WorldWideScience

Sample records for three-dimensional anisotropy contrast

  1. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  2. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    International Nuclear Information System (INIS)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin

    1998-01-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  3. Three-dimensional anisotropy contrast MRI and functional MRI of the human brain. Clinical application to assess pyramidal tract in patients with brain tumor and infarction

    International Nuclear Information System (INIS)

    Morikawa, Minoru; Kaminogo, Makio; Ishimaru, Hideki; Nakashima, Kazuaki; Kitagawa, Naoki; Ochi, Makoto; Hayashi, Kuniaki; Shibata, Shobu; Kabasawa, Hiroyuki

    2001-01-01

    We describe and evaluate the findings of three-dimensional anisotropy contrast MR axonography (3DAC MRX) and functional MRI (fMRI) in brain tumor and infarction. We obtained diffusion-weighted images (DWI) in 28 patients including 23 brain tumors and 15 acute infarctions located in or near pyramidal tract. Three anisotropic DWIs were transformed into graduations color-coded as red, green and blue, and then composed to form a combined color 3DAC MRX. We also performed functional MRI in 7 of the 28 patients and compared with cortical mapping of 3DAC MRX. 3DAC MRX with 23 brain tumors showed that the ipsilateral pyramidal tract was either discontinuous due to impaired anisotropy (n=8) or compressed due to mass effect (n=15). In 10 patients of acute infarction with motor impairment, pyramidal tract involvement was visually more conspicuous on 3DAC MRX compared to standard DWI. On functional MRI, hand motor activation was observed between blue vertical directional colors of pre- and post central gyrus. In conclusion, 3DAC MRX is a new noninvasive approach for visualization of the white matter neuronal tract and provides the information concerning pyramidal tract involvement. (author)

  4. Development and anisotropy of three-dimensional turbulence in a current sheet

    International Nuclear Information System (INIS)

    Onofri, M.; Veltri, P.; Malara, F.

    2007-01-01

    The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field

  5. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    Science.gov (United States)

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  6. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  7. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.

    Science.gov (United States)

    Muzikant, A L; Henriquez, C S

    1998-04-01

    A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.

  8. Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Li, Xiu-Yan [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Ru-Zhi; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2015-07-13

    Extending two-dimensional (2D) graphene nanosheets to a three-dimensional (3D) network can enhance the design of all-carbon electronic devices. Based on the great diversity of carbon atomic bonding, we have constructed four superlattice-type carbon allotrope candidates, containing sp{sup 2}-bonding transport channels and sp{sup 3}-bonding insulating layers, using density functional theory. It was demonstrated through systematic simulations that the ultra-thin insulating layer with only three-atom thickness can switch off the tunneling transport and isolate the electronic connection between the adjacent graphene strips, and these alternating perpendicular strips also extend the electron road from 2D to 3D. Designing electronic anisotropy originates from the mutually perpendicular π bonds and the rare partial charge density of the corresponding carriers in insulating layers. Our results indicate the possibility of producing custom-designed 3D all-carbon devices with building blocks of graphene and diamond.

  9. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    Science.gov (United States)

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements

  10. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder

    International Nuclear Information System (INIS)

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-01-01

    Objectives: The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. Methods: A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Results: Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound

  11. Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}.

    Science.gov (United States)

    Thoutam, L R; Wang, Y L; Xiao, Z L; Das, S; Luican-Mayer, A; Divan, R; Crabtree, G W; Kwok, W K

    2015-07-24

    Extremely large magnetoresistance (XMR) was recently discovered in WTe_{2}, triggering extensive research on this material regarding the XMR origin. Since WTe_{2} is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe_{2}: (1) WTe_{2} is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R(H,θ)=R(ϵ_{θ}H) with ϵ_{θ}=(cos^{2}θ+γ^{-2}sin^{2}θ)^{1/2}, θ being the magnetic field angle with respect to the c axis of the crystal and γ being the mass anisotropy and (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe_{2}, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.

  12. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  13. Software-triggered contrast-enhanced three-dimensional MR angiography of the intracranial arteries.

    Science.gov (United States)

    Isoda, H; Takehara, Y; Isogai, S; Takeda, H; Tanaka, T; Takahashi, M; Nozaki, A; Sun, Y

    2000-02-01

    We investigated the effectiveness of software-triggered contrast-enhanced three-dimensional (3D) MR angiography in evaluating intracranial arteries. We studied 38 patients with suspected brain lesions. Imaging was performed using a 1.5-T superconducting MR system with a commercially available head coil. To monitor signal intensity changes we used software to place a tracker volume at the basilar artery or the internal carotid artery. A 20-ml bolus of gadodiamide hydrate was administered through the antecubital vein at a rate of 2-4 ml/sec, followed by a saline flush. Three-dimensional MR angiography using a spoiled gradient-echo sequence with centric K-space ordering was triggered by the arrival of the contrast bolus in the tracker volume. Imaging times ranged from 12 to 20 sec. We used MR images to assess the effectiveness of contrast-enhanced 3D MR angiography in revealing intracranial arteries with minimal venous overlap. The software triggered imaging on the arrival of the contrast bolus in 81.6% of examinations. In 77.6% of examinations, the resulting MR angiograms revealed intracranial arteries with minimal venous overlap. Software-triggered contrast-enhanced 3D MR angiography with centric K-space ordering is a promising technique for viewing intracranial arteries.

  14. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  15. Selective three-dimensional hydrophilization of microstructured polymer surfaces through confined photocatalytic oxidation

    International Nuclear Information System (INIS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2015-01-01

    Graphical abstract: - Highlights: • Microstructured polymer surfaces with selective 3-D anisotropy were created. • Selective UV treatment was performed to alter surface wettability. • Removable meshes resembling a photomask were applied during UV treatment. • Micropatterning by viscous polymer on solid surface was performed. - Abstract: While the conventional photomask technique gives only two-dimensional anisotropies, in this study we fabricated microstructured polymer surfaces with a selective three-dimensional anisotropy. With the applied removable mesh, we were able to confine the contacting area between the surface and photoinitiator and provide three-dimensional wettability anisotropies. Different types of meshes were used depending on the desired micropatterns shape, size and substrate material. The results revealed the three-dimensional anisotropic micropits pattern with depth profiles, which would be applicable for the confinement and patterning of cells and biomolecules. In addition, the proposed method is applicable for creating selectively activated polymer surface as a substrate for further atomic layer deposition. Moreover, we demonstrate a low cost and fast mass productive method for patterning a viscous polymer liquid in a micro-sized scale

  16. Analyzing three-dimensional position of region of interest using an image of contrast media using unilateral X-ray exposure

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Gotou, Hiroshi; Tanooka, Masao

    1994-01-01

    Analyzing three-dimensional internal structure of object in an X-ray study is usually performed by using two or more of the incidents of an X-ray direction. In this report, we analyzed the three-dimensional position of tubes with a phantom by using both contrast media and imaging of one direction in the X-ray study. The concentration of the iodine in contrast media can be known by using the log-subtraction image of only the one-directional incident X-ray. Also the diameter of tube filled with contrast media is calculated by the concentration of iodine. So we can show the three-dimensional position of tubes geometrically, by the diameter of tube and the measured value of the film. We verified this method by an experiment according to the theory. (author)

  17. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    Science.gov (United States)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer

  18. Three dimensional analysis of cosmic ray intensity variation

    International Nuclear Information System (INIS)

    Yasue, Shin-ichi; Mori, Satoru; Nagashima, Kazuo.

    1974-01-01

    Three dimensional analysis of cosmic ray anisotropy and its time variation was performed. This paper describes the analysis of the Forbush decrease in Jan. 1968 to investigate by comparing the direction of the magnetic field in interplanetary space and the direction of the reference axis for cosmic ray anisotropy. New anisotropy becomes dominant at the time of Forbush decrease because the anisotropy of cosmic ray in calm state is wiped out. Such anisotropy produces intensity variation in neutron monitors on the ground. The characteristic parameters of three dimensional anisotropy can be determined from theoretical value and observed intensity. Analyzed data were taken for 6 days from Jan. 25 to Jan. 30, 1968, at Deep River. The decrease of intensity at Deep River was seen for several hours from 11 o'clock (UT), Jan. 26, just before The Forbush decrease. This may be due to the loss cone. The Forbush decrease began at 19 o'clock, Jan. 26, and the main phase continued to 5 o'clock in the next morning. The spectrum of variation was Psup(-0.5). The time variations of the magnetic field in interplanetary space and the reference axis of cosmic ray anisotropy are shown for 15 hours. The average directions of both are almost in coincidence. The spatial distribution of cosmic ray near the earth may be expressed by the superposition of axial symmetrical distribution along a reference axis and its push-out to the direction of 12 o'clock. It is considered that the direction of magnetic force line and the velocity of solar wind correspond to the direction of the reference axis and the magnitude of anisotropy in the direction of 12 o'clock, respectively. (Kato, T.)

  19. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  20. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo

    2015-01-01

    -dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  1. Inflammatory aortic arch syndrome: contrast-enhanced, three-dimensional MR - angiography in stenotic lesions

    International Nuclear Information System (INIS)

    Both, M.; Mueller-Huelsbeck, S.; Biederer, J.; Heller, M.; Reuter, M.

    2004-01-01

    Purpose: To determine the value of contrast-enhanced, three-dimensional MR angiography for the evaluation of stenotic and occlusive vascular lesions in inflammatory aortic arch syndrome. Materials and Methods: 14 patients with inflammatory aortic arch syndrome (giant cell arteritis: n = 8, Takayasu arteritis: n = 4, ankylosing spondylitis: n = 1 sarcoidosis: n = 1) underwent MR angiography of the aortic arch and the supra-aortic vessels (n = 15,2 patients were examined twice) and of the abdominal aorta (n = 2). MRA was performed using a 3D-FLASH sequence (TR/TE 4.6/1.8 ms, flip angle 30 ) on a 1.5T system. MRA imaging was compared with the findings of DSA, which served as gold standard. Results: In a total of 467 examined vascular territories, DSA revealed 50 stenoses and 35 occlusions. All lesions were detected by MRA. In 23 segments, the degree of stenosis was overestimated by MRA. Sensitivity and specificity of MRA were 100% and 94,3%, positive and negative predictive values were 73.6 and 100%, and the accuracy was 95,1%. Conclusions: Despite a tendency to overestimate stenoses, contrast-enhanced three-dimensional MR angiography is a valid, non-invasive technique in the assessment of inflammatory aortic arch syndrome. (orig.) [de

  2. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    Science.gov (United States)

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  3. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    Science.gov (United States)

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  4. Three-dimensional black-blood contrast-enhanced MRI improves detection of intraluminal thrombi in patients with acute ischaemic stroke.

    Science.gov (United States)

    Jang, Won; Kwak, Hyo Sung; Chung, Gyung Ho; Hwang, Seung Bae

    2018-03-19

    This study evaluated the utility of three-dimensional (3D), black-blood (BB), contrast-enhanced, magnetic resonance imaging (MRI) for the detection of intraluminal thrombi in acute stroke patients. Forty-seven patients with acute stroke involving the anterior circulation underwent MRI examination within 6 h of clinical onset. Cerebral angiography was used as the reference standard. In a blinded manner, two neuroradiologists interpreted the following three data sets: (1) diffusion-weighted imaging (DWI) + 3D BB contrast-enhanced MRI; (2) DWI + susceptibility weighted imaging (SWI); (3) DWI + 3D BB contrast-enhanced MRI + SWI. Of these patients, 47 had clots in the middle cerebral artery and four had clots in the anterior cerebral artery. For both observers, the area under the curve (Az) for data sets 1 and 3, which included 3D BB contrast-enhanced MRI, was significantly greater than it was for data set 2, which did not include 3D BB contrast-enhanced MR imaging (observer 1, 0.988 vs 0.904, p = 0.001; observer 2, 0.988 vs 0.894, p = 0.000). Three-dimensional BB contrast-enhanced MRI improves detection of intraluminal thrombi compared to conventional MRI methods in patients with acute ischaemic stroke. • BB contrast-enhanced MRI helps clinicians to assess the intraluminal clot • BB contrast-enhanced MRI improves detection of intraluminal thrombi • BB contrast-enhanced MRI for clot detection has a higher sensitivity.

  5. Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion

    Science.gov (United States)

    Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang

    2018-06-01

    Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.

  6. Evaluation of three-dimensional contrast-enhanced MR angiography in pediatric body vascular lesions

    International Nuclear Information System (INIS)

    Tanaka, Yasunori; Katayama, Hiroshi; Yamamoto, Kazuhiro; Shimizu, Tadafumi; Narabayashi, Isamu

    1998-01-01

    Evaluation of three-dimensional contrast-enhanced MR angiography in the pediatric body vascular lesions. This study examined the usefulness of three-dimensional gadolinium-enhanced magnetic resonance angiography (3D-enhanced MRA) for pediatric body vascular lesions. Fifteen 3D-enhanced MRAs were performed on fourteen pediatric patients aged from one month to fifteen years, using a 3D fast SPGR sequence. Maximum intensity projection (MIP) and multiplanar reconstruction (MPR) images were obtained from the imaging data in all cases, and eleven MIP images were obtained after subtraction of precontrast-enhanced imaging data from postcontrast-enhanced imaging data. In six cases, MIP and MPR images were correlated with cine or digital subtraction angiographies, and the eleven subtracted MIP images were compared with those before subtraction. Clinical usefulness was demonstrated in fourteen (93%) of the fifteen cases, and in seven (64%) of the eleven cases in which subtraction was performed, image quality was improved. In comparison with cine or digital subtraction angiographies, however, only one (17%) MRA was superior. It was considered that 3D-enhanced MRA was useful for pediatric body vascular lesions because of advantages such as lower invasiveness compared with that of conventional angiography, absence of radiation exposure, safety of contrast media, easy availability of MPR images, and short scanning time. In conclusion, if a pediatric body vascular lesion is suspected, 3D-enhanced MRA should be performed before conventional angiography. It also seems that 3D-enhanced MRA may be useful for follow-up. (author)

  7. Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model.

    Science.gov (United States)

    Chauveau, Nicolas; Franceries, Xavier; Doyon, Bernard; Rigaud, Bernard; Morucci, Jean Pierre; Celsis, Pierre

    2004-02-01

    Bone thickness, anisotropy, and inhomogeneity have been reported to induce important variations in electroencephalogram (EEG) scalp potentials. To study this effect, we used an original three-dimensional (3-D) resistor mesh model described in spherical coordinates, consisting of 67,464 elements and 22,105 nodes arranged in 36 different concentric layers. After validation of the model by comparison with the analytic solution, potential variations induced by geometric and electrical skull modifications were investigated at the surface in the dipole plane and along the dipole axis, for several eccentricities and bone thicknesses. The resistor mesh permits one to obtain various configurations, as local modifications are introduced very easily. This has allowed several head models to be designed to study the effects of skull properties (thickness, anisotropy, and heterogeneity) on scalp surface potentials. Results show a decrease of potentials in bone, depending on bone thickness, and a very small decrease through the scalp layer. Nevertheless, similar scalp potentials can be obtained using either a thick scalp layer and a thin skull layer, and vice versa. It is thus important to take into account skull and scalp thicknesses, because the drop of potential in bone depends on both. The use of three different layers for skull instead of one leads to small differences in potential values and patterns. In contrast, the introduction of a hole in the skull highly increases the maximum potential value (by a factor of 11.5 in our case), because of the absence of potential drop in the corresponding volume. The inverse solution without any a priori knowledge indicates that the model with the hole gives the largest errors in both position and dipolar moment. Our results indicate that the resistor mesh model can be used as a robust and user-friendly simulation tool in EEG or event-related potentials. It makes it possible to build up real head models directly from anatomic magnetic

  8. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  9. The diagnostic value of three-dimensional dynamic contrast-enhanced MR angiography for intracranial aneurysms

    International Nuclear Information System (INIS)

    Liu Qi; Lu Jianping; Wang Fei; Wang Li; Tian Jianming; Jin Aiguo; Zeng Hao

    2003-01-01

    Objective: To assess the clinical value of three-dimensional dynamic contrast-enhanced MR angiography (3D DCE-MRA) in the detection for intracranial aneurysm. Methods: 3D DCE-MRA was performed in 54 patients highly suspected with intracranial aneurysms. Then conventional digital subtraction angiography (DSA) and feasible endovascular treatment were performed simultaneously. A three-dimensional fast imaging with steady state precession (3D FISP) was used for 3D DCE-MRA(Gd-DTPA dose, 0.2 mmol per kilogram for body weight; acquisition time, 10 seconds). The source images were subtracted from mask images and transferred to computer workstation. All images were subsequently post-processed using three-dimensional reconstruction. 3D DCE-MRA images and DSA images were compared for demonstration of the aneurysm, its neck, and relationship with parent artery, and the usefulness for endovascular treatment was evaluated. Results: There were 39 cases with 45 intracranial aneurysms. The sensitivity, specificity, and accuracy of 3D DCE-MRA were 96%, 73% and 90%, respectively. Aneurysm and its neck depiction at 3D DCE-MRA was significantly better than that at DSA, especially for aneurysms adjacent to the cavernous sinus and near the PICA of vertebral artery. 3D DEC-MRA could guide neurosurgeons to the desired DSA projection, and helped them make plan for interventional or surgical treatment in advance. But the diagnosis should be very carefully made for small aneurysms located in the periphery and the arterial bifurcation. Conclusion: 3D DEC-MRA is a fast, noninvasive and efficient technique for diagnosing intracranial aneurysms. Its three dimensional information is helpful for DSA demonstration and treatment planning. Any uncertain diagnosis requires DSA confirmation

  10. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  11. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Monte Carlo studies of two-dimensional random-anisotropy magnets

    Science.gov (United States)

    Denholm, D. R.; Sluckin, T. J.

    1993-07-01

    We have carried out a systematic set of Monte Carlo simulations of the Harris-Plischke-Zuckermann lattice model of random magnetic anisotropy on a two-dimensional square lattice, using the classical Metropolis algorithm. We have considered varying temperature T, external magnetic field H (both in the reproducible and irreproducible limits), time scale of the simulation τ in Monte Carlo steps and anisotropy ratio D/J. In the absence of randomness this model reduces to the XY model in two dimensions, which possesses the familiar Kosterlitz-Thouless low-temperature phase with algebraic but no long-range order. In the presence of random anisotropy we find evidence of a low-temperature phase with some disordered features, which might be identified with a spin-glass phase. The low-temperature Kosterlitz-Thouless phase survives at intermediate temperatures for low randomness, but is no longer present for large D/J. We have also studied the high-H approach to perfect order, for which there are theoretical predictions due to Chudnovsky.

  13. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  14. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system

    International Nuclear Information System (INIS)

    He Zhizhu; Liu, Jing

    2010-01-01

    This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.

  16. Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity.

    Science.gov (United States)

    Azéma, Emilien; Radjaï, Farhang; Saint-Cyr, Baptiste; Delenne, Jean-Yves; Sornay, Philippe

    2013-05-01

    We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates. We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity, the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy, as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus revealings the mechanical and geometrical origins of shear strength.

  17. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    Science.gov (United States)

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Magnetic anisotropy of two-dimensional nanostructures: Transition-metal triangular stripes

    International Nuclear Information System (INIS)

    Dorantes-Davila, J.; Villasenor-Gonzalez, P.; Pastor, G.M.

    2005-01-01

    The magnetic anisotropy energy (MAE) of one-dimensional stripes having infinite length and triangular lateral structure are investigated in the framework of a self-consistent tight-binding method. One observes discontinuous changes in the easy magnetization direction along the crossover from one to two dimensions. The MAE oscillates as a function of stripe width and depends strongly on the considered transition metal (TM). The MAE of the two-leg ladder is strongly reduced as compared to that of the monoatomic chain and the convergence to the two-dimensional limit is rather slow

  19. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    Science.gov (United States)

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P wall imaging using a novel ESMA in a large animal model under conditions resembling a clinical setting. Such an approach could be useful for the fast 3-dimensional assessment of the arterial vessel wall in the context of atherosclerosis, aortic aneurysms, and hypertension.

  20. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  1. Lateral variations in upper-mantle seismic anisotropy in the Pacific from inversion of a surface-wave dispersion dataset

    Science.gov (United States)

    Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.

    2017-12-01

    We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.

  2. Anatomic-Based Three-Dimensional Planning Precludes Use of Catheter-Delivered Contrast for Treatment of Prostate Cancer

    International Nuclear Information System (INIS)

    Boersma, Melisa; Swanson, Gregory; Baacke, Diana C.; Eng, Tony

    2008-01-01

    Purpose: Retrograde urethrography is a standard method to identify the prostatic apex during planning for prostate cancer radiotherapy. This is an invasive and uncomfortable procedure. With modern three-dimensional computed tomography planning, we explored whether retrograde urethrography was still necessary to accurately identify the prostatic apex. Methods and Materials: Fifteen patients underwent computed tomography simulation with and without bladder, urethral, and rectal contrast. The prostatic base and apex were identified on both scans, using contrast and anatomy, respectively. The anatomic location of the prostatic apex as defined by these methods was confirmed in another 57 patients with postbrachytherapy imaging. Results: The prostatic base and apex were within a mean of 3.8 mm between the two scans. In every case, the beak of the retrograde urethrogram abutted the line drawn parallel to, and bisecting, the pubic bone on the lateral films. With these anatomic relationships defined, in the postbrachytherapy patients, the distance from the prostatic apex to the point at which the urethra traversed the pelvic floor was an average of 11.7 mm. On lateral films, we found that the urethra exited the pelvis an average of 16.6 mm below the posterior-most fusion of the pubic symphysis. On axial images, this occurred at a mean separation of the ischia of about 25 mm. Conclusion: With a knowledge of the anatomic relationships and modern three-dimensional computed tomography planning equipment, the prostatic apex can be easily and consistently identified, obviating the need to subject patients to retrograde urethrography

  3. Spin waves in two-dimensional ferromagnet with large easy-plane anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Spirin, D.V.

