WorldWideScience

Sample records for three-body short range

  1. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    Science.gov (United States)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  2. Universality in low energy three-body systems

    International Nuclear Information System (INIS)

    Amorim, A.E.A.; Tomio, L; Frederico, T.

    1997-01-01

    The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)

  3. Short versus long range interactions and the size of two-body weakly bound objects

    International Nuclear Information System (INIS)

    Lombard, R.J.; Volpe, C.

    2003-01-01

    Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)

  4. Low-lying spectra in anharmonic three-body oscillators with a strong short-range

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2003-01-01

    Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003

  5. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  6. Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable

  7. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  8. The nuclear contacts and short range correlations in nuclei

    Science.gov (United States)

    Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.

    2018-05-01

    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

  9. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  10. Topics in three body problems

    International Nuclear Information System (INIS)

    Amado, R.D.

    1975-01-01

    An overview of the formal theory of the three-body problem as it has developed in the past twelve years is given. The formal structure of the theory, some of the techniques that have developed for handling the theory, and some results on how general quantum mechanical principles structure the results, are presented. The discussion is held entirely in the context of non-relativistic quantum mechanics with short-range forces. In this presentation the main outline of the theory is stressed, often at the expense of mathematical rigour [pt

  11. Effective theories of scattering with an attractive inverse-square potential and the three-body problem

    International Nuclear Information System (INIS)

    Barford, Thomas; Birse, Michael C

    2005-01-01

    A distorted-wave version of the renormalization group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wavefunction satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalization of the three-body interactions, with the renormalization-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces

  12. Studies of the nuclear three-body system with three dimensional Faddeev calculations

    Science.gov (United States)

    Liu, Hang

    A three-body system consists of either a bound state of three particles with definite binding energy or a beam of single particles scattered from a target, where two of the particles are bound. Of the particles are nucleons, the interactions between them are strong and short ranged. A theoretical framework for studying the dynamics of a nuclear three-body system is the Faddeev scheme. In this work the equation for three-body scattering and the bound state are formulated in momentum space, and directly solved in terms of vector variables. For three identical bosons the Faddeev equation for scattering is a three- dimensional inhomogeneous integral equation in five variables, and is solved by Padé summation. The equation for the bound state is a homogeneous one in three variables, and is solved by a Lanczos' type method. The corresponding algorithms are presented, and their numerical feasibility is demonstrated. Elastic as well as inelastic scattering processes in the intermediate energy regime up to 1 GeV incident energy are studied for the first within a Faddeev scheme. The two-body force employed is of Malfliet-Tjon type. Specific emphasis is placed on studying the convergence of the multiple scattering series given by the Faddeev equations. For the bound state, a three-body force of Fujita- Miyazawa type is incorporated in addition to the two-body force. The effects of this three-body force on the bound state properties are investigated.

  13. Precise numerical results for limit cycles in the quantum three-body problem

    International Nuclear Information System (INIS)

    Mohr, R.F.; Furnstahl, R.J.; Hammer, H.-W.; Perry, R.J.; Wilson, K.G.

    2006-01-01

    The study of the three-body problem with short-range attractive two-body forces has a rich history going back to the 1930s. Recent applications of effective field theory methods to atomic and nuclear physics have produced a much improved understanding of this problem, and we elucidate some of the issues using renormalization group ideas applied to precise nonperturbative calculations. These calculations provide 11-12 digits of precision for the binding energies in the infinite cutoff limit. The method starts with this limit as an approximation to an effective theory and allows cutoff dependence to be systematically computed as an expansion in powers of inverse cutoffs and logarithms of the cutoff. Renormalization of three-body bound states requires a short range three-body interaction, with a coupling that is governed by a precisely mapped limit cycle of the renormalization group. Additional three-body irrelevant interactions must be determined to control subleading dependence on the cutoff and this control is essential for an effective field theory since the continuum limit is not likely to match physical systems (e.g., few-nucleon bound and scattering states at low energy). Leading order calculations precise to 11-12 digits allow clear identification of subleading corrections, but these corrections have not been computed

  14. Observation of short range three-particle correlations in e+e- annihilations at LEP energies

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    \\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.

  15. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji

    2010-01-01

    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  16. Short-range airborne transmission of expiratory droplets between two people

    DEFF Research Database (Denmark)

    Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm

    2017-01-01

    , ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes...

  17. Renormalization of the three-boson system with short-range interactions revisited

    International Nuclear Information System (INIS)

    Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang

    2017-01-01

    We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)

  18. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  19. Three-body systems with square-well potentials in L=0 states

    International Nuclear Information System (INIS)

    Jensen, A. S.; Garrido, E.; Fedorov, D. V.

    1997-01-01

    The angular part of the Faddeev equations is solved analytically for s-states in case of two-body square-well potentials. The results are, still analytically, generalized to arbitrary, short-range potentials for both small and large distances. We consider systems with three identical bosons, three non-identical particles, and two identical spin-1/2 fermions, plus a third particle with arbitrary spin. The angular wave functions are in general linear combinations of trigonometric and exponential function,. The Efimov conditions are obtained at large distances. General properties and applications to short-range potentials are discussed. Gaussian potentials are used for illustrations. The results are useful for numerical calculations, where, for example, large distances can be treated analytically and matched to the numerical solutions at smaller distances. The saving in computational efforts could be substantial. (author)

  20. Long-range interactions among three alkali-metal atoms

    International Nuclear Information System (INIS)

    Marinescu, M.; Starace, A.F.

    1996-01-01

    The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively

  1. Three-body forces: a status report

    International Nuclear Information System (INIS)

    Coon, S.A.

    1976-01-01

    Real three-body forces due to meson exchange are distinguished from effective three-body interactions of a nuclear Hamiltonian. The long-range part of the real three-body force is proportional to the off-mass-shell sup(PI)N scattering amplitude. Its contribution to the binding energy of nuclear matter is quite dependent upon the treatment of correlations (due to the two-body potential) in the three-body wave function. A recent improvemrnt in the amplitude implies a very small contribution. But, a recent improvement in the treatment of correlations implies a large contribution. Work towards including both these improvements in a single calculation is in progress. (author)

  2. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  3. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1998-08-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels.

  4. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm

    1998-01-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels

  5. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  6. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  7. Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity

    Directory of Open Access Journals (Sweden)

    Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack

    2016-10-01

    Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.

  8. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  9. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  10. Magnetic short range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1976-01-01

    Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi

  11. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  12. Short-range correlations with pseudopotentials

    International Nuclear Information System (INIS)

    Osman, A.

    1976-01-01

    Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)

  13. Effect of three-body forces on the phase behavior of charged colloids

    International Nuclear Information System (INIS)

    Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.

    2000-01-01

    Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics

  14. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  15. Hard probes of short-range nucleon-nucleon correlations

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  16. Three-body vertices with two-body techniques

    International Nuclear Information System (INIS)

    Mitra, A.N.; Sharma, V.K.

    1976-01-01

    It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)

  17. Current research efforts at JILA to test the equivalence principle at short ranges

    International Nuclear Information System (INIS)

    Faller, J.E.; Niebauer, T.M.; McHugh, M.P.; Van Baak, D.A.

    1988-01-01

    We are presently engaged in three different experiments to search for a possible breakdown of the equivalence principle at short ranges. The first of these experiments, which has been completed, is our so-called Galilean test in which the differential free-fall of two objects of differing composition was measured using laser interferometry. We observed that the differential acceleration of two test bodies was less than 5 parts in 10 billion. This experiment set new limits on a suggested baryon dependent ''Fifth Force'' at ranges longer than 1 km. With a second experiment, we are investigating substance dependent interactions primarily for ranges up to 10 meters using a fluid supported torsion balance; this apparatus has been built and is now undergoing laboratory tests. Finally, a proposal has been made to measure the gravitational signal associated with the changing water level at a large pumped storage facility in Ludington, Michigan. Measuring the gravitational signal above and below the pond will yield the value of the gravitational constant, G, at ranges from 10-100 m. These measurements will serve as an independent check on other geophysical measurements of G

  18. Few body systems at intermediate energies

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    I review the progresses which have been made in our understanding of the high momentum components of the wave functions of the few-body systems, the three-body mechanisms and the short range correlations

  19. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    International Nuclear Information System (INIS)

    Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul

    2010-01-01

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  20. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)

    2010-03-15

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  1. A novel nuclear dependence of nucleon–nucleon short-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-10

    A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.

  2. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  3. Short range order in liquid pnictides

    International Nuclear Information System (INIS)

    Mayo, M; Makov, G; Yahel, E; Greenberg, Y

    2013-01-01

    Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion. (paper)

  4. Short range spread-spectrum radiolocation system and method

    Science.gov (United States)

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  5. The three-body problem

    International Nuclear Information System (INIS)

    Musielak, Z E; Quarles, B

    2014-01-01

    The three-body problem, which describes three masses interacting through Newtonian gravity without any restrictions imposed on the initial positions and velocities of these masses, has attracted the attention of many scientists for more than 300 years. In this paper, we present a review of the three-body problem in the context of both historical and modern developments. We describe the general and restricted (circular and elliptic) three-body problems, different analytical and numerical methods of finding solutions, methods for performing stability analysis and searching for periodic orbits and resonances. We apply the results to some interesting problems of celestial mechanics. We also provide a brief presentation of the general and restricted relativistic three-body problems, and discuss their astronomical applications. (review article)

  6. Magnetic short range order and the exchange coupling in magnets

    International Nuclear Information System (INIS)

    Antropov, V.P.

    2006-01-01

    We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed

  7. Measurements of short-range ordering in Ni3Al

    International Nuclear Information System (INIS)

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  8. Fluctuations in substitution type alloys and their analyses. Short-range order structures

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2010-01-01

    This article is the fifth of the serial lecture, microstructures and fluctuations, in this magazine. The formula of X-ray diffuse scattering intensity was derived for binary alloys by introducing short-range order parameters. Diffuse scattering intensities for a single crystal Cu 3 Au were measured above critical temperature for ordering. The short-range parameters were obtained by a three-dimensional Fourier analysis. The long-range pair interaction between atoms was originated from the indirect screening interaction due to conduction electrons. A detailed study was made on short-range-order diffuse scattering from Cu 3 Au in the disordered state by electron diffraction. Fourfold splitting of the diffuse scattering was observed at 110 in the reciprocal lattice, and this result was attributed to the reflection of the form of the Fermi surface. The X-ray diffuse scattering intensity was measured at room temperature for disordered Cu-Pd alloys for the six composition of Pd. Twofold and fourfold splitting of diffuse scattering due to the short-range order (SRO) were observed at 100, 110 and equivalent positions respectively from alloys with more than 13.0at% Pd. The SRO parameters were determined from all the six alloys. For Cu-Pt alloys, the diffuse scattering originated from the correlation between Cu and Pt layers in direction was observed in addition to the one due to the reflection of the Fermi surface imaging. (author)

  9. Isobar configurations in nuclei and short range correlations

    CERN Document Server

    Weber, H J

    1979-01-01

    Recent results on short range correlations and isobar configurations are reviewed, and in particular a unitary version of the isobar model, coupling constants and rho -meson transition potentials, a comparison with experiments, the CERN N*-knockout from /sup 4/He, QCD and the NN interaction of short range. (42 refs).

  10. Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.

    Science.gov (United States)

    Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P

    2017-10-27

    Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.

  11. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  12. Universal few-body physics in a harmonic trap

    International Nuclear Information System (INIS)

    Tolle, S.; Hammer, H.W.; Metsch, B.Ch.

    2011-01-01

    Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters. (authors)

  13. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  14. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  15. Effects of short range ΔN interaction on observables of the πNN system

    International Nuclear Information System (INIS)

    Alexandrou, C.; Blankleider, B.

