundary would be generated if the plaque was not enclosed entirely by the wall and lumen boundaries. A mechanism is proposed to extend the search range in order to capture the entire plaque if the outer wall boundary lies on a weak edge in the 3D ultrasound image. The proposed method was compared with the previously described 2D slice-by-slice plaque segmentation method in 26 three-dimensional carotid ultrasound images containing 27 plaques with volumes ranging from 12.5 to 450.0 mm 3 . The manually segmented plaque boundaries serve as the surrogate gold standard. Segmentation accuracy was quantified by volume-, area- and distance-based metrics, including absolute plaque volume difference (|ΔPV|), Dice similarity coefficient (DSC), mean and maximum absolute distance (MAD and MAXD). The proposed direct 3D plaque segmentation algorithm was associated with a

  5. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  6. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  7. The Three-Dimensional Universe with Gaia

    Science.gov (United States)

    Turon, C.; O'Flaherty, K. S.; Perryman, M. A. C.

    2005-01-01

    "The Three-Dimensional Universe with Gaia" symposium was hosted by the Observatoire de Paris (Meudon), France, from 4 to 7 October 2004. The date chosen for this symposium corresponded to the end of the definition phase of Gaia, a cornerstone mission of the European Space Agency. The purposes of this symposium were: (1) to present to the scientific community the design chosen for the mission, the final characteristics and performances, and to update the resulting scientific case; (2) to bring to the attention of the scientific community the extraordinary potential of Gaia and to share with the younger generation of scientists the expertise acquired during the preparation phases of the Gaia mission, and during all phases of the Hipparcos mission; (3) to organise the next phase of scientific preparation of the mission, in particular the data reduction which constitutes a major challenge with a petabyte of interconnected data which has to be treated in a global and iterative manner, and to prepare for the scientific exploitation of the data. The symposium was open to scientists working on the preparation of Gaia and to the large community interested in using the data from the mission. The proceedings of the symposium are published by the European Space Agency as ESA SP-576: "The Three-Dimensional Universe with Gaia". These proceedings contain invited and contributed papers for six sessions covering technical and scientific aspects of the mission.

  8. Three-dimensional electrical impedance tomography

    Science.gov (United States)

    Metherall, P.; Barber, D. C.; Smallwood, R. H.; Brown, B. H.

    1996-04-01

    THE electrical resistivity of mammalian tissues varies widely1-5 and is correlated with physiological function6-8. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body9-11. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem10,12. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane13. A few studies have attempted three-dimensional EIT image reconstruction14,15, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening8.

  9. Use of the iterative solution method for coupled finite element and boundary element modeling

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1993-07-01

    Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver

  10. Three-dimensional flows in a transonic compressor rotor

    Science.gov (United States)

    Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo

    1991-01-01

    This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.

  11. Three-dimensional wave patterns in falling films

    Science.gov (United States)

    Scheid, Benoit; Ruyer-Quil, Christian; Manneville, Paul

    2005-11-01

    A large number of studies have been devoted to the modeling of film flows down inclined planes since the pioneering work of Kapitza & Kapitza (1949). Ruyer-Quil & Manneville (2000,2002) have extended the Shkadov formulation (1967) applying weighting residual techniques and expanding the flow field over a complete basis of polynomial functions. Inspired from a Pad'e-like approximant technique initially proposed by Ooshida (1999), a refined model is now formulated which also includes second-order inertia effects arising from the deviation of the streamwise velocity profile from its parabolic shape. The stability of two- dimensional traveling waves against three-dimensional perturbations is investigated using this model. The secondary instability is found to be not really selective which explains the widespread presence of the synchronous instability observed in the experiments by Liu et al. (1995), though theory predicts in most cases a subharmonic scenario. Three-dimensional wave patterns are next computed assuming periodic boundary conditions. Transition from 2D to 3D flows is shown to be strongly dependent on initial conditions. The herringbone patterns, the synchronously deformed fronts, the oblique and the V-shape solitary waves observed in various experimental data (Liu et al. 1995; Park & Nosoko 2003; Alekseenko et al. 1994) are reliably recovered.