    2002-01-01

    Spin waves in easy-plane two-dimensional ferromagnet when anisotropy is much stronger than exchange are investigated. The spectra of magnons, the spin-spin and quadrupolar correlation functions have been derived. It is shown that in such a system there exist spin waves at low temperatures. Some properties of the quadrupolar ordering in ferromagnets are discussed

  4. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    Science.gov (United States)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  5. Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)_2SbF_6

    International Nuclear Information System (INIS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-01-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (H_c_2) for β-(BDA-TTP)_2SbF_6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, H_c_2 shows twofold symmetry: H_c_2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to H_c_2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of H_c_2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of H_c_2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)_2SbF_6. (author)

  6. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    International Nuclear Information System (INIS)

    Hosoya, T.; Adachi, M.; Sugai, Y.; Yamaguchi, K.; Yamaguchi, K.; Kato, T.

    2001-01-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  7. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, T.; Adachi, M.; Sugai, Y. [Dept. of Radiology, Yamagata University School of Medicine (Japan); Yamaguchi, K.; Yamaguchi, K. [Dept. of Ophthalmology, Yamagata University School of Medicine (Japan); Kato, T. [3. Dept. of Internal Medicine, Yamagata University School of Medicine (Japan)

    2001-04-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  8. Quantum transport of atomic matter waves in anisotropic two-dimensional and three-dimensional disorder

    International Nuclear Information System (INIS)

    Piraud, M; Pezzé, L; Sanchez-Palencia, L

    2013-01-01

    The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)

  9. Usefulness of three-dimensional contrast-enhanced MR angiography in the evaluation of pelvic and lower extremity arteries

    International Nuclear Information System (INIS)

    Kim, Young Kon; Han, Young Min; Lee, Jeong Min

    2002-01-01

    To evaluate the feasibility and clinical usefulness of three-dimensional contrast-enhanced MR angiography (3D-CE-MRA) as a screening test in the evaluation of pelvic and lower extremity arterial diseases. Forty-four patients who underwent 3D-CE-MRA were included in this study. Coronal 3-dimensional gradient-echo, pre-and post contrast image were acquired with a dedicated peripheral vascular coil and moving-bed technique on a 1.5T MR system. Timing of start of data acquisition was determined by MR fluoroscopy technique, and 0.2 mmol/kg Gd-DTPA was injected into an antecubital vein, at a rate of 1cc/sec with an autoinjector. For quantitative analysis, signal to noise ratio (SNR) and artery to soft tissue contrast to noise ratio (CNR) of lower extremities arterial system including lower abdominal aorta were calculated. For qualitative analysis, arterial systems were divided into six segments, and were evaluated in terms of conspicuity of arterial systems and the degree of venous enhancement by three- and four-point scale respectively. In eight patients who underwent both MR angiography and conventional angiography as standard reference. Imaging analysis was done by means of consensus between two experienced radiologists. The mean time for the examination was about 15 min (± 5 min). The mean SNR of arterial system was 26.5±11.6, and mean artery to soft tissue contrast to noise ratio (CNR) was 24.6±11.2. Among the total 525 arterial segments 498 arterial segments (94.5%) could be demonstrated with good delineation of entire arterial tree. Good arterial imaging without or with minimal venous enhancement were demonstrated in 98.5% (260/264) in above knee and 89% (211/261) in below knee (p<0.01). Ten of 525 segments (1.9%) demonstrated severe venous overlapping and it mostly occurred in the calf region. In comparison with DSA, the sensitivity and the specificity for MR angiography for the detection of occlusions were 96% and 98.8%, respectively, and for the detection of

  10. Slow clearance gadolinium-based extracellular and intravascular contrast media for three-dimensional MR angiography.

    Science.gov (United States)

    Bremerich, J; Colet, J M; Giovenzana, G B; Aime, S; Scheffler, K; Laurent, S; Bongartz, G; Muller, R N

    2001-04-01

    The objective of this study was to assess two new slow-clearance contrast media with extracellular and intravascular distribution for magnetic resonance angiography (MRA). Extracellular Gd-DTPA-BC(2)glucA and intravascular Gd(DO3A)(3)-lys(16) were developed within the European Biomed2 MACE Program and compared with two reference compounds, intravascular CMD-A2-Gd-DOTA and extracellular GdDOTA, in 12 rats. Pre- and post-contrast three-dimensional MR (TR/TE = 5 msec/2.2 msec; isotropic voxel size 0.86 mm(3)) was acquired for 2 hours. Signal-to-noise enhancement (DeltaSNR) was calculated. Two minutes after injection, all contrast media provided strong vascular signal enhancement. The DeltaSNR for Gd-DTPA-BC(2)glucA, Gd(DO3A)(3)-lys(16), CMD-A2-Gd-DOTA, and GdDOTA were 13.0 +/- 1.8, 25.0 +/- 3.2, 25.0 +/- 4.0, and 18.0 +/- 3.4, respectively. Gd-DTPA-BC(2)glucA, Gd(DO3A)(3)-lys(16), and CMD-A2-Gd-DOTA cleared slowly from the circulation, whereas GdDOTA cleared rapidly. Vascular DeltaSNR at 2 hours were 2.9 +/- 0.6, 25.0 +/- 3.2, 25.0 +/- 4.0, and 0.4 +/- 1.0. Gd(DO3A)(3)-lys(16) provided strong vascular and minor background enhancement, and thus may be useful for MRA or perfusion imaging. Gd-DTPA-BC(2)glucA produces persistent enhancement of extracellular water, and thus may allow quantification of extracellular distribution volume and assessment of myocardial viability.

  11. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    International Nuclear Information System (INIS)

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution

  12. Chondromalacia of the knee: evaluation with a fat-suppression three-dimensional SPGR imaging after intravenous contrast injection.

    Science.gov (United States)

    Suh, J S; Cho, J H; Shin, K H; Kim, S J

    1996-01-01

    Twenty-one MRI studies with a fat-suppression three-dimensional spoiled gradient-recalled echo in a steady state (3D SPGR) pulse sequence after intravenous contrast injection were evaluated to assess the accuracy in depicting chondromalacia of the knee. On the basis of MR images, chondromalacia and its grade were determined in each of five articular cartilage regions (total, 105 regions) and then the results were compared to arthroscopic findings. The sensitivity, specificity, and accuracy of MRI were 70%, 99%, and 93%, respectively. MR images depicted 7 of 11 lesions of arthroscopic grade 1 or 2 chondromalacia, and seven of nine lesions of arthroscopic grade 3 or 4 chondromalacia. The cartilage abnormalities in all cases appeared as focal lesions with high signal intensity. Intravenous contrast-injection, fat-suppression 3D SPGR imaging showed high specificity in excluding cartilage abnormalities and may be considered as an alternative to intra-articular MR arthrography when chondromalacia is suspected.

  13. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  14. Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films

    Science.gov (United States)

    Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi

    2018-05-01

    Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.

  15. Eigenmodes of three-dimensional spherical spaces and their application to cosmology

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Weeks, Jeffrey; Uzan, Jean-Philippe; Gausmann, Evelise; Luminet, Jean-Pierre

    2002-01-01

    This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity

  16. Eigenmodes of three-dimensional spherical spaces and their application to cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Roland [CE-Saclay, DSM/DAPNIA/Service d' Astrophysique, F-91191 Gif sur Yvette (France); Weeks, Jeffrey [15 Farmer St, Canton, NY 13617-1120 (United States); Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris (France); Gausmann, Evelise [Instituto de Fisica Teorica, Rua Pamplona, 145 Bela Vista - Sao Paulo - SP, CEP 01405-900 (Brazil); Luminet, Jean-Pierre [Laboratoire Univers et Theories, CNRS-FRE 2462, Observatoire de Paris, F-92195 Meudon (France)

    2002-09-21

    This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity.

  17. Contrast-enhanced three-dimensional magnetic resonance angiography of the aorta and its branches. Clinical applications for a new angiographic technique

    International Nuclear Information System (INIS)

    Dolz, J. L.; Vilanova, J. C.; Huguet, M.; Delgado, E.; Baquero, M.; Blanch, A.; Aldoma, J.; Capdevila, A.

    1999-01-01

    Magnetic resonance angiography (MRA) for the study of the aorta has developed at an impressive rate in recent years. It is now possible to evaluate the aorta and its branches by means of magnetic resonance (MR) following administration via peripheral vein of a paramagnetic contrast agent. The approach is similar to that of conventional arteriography, but without the risk associated with iodinated contrast media or invasive arterial catheterization. The technique involves the use of a sequence of ultrafast three-dimensional gradient-echo pulses acquired during apnea. This process enables angiographic or volumetric visualization in the desired plane. The objective of the present report is to describe the technique and demonstrate its many clinical applications. (Author) 23 refs

  18. Nematic order on the surface of a three-dimensional topological insulator

    Science.gov (United States)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  19. CFT description of three-dimensional Kerr-de Sitter spacetime

    International Nuclear Information System (INIS)

    Fjelstad, Jens; Hwang, Stephen; Maansson, Teresia

    2002-01-01

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space

  20. CFT description of three-dimensional Kerr-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se; Maansson, Teresia E-mail: teresia@physto.se

    2002-10-07

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space.

  1. A simulation study of enhancement duration in three-dimensional contrast-enhanced MR angiography

    International Nuclear Information System (INIS)

    Ohkubo, Masaki; Ohgoshi, Yukio; Inoue, Tomoko; Naito, Kenichi; Suzuki, Kiyotaka

    2001-01-01

    In our study on three-dimensional (3D) contrast-enhanced MR angiography we performed a computer simulation to investigate quantitative vessel visibility. In the simulation, we evaluated the relative loss of signal intensity in a vessel due to shortened duration of contrast-enhancement. The mid-point of enhancement-duration was assumed to be at the point in which the data in the center of k-space (k y axis) was acquired. Signal intensity of a vessel decreased as the enhancement-duration was shortened and the diameter of the vessel was decreased. When the duration was shortened 40%, the signal intensity of a vessel in which the diameter was more than 2 pixels was preserved by approximately 70% or more. This suggests that the vessel visibility is high. When the duration was shortened 20%, the signal intensity of a vessel in which the diameter was less than 2 pixels decreased to less than approximately 40% or less. The simulation was confirmed by using 3D MR angiography with a tube phantom filled with Gd-DTPA to simulate a vessel model. At anytime during data acquisition, we could set the phantom on the region being scanned or take it out by using the ''pause'' function of the MR scanner. This made it possible to change the enhancement-duration to match the simulation. Results of the phantom study were comparable to those of the simulation, suggesting that the simulation was valid. Our results and simple techniques for both the simulation and the phantom study using the ''pause'' function, were considered useful in the study of 3D MR angiography. (author)

  2. An orientation-space super sampling technique for six-dimensional diffraction contrast tomography

    NARCIS (Netherlands)

    N.R. Viganò (Nicola); K.J. Batenburg (Joost); W. Ludwig (Wolfgang)

    2016-01-01

    textabstractDiffraction contrast tomography (DCT) is an X-ray full-field imaging technique that allows for the non-destructive three-dimensional investigation of polycrystalline materials and the determination of the physical and morphological properties of their crystallographic domains, called

  3. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    International Nuclear Information System (INIS)

    Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan

    2012-01-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 ½ times higher than that measured by the three-dimensional gravity gradient V ij . Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10 −12 /s 2 , the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%–40% on average compared with that using the radial gravity gradient V zz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 −13 /s 2 −10 −15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field

  4. Advanced imaging of the musculoskeletal system: Standard, three-dimensional, and contrast-enhanced CT and MR imaging, and quantitative bone densitometry

    International Nuclear Information System (INIS)

    Resnick, D.; Sartoris, D.J.

    1987-01-01

    This course reviews the application of advanced imaging techniques to a broad spectrum of musculoskeletal disorders. The indications for and utility of standard CT in both the axial and the appendicular skeleton is explored. The combined use of CT with air and contrast arthrography at sites including the hip, knee, and shoulder is discussed. A summary of the proved and potential applications of MR imaging in osseous, articular, bone marrow, and soft-tissue disorders is provided. The utility of intraarticular contrast agents in enhancing the diagnostic capabilities of MR imaging for disorders of hyaline cartilage and and fibrocartilage is demonstrated. The advantages of multiplanar reformation and three-dimensional image reconstruction of cross-sectional imaging data are described in conjunction with the fundamental technological principles of these strategies. Accepted methods as well as investigative techniques for the diagnosis and follow-up of metabolic bone disease are contrasted with regard to relative indications, advantages, and limitations

  5. Growth and Development of Three-Dimensional Plant Form.

    Science.gov (United States)

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Some thoughts on the Musala anisotropy; pitch angle distribution or what else

    International Nuclear Information System (INIS)

    Kota, J.; Somogyi, A.J.

    1977-01-01

    Based on the results obtained in the Musala experiment and in other anisotropy measurements, an attempt is made to explore the three-dimensional structure of cosmic ray anisotropy in the 10 11 - 107M1 4 eV range. (i) It is investigated whether observtions can be reconcilied with a pitch angle distribution. (ii) Assuming that the principal axes of the tensor anisotropy are known, the vector and tensor anisotropies are separated. Discussed are the theoretical implications of the results obtained and possible origins of the second harmonic. (author)

  7. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  8. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    Science.gov (United States)

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D

  9. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  10. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  11. Three-dimensional MR imaging of the cerebrospinal system with the RARE technique

    International Nuclear Information System (INIS)

    Hennig, J.; Ott, D.; Ylayasski, J.

    1987-01-01

    Three-dimensional RARE myelography is a fast technique for high-resolution imaging of the cerebrospinal fluid. A data set with 1 x 1 x 1-mm resolution can be generated with a 12-minute acquisition time. Sophisticated three-dimensional display algorithms allow reconstruction of planes at arbitrary angles and full three-dimensional displays, which yield extremely useful information for neurosurgical planning. Additionally, the injection of contrast agent can be simulated on the computer and communication pathways between structures of interest can be found noninvasively

  12. Evidence for nanoscale two-dimensional Co clusters in CoPt{sub 3} films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J O [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Newville, M [Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Maranville, B B; Hellman, F [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Bordel, C [Department of Physics, University of California at Berkeley, CA 94720 (United States); Harris, V G, E-mail: cbordel@berkeley.ed [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2010-04-14

    The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt{sub 3} alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt{sub 3} films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt{sub 3} alloy films, and establish a length scale on the order of 10 A for the Co clusters.

  13. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  14. Three-dimensional rendering of otolith growth using phase contrast synchrotron tomography.

    Science.gov (United States)

    Mapp, J J I; Fisher, M H; Atwood, R C; Bell, G D; Greco, M K; Songer, S; Hunter, E

    2016-05-01

    A three-dimensional computer reconstruction of a plaice Pleuronectes platessa otolith is presented from data acquired by the Diamond Light synchrotron, beamline I12, X-ray source, a high energy (53-150 keV) source particularly well suited to the study of dense objects. The data allowed non-destructive rendering of otolith structure, and for the first time allows otolith annuli (internal ring structures) to be analysed in X-ray tomographic images. © 2016 The Fisheries Society of the British Isles.

  15. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  16. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  17. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    Science.gov (United States)

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  18. The evaluation of three-dimensional dynamic contrast enhanced MR angiography in portal hypertension

    International Nuclear Information System (INIS)

    Wu Zhuo; Liang Biling; Liu Qingyu; Zhong Jinglian; Ye Ruixin; Ling Yunbiao; Ou Qingjia

    2006-01-01

    Objective: To evaluate the techniques of three-dimensional dynamic contrast enhanced MR angiography (3D DCE MRA)with normative timing of sequences, enhancive 3D slab thickness and subtraction in portosystemic collaterals. Methods: Before April 2003, 12 patients were performed with 75-90 mm of 3D slab thickness and 3-5 repeated sequences estimated by breath, after April 2003, 18 patients were performed with 150-180 mm of 3D slab thickness and 5 normative repeated sequences respectively at 0, 20, 40, 60 and 90 s. After subtracting selective arterial phase images from subsequent portal venous phase images, two radiologists assessed visualization of portal collaterals independently with a four - point scale for ranking of image quality in maximum intensity projection (MIP) images with and without subtraction. Results: Average scores for image quality in visualization of the portal vein with subtraction were significantly depressed compared with the scores without subtraction (2.53±0.49 versus 2.74±0.31, P<0.05). However, subtraction three dimension-maximum intensity projection (3D-MIP) gave superior visualization of portal collaterals compared with non-subtraction 3D-MIP(2.58±0.30 versus 1.63±0.50). A statistically significant difference (P<0.01) was found between the two groups of esophageal varices. Most of portosystemic shunts demonstrated in the same time as the portal vein at about 20s, but some of collaterals demonstrated in delay time. Conclusion: Subtraction 3D-MIP demonstrates portosystemic collaterals more clearly than non-subtraction; normative timing of sequences ensure against omitting varices displayed late, 3 D slab thickness provides details about paraumbilical vein and retroperitoneal collaterals. (authors)

  19. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  20. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  1. Three-dimensional temperature field model of thermally decomposing resin composite irradiated by laser

    International Nuclear Information System (INIS)

    Chen Minsun; Jiang Houman; Liu Zejin

    2011-01-01

    Fundamental equations governing the temperature field of thermally decomposing resin composite irradiated by laser are derived from mass and energy conservation laws with the control Janume method. The thermal decomposition of resin is described by a multi-step model. An assumption is proposed that the flow of pyrolysis gas is one-dimensional, which makes it possible to consider the influence of pyrolysis gas convective transport and realize the closure of the three-dimensional model without introducing mechanical quantities. In view of the anisotropy of resin composite, expressions of the thermal conductivities of partially pyrolyzed material are deduced, as well as the computing formula for the laser absorption coefficient of partially pyrolyzed material. The energy conservation equation is consistent with reference under some simplifications. (authors)

  2. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  3. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  4. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  5. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  6. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

    Science.gov (United States)

    Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng

    2018-06-01

    Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

  7. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  8. Contrast agent comparison for three-dimensional micro-CT angiography: A cadaveric study.

    Science.gov (United States)

    Kingston, Mitchell J; Perriman, Diana M; Neeman, Teresa; Smith, Paul N; Webb, Alexandra L

    2016-07-01

    Barium sulfate and lead oxide contrast media are frequently used for cadaver-based angiography studies. These contrast media have not previously been compared to determine which is optimal for the visualisation and measurement of blood vessels. In this study, the lower limb vessels of 16 embalmed Wistar rats, and four sets of cannulae of known diameter, were injected with one of three different contrast agents (barium sulfate and resin, barium sulfate and gelatin, and lead oxide combined with milk powder). All were then scanned using micro-computed tomography (CT) angiography and 3-D reconstructions generated. The number of branching generations of the rat lower limb vessels were counted and compared between the contrast agents using ANOVA. The diameter of the contrast-filled cannulae, were measured and used to calculate the accuracy of the measurements by comparing the bias and variance of the estimates. Intra- and inter-observer reliability were calculated using intra-class correlation coefficients. There was no significant difference (mean difference [MD] 0.05; MD 95% confidence interval [CI] -0.83 to 0.93) between the number of branching generations for barium sulfate-resin and lead oxide-milk powder. Barium sulfate-resin demonstrated less bias and less variance of the estimates (MD 0.03; standard deviation [SD] 1.96 mm) compared to lead oxide-milk powder (MD 0.11; SD 1.96 mm) for measurements of contrast-filled cannulae scanned at high resolution. Barium sulfate-resin proved to be more accurate than lead oxide-milk powder for high resolution micro-CT scans and is preferred due to its non-toxicity. This technique could be applied to any embalmed specimen model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Horizontal biases in rats’ use of three-dimensional space

    Science.gov (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  10. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  11. Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-10-01

    Full Text Available Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique without assuming the validity of Taylor's frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasi-two-dimensional power. However, the dominance of two-dimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra.

  12. Three-dimensional CT and MR imaging in congenital dislocation of the hip: Technical considerations

    International Nuclear Information System (INIS)

    Lang, P.; Steiger, P.; Lindquist, T.; Skinner, S.; Moore, S.; Chafetz, N.I.; Genant, H.K.

    1987-01-01

    Two-dimensional (2D) software techniques were developed to generate diagnostic-quality three-dimensional (3D) MR studies in two patients with congenital dislocation of the hip. Comparable 3D CT studies were obtained in two other patients. Unsharp masks were divided into the original MR images to correct for local variations in signal intensity. Combinations of first- and second-echo images improved the object contrast. Pixels with insufficient homogeneity relative to their neighboring data were excluded. CT did not require 2D preprocessing. Three-dimensional CT and MR images demonstrated subluxation and dislocation. 3D MR, in contrast to CT, demonstrated the cartilaginous femoral head. The described 2D MR preprocessing provides diagnostic-quality 3D MR studies. It will be useful for generating 3D MR images of other anatomic structures

  13. Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model

    Energy Technology Data Exchange (ETDEWEB)

    Wei Lei [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Lin Xin, E-mail: xlin@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Wang Meng; Huang Weidong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2012-07-01

    A three-dimensional (3-D) adaptive mesh refinement (AMR) cellular automata (CA) model is developed to simulate the equiaxed dendritic growth of pure substance. In order to reduce the mesh induced anisotropy by CA capture rules, a limited neighbor solid fraction (LNSF) method is presented. It is shown that the LNSF method reduced the mesh induced anisotropy based on the simulated morphologies for isotropic interface free energy. An expansion description using two interface free energy anisotropy parameters ({epsilon}{sub 1}, {epsilon}{sub 2}) is used in the present 3-D CA model. It is illustrated by present 3-D CA model that the positive {epsilon}{sub 1} favors the dendritic growth with the Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket preferred directions, and negative {epsilon}{sub 2} favors dendritic growth with the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket preferred directions, which has a good agreement with the prediction of the spherical plot of the inverse of the interfacial stiffness. The dendritic growths with the orientation selection between Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket are also discussed using the different {epsilon}{sub 1} with {epsilon}{sub 2}=-0.02. It is found that the simulated morphologies by present CA model are as expected from the minimum stiffness criterion.