    1990-01-01

    The inadequacy of standard few-body approaches in describing the πNN system has motivated searches for the responsible missing mechanism. In the case of πd scattering, it has recently been asserted that an additional short range ΔN interaction can account for essentially all the discrepancies between a few-body calculation and experimental data. This conclusion, however, has been based on calculations where a phenomenological ΔN interaction is added only in Born term to background few-body amplitudes. In the present work we investigate the effect of including such a ΔN interaction to all orders within a unitary few-body calculation of the πNN system. Besides testing the validity of adding the ΔN interaction in Born term in πd scattering, our fully coupled approach also enables us to see the influence of the same ΔN interaction on the processes NN→πd and NN→NN. For πd elastic scattering, we find that the higher order ΔN interaction terms can have as much influence on πd observables as the lowest order contribution alone. Moreover, we find that the higher order contributions tend to cancel the effect obtained by adding the ΔN interaction in Born term only. The effect of the same ΔN interaction on NN→πd and NN→NN appears to be as significant as in πd→πd, suggesting that future investigations of the short range ΔN interaction should be done in the context of the fully coupled πNN system

  16. Self-consistent many-body perturbation theory in range-separated density-functional theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2008-01-01

    effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...

  17. Three-body and four-body photodisintegrations of the 4He nuclei in the Δ region

    International Nuclear Information System (INIS)

    Niki, Kazuaki

    1991-01-01

    The differential and total cross sections were measured for the three-body (pnd) and four-body (ppnn) final states in photodisintegration of 4 He in an energy range between 125 and 445 MeV. The kinematic variables were determined in an almost complete way, using a large acceptance spectrometer together with the use of tagged photons of an energy resolution of 10 MeV. We have found that the three-body reaction 4 He(γ, pn)d makes a dominant contribution among various processes which lead to non-mesonic final states. The behavior of the 4 He(γ, pn)d cross section is well described by the quasi-deuteron model (QDM). On the other hand, the four-body breakup cross sections are not consistent with the prediction of the QDM. For these four-body reactions, photon absorption by three-nucleon clusters seems to give a dominant effect. The four-body cross sections also show a broad enhancement around 300 to 400 MeV, indicating a possible participation of the Δ to the reactions. (author)

  18. Three-body interactions and the elastic constants of hcp solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  19. Contact parameters in two dimensions for general three-body systems

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2014-01-01

    a subsystem is composed of two identical non-interacting particles. We also show that the three-body contact parameter is negligible in the case of one non-interacting subsystem compared to the situation where all subsystem are bound. As example, we present results for mixtures of Lithium with two Cesium......We study the two dimensional three-body problem in the general case of three distinguishable particles interacting through zero-range potentials. The Faddeev decomposition is used to write the momentum-space wave function. We show that the large-momentum asymptotic spectator function has the same...... to obtain two- and three-body contact parameters. We specialize from the general cases to examples of two identical, interacting or non-interacting, particles. We find that the two-body contact parameter is not a universal constant in the general case and show that the universality is recovered when...

  20. Short range order of selenite glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr

    1999-01-01

    Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999

  1. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to

  2. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  3. Thermodynamic properties of short-range square well fluid

    Science.gov (United States)

    López-Rendón, R.; Reyes, Y.; Orea, P.

    2006-08-01

    The interfacial properties of short-range square well fluid with λ =1.15, 1.25, and 1.375 were determined by using single canonical Monte Carlo simulations. Simulations were carried out in the vapor-liquid region. The coexistence curves of these models were calculated and compared to those previously reported in the literature and good agreement was found among them. We found that the surface tension curves for any potential model of short range form a single master curve when we plot γ* vs T /Tc. It is demonstrated that the critical reduced second virial coefficient B2* as a function of interaction range or Tc* is not constant.

  4. Ultra-low-power short-range radios

    CERN Document Server

    Chandrakasan, Anantha

    2015-01-01

    This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:.

  5. Effective quantum theories with short- and long-range forces

    International Nuclear Information System (INIS)

    Koenig, Sebastian

    2013-01-01

    At low energies, nonrelativistic quantum systems are essentially governed by their wave functions at large distances. For this reason, it is possible to describe a wide range of phenomena with short- or even finite-range interactions. In this thesis, we discuss several topics in connection with such an effective description and consider, in particular, modifications introduced by the presence of additional long-range potentials. In the first part we derive general results for the mass (binding energy) shift of bound states with angular momentum L ≥ 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we discuss the case of twisted boundary conditions that arise when one considers moving bound states in finite boxes. The corresponding finite-volume shifts in the binding energies play an important role in the study of composite-particle scattering on the lattice, where they give rise to topological correction factors. While the above results are derived under the assumption of a pure finite-range interaction - and are still true up to exponentially small correction in the short-range case - in the second part we consider primarily systems of charged particles, where the Coulomb force determines the long-range part of the potential. In quantum systems with short-range interactions, causality imposes nontrivial constraints on low-energy scattering parameters. We investigate these causality constraints for systems where a long-range Coulomb potential is present in addition to a short-range interaction. The main result is an upper bound for the Coulomb-modified effective range parameter. We discuss the implications of this bound to the effective feld theory (EFT) for

  6. Unitarity corrections to short-range order long-range rapidity correlations

    CERN Document Server

    Capella, A

    1978-01-01

    Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of long-range rapidity correlations in high-multiplicity events. In particular, the authors analyze in detail the forward- backward multiplicity correlations, measured recently in the whole CERN ISR energy range. They find from these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n)-1)/sup 2/) , is most probably in the range 0.32 to 0.36. They show that such a number is obtained from Reggeon theory in the eikonal approximation. The authors also predict a very specific violation of local compensation of charge in multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent in the second-order correlation function, the only one measured until now. (48 refs).

  7. Methods for studying short-range order in solid binary solutions

    International Nuclear Information System (INIS)

    Beranger, Gerard

    1969-12-01

    The short range order definition and its characteristic parameters are first recalled. The different methods to study the short range order are then examined: X ray diffusion, electrical resistivity, specific heat and thermoelectric power, neutron diffraction, electron spin resonance, study of thermodynamic and mechanical properties. The theory of the X ray diffraction effects due to short range order and the subsequent experimental method are emphasized. The principal results obtained from binary Systems, by the different experimental techniques, are reported and briefly discussed. The Au-Cu, Li-Mg, Au-Ni and Cu-Zn Systems are moreover described. (author) [fr

  8. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The short range effective interaction and the spectra of calcium isotopes in (f-p) space

    International Nuclear Information System (INIS)

    Qing-ying, Z.; Shen-wu, L.; Jian-xin, W.

    1986-01-01

    In this work, the authors use a new type of extremely short range interaction, the double delta interaction (DDI) to calculate the low-lying spectra of calcium isotopes /sup 41/Ca through /sup 48/Ca. The configuration space (f-p) includes configurations ( f/sub 7/2//sup n/ ) and ( f/sub 7/2//sup n-1/2p/sub 3/2/). The calculated energies are compared with experimental data for 75 levels. For comparison, they also use usual modified surface delta interaction (MSDI) to calculate the same spectra aforementioned. It is clear that the results calculated with DDI are better than with MSDI. Therefore, in the short-range effective interaction the addition of body delta force to the modified surface delta force may improve the agreement with experiment. The authors believe that the conclusion will not be changed if one enlarges the shell model space

  10. Short-range components of nuclear forces: Experiment versus mythology

    International Nuclear Information System (INIS)

    Kukulin, V. I.; Platonova, M. N.

    2013-01-01

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment

  11. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  12. Short- and medium-range order in a Zr73Pt27 glass: Experimental and simulation studies

    International Nuclear Information System (INIS)

    Wang, S.Y.; Wang, C.Z.; Li, M.Z.; Huang, L.; Ott, R.T.; Kramer, M.J.; Sordelet, D.J.; Ho, K.M.

    2008-01-01

    The structure of a Zr 73 Pt 27 metallic glass, which forms a Zr 5 Pt 3 (Mn 5 Si 3 -type) phase having local atomic clusters with distorted icosahedral coordination during the primary crystallization, has been investigated by means of x-ray diffraction and combining ab initio molecular-dynamics (MD) and reverse Monte Carlo (RMC) simulations. The ab initio MD simulation provides an accurate description of short-range structural and chemical ordering in the glass. A three-dimensional atomistic model of 18?000 atoms for the glass structure has been generated by the RMC method utilizing both the structure factor S(k) from x-ray diffraction experiment and the partial pair-correlation functions from ab initio MD simulation. Honeycutt and Andersen index and Voronoi cell analyses, respectively, were used to characterize the short- and medium-range order in the atomistic structure models generated by ab initio MD and RMC simulations. The ab initio results show that an icosahedral type of short-range order is predominant in the glass state. Furthermore, analysis of the atomic model from the constrained RMC simulations reveals that the icosahedral-like clusters are packed in arrangements having higher-order correlations, thus establishing medium-range topological order up to two or three cluster shells.

  13. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  14. The three-body problem

    CERN Document Server

    Marchal, Christian

    1990-01-01

    Recent research on the theory of perturbations, the analytical approach and the quantitative analysis of the three-body problem have reached a high degree of perfection. The use of electronics has aided developments in quantitative analysis and has helped to disclose the extreme complexity of the set of solutions. This accelerated progress has given new orientation and impetus to the qualitative analysis that is so complementary to the quantitative analysis. The book begins with the various formulations of the three-body problem, the main classical results and the important questions and conje

  15. Positional short-range order in the nematic phase of n BABAs

    Science.gov (United States)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  16. Short history of nuclear many-body problem

    International Nuclear Information System (INIS)

    Köhler, H.S.

    2014-01-01

    This is a very short presentation regarding developments in the theory of nuclear many-body problems, as seen and experienced by the author during the past 60 years with particular emphasis on the contributions of Gerry Brown and his research-group. Much of his work was based on Brueckner's formulation of the nuclear many-body problem. It is reviewed briefly together with the Moszkowski–Scott separation method that was an important part of his early work. The core polarisation and his work related to effective interactions in general are also addressed

  17. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  18. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  19. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  20. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  1. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  2. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  3. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  4. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  5. Hybrid gesture recognition system for short-range use

    Science.gov (United States)

    Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun

    2012-03-01

    In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.

  6. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  7. Three-body forces in p-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.

    1990-01-01

    Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)

  8. Two-body and three-body correlations in Os-shell nuclei

    International Nuclear Information System (INIS)

    Halderson, D.W.

    1974-01-01

    It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)

  9. Level shifts induced by a short-range potential

    International Nuclear Information System (INIS)

    Karnakov, B.M.; Mur, V.D.

    1984-01-01

    Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels

  10. Universal Two-Body Spectra of Ultracold Harmonically Trapped Atoms in Two and Three Dimensions

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2012-01-01

    of the short-range interaction. The results in three dimensions are examplified for narrow s-wave Feshbach resonances and we show how effective range corrections can modify the rearrangement of the level structure. However, this requires extremely narrow resonances or very tight traps that are not currently...

  11. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  12. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  13. Three short distance structures from quantum algebras

    International Nuclear Information System (INIS)

    Kempf, A.

    1997-01-01

    Known results are reviewed and new results are given on three types of short distance structures of observables which typically appear in studies of quantum group related algebras. In particular, one of the short distance structures is shown to suggest a new mechanism for the introduction of internal symmetries

  14. Dependability investigation of wireless short range embedded systems: hardware platform oriented approach

    NARCIS (Netherlands)

    Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan

    2015-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into

  15. The three body problem with energy dependent potentials

    International Nuclear Information System (INIS)

    Kim, Y.E.; McKay, C.M.; McKellar, B.H.J.

    1975-10-01

    It is shown how to generalize the three body equations of Faddeev, and of Karlsson and Zeiger, to include the case when the two body potential is energy dependent. Such generalizations will prove useful in the three nucleon problem and in three body models of nuclear reactions. (author)

  16. Three methods for estimating a range of vehicular interactions

    Science.gov (United States)

    Krbálek, Milan; Apeltauer, Jiří; Apeltauer, Tomáš; Szabová, Zuzana

    2018-02-01

    We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.