  12. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.

    Science.gov (United States)

    Xia, Kelin; Wei, Guo-Wei

    2014-10-01

    We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the

  13. Ionization current in N2 gas. 11. Three dimensional analysis for loss processes of metastable particles affected by the reflection at the boundary; N2 gas chu ni okeru denri denryu. 11. Kyokai deno hansha wo koryoshita jun`antei reiki ryushi sonshitsu katei no sanjigen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.; Ito, H.; Sekizawa, H.; Ikuta, N. [Chiba Institute of Technology, Chiba (Japan)

    1998-10-01

    Loss processes of the nitrogen metastable molecule N2(A{sup 3}{Sigma}u{sup +}) in plane parallel electrodes have been investigated by us previously by solving the diffusion equation. Our procedure is based on an analysis using the third kind of boundary condition which can take account of finite values for the density of N2(A{sup 3}{Sigma}u{sup +}) at the electrode surfaces. The values of the effective lifetime of N2(A{sup 3}{Sigma}u{sup +}) calculated from this analysis were reasonably consistent with our experiments. This paper describes the behavior of the effective lifetimes of N2(A{sup 3}{Sigma}u{sup +}) in a cylindrical cavity. The analytical treatment of the diffusion equation for N2(A{sup 3}{Sigma}u{sup +}) proposed by us is extended to the three dimensional space. We report the nature of the effective lifetimes of metastable molecule in the cylindrical cavity systematically. 16 refs., 9 figs.

  14. A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries

    NARCIS (Netherlands)

    Simone, A.; Duarte, C. A.; Van der Giessen, E.

    2006-01-01

    We present a Generalized Finite Element Method for the analysis of polycrystals with explicit treatment of grain boundaries. Grain boundaries and junctions, understood as loci of possible displacement discontinuity, are inserted into finite elements by exploiting the partition of unity property of

  15. Temperature and stress distribution in pressure vessel by the boundary element method

    International Nuclear Information System (INIS)

    Alujevic, A.; Apostolovic, D.

    1990-01-01

    The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)

  16. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  17. AAOGlimpse: Three-dimensional Data Viewer

    Science.gov (United States)

    Shortridge, Keith

    2011-10-01

    AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

  18. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    Energy Technology Data Exchange (ETDEWEB)

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  19. Entanglement entropy in three dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Henry [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2015-04-07

    The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS{sub 3}, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ{sup 2} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.

  20. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  1. Electron in three-dimensional momentum space

    Science.gov (United States)

    Bacchetta, Alessandro; Mantovani, Luca; Pasquini, Barbara

    2016-01-01

    We study the electron as a system composed of an electron and a photon, using lowest-order perturbation theory. We derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of the light-front wave function overlap representation and the diagrammatic approach. We perform the calculations both in light-cone gauge and Feynman gauge, and we present a detailed discussion of the role of the Wilson lines to obtain gauge-independent results. We provide numerical results and plots for many of the computed distributions.

  2. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  3. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2017-12-01

    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  4. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  5. Three dimensional thrust chamber life prediction

    Science.gov (United States)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  6. Three-dimensional detectors for neutron imaging

    Science.gov (United States)

    Mendicino, R.; Dalla Betta, G.-F.

    2018-01-01

    Solid-state sensors fabricated with 3D technologies and coupled to different neutron converter materials have been developed by several groups as direct replacement of 3 He gas detectors, mainly for homeland security applications. Results so far achieved in terms of detection efficiency are quite good (up to ≃50%) and, combined with the intrinsic excellent position resolution of silicon sensors, could lead to high performance neutron imaging systems. In this paper, we review the state of the art in three-dimensional silicon sensors for thermal-neutron detection, addressing the most promising solutions for neutron imaging. Moreover, selected results from the developments at the University of Trento on 3D pixelated detectors having relatively low fabrication complexity and expected high neutron detection efficiency up to 30% will be reported.

  7. Application of the dual reciprocity boundary element method for numerical modelling of solidification process

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.

  8. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.