  14. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  15. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Kim, Chong Soo; Lee, Jeong Min

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  16. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Lee, Jeong Min; Kim, Chong Soo

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal masses. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal system on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASH than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASH imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of a renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  17. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Hwan; Kim, Chong Soo [Chonbuk National University Hospita, Chungju (Korea, Republic of); Lee, Jeong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  18. Technique for arterial-phase contrast-enhanced three-dimensional MR angiography of the carotid and vertebral arteries.

    Science.gov (United States)

    Isoda, H; Takehara, Y; Isogai, S; Takeda, H; Kaneko, M; Nozaki, A; Sun, Y; Foo, T K

    1998-08-01

    Our goal was to evaluate whether contrast-enhanced three-dimensional MR angiography using the MR Smartprep technique would enable us to obtain arterial-phase MR angiograms of the carotid and vertebral arteries. The study included 35 patients with suspected lesions of the neck in whom the MR Smartprep technique was used for MR angiography performed with a 1.5-T superconducting system. The tracker volume was placed primarily in the middle part of the right common carotid artery. The imaging volume was placed in a coronal direction to include the carotid and vertebral arteries from the aortic arch to the skull base. A centric phase-ordering scheme was used. Imaging times were 20 to 38 seconds for 14 patients and 11 to 16 seconds for 21 patients. By using a smaller tracker volume and an imaging time of less than 16 seconds, we were able to achieve a 100% successful triggering rate and to delineate selectively arterial-phase carotid and vertebral arteries with almost no venous contamination. Contract-enhanced 3-D MR angiography with the MR Smartprep technique was useful for showing arterial-phase carotid and vertebral arteries selectively.

  19. Moessbauer study on a two-dimensional random mixture with competing spin anisotropies K2Ni1-xFexF4

    International Nuclear Information System (INIS)

    Ito, A.; Anma, T.

    1987-01-01

    Moessbauer measurements have been made on a two-dimensional (2D) random mixture K 2 Ni 1-x Fe x F 4 with competing spin anisotropies. The concentration versus temperature phase diagram predicted by Oguchi and Ishikawa for mixed systems with competition between orthorhombic anisotropies has been shown to exist in K 2 Ni 1-x Fe x Fe 4 . The coexistence of two kinds of Moessbauer spectra is seen in the transition regions, and is believed to be an intrinsic property of this system. (orig.)

  20. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  1. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    Science.gov (United States)

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  2. Evaluation of three-dimensional gadolinium-enhanced MR angiography using the timing monitoring function of contrast material (Smart Prep technique)

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Sasaki, Sadayuki; Yoshizawa, Satoshi; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi

    1998-01-01

    The Smart Prep technique for gadolinium-enhanced three-dimensional MR angiography (3D-MRA) was evaluated in clinical practice. By monitoring signal intensity in the region of interest (tracking volume) in the target vessel, start timing after contrast injection can be optimized using the Smart Prep technique. Successful triggering was obtained in the chest, abdomen, and pelvic areas in about 80% of the cases in this study. Failures with this technique were mainly due to changes in tracking volume caused by patient motion and respiration. We noted that the scan started earlier than expected in the thoracic aorta when part of the heart or pulmonary artery was included in the tracking volume. Thus, care must be taken in defining the size and location of the tracking volume in gadolinium-enhanced 3D-MRA using the Smart Prep technique. (author)

  3. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  4. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  5. Effect of Anisotropy Structure on Plume Entropy and Reactive Mixing in Helical Flows

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Lu, Chunhui

    2018-01-01

    Plume dilution and reactive mixing can be considerably enhanced by helical flows occurring in three-dimensional anisotropic porous media. In this study, we perform conservative and reactive transport simulations considering different anisotropy structures of a single inclusion with the objective...... of exploring the effect of the inclusion’s geometry and orientation on the patterns of twisted streamlines and on the overall dilution and reaction of solute plumes. We analyzed 100 different scenarios by varying key parameters such as the angle of the anisotropic structures with respect to the average flow...... velocity, the spacing between alternated heterogeneous zones of coarse and fine materials, the permeability contrast between such matrices, and the magnitude of the seepage velocity. Entropy conservation equations and entropy-based metrics for both conservative and reactive species were adopted to quantify...

  6. An exactly solvable three-dimensional nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Morris, J. R.

    2013-01-01

    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states

  7. An exactly solvable three-dimensional nonlinear quantum oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Morris, J. R. [Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2013-11-15

    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.

  8. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  9. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  10. Three-dimensional helical (spiral) CT angiography. Visualization of vessels in the maxillofacial regions

    International Nuclear Information System (INIS)

    Hanawa, Shigeo; Sakamoto, Hidetomo; Mori, Shin-ichiro; Kagawa, Toyohiro; Seze, Ryosuke; Ishioka, Hisakazu; Tashiro, Himiko; Ogawa, Kazuhisa; Wada, Tadako

    1998-01-01

    Authors performed the contrast helical CT for tumors on the maxillofacial regions, and reconstituted these data into the three-dimensional helical (spiral) CT angiography (CTA). Furthermore the conditions of photographing and the clinical significance of CTA were discussed. The subjects were 24 cases (including 13 of malignant tumors, 4 of benign tumors, 4 of inflammation and 3 of malformations), to which the contrast helical CT was performed transvenously. The photographing condition was set in principal to 140 kV of the tube voltage, 160 (200) mA of the tube current, 3 mm of the X-ray beam width, 3 mm/sec (pitch=1) of the turn-table moving speed. The relationship between the beam width and the pitch was determined by the phantom experiments. The scanning was carried out maximally for continuous 60 sec as the scanning time of a turn/sec. Of all cases, CTA visualized three-dimensionally vessels, but it was hard in the total carotid arteries and the internal-external carotid arteries. Authors analyzed the axial and the multiplanar reconstitution (MPR) images as the two-dimensional display, and the surface rendering (SR), the volume rendering and the maximum intensity projections (MIP) as the three-dimensional display. The axial and MPR image of the facial arteries and the lingual arteries as the branched vessels from the external carotid arteries were recognized easily. By SR, it was easily to understand the anatomical relationship among vessels, gnathic bone and cervical vertebrae, and by MIP sufficiently observe the concentration dependent calcification of the vessel walls. Three-dimensional CTA is very useful to get the three-dimensional visual information about the anatomical structures of the maxillofacial regions which is necessary for oral surgeons to plan the pre-operational strategies. (K.H.)

  11. Effects of three-dimensional and color patterns on nest location and progeny mortality in alfalfa leafcutting bee (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Guédot, Christelle; Bosch, Jordi; James, Rosalind R; Kemp, William P

    2006-06-01

    ABSTRACT In alfalfa, Medicago sativa L., seed production where high bee densities are released, alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae), females may enter several nesting holes before locating their nests. Such levels of "wrong hole" visits lead to an increase in the time spent by females locating their own nests, thereby decreasing alfalfa pollination efficiency and possibly healthy brood production. The objectives of this study were to determine the effect of different nesting board configurations in commercial alfalfa leafcutting bee shelters (separating nesting boards, applying a three-dimensional pattern to the boards, applying a color contrast pattern, or applying a combination of three-dimensional and color contrast patterns) on nest location performance, on the incidence of chalkbrood disease, and on the incidence of broodless provisions. Separating the nesting boards inside shelters improved the ability of females to locate their nests. An increase in nest location performance also occurred in boards with the three-dimensional pattern and the combined three-dimensional and color contrast pattern, compared with the uniform board (a standard configuration currently used commercially). The percentage of provisioned cells that were broodless was not statistically different between treatments, but the percentage of larvae infected with chalkbrood decreased by half in the three-dimensional board design, compared with the uniform board.

  12. Three-dimensional display of the heart, aorta, lungs, and airway using CT

    International Nuclear Information System (INIS)

    Fram, E.K.; Godwin, J.D.; Putman, C.E.

    1982-01-01

    In previous studies of human anatomy, three-dimensional display of CT data has required laborious manual boundary tracking, except for high-contrast structures such as the spine. Automated boundary tracking techniques have been extended so that they can function well for both high-contrast and soft-tissue interfaces. These methods have been applied to the in vivo study of human lungs, heart, aorta, and larynx in this paper

  13. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  14. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  15. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    Science.gov (United States)

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  16. Shape Recognition Inputs to Figure-Ground Organization in Three-Dimensional Displays.

    Science.gov (United States)

    Peterson, Mary A.; Gibson, Bradley S.

    1993-01-01

    Three experiments with 29 college students and 8 members of a university community demonstrate that shape recognition processes influence perceived figure-ground relationships in 3-dimensional displays when the edge between 2 potential figural regions is both a luminance contrast edge and a disparity edge. Implications for shape recognition and…

  17. Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent

    KAUST Repository

    Desmal, Abdulla

    2016-11-02

    An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between measurements and scattered fields (which are expressed as a nonlinear function of the contrast) is constrained by the contrast\\'s first norm. The resulting minimization problem is solved using nonlinear Landweber iterations accelerated using a steepest descent algorithm. A projection operator is applied at every iteration to enforce the sparsity constraint by thresholding the result of that iteration. Steepest descent algorithm ensures accelerated and convergent solution by utilizing larger iteration steps selected based on a necessary B-condition.

  18. Visualization of femtosecond laser-induced stress anisotropy in amorphous and crystalline materials

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2015-01-01

    Full Text Available In recent years, micro manufacturing with femtosecond lasers has received considerable attention as an efficient technique for producing three-dimensional devices, combining multiple functionalities in a single monolithic substrate. In this manufacturing process, stress-anisotropy resulting from non-ablative laser exposure can have both positive and negative effects on the process out-come. In this work, we present a simple method for visualizing stress anisotropy, combining highly symmetric laser-written patterns with polarization microscopy, as a tool for identifying the various anisotropic contributions to the laser fabrication process.

  19. Three-dimensional superconductivity and vortex glass transition in La1.87Y0.13CuO4

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Kim, Heon-Jung; Kim, Hyun-Jung; Jung, Myung-Hwa; Jo, Younghun; Lee, Sung-Ik; Tsukada, Akio; Naito, Michio

    2006-01-01

    The angular dependence of the critical current density (J c (θ)) and the vortex glass transition temperature (T g (θ)) in La 1.87 Y 0.13 CuO 4 were measured at different fields and temperatures. Both J c (θ) and T g (θ) showed a strong angular variation, which is typical for anisotropic superconductors. The angular variation could be described by using the anisotropic three-dimensional Ginzburg-Landau theory. From our analysis, we were able to estimate the anisotropy ratio

  20. Evolution of substorm and quiet-time electron anisotropies (30 less than or equal to E/sub e/ less than or equal to 300 keV)

    International Nuclear Information System (INIS)

    Higbie, P.R.; Baker, D.N.; Belian, R.D.; Hones, E.W. Jr.

    1979-01-01

    Work using the Charged Particle Analyzer (CPA) instruments aboard spacecraft 1976-059A and 1977-007A in synchronous orbit has shown that approx. 30 keV electron anisotropies may act as a sensitive indicator of the buildup of stresses in the outer magnetosphere. The development of such stresses is evidenced in the premidnight sector by the formation of field-aligned (cigar) anisotropies in the 30 keV electrons one to two hours prior to the onset of the expansion phase of the substorm. Using the complete three-dimensional pitch angle measurement capability of the CPA, it is shown in a movie format the detailed development of electron anisotropies during the course of substorm growth, expansion, and recovery phases. In contrast, detailed examples of quiet-time behavior of electron anisotropies at several energy levels between 30 and 300 keV are also shown. Such periods with no substorm activity show that 30 keV electrons remain approx. isotropic (outside the loss cone) throughout the nighttime sector, even though the higher energy (> 100 keV) electrons show the development of cigar anisotropies associated with normal drift-shell splitting. These results emphasize the substorm predictive capabilities of the low energy electron anisotropies and illustrate how the data might be used in a real-time monitoring mode. 19 references

  1. Aortoiliac stenooculusive disease and aneurysms. Screening with non-contrast enhanced two-dimensional cardiac gated cine phase contrast MR angiography with multiple velocity encoded values and cardiac gated two-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Kato, Katsuhiko

    2001-01-01

    To evaluate the performance of two-dimensional cine phase contrast MRA with multi-velocity encoded values (multi-VENC cine PC) and ECG-gated two-dimensional time-of-flight MRA (ECG-2D-TOF) for the detection of stenoocclusive lesions and aneurysms in the aortoiliac area, when each method was used individually and when the two methods were used together. Forty-one patients were included in this study. Multi-VENC cine PC and ECG-2D-TOF were obtained first, then contrast enhanced three-dimensional magnetic resonance angiography (CE-3D-MRA) was performed as the standard of reference. Two observers reviewed the images separately without knowledge of patients' symptoms or histories. Sensitivities and specificities were obtained separately for stenooclusive lesions and aneurysms by two reviewers. When the two methods were applied together, high sensitivities (93.0 by observer 1 and 91.9% by observer 2) and adequate specificities (87.6 and 82.3%) were obtained for stenoocclusive lesions. For aneurysms, moderate to high sensitivities (91.1 and 71.1%) and high specificities (98.8 and 99.4%) were obtained. These results suggest that the performance of two non-contrast enhanced MRA techniques may be valuable as a screening tool when the two methods are applied together. (author)

  2. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  3. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  4. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang

    2016-05-01

    New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.

  5. Fully three-dimensional image reconstruction in radiology and nuclear medicine. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The proceedings of the meeting on ''fully three-dimensional image reconstruction in radiology and nuclear medicine'' covers contributions on the following topics: CT imaging, PET imaging, fidelity; iterative and few-view CT, CT-analytical; PET/SPECT Compton analytical; doses - spectral methods; phase contrast; compressed sensing- sparse reconstruction; special issues; motion - cardiac.

  6. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  7. Seismic and mechanical anisotropy and the past and present deformation of the Australian lithosphere

    NARCIS (Netherlands)

    Simons, Frederik J.; Hilst, R.D. van der

    2003-01-01

    We interpret the three-dimensional seismic wave-speed structure of the Australian upper mantle by comparing its azimuthal anisotropy to estimates of past and present lithospheric deformation. We infer the fossil strain field from the orientation of gravity anomalies relative to topography,

  8. Mössbauer study on a two-dimensional random mixture with competing spin anisotropies K2Ni1- x Fe x F4

    Science.gov (United States)

    Ito, A.; Anma, T.

    1987-03-01

    Mössbauer measurements have been made on a two-dimensional (2D) random mixture K2Ni1- x Fe x F4 with competing spin anisotropies. The concentration versus temperature phase diagram predicted by Oguchi and Ishikawa for mixed systems with competition between orthorhombic anisotropies has been shown to exist in K2Ni1- x Fe x F4. The coexistence of two kinds of Mössbauer spectra is seen in the transition regions, and is believed to be an intrinsic property of this system.

  9. Three-dimensional visualization of the microvasculature of bile duct ligation-induced liver fibrosis in rats by x-ray phase-contrast imaging computed tomography

    Science.gov (United States)

    Xuan, Ruijiao; Zhao, Xinyan; Hu, Doudou; Jian, Jianbo; Wang, Tailing; Hu, Chunhong

    2015-07-01

    X-ray phase-contrast imaging (PCI) can substantially enhance contrast, and is particularly useful in differentiating biological soft tissues with small density differences. Combined with computed tomography (CT), PCI-CT enables the acquisition of accurate microstructures inside biological samples. In this study, liver microvasculature was visualized without contrast agents in vitro with PCI-CT using liver fibrosis samples induced by bile duct ligation (BDL) in rats. The histological section examination confirmed the correspondence of CT images with the microvascular morphology of the samples. By means of the PCI-CT and three-dimensional (3D) visualization technique, 3D microvascular structures in samples from different stages of liver fibrosis were clearly revealed. Different types of blood vessels, including portal veins and hepatic veins, in addition to ductular proliferation and bile ducts, could be distinguished with good sensitivity, excellent specificity and excellent accuracy. The study showed that PCI-CT could assess the morphological changes in liver microvasculature that result from fibrosis and allow characterization of the anatomical and pathological features of the microvasculature. With further development of PCI-CT technique, it may become a novel noninvasive imaging technique for the auxiliary analysis of liver fibrosis.

  10. Development of a Three-dimensional Surgical Navigation System with Magnetic Resonance Angiography and a Three-dimensional Printer for Robot-assisted Radical Prostatectomy.

    Science.gov (United States)

    Jomoto, Wataru; Tanooka, Masao; Doi, Hiroshi; Kikuchi, Keisuke; Mitsuie, Chiemi; Yamada, Yusuke; Suzuki, Toru; Yamano, Toshiko; Ishikura, Reiichi; Kotoura, Noriko; Yamamoto, Shingo

    2018-01-02

    We sought to develop a surgical navigation system using magnetic resonance angiography (MRA) and a three-dimensional (3D) printer for robot-assisted radical prostatectomy (RARP). Six patients with pathologically proven localized prostate cancer were prospectively enrolled in this study. Prostate magnetic resonance imaging (MRI), consisting of T2-weighted sampling perfection with application-optimized contrasts using different flip-angle evolutions (SPACE) and true fast imaging with steady-state precession (true FISP), reconstructed by volume rendering, was followed by dynamic contrast-enhanced MRA performed with a volumetric interpolated breath-hold examination (VIBE) during intravenous bolus injection of gadobutrol. Images of arterial and venous phases were acquired over approximately 210 seconds. Selected images were sent to a workstation for generation of 3D volume-rendered images and standard triangulated language (STL) files for 3D print construction. The neurovascular bundles (NVBs) were found in sequence on non-contrast images. Accessory pudendal arteries (APAs) were found in all cases in the arterial phase of contrast enhancement but were ill-defined on non-contrast enhanced MRA. Dynamic contrast-enhanced MRA helped to detect APAs, suggesting that this 3D system using MRI will be useful in RARP.

  11. Lagrangian Coherent Structure Analysis of Terminal Winds: Three-Dimensionality, Intramodel Variations, and Flight Analyses

    Directory of Open Access Journals (Sweden)

    Brent Knutson

    2015-01-01

    Full Text Available We present a study of three-dimensional Lagrangian coherent structures (LCS near the Hong Kong International Airport and relate to previous developments of two-dimensional (2D LCS analyses. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR data. Addition of the velocity information perpendicular to the LIDAR scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. We find that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory, their Lagrangian signatures over the entire domain are quite different—a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations.

  12. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  13. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  14. Daytime Thermal Anisotropy of Urban Neighbourhoods: Morphological Causation

    Directory of Open Access Journals (Sweden)

    E. Scott Krayenhoff

    2016-01-01

    Full Text Available Surface temperature is a key variable in boundary-layer meteorology and is typically acquired by remote observation of emitted thermal radiation. However, the three-dimensional structure of cities complicates matters: uneven solar heating of urban facets produces an “effective anisotropy” of surface thermal emission at the neighbourhood scale. Remotely-sensed urban surface temperature varies with sensor view angle as a consequence. The authors combine a microscale urban surface temperature model with a thermal remote sensing model to predict the effective anisotropy of simplified neighbourhood configurations. The former model provides detailed surface temperature distributions for a range of “urban” forms, and the remote sensing model computes aggregate temperatures for multiple view angles. The combined model’s ability to reproduce observed anisotropy is evaluated against measurements from a neighbourhood in Vancouver, Canada. As in previous modeling studies, anisotropy is underestimated. Addition of moderate coverages of small (sub-facet scale structure can account for much of the missing anisotropy. Subsequently, over 1900 sensitivity simulations are performed with the model combination, and the dependence of daytime effective thermal anisotropy on diurnal solar path (i.e., latitude and time of day and blunt neighbourhood form is assessed. The range of effective anisotropy, as well as the maximum difference from nadir-observed brightness temperature, peak for moderate building-height-to-spacing ratios (H/W, and scale with canyon (between-building area; dispersed high-rise urban forms generate maximum anisotropy. Maximum anisotropy increases with solar elevation and scales with shortwave irradiance. Moreover, it depends linearly on H/W for H/W < 1.25, with a slope that depends on maximum off-nadir sensor angle. Decreasing minimum brightness temperature is primarily responsible for this linear growth of maximum anisotropy. These

  15. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  16. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  17. Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era

    Science.gov (United States)

    Massari, D.; Breddels, M. A.; Helmi, A.; Posti, L.; Brown, A. G. A.; Tolstoy, E.

    2018-02-01

    The three-dimensional motions of stars in small galaxies beyond our own are minute, yet they are crucial for understanding the nature of gravity and dark matter1,2. Even for the dwarf galaxy Sculptor—one of the best-studied systems, which is inferred to be strongly dark matter dominated3,4—there are conflicting reports5-7 on its mean motion around the Milky Way, and the three-dimensional internal motions of its stars have never been measured. Here, we present precise proper motions of Sculptor's stars based on data from the Gaia mission8 and Hubble Space Telescope. Our measurements show that Sculptor moves around the Milky Way on a high-inclination elongated orbit that takes it much further out than previously thought. For Sculptor's internal velocity dispersions, we find σR = 11.5 ± 4.3 km s-1 and σT = 8.5 ± 3.2 km s-1 along the projected radial and tangential directions. Thus, the stars in our sample move preferentially on radial orbits as quantified by the anisotropy parameter, which we find to be β 0.8 6-0.83+0.12 at a location beyond the core radius. Taken at face value, this high radial anisotropy requires abandoning conventional models9 for Sculptor's mass distribution. Our sample is dominated by metal-rich stars and for these we find βM R 0.9 5-0.27+0.04—a value consistent with multi-component spherical models where Sculptor is embedded in a cuspy dark halo10, as might be expected for cold dark matter.

  18. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  19. The three-dimensional crystal structure of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)

    1996-02-01

    The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

  20. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  1. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  2. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  3. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  4. THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO

    International Nuclear Information System (INIS)

    Abdo, A. A.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Gonzalez, M. M.; Linnemann, J. T.; McEnery, J. E.