  17. Brownian motion in short range random potentials

    International Nuclear Information System (INIS)

    Romero, A.H.; Romero, A.H.; Sancho, J.M.

    1998-01-01

    A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society

  18. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  19. Schroedinger operators with point interactions and short range expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)

  20. Intermediate- and short-range order in phosphorus-selenium glasses

    International Nuclear Information System (INIS)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji

    2011-01-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P x Se 1-x glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P 4 Se 3 and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale ∼6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring -1 , identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.

  1. The MOLDY short-range molecular dynamics package

    Science.gov (United States)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  2. Short-range solar radiation forecasts over Sweden

    Directory of Open Access Journals (Sweden)

    T. Landelius

    2018-04-01

    Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  3. Relativistic three-body model of pion-deuton elasic scattering

    International Nuclear Information System (INIS)

    Giraud, Noel.

    1978-01-01

    The Aaron-Amado-Young equations for the relativistic three-body problem are derived following the Blauckenbecker - Sugar method. The angular momentum reduction is carried out using suitable relative momenta. The pion-deuteron elastic scattering is calculated using the equations in which relativistic kinematics are retained only for the pion. After a general study of the observables in the energy range 25 to 256 MeV, detailed calculations are performed at 142 MeV [fr

  4. Three-body approach to the nucleon-nucleus optical potential

    International Nuclear Information System (INIS)

    Tandy, P.C.; Redish, E.F.; Bolle, D.

    1976-01-01

    In the Watson single scattering theory of the optical potential it is customary to approximate the propagation by two-body Green functions in order to simplify calculations. The reaction mechanism being described, however, is decidedly three-body in character. The central difficulty in building three-body models for nucleon-nucleus elastic scattering is to find the proper way of imbedding the superposed three-body reaction mechanism in the many-body problem without introducing serious overcounting effects. One would also like an explicit description of the intermediate state processes responsible for absorption. In this paper a three-body approximation to the optical potential theory is presented which overcomes the overcounting problem and is capable of including the following effects: (1) the proper kinematics of the struck nucleon, (2) its binding potential, (3) the identity of target nucleons, and (4) realistic wave functions and spectroscopic factors. The three-body model for the optical potential can be extended using unitarity methods to yield a unified three-body-like model of elastic scattering, pickup, and single nucleon knockout. (Auth.)

  5. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  6. Short-term increase of body weight triggers immunological variables in dogs.

    Science.gov (United States)

    Van de Velde, H; Janssens, G P J; Stuyven, E; Cox, E; Buyse, J; Hesta, M

    2012-01-15

    Overweight in dogs is, as in other companion animals, a major risk factor for several metabolic disorders. However, it is not yet known whether immunity is challenged by increased body weight in dogs. The aim of this study was to investigate the effect of a short-term increase in body weight on immunological variables in adult healthy beagle dogs. Sixteen dogs, divided into a control group (CG) and weight gain group (WGG), were included. During a period of 13 weeks, the CG was fed at maintenance energy requirement (MER), whereas the WGG received a double amount of food. After 13 weeks, blood samples were taken for immunological and biochemical analyses. Weight gain and increased body condition score in the WGG were accompanied by a significant higher leptin concentration. Weight gain increased the number of lymphocytes and immunoglobulins A and M and was responsible for a higher proliferation of peripheral blood mononuclear cells (PBMC). Short-term increase of body weight thus seems to trigger immunological variables in dogs. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Correlation of optical energy gap with the nearest neighbour short range order in amorphous V2O5 films

    International Nuclear Information System (INIS)

    Dhawan, Sahil; Vedeshwar, Agnikumar G; Tandon, R P

    2011-01-01

    The optical and structural properties of well characterized vacuum-evaporated amorphous V 2 O 5 films were studied in the thickness range 5-500 nm. The structural analyses show that V-O, O-O and V-V nearest neighbour distances defining the short range order vary nonlinearly with film thickness. The optical absorption shows thickness-dependent energy gap (E g ) and the nonlinear behaviour of thickness-dependent E g is similar to that of nearest neighbour distance with film thickness. The E g correlates linearly very well with all the three nearest neighbour distances. The variation of E g with film thickness is attributed to the residual stress in the film which causes the changes in short range order. The change in E g corresponding to the change in V-O distance was found to be 35 eV nm -1 . This change is almost three times of that with V-V distance.

  8. Impact of additional surface observation network on short range ...

    Indian Academy of Sciences (India)

    Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian ... models, which are able to resolve mesoscale fea- ... J. Earth Syst. Sci. ..... terization of the snow field in a cloud model; J. Climate.

  9. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  10. Generalized separable expansion method of the two-body and the three-body scattering amplitudes

    International Nuclear Information System (INIS)

    Oryu, S.; Ishihara, T.

    1976-01-01

    A systematic method is proposed for obtaining new N-rank separable amplitudes of the two-body and the three-body equations. First of all, the authors start from the Amado equation which is modified from the three-body Faddeev equation by using the two-body Yamaguchi potential for the nucleon-nucleon interaction. It is well known that the Amado equation can be integrated on the real axis because the kernel has a logarithmic cut on the real axis. However, a separable three-body form factor which is regular on the real axis except for the cut has been found. (Auth.)

  11. Finite Range Effects in Energies and Recombination Rates of Three Identical Bosons

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2013-01-01

    is large. The models are built on contact potentials which take into account finite range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wave function when two of the particles are at the same point...... in space. We compare the results with the results of the ubiquitous single-parameter zero-range model where only the scattering length is taken into account. Both finite range models predict variations of the well-known geometric scaling factor 22.7 that arises in Efimov physics. The threshold value...... at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed...

  12. Recent results on short-range gravity experiment

    International Nuclear Information System (INIS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-01-01

    According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  13. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  14. Poincaré and the three body problem

    CERN Document Server

    Barrow-Green, June

    1997-01-01

    The idea of chaos figures prominently in mathematics today. It arose in the work of one of the greatest mathematicians of the late 19th century, Henri Poincaré, on a problem in celestial mechanics: the three body problem. This ancient problem-to describe the paths of three bodies in mutual gravitational interaction-is one of those which is simple to pose but impossible to solve precisely. Poincaré's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincaré discovered mathematical chaos, as is now clear from Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincaré himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincaré and the Three Body Problem opens with a discussion of the development of the th...

  15. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  16. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  17. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  18. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  19. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  20. Diffusion Monte Carlo calculation of three-body systems

    International Nuclear Information System (INIS)

    Lu Mengjiao; Lin Qihu; Ren Zhongzhou

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)

  1. Particle simulation algorithms with short-range forces in MHD and fluid flow

    International Nuclear Information System (INIS)

    Cable, S.; Tajima, T.; Umegaki, K.

    1992-07-01

    Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced

  2. Three-Body Recombination near a Narrow Feshbach Resonance in Li 6

    Science.gov (United States)

    Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo

    2018-05-01

    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.

  3. Three-body forces and the trinucleons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Three-body forces are discussed in the context of classical, atomic, solid-state and nuclear physics. The basic theoretical ingredients used in the construction of such forces are reviewed. Experimental evidence for three-nucleon forces and an overview of the three-nucleon bound states are presented. 53 refs., 9 figs

  4. Three-body unitarity in the finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2017-12-15

    The physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativistic 3 → 3 amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. The corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated. (orig.)

  5. Three-body molecular description of 9Be

    International Nuclear Information System (INIS)

    Revai, J.; Matveenko, A.V.

    1979-01-01

    The low lying spectrum of the 9 Be nucleus is calculated in the α+α+n three-body model. The molecular approach to this three-body problem based on the exact evalution of the two-center wave functions for separable n-α potentials is considered in detail. The numerical results are obtained in the generalized Born-Oppenheimer approximation which preserves total angular momentum and parity

  6. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    Energy Technology Data Exchange (ETDEWEB)

    Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it

    2015-08-14

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced

  7. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  8. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  9. Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys

    International Nuclear Information System (INIS)

    Aalders, T.J.A.

    1982-07-01

    The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)

  10. The three-body problem from Pythagoras to Hawking

    CERN Document Server

    Valtonen, Mauri; Kholshevnikov, Konstantin; Mylläri, Aleksandr; Orlov, Victor; Tanikawa, Kiyotaka

    2016-01-01

    This book, written for a general readership, reviews and explains the three-body problem in historical context reaching to latest developments in computational physics and gravitation theory. The three-body problem is one of the oldest problems in science and it is most relevant even in today’s physics and astronomy. The long history of the problem from Pythagoras to Hawking parallels the evolution of ideas about our physical universe, with a particular emphasis on understanding gravity and how it operates between astronomical bodies. The oldest astronomical three-body problem is the question how and when the moon and the sun line up with the earth to produce eclipses. Once the universal gravitation was discovered by Newton, it became immediately a problem to understand why these three-bodies form a stable system, in spite of the pull exerted from one to the other. In fact, it was a big question whether this system is stable at all in the long run. Leading mathematicians attacked this problem over more than...

  11. Body Mass Disorders in Healthy Short Children and in Children with Growth Hormone Deficiency.

    Science.gov (United States)

    Tomaszewski, Paweł; Milde, Katarzyna; Majcher, Anna; Pyrżak, Beata; Tiryaki-Sonmez, Gul; Schoenfeld, Brad J

    2018-01-01

    The aim of the study was to determine the degree of adiposity and the incidence of body mass disorders, including abdominal obesity, in healthy short children and children with growth hormone deficiency. The study included 134 short children (height hormonal disorders and 71 patients (35 boys and 36 girls) with growth hormone deficiency. Basic somatic features were assessed and the study participants were categorized according to the percentage of body fat (%FAT), body mass index (BMI), and waist-to-height ratio (WHtR). We found that there were no significant differences in %FAT and the incidence of body weight disorders depending on gender or diagnosis. %FAT deficit was observed in 12-21% of the participants and underweight in almost every fourth child. Overweight involved 3-14% of the participants and obesity was diagnosed in isolated cases (0-3%); both were considerably lower compared to the estimates based on %FAT. Using the cut-off points of WHtR, abdominal adiposity was observed in 3-15% of the participants. In conclusion, quite a large number of short children (between 25 and 50%) are characterized by abnormal body fat or body mass index values. The results indicate a limited usefulness of BMI in evaluating the incidence of overweight and obesity in children characterized by a height deficit.

  12. Three-Body Potentials in α-Particle Model of Light Nuclei

    International Nuclear Information System (INIS)

    Ishikawa, Souichi

    2017-01-01

    In three-body model calculations of atomic nuclei, e.g., the "1"2C nucleus as α-α-α system and the "9Be nucleus as α-α-n system, the Hamiltonians of the systems consisting of two- and three-body potentials are important inputs. However, our knowledge of three-body potentials is quite restricted. In this paper, I will examine a relation between α-α-α and α-α-n three-body potentials that is obtained in a simple cluster model picture, which gives a phenomenological constraint condition on the three-body potential models to be used. (author)

  13. Atomic Color Superfluid via Three-Body Loss

    International Nuclear Information System (INIS)

    Kantian, A.; Diehl, S.; Zoller, P.; Daley, A. J.; Dalmonte, M.; Hofstetter, W.

    2009-01-01

    Large three-body loss rates in a three-component Fermi gas confined in an optical lattice can dynamically prevent atoms from tunneling so as to occupy a lattice site with three atoms. This effective constraint not only suppresses the occurrence of actual loss events, but stabilizes BCS-pairing phases by suppressing the formation of trions. We study the effect of the constraint on the many-body physics using bosonization and density matrix renormalization group techniques, and also investigate the full dissipative dynamics including loss for the example of 6 Li.