    Science.gov (United States)

    Gravenkamp, Hauke; Prager, Jens; Saputra, Albert A; Song, Chongmin

    2012-09-01

    The scaled boundary finite element method is applied to the simulation of Lamb waves for ultrasonic testing applications. With this method, the general elastodynamic problem is solved, while only the boundary of the domain under consideration has to be discretized. The reflection of the fundamental Lamb wave modes from cracks of different geometry in a steel plate is modeled. A test problem is compared with commercial finite element software, showing the efficiency and convergence of the scaled boundary finite element method. A special formulation of this method is utilized to calculate dispersion relations for plate structures. For the discretization of the boundary, higher-order elements are employed to improve the efficiency of the simulations. The simplicity of mesh generation of a cracked plate for a scaled boundary finite element analysis is illustrated.

  9. Voro++: a three-dimensional Voronoi cell library in C++

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris

    2009-01-15

    Voro++ is a free software library for the computation of three dimensional Voronoi cells. It is primarily designed for applications in physics and materials science, where the Voronoi tessellation can be a useful tool in the analysis of densely-packed particle systems, such as granular materials or glasses. The software comprises of several C++ classes that can be modified and incorporated into other programs. A command-line utility is also provided that can use most features of the code. Voro++ makes use of a direct cell-by-cell construction, which is particularly suited to handling special boundary conditions and walls. It employs algorithms which are tolerant for numerical precision errors, and it has been successfully employed on very large particle systems.

  10. Acoustic boundary element method formulation with treatment of nearly singular integrands by element subdivision

    DEFF Research Database (Denmark)

    Cutanda Henríquez, Vicente; Juhl, Peter Møller

    2008-01-01

    It is well known that the Boundary Element Method (BEM) in its standard version cannot readily handle situations where the calculation point is very close to a surface. These problems are found: i) when two boundary surfaces are very close together, such as in narrow gaps and thin bodies, and ii)...

  11. Method for Parametric Design of Three-Dimensional Shapes

    National Research Council Canada - National Science Library

    Dick, James L

    2006-01-01

    The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...

  12. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  13. Three-dimensional modeling in the electromagnetic/magnetotelluric methods. Accuracy of various finite-element and finite difference methods; Denjiho MT ho ni okeru sanjigen modeling. Shushu no yugen yosoho to sabunho no seido

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-05-27

    To enhance the reliability of electromagnetic/magnetotelluric (MT) survey, calculation results of finite-element methods (FEMs) and finite difference methods (FDMs) were compared. Accuracy of individual methods and convergence of repitition solution were examined. As a result of the investigation, it was found that appropriate accuracy can be obtained from the edge FEM and FDM for the example of vertical magnetic dipole, and that the best accuracy can be obtained from the FDM among four methods for the example of MT survey. It was revealed that the ICBCG (incomplete Cholesky bi-conjugate gradient) method is an excellent method as a solution method of simultaneous equations from the viewpoint of accuracy and calculation time. For the joint FEM, solutions of SOR method converged for both the examples. It was concluded that the cause of error is not due to the error of numerical calculation, but due to the consideration without discontinuity of electric field. The conditions of coefficient matrix increased with decreasing the frequency, which resulted in the unstable numerical calculation. It would be required to incorporate the constraint in a certain form. 4 refs., 12 figs.

  14. Comment on "Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones," [J. Acoust. Soc. Am. 121(6), 3907-3921 (2007)].

    Science.gov (United States)

    Guo, Xiasheng; Zhang, Dong; Yang, Di; Gong, Xiufen; Wu, Junru

    2008-06-01

    Protopappas et al. performed finite element (FE) studies on the propagation of guided ultrasound waves in intact and healing long bones, and found that the dispersion of guided modes was significantly influenced by the irregularity and anisotropy of the bone. A time-frequency (t-f) method was applied to the obtained signals and several wave modes were identified. However, this technique was unable to quantify their observations and provide monitoring capabilities. One possible reason of this shortcoming may come from the inherent disadvantage of the t-f method. The objective of this comment is to demonstrate that it is necessary to combine other techniques with FE simulations for the extraction of significant quantitative ultrasonic features. Individual guided modes in an isotropic pipe have been theoretically examined using the normal mode expansion (NME) method, and many modes that are missed by the t-f analysis have been identified. It is concluded that in order to extract quantitative ultrasonic features, FE simulations should be supplemented by other techniques such as the NME.