    2009-01-01

    Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) x10 -3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.

  5. Two-photon anisotropy: Analytical description and molecular modeling for symmetrical and asymmetrical organic dyes

    International Nuclear Information System (INIS)

    Fu Jie; Przhonska, Olga V.; Padilha, Lazaro A.; Hagan, David J.; Van Stryland, Eric W.; Belfield, Kevin D.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2006-01-01

    One- and two-photon anisotropy spectra of a series of symmetrical and asymmetrical polymethine (PD) and fluorene molecules were measured experimentally and discussed theoretically within the framework of three-state and four-state models. For all the molecules discussed in this paper, the experimental two-photon anisotropy values, r 2PA , lie in the relatively narrow range from 0.47 to 0.57 and remain almost independent of wavelength over at least two electronic transitions. This is in contrast with their one-photon anisotropy, which shows strong wavelength dependence, typically varying from ∼0 to 0.38 over the same transitions. A detailed analysis of the two-photon absorption (2PA) processes allows us to conclude that a three-state model can explain the 2PA anisotropy spectra of most asymmetrical PDs and fluorenes. However, this model is inadequate for all the symmetrical molecules. Experimental values of r 2PA for symmetrical polymethines and fluorenes can be explained by symmetry breaking leading to the deviation of the orientation of the participating transition dipole moments from their 'classical' orientations

  6. The Sorgenfrei-Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava

    2004-01-01

    Roč. 16, č. 5 (2004), s. 243-249 ISSN 0954-4879 R&D Projects: GA AV ČR KSK3012103; GA ČR GA205/04/0748; GA AV ČR IAA3012405 Keywords : seismic experiment TOR * Trans-European Suture Zone * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.059, year: 2004

  7. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  8. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bing, Hu; Hong, Shan; Mingyue, Luo; Shaoqiong, Chen; Wang, Kang; Bingjun, He; Yan, Zou [Department of Radiology, the 3rd Affiliated Hospital of Sun Yat-sen Univ., Guangzhou (China); Binbin, Ye

    2007-02-15

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T{sub 2}-weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 {+-} 0.119) x 10{sup -3} mm{sup 2}/s in MS plaques, (0.973 {+-} 0.098) x 10{sup -3} mm{sup 2}/s in periplaque white matter regions, (0.748 {+-} 0.089) x 10{sup -3} mm{sup 2}/s in NAWM, and (0.620 {+-} 0.094) x 10{sup -3} mm{sup 2}/s in control subjects. The FA was 0.225 {+-} 0.052 in MS plaques, 0.311 {+-} 0.050 in periplaque white matter regions, 0.421 {+-} 0.070 in NAWM, and 0.476 {+-} 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  9. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Shan Hong; Luo Mingyue; Chen Shaoqiong; Kang Wang; He Bingjun; Zou Yan; Ye Binbin

    2007-01-01

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T 2 -weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 ± 0.119) x 10 -3 mm 2 /s in MS plaques, (0.973 ± 0.098) x 10 -3 mm 2 /s in periplaque white matter regions, (0.748 ± 0.089) x 10 -3 mm 2 /s in NAWM, and (0.620 ± 0.094) x 10 -3 mm 2 /s in control subjects. The FA was 0.225 ± 0.052 in MS plaques, 0.311 ± 0.050 in periplaque white matter regions, 0.421 ± 0.070 in NAWM, and 0.476 ± 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  10. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  11. The clinical value of three-dimensional contrast-enhanced MR angiography in abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Liu Qi; Lu Jianping; Tian Jianming; Wang Fei; Wang Li; Jin Aiguo; Zeng Hao; Gong Jianguo

    2004-01-01

    Objective: To evaluate the clinical value of three-dimensional contrast-enhanced MR angiography (3D CE-MRA) and its 3D reconstruction in the diagnosis of abdominal aortic aneurysms (AAA). Methods: Sixty-three patients with clinically diagnosed AAA underwent 3D CE-MRA combined with other sequences. 3D CE-MRA was performed with a 3D FISP sequence(TR, TE, FA=3.64 ms, 1.44 ms, 25 degrees, matrix=196 x 512, eff. slice=1.8 mm, FOV 30 cm x 40 cm, acquisition time=18-20 s) after injection of 0.2 mmol Gd-DTPA per kg b. w. A bolus-test was done before angiography to optimize imaging delay time. After 3D CE-MRA a T 1 -weighted sequence was acquired on the axial plane. The source images were subtracted from mask images and transferred to computer workstation, and subsequently post-processed using 3D reconstruction. All sequences were used to depict the type, location, extent, and thrombosis of the AAA, the morphology of its proximal neck, the distal aortoiliac inflow tract, and the relationship with the branches of aorta. The length, diameter, and angle of the aneurysm sac, and proximal and distal arteries were measured. The clinical role was evaluated for treatment planning. Results: High-quality 3D CE-MRA/MRI images were obtained in all patients. Among them, fifty-six had infrarenal AAA, five juxtarenal AAA, and two AAA with suprarenal extension. The mean diameter of aneurysms was 5.3 cm. The thrombosis was thicker than 2.0 cm in 26 patients. 3D CE-MRA clearly demonstrated the morphology and extent of AAA, and its proximal neck and distal aortoiliac inflow tract. The accurate parameters needed by endovascular treatment were gained simultaneously. Aneurysm and its neck depiction at 3D CE-MRA was better than that at DSA. The endovascular and surgical treatment were selected according the images (31 endovascular treatment, 4 surgical treatment, 28 conservative treatment only). The parameters at 3D CE-MRA coincided well with those at DSA in all cases (P>0.1). Conclusion: 3D CE

  12. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  13. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis.

    Science.gov (United States)

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-10-10

    We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity.

  14. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage

    Directory of Open Access Journals (Sweden)

    Bidthanapally Aruna

    2008-10-01

    Full Text Available Abstract Background Fourier Transform Infrared Imaging (FTIRI is used to investigate the amide anisotropies at different surfaces of a three-dimensional cartilage or tendon block. With the change in the polarization state of the incident infrared light, the resulting anisotropic behavior of the tissue structure is described here. Methods Thin sections (6 μm thick were obtained from three different surfaces of the canine tissue blocks and imaged at 6.25 μm pixel resolution. For each section, infrared imaging experiments were repeated thirteen times with the identical parameters except a 15° increment of the analyzer's angle in the 0° – 180° angular space. The anisotropies of amide I and amide II components were studied in order to probe the orientation of the collagen fibrils at different tissue surfaces. Results For tendon, the anisotropy of amide I and amide II components in parallel sections is comparable to that of regular sections; and tendon's cross sections show distinct, but weak anisotropic behavior for both the amide components. For articular cartilage, parallel sections in the superficial zone have the expected infrared anisotropy that is consistent with that of regular sections. The parallel sections in the radial zone, however, have a nearly isotropic amide II absorption and a distinct amide I anisotropy. Conclusion From the inconsistency in amide anisotropy between superficial to radial zone in parallel section results, a schematic model is used to explain the origins of these amide anisotropies in cartilage and tendon.

  15. Utility of time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material for assessment of intracranial dural arterio-venous fistula

    International Nuclear Information System (INIS)

    Hori, Masaaki; Aoki, Shigeki; Nakanishi, Atsushi; Shimoji, Keigo; Kamagata, Koji; Houshito, Haruyoshi; Kuwatsuru, Ryohei; Oishi, Hidenori; Arai, Hajime

    2011-01-01

    Background: Intracranial dural arteriovenous fistula (DAVF) is an arteriovenous shunting disease of the dura. Magnetic resonance angiography (MRA) is expected to be a safer alternative method in evaluation of DAVF, compared with invasive intra-arterial digital subtraction angiography (IADSA). Purpose: To evaluate the diagnostic use of time-spatial labeling inversion pulse (Time-SLIP) three-dimensional (3D) magnetic resonance digital subtraction angiography (MRDSA) without contrast material in six patients with DAVF. Material and Methods: Images for 3D time-of-flight MRA, which has been a valuable tool for the diagnosis of DAVF but provide little or less hemodynamic information, and Time-SLIP 3D MRDSA, were acquired for each patient. The presence, side, and grade of the disease were evaluated according to IADSA. Results: In all patients, the presence and side of the DAVF were correctly identified by both 3D time-of-flight MRA and Time-SLIP 3D MRDSA. Cortical reflux present in a patient with a grade 2b DAVF was not detected by Time-SLIP 3D MRDSA, when compared with IADSA findings. Conclusion: Time-SLIP 3D MRDSA provides hemodynamic information without contrast material and is a useful complementary tool for diagnosis of DAVF

  16. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  17. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  18. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  19. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Mg2+ -Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  2. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  3. Three-dimensional true FISP for high-resolution imaging of the whole brain

    International Nuclear Information System (INIS)

    Schmitz, B.; Hagen, T.; Reith, W.

    2003-01-01

    While high-resolution T1-weighted sequences, such as three-dimensional magnetization-prepared rapid gradient-echo imaging, are widely available, there is a lack of an equivalent fast high-resolution sequence providing T2 contrast. Using fast high-performance gradient systems we show the feasibility of three-dimensional true fast imaging with steady-state precession (FISP) to fill this gap. We applied a three-dimensional true-FISP protocol with voxel sizes down to 0.5 x 0.5 x 0.5 mm and acquisition times of approximately 8 min on a 1.5-T Sonata (Siemens, Erlangen, Germany) magnetic resonance scanner. The sequence was included into routine brain imaging protocols for patients with cerebrospinal-fluid-related intracranial pathology. Images from 20 patients and 20 healthy volunteers were evaluated by two neuroradiologists with respect to diagnostic image quality and artifacts. All true-FISP scans showed excellent imaging quality free of artifacts in patients and volunteers. They were valuable for the assessment of anatomical and pathologic aspects of the included patients. High-resolution true-FISP imaging is a valuable adjunct for the exploration and neuronavigation of intracranial pathologies especially if cerebrospinal fluid is involved. (orig.)

  4. Electron temperature anisotropy modeling and its effect on anisotropy-magnetic field coupling in an underdense laser heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)

  5. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  6. Bianchi-V string cosmological model with dark energy anisotropy

    Science.gov (United States)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  7. Dacron graft as replacement to dissected aorta: A three-dimensional fluid-structure-interaction analysis.

    Science.gov (United States)

    Jayendiran, R; Nour, B M; Ruimi, A

    2018-02-01

    Aortic dissection (AD) is a serious medical condition characterized by a tear in the intima, the inner layer of the aortic walls. In such occurrence, blood is being diverted to the media (middle) layer and may result in patient death if not quickly attended. In the case where the diseased portion of the aorta needs to be replaced, one common surgical technique is to use a graft made of Dacron, a synthetic fabric. We investigate the response of a composite human aortic segment-Dacron graft structure subjected to blood flow using the three-dimensional fluid-structure-interaction (FSI) capability in Abaqus. We obtain stress and strain profiles in each of the three layers of the aortic walls as well as in the Dacron graft. Results are compared when elastic and hyperelastic models are used and when isotropy vs. anisotropy is assumed. The more complex case (hyperelastic-anisotropy) is represented by the Holzapfel-Gasser-Ogden (HGO) model which also accounts for the orientation of the fibers present in the tissues. The fluid flow is taken as Newtonian, incompressible, pulsatile and turbulent. The simulation show that for all the cases, the von Mises stress distribution at aorta-Dacron interface is well below the ultimate strength of the aorta. No significant change in radial displacement at the interface of the two materials due to blood flow is observed. Computation cost is also addressed and results show that the hyperelastic-anisotropic model takes about three times longer to run than the elastic isotropic case. Trade-off between accuracy and computational cost has to be weighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measurement of cardiac ventricular volumes using multidetector row computed tomography: comparison of two- and three-dimensional methods

    International Nuclear Information System (INIS)

    Montaudon, M.; Laffon, E.; Berger, P.; Corneloup, O.; Latrabe, V.; Laurent, F.

    2006-01-01

    This study compared a three-dimensional volumetric threshold-based method to a two-dimensional Simpson's rule based short-axis multiplanar method for measuring right (RV) and left ventricular (LV) volumes, stroke volumes, and ejection fraction using electrocardiography-gated multidetector computed tomography (MDCT) data sets. End-diastolic volume (EDV) and end-systolic volume (ESV) of RV and LV were measured independently and blindly by two observers from contrast-enhanced MDCT images using commercial software in 18 patients. For RV and LV the three-dimensionally calculated EDV and ESV values were smaller than those provided by two-dimensional short axis (10%, 5%, 15% and 26% differences respectively). Agreement between the two methods was found for LV (EDV/ESV: r=0.974/0.910, ICC=0.905/0.890) but not for RV (r=0.882/0.930, ICC=0.663/0.544). Measurement errors were significant only for EDV of LV using the two-dimensional method. Similar reproducibility was found for LV measurements, but the three-dimensional method provided greater reproducibility for RV measurements than the two-dimensional. The threshold value supported three-dimensional method provides reproducible cardiac ventricular volume measurements, comparable to those obtained using the short-axis Simpson based method. (orig.)

  9. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  10. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  11. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  12. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...

  13. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  14. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  15. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  16. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  17. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  18. Three-Dimensional Photoacoustic Tomography using Delay Multiply and Sum Beamforming Algorithm

    OpenAIRE

    Paridar, Roya; Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    Photoacoustic imaging (PAI), is a promising medical imaging technique that provides the high contrast of the optical imaging and the resolution of ultrasound (US) imaging. Among all the methods, Three-dimensional (3D) PAI provides a high resolution and accuracy. One of the most common algorithms for 3D PA image reconstruction is delay-and-sum (DAS). However, the quality of the reconstructed image obtained from this algorithm is not satisfying, having high level of sidelobes and a wide mainlob...

  19. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  1. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  2. Dimensional crossover in directed percolation

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.

    1984-04-01

    We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt

  3. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  4. Transference of Fermi Contour Anisotropy to Composite Fermions.

    Science.gov (United States)

    Jo, Insun; Rosales, K A Villegas; Mueed, M A; Pfeiffer, L N; West, K W; Baldwin, K W; Winkler, R; Padmanabhan, Medini; Shayegan, M

    2017-07-07

    There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensurability oscillations. For strains on the order of 10^{-4} we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field (α_{CF}) is less than the anisotropy of their low-field hole (fermion) counterparts (α_{F}), and closely follows the relation α_{CF}=sqrt[α_{F}]. The energy gap measured for the ν=2/3 FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to α_{F}∼3.3, the highest anisotropy achieved in our experiments.

  5. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  6. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  7. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  8. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  9. A three-dimensional viscous topography mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, J; Flender, M; Kandlbinder, T; Panhans, W G; Trautmann, T; Zdunkowski, W G [Mainz Univ. (Germany). Inst. fuer Physik der Atmosphaere; Cui, K; Ries, R; Siebert, J; Wedi, N

    1997-11-01

    This study describes the theoretical foundation and applications of a newly designed mesoscale model named CLIMM (climate model Mainz). In contrast to terrain following coordinates, a cartesian grid is used to keep the finite difference equations as simple as possible. The method of viscous topography is applied to the flow part of the model. Since the topography intersects the cartesian grid cells, the new concept of boundary weight factors is introduced for the solution of Poisson`s equation. A three-dimensional radiosity model was implemented to handle radiative transfer at the ground. The model is applied to study thermally induced circulations and gravity waves at an idealized mountain. Furthermore, CLIMM was used to simulate typical wind and temperature distributions for the city of Mainz and its rural surroundings. It was found that the model in all cases produced realistic results. (orig.) 38 refs.

  10. Three-dimensional drip infusion CT cholangiography in patients with suspected obstructive biliary disease: a retrospective analysis of feasibility and adverse reaction to contrast material

    International Nuclear Information System (INIS)

    Persson, A; Dahlström, N; Smedby, Ö; Brismar, TB

    2006-01-01

    Computed Tomography Cholangiography (CTC) is a fast and widely available alternative technique to visualise hepatobiliary disease in patients with an inconclusive ultrasound when MRI cannot be performed. The method has previously been relatively unknown and sparsely used, due to concerns about adverse reactions and about image quality in patients with impaired hepatic function and thus reduced contrast excretion. In this retrospective study, the feasibility and the frequency of adverse reactions of CTC when using a drip infusion scheme based on bilirubin levels were evaluated. The medical records of patients who had undergone upper abdominal spiral CT with subsequent three-dimensional rendering of the biliary tract by means of CTC during seven years were retrospectively reviewed regarding serum bilirubin concentration, adverse reaction and presence of visible contrast media in the bile ducts at CT examination. In total, 153 consecutive examinations in 142 patients were reviewed. Contrast media was observed in the bile ducts at 144 examinations. In 110 examinations, the infusion time had been recorded in the medical records. Among these, 42 examinations had an elevated bilirubin value (>19 umol/L). There were nine patients without contrast excretion; 3 of which had a normal bilirubin value and 6 had an elevated value (25–133 umol/L). Two of the 153 examinations were inconclusive. One subject (0.7%) experienced a minor adverse reaction – a pricking sensation in the face. No other adverse effects were noted. We conclude that drip infusion CTC with an infusion rate of the biliary contrast agent iotroxate governed by the serum bilirubin value is a feasible and safe alternative to MRC in patients with and without impaired biliary excretion. In this retrospective study the feasibility and the frequency of adverse reactions when using a drip infusion scheme based on bilirubin levels has been evaluated

  11. Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S.; Zhao, L. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Hove, M.A. van [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kaduwela, A.; Marchesini, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Omori, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Sony Corporation Semiconductor Network Company, Asahi-cho, Atsugi, Kanagawa (Japan)

    2001-11-26

    Three forms of electron or x-ray holography 'by contrast' are discussed: they all exploit small changes in diffraction conditions to improve image quality and/or extract additional information. Spin-polarized photoelectron holography subtracts spin-down from spin-up holograms so as to image the relative orientations of atomic magnetic moments around an emitter atom. Differential photoelectron holography subtracts holograms taken at slightly different energies so as to overcome the forward-scattering problem that normally degrades the three-dimensional imaging of atoms, particularly for emitter atoms that are part of a bulk substrate environment. Resonant x-ray fluorescence holography also subtracts holograms at slightly different energies, these being chosen above and below an absorption edge of a constituent atom, thus allowing the selective imaging of that type of atom, or what has been referred to as imaging 'in true colour'. (author)

  12. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  13. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  14. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Ota, Y.; Tatebayashi, J. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Tajiri, T. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iwamoto, S.; Arakawa, Y. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-08-04

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally stacked woodpile PhC structure where neighboring layers are rotated by 60° and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1.3 μm. The obtained results show good agreement with numerical simulations.

  15. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  16. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  17. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  18. Three-dimensional volumetric assessment of response to treatment

    International Nuclear Information System (INIS)

    Willett, C.G.; Stracher, M.A.; Linggood, R.M.; Leong, J.C.; Skates, S.J.; Miketic, L.M.; Kushner, D.C.; Jacobson, J.O.

    1988-01-01

    From 1981 to 1986, 12 patients with Stage I and II diffuse large cell lymphoma of the mediastinum were treated with 4 or more cycles of multiagent chemotherapy and for nine patients this was followed by mediastinal irradiation. The response to treatment was assessed by three-dimensional volumetric analysis utilizing thoracic CT scans. The initial mean tumor volume of the five patients relapsing was 540 ml in contrast to an initial mean tumor volume of 360 ml for the seven patients remaining in remission. Of the eight patients in whom mediastinal lymphoma volumes could be assessed 1-2 months after chemotherapy prior to mediastinal irradiation, the three patients who have relapsed had volumes of 292, 92 and 50 ml (mean volume 145 ml) in contrast to five patients who have remained in remission with residual volume abnormalities of 4-87 ml (mean volume 32 ml). Four patients in prolonged remission with CT scans taken one year after treatment have been noted to have mediastinal tumor volumes of 0-28 ml with a mean value of 10 ml. This volumetric technique to assess the extent of mediastinal large cell lymphoma from thoracic CT scans appears to be a useful method to quantitate the amount of disease at presentation as well as objectively monitor response to treatment. 13 refs.; 2 figs.; 1 table

  19. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  20. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  1. Optical studies of three dimensional confinement in photonic and electronic systems

    International Nuclear Information System (INIS)

    Adawi, Ali Mohammad Ahmad

    2002-01-01

    In the first part of this thesis the optical properties of three dimensional opal photonic crystals are investigated. The samples were grown by sedimentation of silica spheres into a face centred cubic structure. Structural studies show that self assembled opal photonic crystals are polycrystalline materials consisting of misoriented domains of size 50 μm to 100 μm. The angle dependent transmission technique is used to characterise the stop band of the samples. Due to the weak refractive index contrast in opal photonic crystals, only stop bands along the [111] direction are observed. The experimental transmission spectra are compared with theoretical transmission spectra calculated according to a three dimensional model based on the transfer matrix method. The experimental stop band is found to be six times broader than the calculated one, and also the experimental Bragg attenuation length is found to be five to seven times larger than the calculated one. Angle resolved diffraction and scattering techniques are used to investigate the origin of the discrepancies between experiment and theory. Analysis of the diffraction spectra indicate that the samples consist of misoriented domains of thickness 10 μm with a Gaussian distribution of 10 deg FWHM around the [111] direction. The scattering spectra show a strong resonant enhancement at the centre or edges (depending on the refractive index contrast) of the stop band. This observation is attributed to the multiple incoherent backward/forward reflections between the sample domains. By analysing the balance of photon flux originating from a slab of opal the shape of the experimental transmission stop band is fully explained. To investigate the effect of an incomplete photonic structure on the emission properties of light sources located inside the photonic crystal, the samples were infiltrated with solutions of laser dyes having fluorescence bands which overlap with the photonic gap of the host crystal. The optical

  2. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  3. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  4. Dynamic masquerade with morphing three-dimensional skin in cuttlefish.