  14. Lavine method applied to three body problems

    International Nuclear Information System (INIS)

    Mourre, Eric.

    1975-09-01

    The methods presently proposed for the three body problem in quantum mechanics, using the Faddeev approach for proving the asymptotic completeness, come up against the presence of new singularities when the potentials considered v(α)(x(α)) for two-particle interactions decay less rapidly than /x(α)/ -2 ; and also when trials are made for solving the problem with a representation space whose dimension for a particle is lower than three. A method is given that allows the mathematical approach to be extended to three body problem, in spite of singularities. Applications are given [fr

  15. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  16. Free cooling of hard-spheres with short and long range interactions

    NARCIS (Netherlands)

    Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2015-01-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range

  17. Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-03-01

    Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.

  18. A NEUTRON DIFFRACTION DETERMINATION OF SHORT RANGE ORDER IN A Ni63.7Zr36.3 GLASS

    OpenAIRE

    Bellissent , R.; Bigot , J.; Calvayrac , Y.; Lefebvre , S.; Quivy , A.

    1985-01-01

    A precise determination of the three partial structure factors for the eutectic composition Ni63.7Zr36.3 has been carried out using neutron diffraction on three isotopically substituted glasses. The use of a "zero alloy" yields a direct determination of the Bhatia-Thornton structure factor SCC. Evidence for the existence of strong chemical short-range order and a clear size effect is obtained. Due to this chemical order, the partial structure factors cannot be consistent with the ones calcula...

  19. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate...

  20. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  1. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1. 4 GeV/c incident momentum observed in photographic emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-07-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like.

  2. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-01-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like. (Auth.)

  3. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  4. Spectral sum rules for the three-body problem

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1982-01-01

    This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers

  5. Long-range tactile masking occurs in the postural body schema.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-01

    Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain.

  6. On the universality of the long-/short-range separation in multiconfigurational density-functional theory

    Science.gov (United States)

    Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa.

    2007-02-01

    In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(μr12)/r12, which is based on the standard error function, and where μ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal μopt parameter, which is independent of the approximate short-range functional and the approximate wave function, and they discuss its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2, and H2O yield μopt≈0.4a.u.. A similar analysis on other types of test systems such as actinide compounds is currently in progress. Using the value of 0.4a.u. for μ, encouraging results are obtained with the hybrid MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals.

  7. A simple coordinate space approach to three-body problems ...

    Indian Academy of Sciences (India)

    We show how to treat the dynamics of an asymmetric three-body system consisting of one heavy and two identical light particles in a simple coordinate space variational approach. The method is constructive and gives an efficient way of resolving a three-body system to an effective two-body system. It is illustrated by ...

  8. Local Momenta and a Three-Body Gauge

    Science.gov (United States)

    Schillaci, Michael Jay

    2000-06-01

    Here I discuss position-dependent, phlocal momentum which depend upon the logarithmic gradient of a continuum Coulomb pair. These momenta have become increasingly important in the modeling of three-body scattering phenomena, while their precise mathematical and physical nature has remained unexplored. These momenta are analytic at all values of the radial separation, except possibly at zero, and can be used to illustrate why the reigning 3C wavefunction works so well in describing many phlight-atom ion processes. I calculate the contributions for several subsystems, and explain the schillaci/threebody/ momentum.html>asymmetric results achieved by Wiese(L.M. Wiese phet al.), PRL 25, 4982 (1997)., on the breakup of the (H_3^+) ion - a massive three-body system. I propose that the local momentum herein formulated become part of a three-body gauge constraint. When applied, a non-vanishing, position-dependent phase will modulate the resulting transition amplitude. The size of this modulation depends critically upon the system.

  9. Angular correlation between short-range. cap alpha. particles and. gamma. quanta

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chitskii, L A; Latyshev, G D; Bulyginskii, D G

    1949-01-01

    Chang (Phys. Rev. 69, 60(1946); 70, 632(1946)) has found that the intensities of short-range ..cap alpha.. rays of Po and Ra are considerably higher than the values given by the Geiger-Nuttall law. This can be explained by assuming surface vibrations of ..cap alpha..-radioactive nuclei, which produce deformations and corresponding lowerings of the potential barrier in certain directions. In this case an angular correlation should exist between the short-range ..cap alpha.. ray and the accompanying ..gamma.. quantum. The authors checked this conclusion by applying the coincidence method to the ..cap alpha.. and ..gamma.. radiations of a mixture of RdTh (/sup 228/Th) and ThC (/sup 212/Bi). Maxima of coincidence numbers occur at angles 45 and 135 deg., with lesser maxima at 0 and 180 deg. Theoretical considerations show that in cases (like the one investigated) where the nuclear spin before and after the ..cap alpha.. and ..gamma.. emissions is zero, the angular correlations are uniquely determined whatever the deformation caused by the vibration; in other cases, the correlation depends on the kind of deformation. Therefore, it would be interesting to investigate the case of Pa, whose nuclear spin is not zero and the decay exhibits intensive groups of short-range ..cap alpha.. particles.

  10. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  11. Three-body ΛNN force due to Λ-Σ coupling

    International Nuclear Information System (INIS)

    Myint, Khin Swe; Akaishi, Yoshinori

    2003-01-01

    The ΛNN three - body force due to coherent Λ - Σ Coupling effect was derived from realistic Nijmegen model D potential. Repulsive and attractive three - body ΛNN forces were reconcilably accounted. For 5 He, within one - channel description, ΛNN force is largely repulsive and its origin comes from Pauli forbidden terms. Within two - channel description, attractive Pauli allowed terms exist and resulting three - body force is always attractive. Large attractive ΛNN force effect due to coherent Λ - Σ coupling effect is predicted in neutron - rich nuclei. The attractive coherent Λ - Σ coupling effect is largely enhanced at high density neutron matter. The attractive three - body ΛNN force effect is essential dynamics of Λ - Σ coupling while the repulsive Nogami three - body effect arises from Pauli forbidden diagrams. (Y. Kazumata)

  12. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  13. Electronic structure of disordered alloys - I: self-consistent cluster CPA incorporating off-diagonal disorder and short-range order

    International Nuclear Information System (INIS)

    Kumar, V.; Mookerjee, A.; Srivastava, V.K.

    1980-09-01

    We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)

  14. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  15. Three-body force in the three-nucleon system

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-01-01

    A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem

  16. Evaluation of three-dimensional contrast-enhanced MR angiography in pediatric body vascular lesions

    International Nuclear Information System (INIS)

    Tanaka, Yasunori; Katayama, Hiroshi; Yamamoto, Kazuhiro; Shimizu, Tadafumi; Narabayashi, Isamu

    1998-01-01

    Evaluation of three-dimensional contrast-enhanced MR angiography in the pediatric body vascular lesions. This study examined the usefulness of three-dimensional gadolinium-enhanced magnetic resonance angiography (3D-enhanced MRA) for pediatric body vascular lesions. Fifteen 3D-enhanced MRAs were performed on fourteen pediatric patients aged from one month to fifteen years, using a 3D fast SPGR sequence. Maximum intensity projection (MIP) and multiplanar reconstruction (MPR) images were obtained from the imaging data in all cases, and eleven MIP images were obtained after subtraction of precontrast-enhanced imaging data from postcontrast-enhanced imaging data. In six cases, MIP and MPR images were correlated with cine or digital subtraction angiographies, and the eleven subtracted MIP images were compared with those before subtraction. Clinical usefulness was demonstrated in fourteen (93%) of the fifteen cases, and in seven (64%) of the eleven cases in which subtraction was performed, image quality was improved. In comparison with cine or digital subtraction angiographies, however, only one (17%) MRA was superior. It was considered that 3D-enhanced MRA was useful for pediatric body vascular lesions because of advantages such as lower invasiveness compared with that of conventional angiography, absence of radiation exposure, safety of contrast media, easy availability of MPR images, and short scanning time. In conclusion, if a pediatric body vascular lesion is suspected, 3D-enhanced MRA should be performed before conventional angiography. It also seems that 3D-enhanced MRA may be useful for follow-up. (author)

  17. A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhao

    2015-01-01

    Full Text Available Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV, look-up tables (LUT, and nonlinear regression (NLR for estimating missing values of net ecosystem CO2 exchange (NEE in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.

  18. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions of 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-12-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities

  19. Bound states and scattering lengths of three two-component particles with zero-range interactions under one-dimensional confinement

    International Nuclear Information System (INIS)

    Kartavtsev, O.I.; Malykh, A.V.; Sofianos, S.A.

    2008-01-01

    The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The three-body binding energies and the (2+1)-scattering lengths are calculated for two identical particles of mass m and a different one of mass m 1 , between which interactions are described in the low-energy limit by zero-range potentials. The critical values of the mass ratio m/m 1 , at which the three-body states arise and the (2+1)-scattering length equals zero, are determined both for zero and infinite interaction strength λ 1 of the identical particles. A number of exact results are enlisted and asymptotic dependences both for m/m 1 → infinity and λ 1 → -infinity are derived. Combining the numerical and analytical results, a schematic diagram showing the number of the three-body bound states and the sign of the (2+1)-scattering length in the plane of the mass ratio and interaction-strength ratio is deduced. The results provide a description of the homogeneous and mixed phases of atoms and molecules in dilute binary quantum gases

  20. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators

  1. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  2. Research on three-phase traffic flow modeling based on interaction range

    Science.gov (United States)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting

    2017-12-01

    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  3. Short-range contacts govern the performance of industry-relevant battery cathodes

    Science.gov (United States)

    Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.

    2018-05-01

    Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.

  4. Exploiting short-term memory in soft body dynamics as a computational resource.

    Science.gov (United States)

    Nakajima, K; Li, T; Hauser, H; Pfeifer, R

    2014-11-06

    Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Density-functional approach to the three-body dispersion interaction based on the exchange dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu [Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Liu, Fenglai [Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260 (United States); Gan, Zhengting [Q-Chem Inc., 5001 Baum Boulevard, Pittsburgh, Pennsylvania 15213 (United States)

    2015-08-28

    We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.

  6. Quasi-Three Body Systems: Properties and Scattering

    International Nuclear Information System (INIS)

    Amusia, M. Ya.

    2017-01-01

    We investigate systems of three mutually interacting particles with masses m e , m μ , M that obey the following inequality m e ≪ m μ ≪ M. Then the three-body problem reduces to the two-body scattering or structure of m e in the field of the pseudo-nucleus m μ M. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shifts, presenting them as expansions in powers of the parameter β=m e /m μ ≪1. (author)

  7. Short-range disorder in pseudobinary ionic alloys

    International Nuclear Information System (INIS)

    Di Cicco, Andrea; Principi, Emiliano; Filipponi, Adriano

    2002-01-01

    The short-range distribution functions of the RbBr 1-x I x solid and molten ionic alloys have been accurately measured using multiple-edge refinement of the K-edge extended x-ray absorption fine structure spectra (EXAFS). The local structure is characterized by two well-defined first-neighbor peaks associated with the Rb-I and Rb-Br distributions, both for solid and liquid alloys. The distribution of distances in solid alloys gives experimental evidence to available theoretical models. In the liquid, the two distance distributions are found to be practically independent of the concentration x. The effect of different effective charge screening of the ions is observed in the molten systems for limiting concentrations

  8. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  9. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  10. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  11. Asymptotic form of three-body (dtμ)+ and (ddμ)+ wave functions

    International Nuclear Information System (INIS)

    Kino, Y.; Shimamura, I.; Armour, E.A.G.; Kamimura, M.

    1996-01-01

    In order to investigate a discrepancy between existing literature values for the normalization constant in the asymptotic form of three-body wave functions for (DTμ) + , we report the results of a new calculation of the normalization constants for this system as well as the related system (DDμ) + . These were obtained by fitting to accurate variational wave functions with special care being taken to describe the long-range behavior. (orig.)