  15. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  16. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  17. Primary and Secondary Three Dimensional Microbatteries

    Science.gov (United States)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  18. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data.

    Science.gov (United States)

    Lazari, Priscilla Cardoso; Oliveira, Rodrigo Caldeira Nunes de; Anchieta, Rodolfo Bruniera; Almeida, Erika Oliveira de; Freitas Junior, Amilcar Chagas; Kina, Sidney; Rocha, Eduardo Passos

    2013-01-01

    The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σ(max)) values were evaluated for the root dentin, cement layer, and glass fiber post. The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root.

  19. Three-Dimensional Finite Element Analysis Surface Stress Distribution on Regular and Short Morse Taper Implants Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges.

    Science.gov (United States)

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Pupim, Denise; Zaparolli, Danilo; de Mattos, Maria da Gloria Chiarello

    2016-05-01

    This study used finite element analysis to compare the biomechanical performance of splinted (SP) and nonsplinted (NSP) prostheses to regular and short length Morse taper implants in the posterior side of the mandible. The authors used 3-dimensional geometric models of regular implants (∅4 × 11 mm) and short implants (∅4 × 5 mm) housed in the corresponding bone edges of the posterior left mandibular hemiarch involving tooth 34. The 8 experimental groups were: the control group SP (3 regular implants rehabilitated with SP), group 1SP (2 regular and 1 short implants rehabilitated with SP), group 2SP (1 regular and 2 short implants rehabilitated with SP), group 3SP (3 short implants rehabilitated with SP), the control group NSP (3 regular implants rehabilitated with NSP), group 1NSP (2 and 1 short implants rehabilitated with NSP), group 2NSP (1 regular and 2 short implants rehabilitated with NSP), and group 3NSP (3 short implants rehabilitated with NSP). Oblique forces were simulated in the molars (365 N) and premolars (200 N). Qualitative and quantitative analysis of the distribution of Von Mises equivalent stress (implants, components, and infrastructure) was performed using the AnsysWorkbench10.0 software. The results showed that the use of SP provides several advantages and benefits, reducing the stresses placed on the implant surface, on the transmucosal abutment areas and on the interior region of the infrastructure. The use of NSP was advantageous in reducing the stresses on the abutments and in the distal interproximal area of connection between the crowns.

  20. Modular transportation system with a three dimensional routeing

    Directory of Open Access Journals (Sweden)

    Löffler Christoph

    2015-12-01

    Full Text Available In intra-enterprise logistics and automation of manufacturing processes general a rising productivity by high flexibility is required. Existing transportation systems exclusively use two-dimensional track sections, because they can be served with standard drives. Because of these simple structures the transport speed is limited and thereby also the throughput. In this paper now a modular transportation system is presented which could reach higher speeds with a direct drive and the use of centrifugal force compensating curves. Simultaneously the system also can change the altitude. All this succeeds with the integration of three-dimensional track sections. Therefore a two piped guiding system with a long stator linear motor was designed. To combine the linear motor with the three dimensional track special stator elements were developed which allow a bending of the stator to follow the route course. The current work deals with the implementation of a mechanical passive switch, which is operated by the electromagnetic forces of the linear motor. So no additional mechanical actors or a separate electromagnetic system are necessary.

  1. The three-dimensional nature of microbands in a channel die compressed Goss-oriented Ni single crystal

    International Nuclear Information System (INIS)

    Afrin, N.; Quadir, M.Z.; Bassman, L.; Driver, J.H.; Albou, A.; Ferry, M.

    2011-01-01

    The three-dimensional structure of microband boundaries in a plane strain compressed Goss-oriented nickel single crystal was generated by the electron backscatter diffraction technique. Rather than being perfectly planar, microband boundaries generally contained bumps and curves. The planar segments of these boundaries have orientations that coincide closely with one of the expected {1 1 1} slip planes of this crystal.