    Science.gov (United States)

    Panetta, Deanna; Buresch, Kendra; Hanlon, Roger T

    2017-03-01

    Masquerade is a defence tactic in which a prey resembles an inedible or inanimate object thus causing predators to misclassify it. Most masquerade colour patterns are static although some species adopt postures or behaviours to enhance the effect. Dynamic masquerade in which the colour pattern can be changed is rare. Here we report a two-step sensory process that enables an additional novel capability known only in cuttlefish and octopus: morphing three-dimensional physical skin texture that further enhances the optical illusions created by coloured skin patterns. Our experimental design incorporated sequential sensory processes: addition of a three-dimensional rock to the testing arena, which attracted the cuttlefish to settle next to it; then visual processing by the cuttlefish of physical textures on the rock to guide expression of the skin papillae, which can range from fully relaxed (smooth skin) to fully expressed (bumpy skin). When a uniformly white smooth rock was presented, cuttlefish moved to the rock and deployed a uniform body pattern with mostly smooth skin. When a rock with small-scale fragments of contrasting shells was presented, the cuttlefish deployed mottled body patterns with strong papillae expression. These robust and reversible responses indicate a sophisticated visual sensorimotor system for dynamic masquerade. © 2017 The Author(s).

  5. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  6. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  7. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    International Nuclear Information System (INIS)

    Numata, Kazushi; Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu; Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu; Karasawa, Eii; Tanaka, Katsuaki

    2010-01-01

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  8. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazushi, E-mail: kz-numa@urahp.yokohama-cu.ac.j [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu [Department of Internal Medicine, Naruto General Hospital, 167 Naruto, Sanbu, Chiba 289-1326 (Japan); Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Karasawa, Eii [Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigan-cho, Atami, Shizuoka 413-0012 (Japan); Tanaka, Katsuaki [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan)

    2010-08-15

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  9. Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections

    Directory of Open Access Journals (Sweden)

    Michael Trojan

    2017-01-01

    Full Text Available Objective. To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods. 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years. 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level resulting in respective time-intensity curves. Results. For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p=0.027 and p=0.003, and upward and downward slopes of time-intensity curves were significantly steeper (p=0.015 and p=0.005. The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p=0.01. Conclusions. 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections.

  10. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer

    OpenAIRE

    Scholz, F.; Boroske, E.; Helfrich, W.

    1984-01-01

    Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This...

  11. Current singularities at finitely compressible three-dimensional magnetic null points

    International Nuclear Information System (INIS)

    Pontin, D.I.; Craig, I.J.D.

    2005-01-01

    The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed

  12. Preservation of three-dimensional spatial structure in the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Yuko Hasegawa

    Full Text Available Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA and 4', 6-diamidino-2-phenylindole (DAPI. Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  13. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    Science.gov (United States)

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  14. Three-dimensional discrete element method simulation of core disking

    Science.gov (United States)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  15. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  16. Optical contrast for identifying the thickness of two-dimensional materials

    Science.gov (United States)

    Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan

    2018-01-01

    One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.

  17. Determination of the components of three dimensional vector and tensor anisotropy of cosmic radiation with application to the results of the Musala experiment

    International Nuclear Information System (INIS)

    Somogyi, A.J.

    1976-09-01

    The paper proves that it is possible to interpret the experimental results of the Musala experiment as being consequences of a vector anisotropy with maximum in the direction of the galactic centre and a tensor anisotropy with principal axes in the physically plausible directions of the galactic arm, the normal direction of the galactic plane and the direction perpendicular them, respectively. It is underlined that the interpretation is not the only possible one and, in addition to this, statistical errors are rather large. The results favour the galactic origin of the particles concerned (E=6x10 13 eV). (Sz.N.Z.)

  18. 3D analyses of cavitation instabilities accounting for plastic anisotropy

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo

    2010-01-01

    Full three dimensional cell model analyses are carried out for a solid containing a single small void, in order to determine the critical stress levels for the occurrence of cavitation instabilities. The material models applied are elastic‐viscoplastic, with a small rate‐hardening exponent...... that the quasi‐static solution is well approximated. A special procedure is used to strongly reduce the loading rate a little before the instability occurs. It is found that plastic anisotropy has a significant effect on the level of the critical stress for cavitation instabilities....

  19. Contrast model for three-dimensional vehicles in natural lighting and search performance analysis

    Science.gov (United States)

    Witus, Gary; Gerhart, Grant R.; Ellis, R. Darin

    2001-09-01

    Ground vehicles in natural lighting tend to have significant and systematic variation in luminance through the presented area. This arises, in large part, from the vehicle surfaces having different orientations and shadowing relative to the source of illumination and the position of the observer. These systematic differences create the appearance of a structured 3D object. The 3D appearance is an important factor in search, figure-ground segregation, and object recognition. We present a contrast metric to predict search and detection performance that accounts for the 3D structure. The approach first computes the contrast of the front (or rear), side, and top surfaces. The vehicle contrast metric is the area-weighted sum of the absolute values of the contrasts of the component surfaces. The 3D structure contrast metric, together with target height, account for more than 80% of the variance in probability of detection and 75% of the variance in search time. When false alarm effects are discounted, they account for 89% of the variance in probability of detection and 95% of the variance in search time. The predictive power of the signature metric, when calibrated to half the data and evaluated against the other half, is 90% of the explanatory power.

  20. Clinical application of gadolinium-enhanced three-dimensional pulmonary MR angiography

    International Nuclear Information System (INIS)

    Takano, Katsuyuki

    1999-01-01

    Twenty-nine patients with suspected pulmonary lesions, and three normal volunteers, underwent gadolinium-enhanced three-dimensional (3D) pulmonary MR angiography (MRA). The MRA were obtained during intravenous administration of gadolinium-based contrast material, in a single breath-hold. Conspicuity of the normal pulmonary segmental arteries was estimated on the MRA. Abnormal findings such as ''vascular involvement'', ''abnormal connection'', stenosis'', or ''dilatation'' on the MRA were compared with those on conventional angiography or CT. Normal pulmonary segmental arteries, except for A 4,5,6,8and9 of the left pulmonary artery, could be clearly visualized. Blind reading of four different findings lead to characteristic findings for each pulmonary disease that can be aid in their differential diagnoses. This technique shows promise as a noninvasive diagnosis of lung diseases. (author)

  1. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Pu Qiurong; Chen Yuan

    2013-01-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  2. Three-Dimensional Constructive Interference in Steady State Sequences and Phase-Contrast Magnetic Resonance Imaging of Arrested Hydrocephalus.

    Science.gov (United States)

    Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel

    2017-02-01

    To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xiao, Hua-Feng; Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin; Lou, Xin; Gui, Qiu-Ping; Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan

    2015-01-01

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10 -3 mm 2 /s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  4. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hua-Feng [302 Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China); Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); Lou, Xin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); University of California, Department of Neurology, Los Angeles, CA (United States); Gui, Qiu-Ping [People' s Liberation Army General Hospital, Department of Pathology, Beijing (China); Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan [General Electric Healthcare (China) Co., Ltd., Beijing; Wang, Danny J.J. [University of California, Department of Neurology, Los Angeles, CA (United States)

    2015-12-15

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10{sup -3} mm{sup 2}/s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  5. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children

  6. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  7. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  8. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  9. Three-dimensional microscopic deformation measurements on cellular solids.

    Science.gov (United States)

    Genovese, K

    2016-07-01

    The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dilepton production from the quark-gluon plasma using (3 +1 )-dimensional anisotropic dissipative hydrodynamics

    Science.gov (United States)

    Ryblewski, Radoslaw; Strickland, Michael

    2015-07-01

    We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.

  11. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  12. Apparent directional mass-transfer capacity coefficients in three-dimensional anisotropic heterogeneous aquifers under radial convergent transport

    Science.gov (United States)

    Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D. A.

    2014-02-01

    Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local (pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces observed anomalous transport; in some cases though, these models lack predictability as model parameters cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate mass-transfer model (MRMT), and in particular the apparent capacity coefficient (β), which is a strong indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an apparent β can be phenomenologically related to measures of statistical anisotropy. We analyzed an ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields with stationary anisotropic correlation under convergent flow conditions. It was found that apparent β also displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large β values. These results provide new insights into the practical use of mass-transfer models for predictive purposes.

  13. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    Science.gov (United States)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  14. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  15. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    Science.gov (United States)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  16. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  17. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  18. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  19. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  20. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  1. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  2. Rotatostereoradiography; a new radiodiagnostic method; Development of a new three-dimensional radiodiagnostic device and evaluation in neurosurgical clinics

    Energy Technology Data Exchange (ETDEWEB)

    Ottomo, Michinori [Aomori Rosai Hospital, Hachinohe (Japan); Basugi, Norihiko; Handa, Hajime; Taniguchi, Takashi; Iwabuchi, Takashi; Kosaka, Mitsuo

    1991-02-01

    The rotatostereoradiographic device uses an x-ray tube coupled with an image intensifier rotating through a 180deg arc in 2.25 seconds. The rapidly rotating x-ray tube allows 180deg -arc angiograms to be obtained with a single injection of contrast medium. Subtracted fluoroscopic angiograms can be viewed immediately after injection of the contrast medium with digital recording. These three-dimensional images are displayed on side-by-side monitors stereoscopically. The mortality and morbidity of subarachnoid hemorrhage can only be greatly reduced by surgical treatment of unruptured aneurysms and arteriovenous malformations detected by a wide survey of subarachnoid hemorrhage. Such a wide survey would be possible utilizing intra-arterial digital subtraction angiography via the ascending aorta and this new three-dimensional radiodiagnostic method. A fluoroscopic device must be used to allow easier manipulation of the catheter from the axillary or brachial artery. (author).

  3. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  4. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  5. Continuum modeling of three-dimensional truss-like space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  6. Contrast-enhanced three-dimensional MR angiography of neck vessels: does dephasing effect alter diagnostic accuracy?

    International Nuclear Information System (INIS)

    Cosottini, M.; Calabrese, R.; Murri, L.; Puglioli, M.; Zampa, V.; Michelassi, M.C.; Ortori, S.; Bartolozzi, C.

    2003-01-01

    The aim of this study was to evaluate diagnostic accuracy of contrast-enhanced MRA (CEMRA) compared with digital subtraction angiography (DSA) in studying neck vessels of 48 patients. In three groups of patients, we used three MRA protocols differing for voxel size to assess if intravoxel dephasing effects could modify accuracy of CEMRA. Accuracy and correlation with DSA results were calculated in all patients and separately in the three groups. A qualitative analysis of the likeness between morphology of the stenosis in CEMRA and DSA images was also assessed. In all patients accuracy and agreement with DSA were 96% and k=0.85 in subclavian arteries, 96% and k=0.84 in vertebral artery, 97% and k=0.88 in common carotid arteries, and 94% and k=0.86 in internal carotid arteries. In the three groups accuracy and agreement with DSA did not show any significant difference. Qualitative analysis of CEMRA and DSA images revealed a better agreement in depicting the morphology of stenosis using a smaller voxel size. The CEMRA represents a powerful tool for the non-invasive evaluation of neck vessels. Overestimation trend of CEMRA is confirmed and the reduction of voxel size, decreasing the dephasing intravoxel effect, allows to have a better overlapping of stenosis morphology on CEMRA compared with DSA, but it does not yield diagnostic gain in the stenosis grading. (orig.)

  7. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  8. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  9. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  10. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  11. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  12. Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis

    Science.gov (United States)

    Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.

    2018-03-01

    We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.

  13. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  14. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  15. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  16. Measuring the Alfvénic nature of the interstellar medium: Velocity anisotropy revisited

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Leão, I. C.; De Medeiros, J. R.; Esquivel, A.

    2014-01-01

    The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel and Lazarian method to estimate the Alfvén Mach number using the structure function anisotropy in velocity centroid data from Position-Position-Velocity maps. We utilize three-dimensional magnetohydrodynamic simulations of fully developed turbulence, with a large range of sonic and Alfvénic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfvén Mach number dependency found in Esquivel and Lazarian might change when taking the second moment of the Position-Position-Velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e., Alfvén Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line of sight is parallel to up to ≈45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvénic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.

  17. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  18. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  19. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  20. A general, three-dimensional Monte Carlo program: TRIPOLI-01

    International Nuclear Information System (INIS)

    Katz, Shlomo; Nimal, J.-C.

    1976-09-01

    TRIPOLI 01 is a general, three-dimensional Monte-Carlo program, which treats the slowing down and diffusion of neutrons in source problems. This version is essentially devoted to reactor shielding studies. The geometry is described as a combination of volumes, bounded by portions of first or second degree surfaces. The space orientation of these volumes is quite arbitrary. Geometries repeated by translation, symmetry, or rotation can be treated. The program can itself control the consistency of geometry data. The nuclear constants are presently represented in a multigroup mode, with a number of groups as large as necessary. Multigroup data are derived from a library tape (LINDA) containing point wise data taken from the UKNDL (73) library and completed by certain data from UNC (GENDA). The neutron energy is followed in a continuous way; the program takes into account: elastic collision with any anisotropy order, (n,n') and (n,2n) reactions, and absorption; in this version, thermal neutrons are treated as a single energy group. The program can solve deep penetration problems by utilizing variance reduction techniques based on exponential transform, and biasing of angular scattering laws. The distribution of sources can be any arbitrary function of space, energy and direction. The program calculates spectra and activities averaged in specified volumes or areas. Further exploitation of results is possible by using the FORTRI routine [fr

  1. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  2. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  3. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  4. Evaluation of diagnostic quality in musculoskeletal three-dimensional CT scans

    International Nuclear Information System (INIS)

    Vannier, M.W.; Hildebolt, C.F.; Gilula, L.A.; Sutherland, C.J.; Offutt, C.J.; Drebin, R.; Mantle, M.; Giordono, T.A.

    1988-01-01

    A major application of three-dimensional computed tomography (CT) is in the imaging of the skeleton. Three-dimensional CT has an important role in determining the presence and extent of congenital and acquired orthopedic abnormalities. The objective of this study was to compare the diagnostic sensitivity and specificity of three-dimensional CT, planar CT, and plain radiography in the detection and characterization of orthopedic abnormalities. Three-dimensional CT scan reconstructions were obtained by two methods, surface reconstruction and volumetric techniques. Seventy patients were imaged with CT, three-dimensional CT, and plain radiography. The consensus opinion of experts with access to all images plus clinical history, surgical findings, and follow-up findings were taken as truth. Expert radiologists read these cases in a blinded fashion. The results were compared using receiver operating characteristic (ROC) analysis. The diagnostic value of each three-dimensional reconstruction method and the parameters used to perform the reconstructions were evaluated

  5. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  6. One-dimensional contrast modulations in [001] high-resolution reverse images of Bi2Sr2(Cu1-xNdx)Cu2O8+δ ceramics

    International Nuclear Information System (INIS)

    Onozuka, T.

    1993-01-01

    The one-dimensional contrast modulation along the b axis of [001] high-resolution reverse images of the compounds Bi 2 Sr 2 (Ca 1-x Nd x )Cu 2 O 8+δ (x=0.05+0.1n; n=1, 2, 6 and 7) is examined closely using the density distribution recorded from a wide area of the negative film by microphotometric densitometry. Three typical short units of the density distribution, of lengths 4.5b 0 , 5b 0 and 4b 0 , characterized by twin peaks or a single maximum peak with subpeaks in the middle of the unit, are discerned. The density distributions of the three units and the contrast modulations of their images are reproduced well by computer simulations, using three structure models modulated with longitudinal displacement waves along the b axis of the metal atoms. The one-dimensional contrast modulation is attributed to sinusoidal changes in the effective scattering amplitudes for the [001] electron beam of the metal-atom chains along the c axis. The results of the simulation are applied to investigation of the (2, 1) 5 and (3, 1) 4 modulation modes in the modulated structure. (orig.)

  7. Quarkonium dissociation by anisotropy

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2013-01-01

    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled mathcal{N} = 4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1 - v 2)ɛ with ɛ = 1 /2, in contrast with the isotropic result ɛ = 1 /4.

  8. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  9. Three-dimensional fabric analysis for anisotropic material using multi-directional scanning line. Application to x-ray CI image

    International Nuclear Information System (INIS)

    Takemura, Takato; Takahashi, Manabu; Oda, Masanobu; Hirai, Hidekazu; Murakoshi, Atsushi; Miura, Makoto

    2007-01-01

    In microscopic analysis, materials are characterized by a three-dimensional (3D) microstructure which is composed of constituent elements such as pores, voids and cracks. A material's mechanical and hydrological properties are strongly dependent on its microstructure. In order to discuss the mechanics of geomaterials on a microstructural level, detailed information on their 3D macrostructure is required. X-ray computed tomography is a powerful non-destructive method for determining the microstructure, however it can be difficult to determine a material's microstructure from the reconstructed 3D image. We successfully evaluated the 3D microstructural anisotropy of porous and fibrous materials using a multi-directional scanning line method that employs straightforward image analysis, and its results were visualized using stereonet projection. (author)

  10. Study of the nonlinear three-dimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Lin Chang; Zhao Jinbao; Zhang Xiulian

    2000-01-01

    The nonlinear three-dimensional Debye screening in plasmas is investigated. New analytical solutions for the three-dimensional Poisson equation have been obtained for the nonlinear Debye potential for the first time. We derive exact analytical expression for the special case of the nonlinear three-dimensional Debye screening in plasmas. (orig.)

  11. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  12. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  13. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  14. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  15. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  16. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  17. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  18. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    International Nuclear Information System (INIS)

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  19. Optical chracterization and lasing in three-dimensional opal-structures

    Directory of Open Access Journals (Sweden)

    Yoshiaki eNishijima

    2015-06-01

    Full Text Available The lasing properties of dye-permeated opal pyramidal structures are compared with the lasing properties of opal films. The opal-structures studied were made by sedimentation of micro-spheres and by sol-gel inversion of the direct-opals. Forced-sedimentation by centrifugation inside wet-etched pyramidal pits on silicon surfaces was used to improve the structural quality of the direct-opal structures. Single crystalline pyramids with the base length of ∼ 100 µm were formed by centrifuged sedimentation. The lasing of dyes in the well-ordered crystalline and poly-crystalline structures showed a distinct multi-modal spectrum. Gain via a distributed feedback was responsible for the lasing since the photonic band gap was negligible in a low refractive index contrast medium; the indices of silica and ethylene glycol are 1.46 and 1.42, respectively. A disordered lasing spectrum was observed from opal films with structural defects and multi-domain regions. The three dimensional structural quality of the structures was assessed by in situ optical diffraction and confocal fluorescence. A correlation between the lasing spectrum and the three-dimensional structural quality was established. Lasing threshold of a sulforhodamine dye in a silica opal was controlled via Förster mechanism by addition of a donor rhodamine 6G dye. The lasing spectrum had a well-ordered modal structure which was spectrally stable at different excitation powers. The sharp lasing threshold characterized by a spontaneous emission coupling ratio β ' 10−2 was obtained.

  20. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  1. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  2. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  3. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    Science.gov (United States)

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  4. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  5. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  6. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  7. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties. Comb...... an overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability.......The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties....... Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides...

  8. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  9. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  10. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    Science.gov (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  11. Preliminary study of in vivo hemodynamic analysis of intracranial aneurysms using time-resolved three-dimensional phase-contrast MRI and in-house software [Presidential award proceedings

    International Nuclear Information System (INIS)

    Isoda, Haruo; Ohkura, Yasuhide; Seo, Taro

    2007-01-01

    We calculated in vivo wall shear stress (WSS) and streamlines of intracranial aneurysms and analyzed the relationships between the hemodynamics and WSS of the aneurysms using time-resolved three-dimensional (3D) phase-contrast magnetic resonance (MR) imaging (4D-Flow) and in-house software. We studied 10 subjects with 11 aneurysms. 4D-flow was performed using a 1.5T GE MR scanner with head coil. 3D time-of-flight (TOF) MR angiography was performed for geometric information. The software calculated the WSS based on interpolated shearing velocity using the data set obtained by 4D-flow near the wall and provided us with 3D streamlines. We acquired 3D streamlines and WSS distribution maps in arbitrary directions during the cardiac phase for all intracranial aneurysms, and each intracranial aneurysm in this study had at least one spiral flow. We noted lower WSS with lower flow velocities at the apex of the spiral flow. (author)

  12. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  13. Three-dimensional spiral CT for neurosurgical planning.

    Science.gov (United States)

    Klein, H M; Bertalanffy, H; Mayfrank, L; Thron, A; Günther, R W; Gilsbach, J M

    1994-08-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important.

  14. Three-dimensional spiral CT for neurosurgical planning

    International Nuclear Information System (INIS)

    Klein, H.M.; Bertalanffy, H.; Mayfrank, L.; Thron, A.; Guenther, R.W.; Gilsbach, J.M.

    1994-01-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important. (orig.)

  15. Cylindrical magnetization model for glass-coated microwires with circular anisotropy: Statics

    International Nuclear Information System (INIS)

    Torrejon, J.; Thiaville, A.; Adenot-Engelvin, A.L.; Vazquez, M.; Acher, O.

    2011-01-01

    The static magnetization profile of glass-coated microwires with effective circular anisotropy is investigated using micromagnetics. In this family of microwires, the ferromagnetic nucleus with an amorphous character presents a magnetic structure composed of an inner region with axial domains and an outer region with circular domains, due to magnetoelastic anisotropy. A one-dimensional micromagnetic model is developed, taking into account both the exchange and magnetoelastic anisotropy energies, and solved quasi analytically. The total energy, magnetization profiles and magnetization curves are investigated as a function of radius and anisotropy constant of the nucleus. This work represents a fundamental study of the magnetization process in these amorphous microwires and provides guidelines for the production of microwires with tailored magnetic properties. En passant, the nucleation problem in an infinite cylinder, introduced by W.F. Brown, is revisited. - Research highlights: → Magnetic microwires with circular anisotropy are studied by micromagnetic model. → The ratio R/Δ is a fundamental quantity to determine the magnetic structure. → Reduction of diameter and anisotropy favours the growth of axial core.