  12. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization

    Directory of Open Access Journals (Sweden)

    Sengupta Dhriti

    2012-06-01

    Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at

  13. Psychological and emotional development, intellectual capabilities, and body image in short normal children.

    Science.gov (United States)

    Molinari, E; Sartori, A; Ceccarelli, A; Marchi, S

    2002-04-01

    It is well established that children with short stature frequently have problems in cognitive development, personality, self-esteem and social relations. This is partly due to the fact that many parents view them as more vulnerable than other children of normal stature and do not allow them to face the normal experiences that correspond to their actual age. The aim of the present study was to assess, through the administration of appropriate psychological tools, a series of psychological and cognitive characteristics [i.e. anxiety, depression, good adjustment, social functioning, feeling of guilt, interpersonal relationship, intelligence quotient (IQ)], as well as variables linked to development of body image, in a group of children suffering from normal growth variants [familial short stature (FSS), no. 10, 4 males/6 females; with constitutional growth delay (CGD), no. 4,4 males; height standard deviation score (HSDS) ranging between -2.4 and -1.9] and in a control group children of normal stature (HSDS between -0.1 and +0.1). Children with short stature significantly differed from normal statured controls as far as Colored Progressive Matrices (CPMs, centiles), IQ (IQ, obtained using the Goodenough test), "Good Adjustment" (Draw-a-Person index, DAP), "Feelings of Guilt" (DAP index), "Height" (as emerges from drawings of the body) are concerned. Significant relationships were found between the height of the subjects (in centiles) and cognitive skills, measured both using CPMs (r=0.408; p=0.017) and Draw-a-Man (DAM) (r=0.359; p=0.037) and between height and feelings of guilt (r=0.325; p=0.027), measured using DAP. CPM scores correlated positively with the "Good Adjustment" index of DAP (r=0.354; p=0.05) and negatively with Children's Depression Inventory (CDI) (r=-0.609; p=0.01), "School Anxiety" index (r=-0.427; p=0.05) and "Total Anxiety" index (r=-0.436; p=0.05) of the Anxiety Scale Questionnaire for the Age of Development, and with 2 indices of DAP, namely

  14. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design scheme and analysis of variance. The results obtained from these ...

  15. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  16. Clinical validation of three short forms of the Dutch Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) in a mixed clinical sample.

    Science.gov (United States)

    Bouman, Zita; Hendriks, Marc P H; Van Der Veld, William M; Aldenkamp, Albert P; Kessels, Roy P C

    2016-06-01

    The reliability and validity of three short forms of the Dutch version of the Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) were evaluated in a mixed clinical sample of 235 patients. The short forms were based on the WMS-IV Flexible Approach, that is, a 3-subtest combination (Older Adult Battery for Adults) and two 2-subtest combinations (Logical Memory and Visual Reproduction and Logical Memory and Designs), which can be used to estimate the Immediate, Delayed, Auditory and Visual Memory Indices. All short forms showed good reliability coefficients. As expected, for adults (16-69 years old) the 3-subtest short form was consistently more accurate (predictive accuracy ranged from 73% to 100%) than both 2-subtest short forms (range = 61%-80%). Furthermore, for older adults (65-90 years old), the predictive accuracy of the 2-subtest short form ranged from 75% to 100%. These results suggest that caution is warranted when using the WMS-IV-NL Flexible Approach short forms to estimate all four indices. © The Author(s) 2015.

  17. Three-body interactions and the Landau levels using Nikiforov ...

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given. Keywords. Nikiforov–Uvarov (NU) method; three-body ...

  18. Electronically driven short-range lattice instability: Cluster effects in superconductors

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    In the first part of this series, short- and medium-range interactions in superconductors were investigated. In this paper a discussion is made on the cluster-mass dependence of the superconductive transition temperature and the relevant phenomenon of electron localization. A comparison with experiments is given; the predictions fit well to the observations

  19. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  20. Efimov resonances in atomic three-body systems

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Papp, Z.

    2006-01-01

    In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances

  1. Three-body dynamics in one dimension: a test model for the three-nucleon system with irreducible pionic diagrams

    International Nuclear Information System (INIS)

    Melde, T.; Canton, L.; Svenne, J.P.

    2002-01-01

    We formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As an application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. Using simple two-body potentials that reproduce the deuteron binding, we obtain that the three-body system binds at about 7.5 MeV. We then consider two types of residual pionic corrections in the dynamical equation; one related to the 2π-exchange three-body diagram, the other to the 1π-exchange three-body diagram. We find that the first contribution can produce an additional binding effect of about 0.9 MeV. The second term produces smaller binding effects, which are, however, dependent on the uncertainty in the off-shell extrapolation of the two-body t-matrix. This presents interesting analogies with what occurs in three dimensions. The paper also discusses the general three-particle quantum scattering problem, for motion restricted to the fall line. (author)

  2. Three-body calculation of Be double-hypernuclei

    Indian Academy of Sciences (India)

    Energy levels and bond energy of the double- hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper ...

  3. The short-term effects of a body awareness program : better self-management of health problems for individuals with chronic a-specific psychosomatic symptoms

    NARCIS (Netherlands)

    Landsman-Dijkstra, Jeanet J. A.; van Wijck, R; Groothoff, JW; Rispens, P

    A three-day residential Body Awareness Program (BAP) was developed to teach people with Chronic A-specific Psychosomatic Symptoms (CAPS) to react adequately to disturbances of the balance between a daily workload and the capacity to deal with it. The short-term effects of the program for people with

  4. The short-term effects of a body awareness program : better self-management of health problems for individuals with chronic a-specific psychosomatic symptoms

    NARCIS (Netherlands)

    Landsman-Dijkstra, Jeanet J. A.; van Wijck, R; Groothoff, JW; Rispens, P

    2004-01-01

    A three-day residential Body Awareness Program (BAP) was developed to teach people with Chronic A-specific Psychosomatic Symptoms (CAPS) to react adequately to disturbances of the balance between a daily workload and the capacity to deal with it. The short-term effects of the program for people with

  5. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  6. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  7. Influence of effective three-body force on the spectroscopy of 19O

    International Nuclear Information System (INIS)

    Haung, W.; Song, H.; Wang, Z.; Kuo, T.T.S.

    1983-01-01

    The purpose of the present paper is to investigate the influence of effective three-body force on the spectroscopy of 19 O. The model space was chosen as the configuration space which consists of the j-j coupling states of three valence neutrons in the s-d shell. The effective interaction including two- and three-body forces was then derived in the framework of the folded diagram method (FDM). Besides two traditional three-body terms, there is another kind of three-body force, the folded one constructed with two two-body diagrams, in FDM. The G-matrix elements of soft core Reid force were used in the numerical calculations. In the case of lacking the G-matrix elements, we adopted the matrix elements of M-3Y force as the equivalents. The results show that the influence of the effective three-body forces on the spectrum of 19 O is not of importance, but the part coming from the folded three-body term is worth noting

  8. Dynamical arrest in dense short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P

    2004-01-01

    We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter

  9. Universality in few-body systems with large scattering length

    International Nuclear Information System (INIS)

    Hammer, H.-W.

    2005-01-01

    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed

  10. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  11. Three-body Coulomb breakup of 11Li in the complex scaling method

    International Nuclear Information System (INIS)

    Myo, Takayuki; Aoyama, Shigeyoshi; Kato, Kiyoshi; Ikeda, Kiyomi

    2003-01-01

    Coulomb breakup strengths of 11 Li into a three-body 9 Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body '' 10 Li+n'' and three-body '' 9 Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11 Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11 Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI

  12. Short, intermediate and long range order in amorphous ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  13. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  14. Three-body calculation of two-body threshold electrodisintegration of 3He and 3H

    International Nuclear Information System (INIS)

    Heimbach, C.R.; Lehman, D.R.; O'Connell, J.S.

    1977-01-01

    Threshold two-body electrodisintegration of 3 He and 3 H is investigated within the context of exact three-body theory. The calculations performed are based on the formalism of Gibson and Lehman. Careful consideration is given to the singularities of the disintegration Born amplitude for this case, since the momentum transfer is not zero, to assure validity of the numerical methods. Calculated results are compared with all the latest threshold 3 He electrodisintegration data which samples a range of scattered-electron angles, 92.6 0 0 , and incident electron energies, 40 MeV 0 3 H electrodisintegration for some of the same kinematics. The mechanism for the sharp rise as a function of excitation energy in the (e,e') cross section for theta/sub e/ approx. 90 0 due to the 2 S → 2 S monopole transition from Coulomb scattering is singled out by examination of the contributions to the Coulomb doublet amplitude. A similar analysis is carried out for the doublet and quartet transverse amplitudes where the 2 S → 4 P magnetic quadrupole transition dominates for excitation energies less than 20 MeV

  15. Short Range Air Defense in Army Divisions: Do We Really Need It

    National Research Council Canada - National Science Library

    Anderson, Charles

    2000-01-01

    Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...

  16. Few body physics with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    G.P. Gilfoyle for the CLAS Collaboration

    2011-02-01

    The study of few-body, nuclear systems with electromagnetic probes is an essential piece of the scientific program at Jefferson Lab. Reactions using real photons and electrons (up to energies of 6 GeV) are measured using the CEBAF large acceptance spectrometer (CLAS) detector in Hall B, a nearly 4π magnetic spectrometer. We focus here on three areas. (1) Short-range correlations (SRCs) probe the high-momentum components of the nuclear wave function. Recent CLAS experiments map out their isospin character and reveal the importance of the tensor part of the nuclear force. (2) Three-body forces are an essential feature of nuclei. We will show results using real photons and 3He and 4He targets that remain largely unexplained. (3) Evidence for the transition to a quark-gluon description of nuclei has been observed with photon beams in CLAS on deuterium and 3-He targets. Alternative explanations reveal the geography of the transition is complex.

  17. FaCE: a tool for Three Body Faddeev calculations with core excitation

    OpenAIRE

    Thompson, I. J.; Nunes, F. M.; Danilin, B. V.

    2004-01-01

    FaCE is a self contained programme, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transf...

  18. Three-body correlations and conditional forces in suspensions of active hard disks

    Science.gov (United States)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  19. Analytical treatment of Coriolis coupling for three-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Bill

    2005-01-31

    In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.

  20. Short-term changes in affective, behavioral, and cognitive components of body image after bariatric surgery.

    Science.gov (United States)

    Williams, Gail A; Hudson, Danae L; Whisenhunt, Brooke L; Stone, Megan; Heinberg, Leslie J; Crowther, Janis H

    2018-04-01

    Many bariatric surgery candidates report body image concerns before surgery. Research has reported post-surgical improvements in body satisfaction, which may be associated with weight loss. However, research has failed to comprehensively examine changes in affective, behavioral, and cognitive body image. This research examined (1) short-term changes in affective, behavioral, and cognitive components of body image from pre-surgery to 1- and 6-months after bariatric surgery, and (2) the association between percent weight loss and these changes. Participants were recruited from a private hospital in the midwestern United States. Eighty-eight females (original N = 123; lost to follow-up: n = 15 at 1-month and n = 20 at 6-months post-surgery) completed a questionnaire battery, including the Body Attitudes Questionnaire, Body Checking Questionnaire, Body Image Avoidance Questionnaire, and Body Shape Questionnaire, and weights were obtained from patients' medical records before and at 1- and 6-months post-surgery. Results indicated significant decreases in body dissatisfaction, feelings of fatness, and body image avoidance at 1- and 6-months after bariatric surgery, with the greatest magnitude of change occurring for body image avoidance. Change in feelings of fatness was significantly correlated with percent weight loss at 6-months, but not 1-month, post-surgery. These findings highlight the importance of examining short-term changes in body image from a multidimensional perspective in the effort to improve postsurgical outcomes. Unique contributions include the findings regarding the behavioral component of body image, as body image avoidance emerges as a particularly salient concern that changes over time among bariatric surgery candidates. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  1. CTBC. A program to solve the collinear three-body Coulomb problem. Bound states and scattering below the three-body disintegration threshold

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I.; Namba, Chusei

    2003-08-01

    A program to solve the quantum-mechanical collinear three-body Coulomb problem is described and illustrated by calculations for a number of representative systems and processes. In the internal region, the Schroedinger equation is solved in hyperspherical coordinates using the slow/smooth variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordinates using the asymptotic package GAILIT from the CPC library. Only bound states and scattering processes below the three-body disintegration threshold are considered here; resonances and fragmentation processes will be discussed in subsequent parts of this series. (author)

  2. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable

  3. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  4. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  5. Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-08

    Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.