  2. Effect of varying the vertical dimension of connectors of cantilever cross-arch fixed dental prostheses in patients with severely reduced osseous support: a three-dimensional finite element analysis.

    Science.gov (United States)

    Manda, Marianthi; Galanis, Christos; Georgiopoulos, Vasilis; Provatidis, Christofer; Koidis, Petros

    2010-02-01

    Inadequate dimensioning of the connectors in a cantilever cross-arch fixed dental prosthesis (FDP) in perioprosthetic patients jeopardizes the prognosis of the restoration. The purpose of this study was to investigate the effect of increasing the vertical dimension (VD) on the maximum stress developed within the connectors during the static loading of a cross-arch FDP extended as a 1- and 2-unit cantilever. Six digital models were developed, derived from a 3-dimensional (3-D) initial model. In the initial model, the teeth were prepared for metal ceramic restorations and splinted with a cross-arch FDP, extended as a 1- or 2-unit cantilever. The VDs of the connectors proximal to the retaining abutment were 3, 4, or 5 mm. A 3-D finite element analysis (FEA) was performed. The VD increase, from 3 to 4 mm and from 3 to 5 mm, of the connector distal to the retaining abutment, for each FDP, presented a maximum stress value decrease of approximately 25% and 48%, respectively. The similar VD increase of the connector mesial to the retaining abutment, for each FDP, resulted in relatively smaller stress changes. For the 2-unit cantilever restoration, the stress decreases were approximately 9% and 15%, respectively, whereas in the 1-unit cantilever restoration, the decrease was about 10% for the 4-mm connector. Further increase of the VD to 5 mm did not relieve the peak stress. The highest stress value was measured on the 3-mm connector distal to the retaining abutment in the 2-unit cantilever restoration. Despite the VD increase, the connectors proximal to the retaining abutment still developed the highest stress values of all the connectors for every model. The connector with the highest risk of failure is the 3-mm connector distal to the retaining abutment of the 2-unit cantilever restoration. Increasing the vertical dimension is beneficial for the connector distal to the retaining abutment, while the resultant stress changes are not substantial for the connectors mesial to

  3. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2017-11-01

    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  4. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  5. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  6. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  7. Three-dimensional endoscopy in sinus surgery.

    Science.gov (United States)

    Singh, Ameet; Saraiya, Rupali

    2013-02-01

    Surgical endoscopy revolutionized the management of disease in nearly every surgical field, including rhinology. Endoscopy offered several advantages for the surgical management of rhinologic disease. However, it had a distinct disadvantage compared to direct vision, namely loss of binocular vision. Two-dimensional (2D) endoscopy limited depth perception, widely regarded as an important parameter for accurate and efficient movements during surgery. Three-dimensional (3D) endoscopic visualization has been actively pursued for decades by endoscopic surgeons in multiple surgical specialties. However, its clinical role has been limited due to technical limitations as well as successful adaptation by endoscopic surgeons to monocular cues offered by 2D technology. Until recently, stereoscopic technology included variations of dual channel video, dual chip-on-the-tip, and shutter mechanism, as well as various 3D displays. Over the past decade a novel 3D endoscopic technology was introduced. This technology used a lenticular array of lenses in front of a single video chip at the distal end of an endoscope to generate a stereoscopic view of the surgical field. Also known as the 'insect eye' technology since it mimics the compound eye of arthropods, this endoscope has reinvigorated the field of 3D endoscopic surgery. Recent developments in 3D endoscopy hold much promise for all surgical subspecialties, particularly endoscopic sinus and skull-base surgery.