  16. Fabrication of a three-dimensional photonic band-gap crystal of air-spheres in a titania matrix

    Science.gov (United States)

    Diop, M.; Maurin, G.; Tork, Amir; Lessard, Roger A.

    2003-02-01

    A three-dimensional (3D) colloidal crystal have been grown from an aqueous colloidal solution of highly monodisperse submicrometer-sized polystyrene spheres using a self-assembly processing technique. The electromagnetic waves diffracted by this crystal can interfere and give rise to a photonic band-gap. However, due to the low refractive index contrast within this material the band-gap is incomplete. By filling the voids between the spheres of the colloidal crystal with titania and removing the polystyrene beads by sublimation, we obtained an inverse-opal structure with an increased refractive index contrast showing strong opalescence.

  17. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  18. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  19. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  20. The Effect Of Anisotropy In Formation Permeability On The Efficiency Of Cyclic Water Flooding

    Directory of Open Access Journals (Sweden)

    Al-Obaidi SH

    2017-11-01

    Full Text Available In oil industry one of the most worldwide used methods a among the hydrodynamic enhanced oil recovery methods is the water flooding including the cyclic water flooding. The efficiency of cyclic water flooding is affected by a number of geophysical and field technological factors. In this work and based on three-dimensional hydrodynamic simulation it is shown that anisotropy of formation permeability has significant effect on justification of the half-cycle time and the technological effectiveness of the method.

  1. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  2. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  3. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  4. Anisotropy of the optical absorption in layered single crystals of MoRe0.001Se1.999

    International Nuclear Information System (INIS)

    Vora, Mihir M.; Vora, Aditya M.

    2007-01-01

    Energy gap of MoRe 0.001 Se 1.999 single crystal has been determined by fundamental absorption methods. The incident light was polarized along c-axis of the crystals. The interpretion of the data is given within frameworks of two and three dimensional models. Both direct and indirect transitions are involved in the absorption process. The indirect transition was found to be allowed with two phonons participating in the process. The three dimensional model could be used to describe the optical properties of the single crystal. The energy gaps depend upon the amount of the intercalating Re material, which show the anisotropy of the chemical bonds. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Three-dimensional radiologic device as a new diagnostic aid in angiocardiography

    International Nuclear Information System (INIS)

    Takeyama, Minoru; Fujino, Yasuhiro; Mikuniya, Atsushi; Onodera, Kogo.

    1992-01-01

    Angiography with 180deg arc was performed using a rapidly rotating stereoradiographic device and a single injection of contrast medium. Duration of rotation of the X-ray tube through 180deg was 2.25 sec. The angiograms displayed in a rotating manner were three-dimensional with depth information. Every adjacent angiogram was obtained by the rapidly rotating X-ray tube at slightly different angles and positions, resulting in paired stereo images. The angiograms can be displayed on side-by-side monitors and viewed stereoscopically with a stereoviewer. Rotating images were displayed at 30 frames/sec (60 fields/sec) and were viewed in a fluorographic manner. To apply the data to angiocardiography the following procedures were required: the start of rotation of the X-ray tube was synchronized with the R wave of the EKG; suspension of respiration, and the subject's upper extremities were immobilized at his head. To obtain left atrial angiograms the following steps were taken: (1) the circulation time from the pulmonary artery to the left atrium was estimated by injecting 15 ml contrast medium into the pulmonary artery under the fixed X-ray tube; then, (2) X-ray exposures of 20 fields/sec were obtained during 15 sec; and (3) left atrial arteriograms were taken by using the rotating X-ray tube referring to the circulation time. With this method, stenotic lesions of the coronary arteries and collateral pathways were easily observed simultaneously with morphological changes in a 180deg arc. In cases of acute myocardial infarction, percutaneous transluminal coronary angioplasty (PTCA) and percutaneous transluminal coronary reperfusion (PTCR) utilizing this technique had great merit, because the examination time was greatly reduced due to the three-dimensional information. Therefore, there were possibilities of screening coronary artery diseases and of detecting complicated cardiac malformations and high-risk patients. (author)

  6. Anisotropy of streambed sediments of contrasting geomorphological environments and its relation to groundwater discharge

    Science.gov (United States)

    Sebok, Eva; Duque, Carlos; Engesgaard, Peter; Bøgh, Eva

    2013-04-01

    As a main factor controlling surface water-groundwater exchange, spatial variability in streambed hydraulic conductivity and anisotropy is a key to understand groundwater discharge patterns to streams. Here we report on a field investigation in a soft-bedded stream, where horizontal and vertical streambed hydraulic conductivities were determined in order to, (i) detect spatial and seasonal variability in streambed hydraulic conductivity and anisotropy, (ii) relate this variability to channel morphology and different streambed sediments. The study was carried out at a field site located along Holtum stream in Western Denmark. The 5 m wide stream has a soft sandy streambed, an average discharge of 1000 l/s and an average depth of 0.7 m. Hydraulic tests were carried out in 8 transects across the stream with 5 test locations in each transect to study the spatial variability and streambed hydraulic anisotropy across the stream. Different geomorphological environments were compared by having two transects in a straight channel and six transects across a channel bend with a depositional and an erosional bank. Streambed horizontal hydraulic conductivity (Kh) 0.5 meters below the streambed was determined with slugtests in piezometers. At the same locations falling head tests were conducted in standpipes to calculate vertical hydraulic conductivity (Kv) on a 0.5 m long streambed material column some of which were later removed for grain size analysis. In order to account for any seasonal changes in the temperature-related fluid properties the falling head tests and slugtests were carried out in December 2011 and August 2012. Both the Kh and Kv values show greater variability in the summer dataset. During both seasons the shallow, depositional streambank displays the highest Kh values, while the erosional bank at the thalweg is characterised by lower Kh. Vertical streambed hydraulic conductivities do not show any spatial trend across the stream. Streambed anisotropy values of

  7. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  8. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  9. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  10. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  11. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    Science.gov (United States)

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of contact stiffness in ultrasound atomic force microscopy: three-dimensional time-dependent ultrasound modeling

    International Nuclear Information System (INIS)

    Piras, Daniele; Sadeghian, Hamed

    2017-01-01

    Ultrasound atomic force microscopy (US-AFM) has been used for subsurface imaging of nanostructures. The contact stiffness variations have been suggested as the origin of the image contrast. Therefore, to analyze the image contrast, the local changes in the contact stiffness due to the presence of subsurface features should be calculated. So far, only static simulations have been conducted to analyze the local changes in the contact stiffness and, consequently, the contrast in US-AFM. Such a static approach does not fully represent the real US-AFM experiment, where an ultrasound wave is launched either into the sample or at the tip, which modulates the contact stiffness. This is a time-dependent nonlinear dynamic problem rather than a static and stationary one. This paper presents dynamic 3D ultrasound analysis of contact stiffness in US-AFM (in contrast to static analysis) to realistically predict the changes in contact stiffness and thus the changes in the subsurface image contrast. The modulation frequency also influences the contact stiffness variations and, thus, the image contrast. The three-dimensional time-dependent ultrasound analysis will greatly aid in the contrast optimization of subsurface nano imaging with US-AFM. (paper)

  13. Application status of three-dimensional CT reconstruction in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2017-02-01

    Full Text Available With the development of imaging technology, three-dimensional CT reconstruction has been widely used in hepatobiliary surgery. Three-dimensional CT reconstruction can divide and reconstruct two-dimensional images into three-dimensional images and clearly show the location of lesion and its relationship with the intrahepatic bile duct system. It has an important value in the preoperative assessment of liver volume, diagnosis and treatment decision-making process, intraoperative precise operation, and postoperative individualized management, and promotes the constant development of hepatobiliary surgery and minimally invasive technology, and therefore, it holds promise for clinical application.

  14. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    Science.gov (United States)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  15. Influence of anisotropy and pinning centers on critical current properties in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Haraguchi, T.; Takayama, S.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Yasuda, T.; Okayasu, S.; Uchida, S.; Shimoyama, J.; Kishio, K.

    2006-01-01

    The critical current density in Bi-2212 superconductors with various anisotropies irradiated by heavy ions was investigated in the medium temperature region to understand the effects of defect size and the anisotropy of the superconductor. It was found that the critical current density and the irreversibility field were larger for the specimen with larger defect and/or with smaller anisotropy. Introduction of stronger pinning centers and the optimization of the doping condition to improve the dimensionality are desired for further improvement of the critical current properties

  16. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  17. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  18. Three-dimensional features of GAM zonal flows in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Yan, L.W.; Cheng, J.; Hong, W.Y.; Zhao, K.J.; Lan, T.; Dong, J.Q.; Liu, A.D.; Yu, C.X.; Yu, D.L.; Qian, J.; Huang, Y.; Yang, Q.W.; Ding, X.T.; Liu, Y.; Pan, C.H.

    2007-01-01

    A novel design of the three-step Langmuir probe (TSLP) array has been developed to investigate the zonal flow (ZF) physics in the HL-2A tokamak. Three TSLP arrays are applied to measure the three-dimensional (3D) features of ZFs. They are separated by 65 mm in the poloidal and 800 mm in the toroidal directions, respectively. The 3D properties of the geodesic acoustic mode (GAM) ZFs are presented. The poloidal and toroidal modes of the radial electric fields of the GAM perturbations are simultaneously determined in the HL-2A tokamak for the first time. The modes have narrow radial wave numbers (k r ρ i = 0.03-0.07) and short radial scale lengths (2.4-4.2 cm). High coherence of both the GAM and the ambient turbulence separated by toroidal 22.5 0 along a magnetic field line is observed, which contrasts with the high coherence of the GAM and the low coherence of the ambient turbulence apart from the field line. The nonlinear three wave coupling between the turbulent fluctuations and the ZFs is a plausible mechanism for flow generation. The skewness and kurtosis spectra of the probability distribution function of the potential perturbations are contrasted with the corresponding bicoherence for the first time, which support the three wave coupling mechanism

  19. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  20. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  1. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  2. Flow Interactions of Two- and Three-Dimensional Networked Bio-Inspired Control Elements in an In-Line Arrangement.

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2018-04-19

    We present experiments that examine the modes of interaction, the collective performance and the role of three-dimensionality in two pitching propulsors in an in-line arrangement. Both two-dimensional foils and three-dimensional rectangular wings of $AR = 2$ are examined. \\kwm{In contrast to previous work, two interaction modes distinguished as the coherent and branched wake modes are not observed to be directly linked to the propulsive efficiency, although they are linked to peak thrust performance and minimum power consumption as previously described \\cite[]{boschitsch2014propulsive}.} \\kwm{In fact, in closely-spaced propulsors peak propulsive efficiency of the follower occurs near its minimum power and this condition \\kwm{ reveals a} branched wake mode. Alternatively, for propulsors spaced far apart peak propulsive efficiency of the follower occurs near its peak thrust and this condition \\kwm{reveals a} coherent wake mode.} By examining the collective performance, it is discovered that there is an optimal spacing between the propulsors to maximize the collective efficiency. For two-dimensional foils the optimal spacing of $X^* = 0.75$ and the synchrony of $\\phi = 2\\pi /3$ leads to a collective efficiency and thrust enhancement of 50\\% and 32\\%, respectively, as compared to two isolated foils. In comparison, for $AR = 2$ wings the optimal spacing of $X^* = 0.25$ and the synchrony of $\\phi = 7\\pi /6$ leads to a collective efficiency and thrust enhancement of 30\\% and 22\\%, respectively. In addition, at the optimal conditions the collective lateral force coefficients in both the two- and three-dimensional cases are negligible, while operating off these conditions can lead to non-negligible lateral forces. Finally, the peak efficiency of the collective and the follower are shown to have opposite trends with increasing spacing in two- and three-dimensional flows. This is correlated to the breakdown of the impinging vortex on the follower wing in three

  3. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  4. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  5. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement

    Science.gov (United States)

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-04-01

    ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  6. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  7. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  8. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  9. Three-dimensional magnetophotonic crystals based on artificial opals

    Science.gov (United States)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  10. Three-dimensional magnetophotonic crystals based on artificial opals

    International Nuclear Information System (INIS)

    Baryshev, A.V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-01-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties

  11. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  12. Possibility of estimating three-dimensional mandibular morphology by cephalogram analysis

    International Nuclear Information System (INIS)

    Kim, S.; Motegi, Etsuko; Kikuchi, Yu; Yamaguchi, Hideharu; Takaki, Takashi; Shibahara, Takahiko

    2007-01-01

    The purpose of this study was to investigate the possibility of a surmise of three-dimensional mandibular morphology by two-dimensional cephalogram analysis. The materials were three-dimensional CT and cephalogram of 20 female mandibular prognathism patients (average age: 25.20±7.49) before there orthognathic surgery. Mandibular bone volume and sponge bone width were calculated from three-dimensional images constructed from CT images using imaging software (Real Intage, KGT inc.). There was a positive correlation (r=0.72) between mandibular volume value and mandibular ramus width. There was a positive correlation between sponge bone width at the site of the mandibular cuspid and mandibular ramus width and SNB angle (r=0.80), and between sponge bone width at the site of the mandibular molar and symphysis height and mandibular ramus width (r=0.81). It was thought that these results will be useful for a surmise of three-dimensional mandibular morphology by cephalogram analysis. (author)

  13. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  14. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    Science.gov (United States)

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  15. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  16. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  17. Three-dimensional imaging technology offers promise in medicine.

    Science.gov (United States)

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  18. A three-dimensional dose-distribution estimation system using computerized image reconstruction

    International Nuclear Information System (INIS)

    Nishijima, Akihiko; Kidoya, Eiji; Komuro, Hiroyuki; Tanaka, Masato; Asada, Naoki.

    1990-01-01

    In radiotherapy planning, three dimensional (3-D) estimation of dose distribution has been very troublesome and time-consuming. To solve this problem, a simple and fast 3-D dose distribution image using a computer and Charged Couple Device (CCD) camera was developed. A series of X-ray films inserted in the phantom using a linear accelerator unit was exposed. The degree of film density was degitized with a CCD camera and a minicomputer (VAX 11-750). After that these results were compared with the present depth dose obtained by a JARP type dosimeter, with a dose error being less than 2%. The 3-D dose distribution image could accurately depict the density changes created by aluminum and air put into the phantom. The contrast resolution of the CCD camera seemed to be superior to the convention densitometer in the low-to-intermediate contrast range. In conclusion, our method seem to be very fast and simple for obtaining 3-D dose distribution images and is very effective when compared with the conventional method. (author)

  19. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Tactical Routing Using Two-Dimensional and Three-Dimensional Views of Terrain

    National Research Council Canada - National Science Library

    St

    2001-01-01

    Consoles for military and civilian occupations such as air warfare, command and control, air traffic control, piloting, and meteorological forecasting will be capable of displaying three-dimensional (3-D) perspective views...

  1. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  2. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  3. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  4. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  5. Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy

    DEFF Research Database (Denmark)

    Khalack, J. M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2003-01-01

    Discrete breathers (nonlinear localized modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. This paper is devoted to the investigation of a classical d-dimensional ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg model...

  6. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  7. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  8. Vessel diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries

    NARCIS (Netherlands)

    Westenberg, J.J.M.; Geest, van der R.J.; Wasser, M.N.J.M.; Linden, van der E.L.; Walsum, van T.; Assen, van H.C.; Roos, de A.; Vanderschoot, J.; Reiber, J.H.C.

    2000-01-01

    In this study, the possibilities for quantification of vessel diameters of peripheral arteries in gadolinium contrast-enhanced magnetic resonance angiography (Gd CE MRA) were evaluated. Absolute vessel diameter measurements were assessed objectively and semi-automatically in maximum intensity

  9. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  10. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  11. Three Dimensional Simulation of the Baneberry Nuclear Event

    Science.gov (United States)

    Lomov, Ilya N.; Antoun, Tarabay H.; Wagoner, Jeff; Rambo, John T.

    2004-07-01

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  12. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  13. Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract

    International Nuclear Information System (INIS)

    Kunimatsu, A.; Aoki, S.; Masutani, Y.; Abe, O.; Mori, H.; Ohtomo, K.

    2003-01-01

    Diffusion tensor MR imaging (DTI) provides information on diffusion anisotropy, which can be expressed with three-dimensional (3D) white matter tractography. We used 3D white matter tractography to show the corticospinal tract in eight patients with acute or early subacute ischaemic stroke involving the posterior limb of the internal capsule or corona radiata and to assess involvement of the tract. Infarcts and the tract were shown simultaneously, providing information on their spatial relationships. In five of the eight patients, 3D fibre tract maps showed the corticospinal tract in close proximity to the infarct but not to pass through it. All these patients recovered well, with maximum improvement from the lowest score on manual muscle testing (MMT) up to the full score through rehabilitation. In the other three patients the corticospinal tract was shown running through the infarct; reduction in MMT did not necessarily improve favourably or last longer, other than in one patient. As 3D white matter tractography can show spatial relationships between the corticospinal tract and an infarct, it might be helpful in prognosis of gross motor function. (orig.)

  14. Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Kunimatsu, A.; Aoki, S.; Masutani, Y.; Abe, O.; Mori, H.; Ohtomo, K. [Department of Radiology, Graduate School of Medicine, Tokyo University, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo (Japan)

    2003-08-01

    Diffusion tensor MR imaging (DTI) provides information on diffusion anisotropy, which can be expressed with three-dimensional (3D) white matter tractography. We used 3D white matter tractography to show the corticospinal tract in eight patients with acute or early subacute ischaemic stroke involving the posterior limb of the internal capsule or corona radiata and to assess involvement of the tract. Infarcts and the tract were shown simultaneously, providing information on their spatial relationships. In five of the eight patients, 3D fibre tract maps showed the corticospinal tract in close proximity to the infarct but not to pass through it. All these patients recovered well, with maximum improvement from the lowest score on manual muscle testing (MMT) up to the full score through rehabilitation. In the other three patients the corticospinal tract was shown running through the infarct; reduction in MMT did not necessarily improve favourably or last longer, other than in one patient. As 3D white matter tractography can show spatial relationships between the corticospinal tract and an infarct, it might be helpful in prognosis of gross motor function. (orig.)

  15. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  16. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  17. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  18. Cerebral staging of lung cancer: is one single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence sufficient?

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, Mickael; Jeung, Mi-Young; Roy, Catherine [Nouvel Hopital Civil-Hopitaux Universitaires de Strasbourg, Service de Radiologie B/Radiology Department, Strasbourg (France); Bazille, Gauthier [Clinique Saint Anne-Groupe Radiologique MIM, Strasbourg (France)

    2014-08-15

    Gadolinium-enhanced magnetic resonance imaging (MRI) is the gold standard for cerebral staging in thoracic oncology. We hypothesize that a minimalist examination, consisting of a single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence (CE 3D-GRE), would be sufficient for the cerebral staging of nonsymptomatic lung cancer patients. Seventy nonsymptomatic patients (50 % men; 62 years ± 10.2) referred for cerebral staging of a lung cancer were retrospectively included. All underwent a standard 3 T MRI examination with T1, FLAIR, T2* GRE, diffusion, and CE 3D-GRE sequences, for a total examination time of 20 min. The sole CE 3D-GRE (acquisition time: 6 min) was extracted and blindly interpreted by two radiologists in search of brain metastases. Hemorrhagic features of potential lesions and relevant incidental findings were also noted. Discrepant cases were reviewed by a third reader. The full MRI examination and follow-up studies were used as a reference to calculate sensitivity and specificity of the sole CE 3D-GRE. Thirty-eight point six percent (27 out of 70) of the patients had brain metastases. Performances and reader's agreement with the sole CE 3D-GRE sequence were excellent for the diagnosis of brain metastases (sensitivity = 96.3 %, specificity = 100 %, κ = 0.91) and incidental findings (sensitivity = 85.7 %, specificity = 100 %, κ = 0.62) but insufficient for the identification of hemorrhages within the metastases (sensitivity = 33.3 %, specificity = 85.7 %, κ = 0.47). In the specific case of lung cancer, cerebral staging in nonsymptomatic patients can be efficiently achieved with a minimalistic protocol consisting of a single CE 3D-GRE sequence, completed if positive with a T2* sequence for hemorrhagic assessment, thus halving appointment delays. (orig.)

  19. MR study of intracranial disease with three-dimensional FLASH

    International Nuclear Information System (INIS)

    Runge, V.M.; Wood, M.L.; Kaufman, D.M.; Nelson, K.L.; Traill, M.R.; Wolpert, S.M.

    1987-01-01

    A three-dimensional FLASH technique was used to study 36 patients with intracranial disease at 1 T (Siemens Magnetom). This included 15 cases of intracranial neoplastic disease, four with the application of intravenous Gd-DTPA. Contiguous thin sections (1-2 mm thick) were acquired of the entire intracranial contents using one acquisition (scan time of 5-15 minutes). A MIPRON (KONTRON Instruments) image processing work station was used for rapid image display and 3D reconstruction. 3D FLASH was found to be superior to spin-echo imaging at 1 T for the detection of hemorrhage. 3D acquisition also provided superior localization of neoplastic disease. The T1 contrast achieved was comparable to spin-echo technique with a repetition time/echo time of .6/17. The advantages in terms of lesion localization and thin-section imaging with high spatial resolution of the entire brain may lead to use of 3D FLASH in place of conventional spin-echo imaging

  20. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  1. Structure induced magnetic anisotropy behavior in Co/GaAs(001) films

    Science.gov (United States)

    Blundell, S. J.; Gester, M.; Bland, J. A. C.; Daboo, C.; Gu, E.; Baird, M. J.; Ives, A. J. R.