  6. Three-Body Antikaon-Nucleon Systems

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, Nina V.

    2017-01-01

    Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016

  7. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    International Nuclear Information System (INIS)

    Mikkelsen, M; Jensen, A S; Fedorov, D V; Zinner, N T

    2015-01-01

    We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate. The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy–heavy–light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very satisfactory agreement. (paper)

  8. Efimov three-body states on top of a Fermi sea

    International Nuclear Information System (INIS)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields unexpected scaling relations among a tower of universal states. These seemingly unrelated problems can now be studied in the same setup thanks to the success of ultracold atomic gas experiments. In light of the tremendous effect of a background Fermi sea on two-body properties, a natural question is whether a background can modify or even destroy the Efimov effect. Here we demonstrate how the generic problem of three interacting particles changes when one particle is embedded in a background Fermi sea, and show that Efimov scaling persists. It is found in a scaling that relates the three-body physics to the background density of fermionic particles

  9. Age differences in visual search for compound patterns: long- versus short-range grouping.

    Science.gov (United States)

    Burack, J A; Enns, J T; Iarocci, G; Randolph, B

    2000-11-01

    Visual search for compound patterns was examined in observers aged 6, 8, 10, and 22 years. The main question was whether age-related improvement in search rate (response time slope over number of items) was different for patterns defined by short- versus long-range spatial relations. Perceptual access to each type of relation was varied by using elements of same contrast (easy to access) or mixed contrast (hard to access). The results showed large improvements with age in search rate for long-range targets; search rate for short-range targets was fairly constant across age. This pattern held regardless of whether perceptual access to a target was easy or hard, supporting the hypothesis that different processes are involved in perceptual grouping at these two levels. The results also point to important links between ontogenic and microgenic change in perception (H. Werner, 1948, 1957).

  10. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  11. Short-range order in InSb amorphized under ion bombardment

    International Nuclear Information System (INIS)

    Pavlov, P.V.; Tetel'baum, D.I.; Gerasimov, A.I.

    1979-01-01

    The investigation of short-range order is carried out in polycrystal InSb films, irradiated with Ne + ions with E=150 keV and with the 2x10 15 ion/cm 2 dose. The data are obtained testifying to the film amorphization, the cause of which is the defect storage but not the local melting. Stability of the obtained amorphous phase at the room temperature is noted

  12. Short-range quantitative precipitation forecasting using Deep Learning approaches

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  13. Interaction range perturbation theory for three-particle problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Shapoval, D.V.

    1988-01-01

    The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established

  14. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  15. Three-body scattering problem in the fixed center approximation: The case of attraction

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Alexander E. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Gani, Vakhid A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Romanov, Alexander I. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2016-12-15

    We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron) within the fixed center approximation in the case of light-heavy attraction, solving the integral equation for the three-body Green's function both in the coordinate and in the momentum space. The results for the three-body scattering amplitude appear to be ambiguous -they depend on a single real parameter. This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve the integral equation for the three-body Green function in the momentum space, introducing a finite cut-off. We show that all three approaches are equivalent. We also discuss how our approach to the problem matches with the introduction of three-body contact interaction as done by other authors. (orig.)

  16. Regulated and Liberated Bodies of Schoolgirls in a Finnish Short Film from the 1950s

    Science.gov (United States)

    Nieminen, Marjo

    2018-01-01

    This article focuses on the bodies of schoolgirls as visualised and represented in a short film of Finnish secondary schools for girls in the 1950s. The film, "Oma tyttökouluni" ("My Own Girls' School") was released in 1957 and was screened in cinemas in advance of feature films. Although the short film was made in a…

  17. Freely cooling granular gases with short-ranged attractive potentials

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Eric; Subramaniam, Shankar, E-mail: shankar@iastate.edu [Department of Mechanical Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011 (United States)

    2015-04-15

    We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.

  18. Study of an Ising model with competing long- and short-range interactions

    International Nuclear Information System (INIS)

    Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.

    1994-01-01

    A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate

  19. A Reactance Compensated Three-Device Doherty Power Amplifier for Bandwidth and Back-Off Range Extension

    Directory of Open Access Journals (Sweden)

    Shichang Chen

    2018-01-01

    Full Text Available This paper proposes a new broadband Doherty power amplifier topology with extended back-off range. A shunted λ/4 short line or λ/2 open line working as compensating reactance is introduced to the conventional load modulation network, which greatly improves its bandwidth. Underlying bandwidth extension mechanism of the proposed configuration is comprehensively analyzed. A three-device Doherty power amplifier is implemented for demonstration based on Cree’s 10 W HEMTs. Measurements show that at least 41% drain efficiency is maintained from 2.0 GHz to 2.6 GHz at 8 dB back-off range. In the same operating band, saturation power is larger than 43.6 dBm and drain efficiency is higher than 53%.

  20. Three-body Coulomb systems using generalized angular-momentum S states

    Science.gov (United States)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  1. Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )

    Science.gov (United States)

    Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.

    2018-04-01

    We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.

  2. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Changzhan Gu

    2016-07-01

    Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  3. Short-arc orbit determination using coherent X-band ranging data

    Science.gov (United States)

    Thurman, S. W.; Mcelrath, T. P.; Pollmeier, V. M.

    1992-01-01

    The use of X-band frequencies in ground-spacecraft and spacecraft-ground telecommunication links for current and future robotic interplanetary missions makes it possible to perform ranging measurements of greater accuracy than previously obtained. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. The application of high-accuracy S/X-band and X-band ranging to orbit determination with relatively short data arcs is investigated in planetary approach and encounter scenarios. Actual trajectory solutions for the Ulysses spacecraft constructed from S/X-band ranging and Doppler data are presented; error covariance calculations are used to predict the performance of X-band ranging and Doppler data. The Ulysses trajectory solutions indicate that the aim point for the spacecraft's February 1992 Jupiter encounter was predicted to a geocentric accuracy of 0.20 to 0.23/microrad. Explicit modeling of range bias parameters for each station pass is shown to largely remove systematic ground system calibration errors and transmission media effects from the Ulysses range measurements, which would otherwise corrupt the angle finding capabilities of the data. The Ulysses solutions were found to be reasonably consistent with the theoretical results, which suggest that angular accuracies of 0.08 to 0.1/microrad are achievable with X-band ranging.

  4. Three-body forces for electrons by the S-matrix method

    International Nuclear Information System (INIS)

    Margaritelli, R.

    1989-01-01

    A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt

  5. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  6. Energy Distributions from Three-Body Decaying Many-Body Resonances

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A. S.; Fedorov, D. V.; Fynbo, H. O. U.; Garrido, E.

    2007-01-01

    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0 + and 1 + resonances in 12 C populated in β decays. These states are dominated by sequential, through the 8 Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ''dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wave functions are accurately computed

  7. Efimov three-body states on top of a Fermi sea

    DEFF Research Database (Denmark)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields...

  8. Three-body forces in nuclear matter from intermediate Δ-states in three-nucleon clusters

    International Nuclear Information System (INIS)

    Kouki, T.; Smulter, L.E.W.; Green, A.M.

    1976-10-01

    The three-body force contribution in nuclear matter is treated as a three-nucleon cluster, in which one of the nucleons becomes, in an intermediate state, a Δ(1236). All exchange diagrams are calculated and found to significantly reduce the energy per particle from the direct graph. This is contrary to earlier estimates of the exchanges, using more approximate approaches. The resulting attractive contribution is rather small, -1.1 MeV at ksub(F)=1.4 fm -1 , but the roughly linear density dependence has a crucial effect on the saturation properties. The sensitivity of the results to the correlations used, and to the two-body force spin structure, is displayed. The energy per particle from clusters with three intermediate Δ's is also estimated. (author)

  9. Kernel optimization for short-range molecular dynamics

    Science.gov (United States)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  10. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder.

    Science.gov (United States)

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping

    2016-08-01

    Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  11. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Mian, M.; Rahman Khan, M.Z.

    1988-02-01

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  12. Polyamorphism and substructure of short-range order in amorphous boron films

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Nechitajlo, A.A.; Koz'ma, A.A.

    1981-01-01

    The structure and substructure of boron amorphous films are studied in detail. Amorphous condensate of Bsup(a) boron is built of the same (but only disorientedly located) 12 B icosahedrons as boron crystalline modifications: B 105 -equilibrium β-rhombic, metastable: B 50 -tetragonal, B 12 -α-rhombohedral Coordination number for Bsup(a) (Z 1 =6.4) is lower than in B 105 (Z 1 =6.6) but higher than in B 50 modification (Z 1 =6.1). In crystalline modifications B 105 , B 50 , B 12 coordination numbers ω in first coordination spheres of icosahedrons are equal to ν 105 =6+4.6=10.6; ν 50 =10+3=14; ν 12 =6 respectively. Both amorphous modifications of boron Bsub(1)sup(a) and Bsub(15)sup(a) are analogs to B 50 in respect of the short-range order of icosahedron location. The difference between them is in ''substructure'' of short-range order: part of boron atoms (approximately 12%) do not occupy the vertices (so that vacancies appear) and enter the emptinesses between icosahedrons. In other words, the structure B 50 is the model basis of both amorphous phases [ru

  13. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.

    Science.gov (United States)

    Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C

    2010-03-10

    We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.

  14. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  15. Analytical equation of state with three-body forces: Application to noble gases

    International Nuclear Information System (INIS)

    Río, Fernando del; Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio; Ramos, J. Eloy

    2013-01-01

    We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation

  16. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.

  17. Tests of the discretized-continuum method in three-body dipole strengths

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)

    2011-08-15

    We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.

  18. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction

    NARCIS (Netherlands)

    Kern, N.; Frenkel, D.

    2003-01-01

    We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere

  19. Towards highest peak intensities for ultra-short MeV-range ion bunches

    OpenAIRE

    Simon Busold; Dennis Schumacher; Christian Brabetz; Diana Jahn; Florian Kroll; Oliver Deppert; Ulrich Schramm; Thomas E. Cowan; Abel Blažević; Vincent Bagnoud; Markus Roth

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on ?m scale, with energies ranging up to 28.4?MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven so...

  20. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  1. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  2. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  3. Dependence of four-body observables on the range of UPA-like effective interactions

    International Nuclear Information System (INIS)

    Perne, R.; Sandhas, W.

    1977-07-01

    A generalized unitary pole approximation (UPA) concerning the three-body amplitudes in the kernel of four-body integral equations is introduced. We furhtermore study the dependence of the 4 He binding energy and of four-body cross sections upon a position space cut-off parameter in the effective interactions. (orig.) [de

  4. Status of the dedicated short-range communications technology and applications : report to Congress.

    Science.gov (United States)

    2015-07-01

    This report responds to a Congressional request for an assessment of the 5.9 Gigahertz (GHz) Dedicated Short Range : Communications (DSRC) in accordance with the requirements provided by Congress in the Moving Ahead for Progress in the : 21st Century...

  5. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    Science.gov (United States)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  6. Short range order of Mg-Cd-alloys during the transition from the solid to the molten state

    International Nuclear Information System (INIS)

    Boos, A.; Steeb, S.