  8. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha

    2017-01-01

    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  9. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [and others

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  10. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  11. THREE-DIMENSIONAL ULTRASOUND IN GYNECOLOGIC ONCOLOGY

    Directory of Open Access Journals (Sweden)

    Iztok Takač

    2003-12-01

    Full Text Available Background. Although three-dimensional ultrasound (3D US imaging has been used for a decade, debate continues about its potential clinical aplications in gynecology. The same is true for the field of gynecologic oncology. Also, reports regarding usfulness of 3D US in gynecologic oncology are limited. A few potentially useful clinical applications have been described and some of these are now gaining general acceptance. In this paper, the usfulness of 3D US in the main areas of its application is demonstrated: diagnostics of cervical, endometrial, ovarian and breast cancer.Conclusions. An important advantage of 3D US over conventional two-dimensional imaging is the ability to reconstruct and display any arbitrarily chosen section within the volume dataset as well as ability to measure the volume of pelvic organs regardless of their shape. 3D US also allows the realtime analysis of the acquired image data to be conducted at a later time when the patient is off the examination table.

  12. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  13. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  14. A method for fabricating a three-dimensional carbon structure

    DEFF Research Database (Denmark)

    2017-01-01

    A method for fabricating a three-dimensional carbon structure (4) is disclosed. A mould (1) defining a three-dimensional shape is provided, and natural protein containing fibres are packed in the mould (1) at a predetermined packing density. The packed natural protein containing fibre structure (3......) undergoes pyrolysis, either while still in the mould (1) or after having been removed from the mould (1). Thereby a three-dimensional porous and electrically conducting carbon structure (4) having a three-dimensional shape defined by the three-dimensional shape of the mould (1) and a porosity defined...

  15. Evaluation of local stress for stress corrosion crack initiation by three-dimensional polycrystal model

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kitamura, Takayuki

    2006-01-01

    In order to understand the initiation behavior of microstructurally small cracks in a stress corrosion cracking condition, it is important to know the tensile normal stress acting on the grain boundary (normal G.B. stress). The local stress in a polycrystalline body is greatly influenced by deformation constraint which is caused by anisotropic and/or inhomogeneous property of each grain. In present study, the local normal G.B. stress on bi- and tri-crystal bodies and a three-dimensional polycrystalline body consisting of 100 grains were evaluated by the finite element method under a remote uniform tensile stress condition. The polycrystalline body was generated by using a Monte Carlo procedure and random orientations were assigned to each grain. It was revealed that the local normal G.B. stress on the polycrystalline body is inhomogeneous under uniform applied stress. The stress tends to be large near the triple points due to the deformation constraint caused by adjacent grains, even though the grain boundary inclination to the load axis has large influence. It was also shown that particular high stress was not observed at corners of the polycrystalline body. (author)

  16. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  17. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  18. Measurements using three-dimensional product imaging

    Directory of Open Access Journals (Sweden)

    A. Sioma

    2010-07-01

    Full Text Available This article discusses a method of creating a three-dimensional cast model using vision systems and how that model can be used in thequality assessment process carried out directly on the assembly line. The technology of active vision, consisting in illumination of theobject with a laser beam, was used to create the model. Appropriate configuration of camera position geometry and laser light allows thecollection of height profiles and construction of a 3D model of the product on their basis. The article discusses problems connected with the resolution of the vision system, resolution of the laser beam analysis, and resolution connected with the application of the successive height profiles on sample cast planes. On the basis of the model, measurements allowing assessment of dimension parameters and surface defects of a given cast are presented. On the basis of tests and analyses of such a threedimensional cast model, a range of checks which are possible to conduct using 3D vision systems is indicated.Testing casts using that technology allows rapid assessment of selected parameters. Construction of the product’s model and dimensional assessment take a few seconds, which significantly reduces the duration of checks in the technological process. Depending on the product, a few checks may be carried out simultaneously on the product’s model.The possibility of controlling all outgoing products, and creating and modifying the product parameter control program, makes the solutionhighly flexible, which is confirmed by pilot industrial implementations. The technology will be developed in terms of detection andidentification of surface defects. It is important due to the possibility of using such information for the purposes of selecting technologicalprocess parameters and observing the effect of changes in selected parameters on the cast parameter controlled in a vision system.

  19. Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR).

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Lee, Moo Yul

    2006-12-01

    Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

  20. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.