    1993-05-01

    Epitaxial Co has been grown on GaAs(001) and studied by both low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED), and by the magneto-optic Kerr effect (MOKE) and polarized neutron reflection (PNR). Three samples were fabricated using different growth procedures: (1) ``interrupted'' growth (including an anneal); (2) and (3) continuous growth of similar thicknesses. For sample 1, RHEED patterns indicate an initial growth in the bcc phase followed by a relaxation into a distorted single phase at completion of growth, whereas samples 2 and 3 showed a multicrystalline structure after growth. LEED patterns were used to check the existence of the 2×4 reconstruction patterns before growth, but no LEED patterns could be obtained after more than 2 Å Co was deposited, in contrast to the RHEED patterns which remained visible throughout the growth. Structural analysis of the completed films indicates the formation of a ˜10 Å CoO layer on the Co/air interface, and gives thicknesses for magnetic material of (1) 30 Å and (2) 80 Å. Sample 1 showed a dominant fourfold magnetic anisotropy with the easy axis parallel to the (100) direction and with a strength 2K4/M of ˜0.5 kOe, smaller in magnitude than that reported for bcc films on GaAs(110) but along the same axis [G. A. Prinz et al., J. Appl. Phys. 57, 3672 (1985)]. However, samples 2 and 3 showed only a large uniaxial anisotropy along the (110) direction of strength 2K1/M of ˜1.5 kOe and ˜2.5 kOe, respectively, similar in magnitude to those previously observed [G. A. Prinz et al., J. Appl. Phys. 57, 3676 (1985)]. We attribute the origin of the contrasting magnetic anisotropy behavior observed to the differences in final structure.

  2. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  3. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  4. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  5. Reproducibility of contrast-enhanced transrectal ultrasound of the prostate

    NARCIS (Netherlands)

    Sedelaar, J. P.; Goossen, T. E.; Wijkstra, H.; de la Rosette, J. J.

    2001-01-01

    Transrectal three-dimensional (3-D) contrast-enhanced power Doppler ultrasound (US) is a novel technique for studying possible prostate malignancy. Before studies can be performed to investigate the clinical validity of the technique, reproducibility of the contrast US studies must be proven.

  6. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    Science.gov (United States)

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  7. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  8. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  9. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  10. Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices

    International Nuclear Information System (INIS)

    Lan Jinghua; Li Baowen

    2007-01-01

    We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed

  11. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol

    Science.gov (United States)

    Underwood, Sonia M.; Matz, Rebecca L.; Posey, Lynmarie A.; Carmel, Justin H.; Caballero, Marcos D.; Fata-Hartley, Cori L.; Ebert-May, Diane; Jardeleza, Sarah E.; Cooper, Melanie M.

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional learning” is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not. PMID:27606671

  12. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol.

    Science.gov (United States)

    Laverty, James T; Underwood, Sonia M; Matz, Rebecca L; Posey, Lynmarie A; Carmel, Justin H; Caballero, Marcos D; Fata-Hartley, Cori L; Ebert-May, Diane; Jardeleza, Sarah E; Cooper, Melanie M

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.

  13. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  14. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  15. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto

    2012-01-01

    , causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011.......This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the other...

  16. Flukacad/Pipsicad: three-dimensional interfaces between Fluka and Autocad

    International Nuclear Information System (INIS)

    Helmut Vincke

    2001-01-01

    FLUKA is a widely used 3-D particle transport program. Up to now there was no possibility to display the simulation geometry or the calculated tracks in three dimensions. Even with FLUKA there exists only an option to picture two-dimensional views through the geometry used. This paper covers the description of two interface programs between the particle transport code FLUKA and the CAD program AutoCAD. These programs provide a three-dimensional facility not only for illustrating the simulated FLUKA geometry (FLUKACAD), but also for picturing simulated particle tracks (PIPSICAD) in a three-dimensional set-up. Additionally, the programming strategy for connecting FLUKA with AutoCAD is shown. A number of useful features of the programs themselves, but also of AutoCAD in the context of FLUKACAD and PIPSICAD, are explained. (authors)

  17. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam [Chosun University Hospital, Gwangju (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture.

  18. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    International Nuclear Information System (INIS)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam

    2006-01-01

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture

  19. Three-dimensional accuracy of plastic transfer impression copings for three implant systems.

    Science.gov (United States)

    Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne

    2014-01-01

    The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.

  20. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  1. Three dimensional force prediction in a model linear brushless dc motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)

    1994-11-01

    Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.

  2. Slow electron contribution to inelastic reflection anisotropy

    International Nuclear Information System (INIS)

    Podsvirov, O.A.; Kuznetsov, Yu.A.

    1980-01-01

    Investigated is electron contribution with low energy (up to 1 keV) to the anisotropy of electron inelastic reflection (IRE) from silicon monocrystal (111) within 12-50 keV energy range of primary electrons. Experimental data on IRE anisotropy are presented: delay curves for silicon monocrystal, permitting to separate electrons with the energy up to 1 keV, dependences of IRE anisotropy on the energy of primary electrons for the systems - monocrystalline silicon-amorphous silicon film and delay curves for such systems (film thickness varies from 20 to 2000 A). Suggested is a phenomenologic model, permitting to take into account the contribution of slow electrons to IRE anisotropy: it is supposed, that three groups of electrons take part in the formation of the latter: elastic and inelastic reflected electrons, slow electrons, excited by primary electrons and slow electrons, generated by the reverse flow of the scattered electrons. Contribution of electrons, different by origin, to IRE anisotropy is evaluated in accordance with the experimental data on the basis of this model. It is stated, that slow electrons constitute approximately one half of the IRE anisotropy value, the contribution of both groups of slow electrons being approximately equal

  3. Visual Interpretation with Three-Dimensional Annotations (VITA): three-dimensional image interpretation tool for radiological reporting.

    Science.gov (United States)

    Roy, Sharmili; Brown, Michael S; Shih, George L

    2014-02-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications in Medicine (DICOM) object and is automatically added to the study for archival in Picture Archiving and Communication System (PACS). In addition, a video summary (e.g., MPEG4) can be generated for sharing with patients and for situations where DICOM viewers are not readily available to referring physicians. The current version of VITA is compatible with ClearCanvas; however, VITA can work with any PACS workstation that has a structured annotation implementation (e.g., Extendible Markup Language, Health Level 7, Annotation and Image Markup) and is able to seamlessly integrate into the existing reporting workflow. In a survey with referring physicians, the vast majority strongly agreed that 3D visual summaries improve the communication of the radiologists' reports and aid communication with patients.

  4. Three-dimensional Simulation of Backward Raman Amplification

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.

    2005-01-01

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization

  5. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    International Nuclear Information System (INIS)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  6. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  7. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  8. Three dimensional imaging in cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Torizuka, Kanji; Ishii, Yasushi; Yonekura, Yoshiharu; Yamamoto, Kazutaka; Tamaki, Takeyoshi

    1981-01-01

    Methods to obtain three dimensional images of the heart were reviewed. Gated three dimensional display reconstructed from images using bidirectional collimator, was a useful method to detect akinesis of the heart wall. Tomographic observation of the heart can be carried out by a pinhole collimator to image ischemia with high sensitivity. However the focusing plane must be carefully selected to prevent false positives. In the case of emission CT (ECT), utilization of positron emitters gave a quantitative image without correction, whereas single photon ECT needed the correction due to the absorption of γ-ray. Though the reliability of the images by ECT was high, the time required for data acquisition was much longer than that by a 7 pinhole or bidirectional collimator. (Nakanishi, T.)

  9. [Three-dimensional computer aided design for individualized post-and-core restoration].

    Science.gov (United States)

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  10. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  11. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  12. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  13. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  14. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  15. Prognostic value of three-dimensional ultrasound for fetal hydronephrosis

    Science.gov (United States)

    WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING

    2015-01-01

    The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626

  16. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  17. Anisotropy effect of the clay soil masses on the stress-strain state of transport tunnels

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-09-01

    Full Text Available The article considers the kinds of clay soil mass anisotropy in the form of the spatial heterogeneity of properties of thawed and frozen soils, ambiguity of the frost heaving values and shrinkage in different directions. The questions of anisotropy of the clay soil properties at the positive temperatures are reported. The dependence of the heterogeneity of the physical and mechanical properties of frozen soils from the cryogenic texture, natural arrangement, different types of stratification and interbedding is considered. Indexes of the strength and strain anisotropy are noted. The accounting possibilities of the basic numerical indexes of heaving phenomena from the standpoint of anisotropy of the properties and processes inherent in the freezing through soil are analyzed by substitution in the heaving strain formula. The unevenness of thawed soil shrinkage in vertical and horizontal directions is noted during the freezing of the top layer. The unevenness of shrinkage in different directions is connected with kind of stress and cryogenic texture. Anisotropy of the frost heaving process is considered in the context of one-dimensional and non-one-dimensional problem depending on the amount of the freezing fronts and their direction. There is summarized the effect of anisotropy appearances on the stress-strain state of the transport tunnel. One can conclude that the resulting non-uniformity of heaving and shrinkage in conjunction with anisotropic properties of frozen soils, is a significant component in the complex of power factors determining the optimal design solution of a transport tunnel.

  18. Synthetic display of three-dimensional CT and MPR for gastric neoplasm

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Maruyama, Masakazu

    1998-01-01

    We attempted to obtain synthesized three dimensional (3D) and MPR (Multi Planar Reconstruction) helical CT scans (3D-MPR-CT) of gastric neoplasm by using the air as a contrast medium, and we assessed the usefulness of 3D-MPR-CT gastroendoscopy in the diagnosis of gastric neoplasm. Five minutes before the scan, 20 mg Scopolamine Butylbromide (Buscopan) was injected intramuscularly to minimize gastric peristalsis. An effervescent agent (bubble-make granules) was fed to extend the stomach wall. Non-ionic contrast material (100 mL) was power injected immediately before the scan start. Axial images were obtained with an intersection gap of 5-mm, a 5-mm/sec table speed, and 1-mm reconstruction intervals. 3D-MPR-CT images were reconstructed from these images. In abdominal study, 3D-MPR-CT images enabled the visualization of neoplasm and its adjacent structures in versatile directions, including a view similar to endoscopic observation, proximal aspect of narrowing by tumor and also could get the information about invasive depth of gastric neoplasm. Reports on some clinical cases and the advantages and disadvantages of 3D-MPR-CT gastroendoscopy were discussed. (author)

  19. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    OpenAIRE

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face ...

  20. Loop expansion in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Radulovic, Z.M.

    1983-01-01

    It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops

  1. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  2. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  3. Comparison of two three-dimensional cephalometric analysis computer software

    OpenAIRE

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-01-01

    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  4. Three-dimensional transesophageal echocardiography of the atrial septal defects

    Directory of Open Access Journals (Sweden)

    Romero-Cárdenas Ángel

    2008-07-01

    Full Text Available Abstract Transesophageal echocardiography has advantages over transthoracic technique in defining morphology of atrial structures. Even though real time three-dimensional echocardiographic imaging is a reality, the off-line reconstruction technique usually allows to obtain higher spatial resolution images. The purpose of this study was to explore the accuracy of off-line three-dimensional transesophageal echocardiography in a spectrum of atrial septal defects by comparing them with representative anatomic specimens.

  5. Portosystemic collateral circulation in the falciform ligament: evaluation with three dimensional dynamic contrast enhanced MR angiography in patients with portal hypertension

    International Nuclear Information System (INIS)

    Wu Zhuo; Liang Biling; Li Yong; Zhong Jinglian; Ye Ruixin; Zhang Rong

    2009-01-01

    Objective: The purpose of our study was to investigate three dimensional dynamic contrast enhanced MR angiography(3D DCE MRA) in the detection of portosystemic collateral circulation in the falciform ligament in patients with portal hypertension. Methods: From April 2003 to July 2008, 53 portal hypertension patients with varices in the falciform ligament were evaluated with 3D DCE MRA. Two radiologists independently assessed the number, diameter, location and drainages of the portosystemic collateral circulation in the falciform ligament according to the information on the 3D DCE MRA. Results: The veins in the falciform ligament were classified into the superior and inferior groups, and both groups arise from the left trunk of the portal vein. In our study, the number of varices detected on 3D DCE MRA images varied from 1 to 3, and the diameters of these vessels varied from 0.4 to 2.6 cm. The inferior group consisted of paraumbilical/umbilical veins (47 cases), which flowed toward umbilicus and then drained upwards (n=16) including deep superior epigastric veins (n=7), superficial superior epigastric veins (n=9), downwards (n=40) including deep inferior epigastric veins (n=7), superficial inferior epigastric veins (n=33), or upwards and downwards at the same time (n=9). The superior group of vessels in the falciform ligament were directly anastomosed with the internal thoracic vessels (n=6). Conclusion: In patients with portal hypertension, 3D DCE MRA can optimally demonstrate the portosystemic collateral circulation in the falciform ligament, which includes the superior and inferior drainage groups. (authors)

  6. Symmetries, integrals, and three-dimensional reductions of Plebanski's second heavenly equation

    International Nuclear Information System (INIS)

    Neyzi, F.; Sheftel, M. B.; Yazici, D.

    2007-01-01

    We study symmetries and conservation laws for Plebanski's second heavenly equation written as a first-order nonlinear evolutionary system which admits a multi-Hamiltonian structure. We construct an optimal system of one-dimensional subalgebras and all inequivalent three-dimensional symmetry reductions of the original four-dimensional system. We consider these two-component evolutionary systems in three dimensions as natural candidates for integrable systems

  7. Upper bound on the capacity of constrained three-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2000-01-01

    An upper bound on the capacity of constrained three-dimensional codes is presented. The bound for two-dimensional codes of Calkin and Wilf (see SIAM Journal of Discrete Mathematics, vol.11, no.1, p.54-60, 1998) was extended to three dimensions by Nagy and Zeger. Both bounds apply to first order s...

  8. Teaching veterinary obstetrics using three-dimensional animation technology.

    Science.gov (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  9. Three-dimensional wax patterning of paper fluidic devices.

    Science.gov (United States)

    Renault, Christophe; Koehne, Jessica; Ricco, Antonio J; Crooks, Richard M

    2014-06-17

    In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.

  10. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  11. Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions. Which one prevails?

    Energy Technology Data Exchange (ETDEWEB)

    Bravina, L.V. [University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Lokhtin, I.P.; Malinina, L.V.; Petrushanko, S.V.; Snigirev, A.M. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Zabrodin, E.E. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-11-15

    We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either v{sub 2} (or v{sub 3}) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data. (orig.)

  12. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  13. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    International Nuclear Information System (INIS)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-01-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction

  14. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1997-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  15. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1998-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  16. Three-dimensional MRI of the glenoid labrum

    International Nuclear Information System (INIS)

    Loehr, S.P.; Pope, T.L. Jr.; Martin, D.F.; Link, K.M.; Monu, J.U.V.; Hunter, M.; Reboussin, D.

    1995-01-01

    The objective of this study was to assess the accuracy of three-dimensional (3D) magnetic resonance imaging (MRI) reformation in the evaluation of tears of the glenoid labrum complex (GLC). Fifty-five shoulders were evaluated by MRI using standard spin-echo sequences. Gradient-refocused-echo axial projections were used to assess the GLC on the two-dimensional (2D) studies. Three-dimensional Fourier transform multiplanar gradient-recalled imaging with a resolution of 0.7 mm was also performed in all patients. Independent analyses of the anterior and posterior labra were performed in a blinded manner for both the 2D and 3D studies by three experienced musculoskeletal radiologists. Observations of the imaging studies were compared with the videoarthroscopic findings. The appearance of the GLC was rated on a scale of 0 to 4 (0-2=normal, 3, 4=abnormal or torn). The diagnostic confidence was averaged from the three reader's scores. Anterior labral tears were effectively detected with sensitivities of 89% and 96% and specificities of 96% and 100% (P<0.0001) for the 2D and 3D studies, respectively. For posterior labral tears, the sensitivity and specificity of the 2D method were 47% and 98%, respectively. The sensitivity and specificity of the 3D volume sequence were 53% and 98%, respectively. The lower sensitivity of both imaging methods for detecting posterior labral tears may be influenced by the smaller number (n=5) of arthroscopically confirmed cases in our study and reflects the difficulty of visualizing the posteroinferior borders of the GLC with present MRI techniques. (orig.)

  17. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  18. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  19. The BEAN experiment - An EISCAT study of ion temperature anisotropies

    Directory of Open Access Journals (Sweden)

    I. W. McCrea

    Full Text Available Results are presented from a novel EISCAT special programme, SP-UK-BEAN, intended for the direct measurement of the ion temperature anisotropy during ion frictional heating events in the high-latitude F-region. The experiment employs a geometry which provides three simultaneous estimates of the ion temperature in a single F-region observing volume at a range of aspect angles from 0° to 36°. In contrast to most previous EISCAT experiments to study ion temperature anisotropies, field-aligned observations are made using the Sodankylä radar, while the Kiruna radar measures at an aspect angle of the order of 30°. Anisotropic effects can thus be studied within a small common volume whose size and altitude range is limited by the radar beamwidth, rather than in volumes which overlap but cover different altitudes. The derivation of line-of-sight ion temperature is made more complex by the presence of an unknown percentage of atomic and molecular ions at the observing altitude and the possibility of non-Maxwellian distortion of the ion thermal velocity distribution. The first problem has been partly accounted for by insisting that a constant value of electron temperature be maintained. This enables an estimate of the ion composition to be made, and facilitates the derivation of more realistic line-of-sight ion temperatures and temperature anisotropies. The latter problem has been addressed by assuming that the thermal velocity distribution remains bi-Maxwellian. The limitations of these approaches are discussed. The ion temperature anisotropies and temperature partition coefficients during two ion heating events give values intermediate between those expected for atomic and for molecular species. This result is consistent with an analysis which indicates that significant proportions of molecular ions (up to 50% were present at the times of greatest heating.

  20. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  1. Two- and three-dimensional CT evaluation of sacral and pelvic anomalies

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Magid, D.

    1988-01-01

    Pelvic anomalies are difficult to evaluate with standard techniques. Detailed knowledge of the existing pelvic structures and musculature is essential for successful repair. The authors evaluated 12 patients with complex malformations of the pelvis using two- and three-dimensional imaging. The anomalies included bladder exstrophy (n = 4), cloacal exstrophy (n = 1), duplicated and absent sacrum (n = 3), myelomeningoceles (n = 2), and diastrophic dwarfism (n = 2). The two-dimensional images consisted of sequential coronal and sagittal reconstructions that could be reviewed dynamically on screen. Three-dimensional images were generated on the Pixar imaging computer with use of volumetric rendering. Two- and three-dimensional CT proved complementary in the evaluation of pelvic anomalies, providing optimal information from transaxial CT data

  2. Mesoscopic nonequilibrium thermodynamics of solid surfaces and interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic three-dimensional space.

    Science.gov (United States)

    Ogurtani, Tarik Omer

    2006-04-14

    A theory of irreversible thermodynamics of curved surfaces and interfaces with triple junction singularities is elaborated to give a full consideration of the effects of the specific surface Gibbs free energy anisotropy in addition to the diffusional anisotropy, on the morphological evolution of surfaces and interfaces in crystalline solids. To entangle this intricate problem, the internal entropy production associated with arbitrary virtual displacements of triple junction and ordinary points on the interfacial layers, embedded in a multicomponent, multiphase, anisotropic composite continuum system, is formulated by adapting a mesoscopic description of the orientation dependence of the chemical potentials in terms of the rotational degree of freedom of individual microelements. The rate of local internal entropy production resulted generalized forces and conjugated fluxes not only for the grain boundary triple junction transversal and longitudinal movements, but also for the ordinary points. The natural combination of the mesoscopic approach coupled with the rigorous theory of irreversible thermodynamics developed previously by the global entropy production hypothesis yields a well-posed, nonlinear, moving free-boundary value problem in two-dimensional (2D) space, as a unified theory. The results obtained for 2D space are generalized into the three-dimensional continuum by utilizing the invariant properties of the vector operators in connection with the descriptions of curved surfaces in differential geometry. This mathematical model after normalization and scaling procedures may be easily adapted for computer simulation studies without introducing any additional phenomenological system parameters (the generalized mobilities), other than the enlarged concept of the surface stiffness.

  3. Strain-induced recovery of electronic anisotropy in 90°-twisted bilayer phosphorene

    Science.gov (United States)

    Xie, Jiafeng; Luo, Qiangjun; Jia, Lei; Zhang, Z. Y.; Shi, H. G.; Yang, D. Z.; Si, M. S.

    2018-01-01

    It is well known that anisotropy determines the preferred transport direction of carriers. To manipulate the anisotropy is an exciting topic in two-dimensional materials, where the carriers are confined within individual layers. In this work, it is found that uniaxial strain can tune the electronic anisotropy of the 90°-twisted bilayer phosphorene. In this unique bilayer structure, the zigzag direction of one layer corresponds to the armchair one of the other layer and vice versa. Owing to this complementary structure, the directional (zigzag or armchair) deformation response to strain of one layer is opposite to that of the other layer, where the in-plane positive Poisson's ratio plays a key role. As a result, the doubly degenerate highest valence bands split, followed by a recovery of anisotropy. More interestingly, such an anisotropy, namely, the ratio of the effective mass along the Γ \\text- X direction to that along the Γ \\text- Y direction, reaches as high as 6 under a small strain of 1%, and keeps nearly unchanged up to a strain of 3%. In addition, high anisotropy only holds for hole carriers as the conduction band is insensitive to strain. These findings should shed new light on the design of semiconducting devices, where the hole acts as the transport carrier.