    1977-01-01

    Recently a method was published for the determination of short range order parameters in binary melts and also a method for the determination of the concentration of different structures which form such a melt. These methods are used in the present work to evaluate the atomic structure of Mg-Cd-melts and to reval the changes in short range order during the melting process. (orig.) [de

  7. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    Science.gov (United States)

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  8. Influence of short range ordering and clustering on transport properties

    International Nuclear Information System (INIS)

    Vigier, G.; Pelletier, J.M.

    1982-01-01

    The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations

  9. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  10. Short-range and long-range forces in quantum theory: selected topics

    International Nuclear Information System (INIS)

    Hiller, J.R.

    1980-01-01

    Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering

  11. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    Science.gov (United States)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  12. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  13. A comprehensive treatment of electromagnetic interactions and the three-body spectator equations

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Adam; Jay Van Orden

    2004-10-01

    We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields.

  14. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    Science.gov (United States)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  15. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  16. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  17. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    Science.gov (United States)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  18. Body frames and frame singularities for three-atom systems

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.

    1998-01-01

    The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society

  19. Nuclear three-body problem and energy-dependent potentials

    International Nuclear Information System (INIS)

    Abdurakhmanov, A.; Akhmadkhodzhaev, B.; Zubarev, A.L.; Irgaziev, B.F.

    1985-01-01

    Energy-dependent potentials in the three-body problem are being considered. Three-particle equations for the case of pairing energy-dependent potentials are generalized and the problems related to this ambiguous generalization are investigated. In terms of the equations obtained the tritium binding energy and vertex coupling constants (Tdn) and (Tdν) are evaluated. The binding energy and, especially, coupling constants are shown to be sensitive to a shape of the energy-dependent potential

  20. Coulomb effects in deuteron stripping reactions as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)

  1. Dancers' Body Esteem, Fitness Esteem, and Self-Esteem in Three Contexts

    Science.gov (United States)

    Van Zelst, Laura; Clabaugh, Alison; Morling, Beth

    2004-01-01

    Sixty-two college-aged, ballet and modern dancers evaluated their bodies and themselves in different dance and non-dance settings. In a self-report survey design, dancers' body esteem, fitness esteem, and self-esteem (an overall self-evaluation) were measured in three different contexts. Dancers rated their body esteem, fitness esteem, and…

  2. Measurements of Charmless Three-Body and Quasi-Two-Body B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for several exclusive charmless hadronic B decays from electron-positron annihilation data collected by the BaBar detector near the Upsilon(4S) resonance. These include three-body decay modes with final states h{+-}h{sup minus-plus}h{+-} and h{+-}h{sup minus-plus}pi{sup 0}, and quasi-two-body decay modes with final states X{sup 0}h and X{sup 0}K{sub S}{sup 0}, where h = pi or K and X{sup 0} = eta-prime or omega. They find beta(B{sup 0} --> rho{sup minus-plus}pi{sup {+-}}) = (49{+-}13{sub {minus}5}{sup +6}) x 10{sup {minus}6} and beta(B{sup +} --> eta-prime-K{sup +}) = (62{+-}18{+-}8) x 10{sup {minus}6} and present upper limits for right other decays.

  3. Genetic analysis of a red tilapia (Oreochromis spp.) population undergoing three generations of selection for increased body weight at harvest.

    Science.gov (United States)

    Hamzah, Azhar; Thoa, Ngo Phu; Nguyen, Nguyen Hong

    2017-11-01

    Quantitative genetic analysis was performed on 10,919 data records collected over three generations from the selection programme for increased body weight at harvest in red tilapia (Oreochromis spp.). They were offspring of 224 sires and 226 dams (50 sires and 60 dams per generation, on average). Linear mixed models were used to analyse body traits (weight, length, width and depth), whereas threshold generalised models assuming probit distribution were employed to examine genetic inheritance of survival rate, sexual maturity and body colour. The estimates of heritability for traits studied (body weight, standard length, body width, body depth, body colour, early sexual maturation and survival) across statistical models were moderate to high (0.13-0.45). Genetic correlations among body traits and survival were high and positive (0.68-0.96). Body length and width exhibited negative genetic correlations with body colour (- 0.47 to - 0.25). Sexual maturity was genetically correlated positively with measurements of body traits (weight and length). Direct and correlated genetic responses to selection were measured as estimated breeding values in each generation and expressed in genetic standard deviation units (σ G ). The cumulative improvement achieved for harvest body weight was 1.72 σ G after three generations or 12.5% per generation when the gain was expressed as a percentage of the base population. Selection for improved body weight also resulted in correlated increase in other body traits (length, width and depth) and survival rate (ranging from 0.25 to 0.81 genetic standard deviation units). Avoidance of black spot parent matings also improved the overall red colour of the selected population. It is concluded that the selective breeding programme for red tilapia has succeeded in achieving significant genetic improvement for a range of commercially important traits in this species, and the large genetic variation in body colour and survival also shows that

  4. Multi-channel, passive, short-range anti-aircraft defence system

    Science.gov (United States)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  5. Study of short range order in alloy of glassy metals and effect of neutron irradiation on them

    International Nuclear Information System (INIS)

    Habibi, S.; Banaee, N.; Salman, M.; Gupta, A.; Principi, G.

    2000-04-01

    In this paper, we have studied a series of glassy metals with composition Fe 78-x Ni x Si 8 B 14 with x=0, 15, 25,38,53, 58. We have used Moessbauer spectroscopy to get information about short range order and local structure in these alloys. The specimens are exposed to neutron irradiation to perturb local structure and their short range order. The hyperfine parameters obtained from spectra before and after n-irradiation and are compared

  6. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  7. The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis

    Science.gov (United States)

    Marsden, David; Navratil, Petr; Barrett, Bruce

    2000-09-01

    A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)

  8. Perturbation theory for short-range weakly-attractive potentials in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2017-03-15

    We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.

  9. A short-range weather prediction system for South Africa based on a multi-model approach

    CSIR Research Space (South Africa)

    Landman, S

    2012-10-01

    Full Text Available stream_source_info Landman5_2012.pdf.txt stream_content_type text/plain stream_size 44898 Content-Encoding ISO-8859-1 stream_name Landman5_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1 A short... to be skillful. Moreover, the system outscores the forecast skill of the individual models. Keywords: short-range, ensemble, forecasting, precipitation, multi-model, verification Tel: +27 12 367 6054...

  10. Determination of thermodynamical coefficients for Mo-W alloys according to short-range order parameters

    International Nuclear Information System (INIS)

    Erokhin, L.N.; Mokrov, A.P.; Shivrin, O.N.; Khanina, N.I.

    1986-01-01

    A method is proposed for determining thermodynamical coefficients according to short-range order parameters. The method approbation for Mo-W alloys has shown a good agreement between the thermodynamical and diffusion data. The Mo-W system in the concentration range under study is close to the ideal one. The calculated relative error of determination of interdiffusion coefficients in alloys of the Mo-W system does not exceed 16%

  11. [The effects of 16-weeks pilates mat program on anthropometric variables and body composition in active adult women after a short detraining period].

    Science.gov (United States)

    Vaquero-Cristóbal, Raquel; Alacid, Fernando; Esparza-Ros, Francisco; Muyor, José M; López-Miñarro, Pedro Ángel

    2015-04-01

    previous studies have analysed the effect of mat Pilates practice on anthropometric variables and body composition in sedentaries. To date no researchs have investigated the benefits of Pilates on these variables after a short detraining period. to determine the effect of a 16-week mat Pilates program on anthropometric variables, body composition and somatotype of women with previous practice experience after three weeks of detraining period. twenty-one women underwent a complete anthropometric assessment according with ISAK guidelines before and after a 16 week mat Pilates program (two days, one hour). All women had one to three years of mat Pilates experience and came to three weeks of detraining period (Christmas holiday). women showed significant decreases for body mass, BMI, upper limb (biceps and triceps) and trunk (subscapular, iliac crest, supraspinale and abdominal) individual skinfolds, 6 and 8 skinfold sums, endomorphy and fat mass; and a significant increases for muscle mass. The mean somatotype was classified as mesomorphic endomorph in the pre- (4.91, 4.01, 1.47) and post-test (4.68, 4.16, 1.69). Eight women changed their somatotype clasification after the intervention program. the practice of mat Pilates for 16 weeks caused changes associated with health state improvements on anthropometric variables, especially on skinfolds which significantly decreased, body composition (fat and muscle masses decreased and increased, respectively) and somatotype (there was a significantly decreased on the endomorph component in experienced women after three week of detraning. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  13. Short, intermediate and mesoscopic range order in sulfur-rich binary glasses

    International Nuclear Information System (INIS)

    Bychkov, E.; Miloshova, M.; Price, D.L.; Benmore, C.J.; Lorriaux, A.

    2006-01-01

    Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsS x (x (ge) 1.5) and GeS x (x (ge) 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As 2 S 3 and GeS 2 ) and 'saturated' (AsS 2.2 and GeS 2.7 ) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS 3/2 and GeS 4/2 units. (2) Above the 'saturated' compositions at (As) x system) appear in the glass network. The glasses become phase separated with the domains of 20-50 (angstrom), presumably enriched with sulfur rings. The longer chains Sn are not stable and crystallize to c-S 8 on ageing of a few days to several months, depending on composition.

  14. Body dissatisfaction: can a short media literacy message reduce negative media exposure effects amongst adolescent girls?

    Science.gov (United States)

    Halliwell, Emma; Easun, Alice; Harcourt, Diana

    2011-05-01

    This experimental study examined whether a brief video intervention identifying the artificial nature of media images could protect adolescent girls from negative media exposure effects and body dissatisfaction. A 2 (intervention condition)×2 (exposure condition) between-groups design was used. Participants were 127 British girls aged between 10 and 13 recruited from two secondary schools. Girls were assigned to one of four experimental conditions. An intervention video was shown to half of the girls immediately before they viewed ultra-thin models or control images. The video was developed by Dove's Self-Esteem Fund and has the benefits of being professionally produced and freely available through the Internet. In the absence of the intervention video, viewing thin idealized models was associated with lower state body satisfaction and lower state body esteem than exposure to control images. However, viewing the video intervention immediately before exposure prevented this negative exposure effect. The results suggest that, in the short term, this widely available video prevents girls from making damaging social comparisons with media models. Although this study only examined short-term effects, the findings add to the growing evidence that media literacy interventions may be useful tools in protecting young girls from body dissatisfaction. ©2010 The British Psychological Society.

  15. Some highlights in few-body nuclear physics.

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R. J.

    2000-12-07

    During the past five years, there have been tremendous advances in both experiments and theoretical calculations in few-body nuclear systems. Advances in technology have permitted experiments of unprecedented accuracy. Jefferson Laboratory has begun operation and the first round of experimental results have become available. New polarization techniques have been exploited at a number of laboratories, in particular, at Jefferson Lab, IUCF, RIKEN, NIKHEF, Mainz, MIT-Bates and HERMES. Some of these results will be shown here. In addition, there have been tremendous advances in few-body theory. Five modern two-nucleon potentials have which describe the nucleon-nucleon data extremely well have become available. A standard model of nuclear physics based on these two nucleon potentials as well as modern three-nucleon forces has emerged. This standard model has enjoyed tremendous success in the few body systems. Exact three-body calculations have been extended into the continuum in order to take full advantage of scattering data in advancing our understanding of the the few-nucleon system. In addition, the application of chiral symmetry has become an important constraint on nucleon-nucleon as well as three-nucleon forces. As a result of all these efforts, we have seen rapid developments in the three-body force. Despite these advances, there remain some extremely important open issues: (1) What is the role of quarks and gluons in nuclear structure; (2) Can we distinguish meson exchange from quark interchange; (3) Is few-body theory sufficient to describe simultaneously the mass 2, 3 and 4 form factors; (4) What is the isospin and spin dependence of the three-body force; (5) Are there medium modifications for nucleons and mesons in nuclei; (6) Is there an enhancement of antiquarks or pions in nuclei related to the binding; and (7) Are short range correlations observable in nuclei? In this paper the author summarizes the status of our understanding of these issues.