  4. High resolution x-ray stereomicroscopy: True three-dimensional imaging of biological samples

    International Nuclear Information System (INIS)

    Loo, B.W.Jr.; Williams, S.; Meizel, S.; Rothman, S.S.; Univ. of California, Berkeley/San Francisco, CA; Univ. of California, San Francisco, CA

    1993-01-01

    X-ray microscopy has the potential to become a powerful tool for the study of biological samples, allowing the imaging of intact cells and subcellular organelles in an aqueous environment at resolutions previously achievable only by electron microscopy. The ability to examine a relatively thick sample raises the issue of superposition of objects from multiple planes within the sample, making difficult the interpretation of conventional, orthogonally projected images. This paper describes early attempts at developing three-dimensional methods for x-ray microimaging: the first to use x-ray optics, and to the authors' knowledge, the first demonstrating sub-visible resolutions and natural contrast. These studies were performed using the scanning transmission x-ray microscope (STXM) at the National Synchrotron Light Source, Brookhaven National Laboratory

  5. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  6. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    (IRI) [Bilitza, Radio Sci., 36, 261, 2001] and account for the medium anisotropy due to the geomagnetic field above approximately 70 km altitude. The realistic three-dimensional geomagnetic field distributions are loaded from the international geomagnetic field model (IGRF) [Barton, J. Geomag. Geoelectr., 49, 123, 1997]. In this talk we will compare the model results with available analytical solutions for electric and magnetic field distributions in the earth-ionosphere cavity excited by a strong positive cloud-to-ground lightning discharge. We will also discuss known sources of variability in Schumann resonance frequencies and present results illustrating model response under conditions of high-energy particle precipitation events in the polar regions [e.g., Morente et al., JGR, 108, doi:10.1029/2002JA009779, 2003, and references cited therein].

  7. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  8. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    Science.gov (United States)

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  9. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  10. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  11. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  12. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  13. A Three-Dimensional Movement Analysis of the Spike in Fistball

    Directory of Open Access Journals (Sweden)

    Andreas Bund

    2016-12-01

    Full Text Available Due to its relevancy to point scoring, the spike is considered as one of the most important skills in fistball. Biomechanical analyses of this sport are very rare. In the present study, we performed a three-dimensional kinematic analysis of the fistball spike, which helps to specify performance parameters on a descriptive level. Recorded by four synchronized cameras (120 Hz and linked to the motion capture software Simi Motion® 5.0, three female fistball players of the second German league (24–26 years, 1.63–1.69 m performed several spikes under standardized conditions. Results show that the segment velocities of the arm reached their maximum successively from proximal to distal, following the principle of temporal coordination of single impulses. The wrist shows maximum speed when the fist hits the ball. The elbow joint angle performs a rapid transition from a strong flexion to a (almost full extension; however, the extension is completed after the moment of ball impact. In contrast, the shoulder joint angle increases almost linearly until the fistball contact and decreases afterward. The findings can be used to optimize the training of the spike.

  14. Two- and three-dimensional evaluation of the acetabulum in the pediatric patient

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Sponseller, P.D.

    1987-01-01

    Complex anatomic structures such as the hip and acetabulum are best evaluated with the use of two- and three-dimensional reconstruction techniques and standard transaxial CT data. CT scans of children with various hip pathologies, including congenital hip dislocation, slipped capital femoral epiphyses, hip dysplasias, dwarfism, and acetabular fractures, were reviewed to determine the value of two- and three-dimensional imaging. The advantages of two-dimensional imaging techniques (sequential coronal/sagittal reconstruction) and three-dimensional valumetric imaging techniques (using real-time video display) are illustrated with specific examples

  15. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  16. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  17. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  18. Superconductivity and the existence of Nambu's three-dimensional phase space mechanics

    International Nuclear Information System (INIS)

    Angulo, R.; Gonzalez-Bernardo, C.A.; Rodriguez-Gomez, J.; Kalnay, A.J.; Perez-M, F.; Tello-Llanos, R.A.

    1984-01-01

    Nambu proposed a generalization of hamiltonian mechanics such that three-dimensional phase space is allowed. Thanks to a recent paper by Holm and Kupershmidt we are able to show the existence of such three-dimensional phase space systems in superconductivity. (orig.)

  19. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  20. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  1. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  2. Radiological evaluation of the fetal face using three-dimensional ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Bäumler M

    2012-12-01

    Full Text Available Marcel Bäumler,1–3 Michèle Bigorre,1,4 Jean-Michel Faure1,51CHU Montpellier, Centre de Compétence des Fentes Faciales, Hôpital Lapeyronie, Montpellier, 2Clinique du Parc, Imagerie de la Femme, Castelnau-le-Lez, 3Cabinet de Radiologie du Trident, Lunel, 4CHU Service de Chirurgie Plastique Pédiatrique, Hôpital Lapeyronie, Montpellier, 5CHU Montpellier, Service de Gynécologie-Obstétrique, Hôpital Arnaud de Villeneuve, Montpellier, FranceAbstract: This paper reviews screening and three-dimensional diagnostic ultrasound imaging of the fetal face. The different techniques available for analyzing biometric and morphological items of the profile, eyes, ears, lips, and hard and soft palate are commented on and briefly compared with the respective bi-dimensional techniques. The available literature supports the use of three-dimensional ultrasound in difficult prenatal diagnostic conditions because of its diagnostic accuracy, enabling improved safety of perinatal care. Globally, a marked increase has been observed in the accuracy of three-dimensional ultrasound in comparison with the bi-dimensional approach. Because there is no consensus about the performance of the different three-dimensional techniques, future studies are needed in order to compare them and to find the best technique for analysis of each of the respective facial elements. Universal prenatal standards may integrate these potential new findings in the future. At this time, the existing guidelines for prenatal facial screening should not be changed.Keywords: prenatal three-dimensional ultrasound, prenatal screening, prenatal diagnosis, cleft lip and palate, fetal profile, retrognathism

  3. Comparison of three contrast radiographic techniques in the dog large intestine

    International Nuclear Information System (INIS)

    Vargas, L.; Thibaut, J.; Olhaberry, E.; Born, R.; Deppe, R.

    1994-01-01

    In order to compare three radiographic techniques -pneumocolon, barium enema and double contrast- in the large intestine of the dog, three radiographic series in ventrodorsal and right lateral projections were taken. Six healthy adult dogs of both sexes with an approximate weight between 5 to 10 kg were used. Three enemas were administered 24, 12 and 2 hrs. before the series of radiographs were taken. Then dogs were anaesthetized with sodium tiopental (20 mg/kg iv) and the contrast media were introduced. Pneumocolon was carried out in the first series introducing air (20 cc/kg) in the large intestine through a Foley rectal catheter. Radiographs were taken in both projections, after 5 and 15min. respectively. Barium enema was performed in the second series introducing barium sulfate (18%) in the large intestine through a Foley rectal catheter (25 cc/kg); 5 and 15 min. later, the radiographs were taken. In the third series -double contrast- the barium sulfate, which was obtained from each dog using a catheter, was substituted by a volume of air equal to that obtained from the contrast medium. Later the radiographs were taken in both projections. The radiographic plates of each series were analized comparing the characteristics of: radiographic density, outline and volume. With the pneumocolon barium enema and double contrast, the radiographic density was, in most cases, low, high and inter-mediate respectively. The radiographic outline was, in most cases, regular for the three techniques. Thee radiographic volume was similar in all of the series. From the results obtained, it is concluded that double contrast best outlines the intestinal mucosa and more information can be obtained from it [es

  4. Research and Realization of Medical Image Fusion Based on Three-Dimensional Reconstruction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new medical image fusion technique is presented. The method is based on three-dimensional reconstruction. After reconstruction, the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure, as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique, three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images, but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter. The research proves this fusion technique is more exact and has no registration, so it is more adapt to arbitrary medical image fusion with different equipments.

  5. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  6. Random three-dimensional jammed packings of elastic shells acting as force sensors

    Science.gov (United States)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.

  7. MIGHT WE EVENTUALLY UNDERSTAND THE ORIGIN OF THE DARK MATTER VELOCITY ANISOTROPY?

    International Nuclear Information System (INIS)

    Hansen, Steen H.

    2009-01-01

    The density profile of simulated dark matter structures is fairly well-established, and several explanations for its characteristics have been put forward. In contrast, the radial variation of the velocity anisotropy has still not been explained. We suggest a very simple origin, based on the shapes of the velocity distribution functions, which are shown to differ between the radial and tangential directions. This allows us to derive a radial variation of the anisotropy profile which is in good agreement with both simulations and observations. One of the consequences of this suggestion is that the velocity anisotropy is entirely determined once the density profile is known. We demonstrate how this explains the origin of the γ-β relation, which is the connection between the slope of the density profile and the velocity anisotropy. These findings provide us with a powerful tool, which allows us to close the Jeans equations.

  8. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    Science.gov (United States)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  9. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  10. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  11. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter

    2016-01-01

    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  12. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  13. Method and system for manipulating a digital representation of a three-dimensional object

    DEFF Research Database (Denmark)

    2010-01-01

    A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...

  14. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Perch-Nielsen, Ivan R.; Palima, Darwin

    2009-01-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for...

  15. ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY

    International Nuclear Information System (INIS)

    Amenomori, M.; Bi, X. J.; Ding, L. K.; Fan, C.; Feng Zhaoyang; Gou, Q. B.; He, H. H.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, X. H.; Guo, H. W.; Hu Haibing; Feng, C. F.; He, M.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Hibino, K.; Hotta, N.

    2010-01-01

    We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solar cycle.

  16. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  17. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    Science.gov (United States)

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  18. Three-dimensional magnetic probe measurements of EXTRAP T1 equilibria

    International Nuclear Information System (INIS)

    Hedin, E.R.

    1988-12-01

    Internal probes are described for use in measuring the three orthogonal components of the magnetic field in the Extrap T1 device. The data analysis process for numerical processing of the probe signals is also explained. Results include radial and vertical profiles of the field components, three-dimensional field plots, inverse field strength contours, two-dimensional magnetic flux plots and toroidal current profiles. (author)

  19. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    Science.gov (United States)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical

  20. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  1. Induction of carcinoembryonic antigen expression in a three-dimensional culture system

    Science.gov (United States)

    Jessup, J. M.; Brown, D.; Fitzgerald, W.; Ford, R. D.; Nachman, A.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    MIP-101 is a poorly differentiated human colon carcinoma cell line established from ascites that produces minimal amounts of carcinoembryonic antigen (CEA), a 180 kDa glycoprotein tumor marker, and nonspecific cross-reacting antigen (NCA), a related protein that has 50 and 90 kDa isoforms, in vitro in monolayer culture. MIP-101 produces CEA when implanted into the peritoneum of nude mice but not when implanted into subcutaneous tissue. We tested whether MIP-101 cells may be induced to express CEA when cultured on microcarrier beads in three-dimensional cultures, either in static cultures as non-adherent aggregates or under dynamic conditions in a NASA-designed low shear stress bioreactor. MIP- 101 cells proliferated well under all three conditions and increased CEA and NCA production 3 - 4 fold when grown in three-dimensional cultures compared to MIP-101 cells growing logarithmically in monolayers. These results suggest that three-dimensional growth in vitro simulates tumor function in vivo and that three-dimensional growth by itself may enhance production of molecules that are associated with the metastatic process.

  2. Three-dimensional demonstration of liver and spleen by computer graphics technique

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Azuma, Masayoshi; Katayama, Kazuhiro; Yoshioka, Hiroaki; Ishizu, Hiromi; Mitsutani, Natsuki; Koizumi, Takao; Takayama, Ichiro

    1987-01-01

    Three-dimensional demonstration system of the liver and spleen has been developed using computer graphics technique. Three-dimensional models were constructed from CT images of the organ surface. The three-dimensional images were displayed as wire-frame and/or solid models on the color CRT. The anatomical surface of the liver and spleen was realistically viewed from any direction. In liver cirrhosis, atrophy of the right lobe, hypertrophy of the left lobe and splenomegaly were displayed vividly. The liver and hepatoma were displayed as wire-frame and solid models respectively on the same image. This combined display clarified the intrahepatic location of hepatoma together with configuration of liver and hepatoma. Furthermore, superimposed display of three dimensional models and celiac angiogram enabled us to understand the location and configuration of lesions more easily than the original CT data or angiogram alone. Therefore, it is expected that this system is clinically useful for noninvasive evaluation of patho-morphological changes of the liver and spleen. (author)

  3. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  4. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  5. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  6. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  7. On boundary conditions in three-dimensional AdS gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera [Instituto de Fisica, P. Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile) and Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)]. E-mail: olivera.miskovic@ucv.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile) and Centro Multidisciplinar de Astrofisica, CENTRA, Departamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: rolea@fisica.ist.utl.pt

    2006-09-07

    A finite action principle for three-dimensional gravity with negative cosmological constant, based on a boundary condition for the asymptotic extrinsic curvature, is considered. The bulk action appears naturally supplemented by a boundary term that is one half the Gibbons-Hawking term, that makes the Euclidean action and the Noether charges finite without additional Dirichlet counterterms. The consistency of this boundary condition with the Dirichlet problem in AdS gravity and the Chern-Simons formulation in three dimensions, and its suitability for the higher odd-dimensional case, are also discussed.

  8. Three-Dimensional Organization of Chromosome Territories in the Human Interphase Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); J. Langowski (Jörg)

    1999-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown. The regulation of genes has been shown to be connected closely to the three-dimensional organization of the genome in the cell nucleus. The nucleus of the cell has for a long

  9. Three-dimensional face shape in Fabry disease

    NARCIS (Netherlands)

    Cox-Brinkman, Josanne; Vedder, Anouk; Hollak, Carla; Richfield, Linda; Mehta, Atul; Orteu, Kate; Wijburg, Frits; Hammond, Peter

    2007-01-01

    Facial dysmorphology is an important feature in several lysosomal storage disorders. Although in Fabry disease facial dysmorphism is not a prominent sign, minor facial abnormalities have been previously reported. By analysing three-dimensional images of faces, we quantified facial dysmorphology in a

  10. Topology of Flow Separation on Three-Dimensional Bodies

    Science.gov (United States)

    Chapman, Gary T.; Yates, Leslie A.

    1991-01-01

    In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.

  11. A comparative study of three-dimensional reconstructive images of temporomandibular joint using computed tomogram

    International Nuclear Information System (INIS)

    Lim, Suk Young; Koh, Kwang Joon

    1993-01-01

    The purpose of this study was to clarify the spatial relationship of temporomandibular joint and to an aid in the diagnosis of temporomandibular disorder. For this study, three-dimensional images of normal temporomandibular joint were reconstructed by computer image analysis system and three-dimensional reconstructive program integrated in computed tomography. The obtained results were as follows : 1. Two-dimensional computed tomograms had the better resolution than three dimensional computed tomograms in the evaluation of bone structure and the disk of TMJ. 2. Direct sagittal computed tomograms and coronal computed tomograms had the better resolution in the evaluation of the disk of TMJ. 3. The positional relationship of the disk could be visualized, but the configuration of the disk could not be clearly visualized on three-dimensional reconstructive CT images. 4. Three-dimensional reconstructive CT images had the smoother margin than three-dimensional images reconstructed by computer image analysis system, but the images of the latter had the better perspective. 5. Three-dimensional reconstructive images had the better spatial relationship of the TMJ articulation, and the joint space were more clearly visualized on dissection images.

  12. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  13. Effect of trapezius muscle strength on three-dimensional scapular kinematics

    OpenAIRE

    Turgut, Elif; Duzgun, Irem; Baltaci, Gul

    2016-01-01

    [Purpose] This study aimed to investigate the effect of trapezius muscle isometric strength on three-dimensional scapular kinematics in asymptomatic shoulders. [Subjects and Methods] Thirty asymptomatic subjects were included to the study. Isometric strengths of the upper, middle, and lower trapezius muscle were measured using a handheld dynamometer. Three-dimensional scapular kinematics was recorded by an electromagnetic tracking device during frontal and sagittal plane elevation. For each m...

  14. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  15. Three-dimensional imaging of hidden objects using positron emission backscatter

    International Nuclear Information System (INIS)

    Lee, Dongwon; Cowee, Misa; Fenimore, Ed; Galassi, Mark; Looker, Quinn; Mcneil, Wendy V.; Stonehill, Laura; Wallace, Mark

    2009-01-01

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  16. Three-dimensional lagrangian approach to the classical relativistic dynamics of directly interacting particles

    International Nuclear Information System (INIS)

    Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.

    1987-01-01

    In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians

  17. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    Science.gov (United States)

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  18. Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural and Mechanical Features

    Science.gov (United States)

    Neal, Rebekah A.; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B.; Hsiao, James; Engelmayr, George C.; Langer, Robert

    2013-01-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering. PMID:23190320

  19. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  20. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  1. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  2. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  3. Study of fission dynamics with the three-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2011-11-15

    The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)

  4. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  5. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  6. Modelling three-dimensional distribution of photosynthetically active radiation in sloping coniferous stands

    International Nuclear Information System (INIS)

    Knyazikhin, Yu.; Kranigk, J.; Miessen, G.; Panfyorov, O.; Vygodskaya, N.; Gravenhorst, G.

    1996-01-01

    Solar irradiance is a major environmental factor governing biological and physiological processes in a vegetation canopy. Solar radiation distribution in a canopy and its effect are three-dimensional in nature. However, most of the radiation models up to now have been one-dimensional. They can be successfully applied to large-scale studies of forest functioning. The one-dimensional modelling technique, however, does not provide adequate interpretation of small scale processes leading to forest growth. In this article we discuss a modelling strategy for the simulation of three-dimensional radiation distribution in a vegetation canopy of a small area (about 0.25–0.3 ha). We demonstrate its realisation to predict the three-dimensional radiative regime of phytosynthetically active radiation in a real coniferous stand located on hilly surroundings. Our model can be used to investigate the influence of different climatic conditions, forest management methods and field sites on the solar energy available for forest growth in small heterogeneous areas. Further, a three-dimensional process-oriented model helps to derive global variables affecting bio-physiological processes in a vegetation canopy shifting from small scale studies of the functioning of forests to regional, continental, and global scale problems. (author)

  7. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  8. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  9. Three-dimensional MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.

    1987-01-01

    Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging

  10. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  11. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  12. Three-dimensional groundwater velocity field in an unconfined aquifer under irrigation

    International Nuclear Information System (INIS)

    Zlotnik, V.

    1990-01-01

    A method for three-dimensional flow velocity calculation has been developed to evaluate unconfined aquifer sensitivity to areal agricultural contamination of groundwater. The methodology of Polubarinova-Kochina is applied to an unconfined homogeneous compressible or incompressible anisotropic aquifer. It is based on a three-dimensional groundwater flow model with a boundary condition on the moving surface. Analytical solutions are obtained for a hydraulic head under the influence of areal sources of circular and rectangular shape using integral transforms. Two-dimensional Hantush formulas result from the vertical averaging of the three-dimensional solutions, and the asymptotic behavior of solutions is analyzed. Analytical expressions for flow velocity components are obtained from the gradient of the hydraulic head field. Areal and temporal variability of specific yield in groundwater recharge areas is also taken into account. As a consequence of linearization of the boundary condition, the operation of any irrigation system with respect to groundwater is represented by superposition of the operating wells and circular and rectangular source influences. Combining the obtained solutions with Dagan or Neuman well functions, one can develop computer codes for the analytical computation of the three-dimensional groundwater hydraulic head and velocity component distributions. Methods for practical implementation are discussed. (Author) (20 refs., 4 figs.)

  13. Three-dimensional x-ray diffraction detection and visualization

    International Nuclear Information System (INIS)

    Allahkarami, Masoud; Hanan, Jay C

    2014-01-01

    A new method of sensing and analyzing three-dimensional (3D) x-ray diffraction (XRD) cones was introduced. Using a two-dimensional area detector, a sequence of frames was collected while moving the detector away from the sample with small equally spaced steps and keeping all other parameters constant. A 3D dataset was created from the subsequent frames. The 3D x-ray diffraction (XRD 3 ) pattern contains far more information than a one-dimensional profile collected with the conventional diffractometer and 2D x-ray diffraction (XRD 2 ). The present work discusses some fundamentals about XRD 3 , such as the data collection method, 3D visualization, diffraction data interpretation and potential applications of XRD 3 . (paper)

  14. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  15. Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange

    Energy Technology Data Exchange (ETDEWEB)

    Ekomasov, E.G., E-mail: EkomasovEG@gmail.com [Bashkir State University, 32, Validy Str., Ufa, 450076 (Russian Federation); Murtazin, R.R. [Bashkir State University, 32, Validy Str., Ufa, 450076 (Russian Federation); Nazarov, V.N. [Institute of Molecule and Crystal Physics Ufa Research Centre of Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa, 450075 (Russian Federation)

    2015-07-01

    The generation and evolution of magnetic inhomogeneities, emerging in a thin flat layer with the parameters of the magnetic anisotropy and exchange interaction, with the parameters different from other two thick layers of the three-layer ferromagnetic structure, were investigated. The parameters ranges that determine the possibility of their existence were found. The possibility of the external magnetic field influence on the structure and dynamic properties of localized magnetic inhomogeneities was shown. - Highlights: • The generation of magnetic inhomogeneities in the three-layer ferromagnetic. • The influence of an external field on the parameters of magnetic inhomogeneities. • Numerical study of the structure and dynamics of magnetic inhomogeneities.

  16. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  17. Foundations of the theory of three-dimensional quadrupolar mass spectrometry. 1

    International Nuclear Information System (INIS)

    Sheretov, Eh.P.

    1979-01-01

    The basic principles of the theory of three-dimensional quadrupolar mass spectrometry are developed. It is shown that the ''stretching'' of the electrode system of the sensor of a three-dimensional quadrupolar mass spectrometer in the direction of an axis (introduction of the system assymetry) leads to a sharp decrease of the high-frequency field effect on the particle trajectory in this direction. Presented are ratios determining the configuration of electrode systems of sensors of flight-type quadrupolar mass spectrometers. Specific features of the stability diagram for such analyzers are discussed. It is shown that the property detected makes it possible to develop new promising time-of-flight three-dimensional quadrupolar mass spectrometers

  18. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    Brickey, D.W.

    1992-01-01

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  19. Scattering of light from small nematic spheres with radial dielectric anisotropy

    International Nuclear Information System (INIS)

    Karacali, H.; Risser, S.M.; Ferris, K.F.

    1997-01-01

    We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes for droplets much smaller than the wavelength of the incident radiation show that droplets with continual variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy. The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller polymer dielectric constants than the other models. These results show that the scattering from small anisotropic droplets is sensitive to details of the internal structure and anisotropy of the droplet. copyright 1997 The American Physical Society

  20. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.

    Science.gov (United States)

    Grossberg, S

    1997-07-01

    This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.