  16. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    directional fabric reinforcement offers a unique solution for ... showed good performance to the three-body abrasive wear. .... plied by the Pioneer Chemical Company, Delhi, India. ..... Theoretical and measured densities of composites, along.

  17. Three-body decays: structure, decay mechanism and fragment properties

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.

    2009-01-01

    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  18. Short-range order of amorphous FeNiB alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Baluch, S.; Cirak, J.; Lipka, J.

    1990-01-01

    Transmission Moessbauer spectroscopy was used to study irradiation-induced changes in the short-range order of an amorphous Fe 80-x Ni x B 20 alloy. Neutron irradiation led to an increase of the width of a hyperfine field distribution implying atomic rearrangement towards disordering. Changes in a mean value of a HFD and Moessbauer line areas can be associated with a reorientation of spins due to radiation damage. (orig.)

  19. Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous

    International Nuclear Information System (INIS)

    Hillairet, J.

    1985-01-01

    This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena

  20. Changes in structure of the short-range order of the InP melt when heated

    International Nuclear Information System (INIS)

    Glazov, V.M.; Dovletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    An investigation of the temperature dependence of the InP viscosity has indicated an ''after-melting'' effect similar to that observed in other A 3 V 5 compounds having a sphalerite structure. The termodynamic parameters of the viscous flow of indium phosphide melt have been calculated, and a suggestion has been made on the loosening of the short-range order structure of the melt during the period preceding solidification. With the similarity in the behaviour of InP and of A 3 Sb compound melts as a basis, a suggestion has been put forward that the influence of the thermal dissociation upon the character of the changes in the short-range order structure directly after transition from the solid to the liquid phase is negligible

  1. Algebraic diagrammatic construction formalism with three-body interactions

    Science.gov (United States)

    Raimondi, Francesco; Barbieri, Carlo

    2018-05-01

    Background: Self-consistent Green's function theory has recently been extended to the basic formalism needed to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326 (2013), 10.1103/PhysRevC.88.054326]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear matter and finite nuclei only as averaged two-nucleon forces. Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams with three-nucleon forces that have been previously neglected. Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams are resummed to all orders. Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an interaction-irreducible three-nucleon force. Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the self-consistent Green's function theory is now available and ready to be implemented in the many-body solvers.

  2. Three-Body Protonium Formation in a Collision Between a Slow Antiproton ({barp}) and Muonic Hydrogen: {H_{μ}}—Low Energy {barp + (p μ^-)_{1s} → (barp p)_{1s} + μ^-} Reaction

    Science.gov (United States)

    Sultanov, Renat A.; Guster, D.; Adhikari, S. K.

    2015-12-01

    A bound state of a proton, p, and its counterpart antiproton, {barp}, is a protonium atom {Pn = (barp p)}. The following three-charge-particle reaction: {barp +(p μ^-)_{1s} → (barp {p})_{1s} + μ^-} is considered in this work, where {μ^-} is a muon. At low-energies muonic reaction {Pn} can be formed in the short range state with α = 1 s or in the first excited state: α = 2 s/2 p, where {barp} and p are placed close enough to each other and the effect of the {barp}-p nuclear interaction becomes significantly stronger. The cross sections and rates of the Pn formation reaction are computed in the framework of a few-body approach based on the two-coupled Faddeev-Hahn-type (FH-type) equations. Unlike the original three-body Faddeev method the FH-type equation approach is formulated in terms of only two but relevant components: {{Ψ}_1} and {Ψ_2}, of the system's three-body wave function {Ψ}, where {{Ψ}={Ψ}_1+{Ψ}_2}. In order to solve the FH-type equations {Ψ_1} is expanded in terms of the input channel target eigenfunctions, i.e. in this work in terms of the {({p} μ^-)} eigenfunctions. At the same time {Ψ_2} is expanded in terms of the output channel two-body wave function, that is in terms of the protonium {(bar{{p}} {p})} eigenfunctions. A total angular momentum projection procedure is performed, which leads to an infinite set of one-dimensional coupled integral-differential equations for unknown expansion coefficients.

  3. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  4. Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis

    Science.gov (United States)

    Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.

    2010-12-01

    This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.

  5. Exploiting orbital effects for short-range extravehicular transfers

    Science.gov (United States)

    Williams, Trevor; Baughman, David

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  6. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  7. Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.

    1999-01-01

    Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999

  8. Optimization of the variational basis in the three body problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Pushkash, O.M.; Bestuzheva, A.B.

    1995-01-01

    The procedure of variational oscillator basis optimization is proposed to the calculation the energy spectra of three body systems. The hierarchy of basis functions is derived and energies of ground and excited states for three gravitating particles is obtained with high accuracy. 12 refs

  9. Searching for Short Range Correlations Using (e,e'NN) Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2003-02-01

    Electron induced two nucleon knockout reactions (e,e'pp) and (e,e'np) were performed for 3He, 4He, and 12C nuclei with incident energies of 2.261 GeV and 4.461 GeV using the CLAS detector at Jefferson Lab. Events with missing momenta lower than the Fermi level and missing energies smaller than the pion threshold were studied. The residual system was assumed to be a spectator and the process was considered as a quasi-free knockout of an NN pair. The data showed that the initial momentum extends up to 800 MeV/c with considerable strength. The cross sections for 3He(e,e'pp)n were compared to the calculations of J.M. Laget. It was found that the final state interactions (FSI) and the meson exchange currents (MEC) dominate the cross sections and the short range properties of the NN pair were substantially undermined. However, the node of the S state wave function of the pp pair at around 400 MeV/c initial momentum starts to be recognizable in the 4.461 GeV data. The data and the theory suggest that with higher momentum transfers, especially in the region xBj > 1, the competing processes such as FSI and MEC will be less important and the detailed study of the short-range properties of nucleons inside nuclei will be more desirable.

  10. Hounsfield Units ranges in CT-scans of bog bodies and mummies

    DEFF Research Database (Denmark)

    Villa, Chiara; Lynnerup, Niels

    2012-01-01

    Mummification processes, either artificial or natural, preserve the tissues from postmortem decay, but change them from their original state. In this study we provided the first comprehensive set of Hounsfield Unit (HU) ranges specific for tissues mummified under different environmental conditions...... (peat bog, cold-dry and hot-dry environment). We also analyzed the impact of different museal preservation techniques on the HU ranges, as e.g. in the Tollund Man and Grauballe Man, two bog bodies from Denmark. The HU results for mummies were compared with HU results from forensic cases, cremated...

  11. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  12. Weight and Body Composition Changes during the First Three Years of College

    Directory of Open Access Journals (Sweden)

    Sareen S. Gropper

    2012-01-01

    Full Text Available Differences in weight, body mass index (BMI, percent and absolute body fat, fat-free mass, and waist circumference were investigated in a group of males and females during the first three years (from 2007 to 2010 of college. Significant three-year gains were observed for weight 2.1±4.7 kg, BMI 0.7±1.6 kg/m2, percent body fat 2.7±3.3%, and fat mass 2.3±3.5 kg. A significant loss of fat-free mass, −0.5 kg, was observed among females. Absolute gains in weight, BMI, and percent and absolute body fat were highest during the freshman year, followed by the junior year, and lowest during the sophomore year. Among the 70% of students gaining weight over the three years, weight gain averaged 4.3 kg. The numbers of females with over 30% body fat doubled, and the number of males with over 20% body fat increased fivefold. Initially 15% of students were classified as obese/overweight and 79% normal weight; by the end of the junior year, 24% were obese/overweight and 70% were normal weight. Efforts on college campuses to promote healthy lifestyles among its student population are needed throughout the college years.

  13. Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

    Science.gov (United States)

    Assi, I. A.; Sous, A. J.

    2018-05-01

    The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

  14. Three-body interactions in sociophysics and their role in coalition forming

    Science.gov (United States)

    Naumis, Gerardo G.; Samaniego-Steta, F.; del Castillo-Mussot, M.; Vázquez, G. J.

    2007-06-01

    An study of the effects of three-body interactions in the process of coalition formation is presented. In particular, we modify a spin glass model of bimodal propensities and also a Potts model in order to include a particular three-body Hamiltonian that reproduces the main features of the required interactions. The model can be used to study conflicts, political struggles, political parties, social networks, wars and organizational structures. As an application, we analyze a simplified model of the Iraq war.

  15. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  16. Short range part of the NN interaction: Equivalent local potentials from quark exchange kernels

    International Nuclear Information System (INIS)

    Suzuk, Y.; Hecht, K.T.

    1983-01-01

    To focus on the nature of the short range part of the NN interaction, the intrinsically nonlocal interaction among the quark constituents of colorless nucleons is converted to an equivalent local potential using resonating group kernels which can be evaluated in analytic form. The WKB approximation based on the Wigner transform of the nonlocal kernels has been used to construct the equivalent potentials without recourse to the long range part of the NN interaction. The relative importance of the various components of the exchange kernels can be examined: The results indicate the importance of the color magnetic part of the exchange kernel for the repulsive part in the (ST) = (10), (01) channels, in particular since the energy dependence of the effective local potentials seems to be set by this term. Large cancellations of color Coulombic and quark confining contributions, together with the kinetic energy and norm exchange terms, indicate that the exact nature of the equivalent local potential may be sensitive to the details of the parametrization of the underlying quark-quark interaction. The equivalent local potentials show some of the characteristics of the phenomenological short range terms of the Paris potential

  17. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  18. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    Science.gov (United States)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi

  19. Three-body segment musculoskeletal model of the upper limb

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2013-06-01

    Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.

  20. Functional framework and hardware platform for dependability study in short range wireless embedded systems

    NARCIS (Netherlands)

    Senouci, B.; Annema, Anne J.; Bentum, Marinus Jan; Kerkhoff, Hans G.

    2011-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of a few meters. Behind these embedded applications, a complex Hardware/Software architecture is built. Dependability is one of the major challenges in these systems.

  1. Effects of three-body interactions in the parametric and modulational instabilities of Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wamba, Etienne; Mohamadou, Alidou; Ekogo, Thierry B.; Atangana, Jacque; Kofane, Timoleon C.

    2011-01-01

    The parametric modulational instability for a discrete nonlinear Schrödinger equation with a cubic–quintic nonlinearity is analyzed. This model describes the dynamics of BECs, with both two- and three-body interatomic interactions trapped in an optical lattice. We identify and discuss the salient features of the three-body interaction in the parametric modulational instability. It is shown that the three-body interaction term can both, shift as well as narrow the window of parametric instability, and also change the behavior of a modulationally stable and parametrically unstable BEC with attractive two-body interaction. We explore this instability through the multiple-scale analysis and identify it numerically. The effect of the three body losses have also been investigated. -- Highlights: ► The parametric MI for the 1D GPE with a cubic–quintic nonlinearity is analyzed. ► The two- and three-body recombination and time-dependent scattering length is considered. ► We generate bright matter waves soliton through MI.

  2. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  3. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  4. Three-body Supersymmetric Top Decays

    CERN Document Server

    Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda

    2000-01-01

    We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.

  5. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  6. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Revision to dedicated short range communication roadside equipment specification - RSU 4.1.Bench Test Plan.

    Science.gov (United States)

    2017-04-28

    The document describes the overall process for evaluating Dedicated Short Range Communication (DSRC) Roadside Units (RSU) against USDOT RSU Specification 4.1 in preparation for field evaluation. The Test Cases contained in this document only evaluate...

  8. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  9. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Morita, Hiko

    2017-12-01

    Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A

  10. The three-body problem and equivariant Riemannian geometry

    Science.gov (United States)

    Alvarez-Ramírez, M.; García, A.; Meléndez, J.; Reyes-Victoria, J. G.

    2017-08-01

    We study the planar three-body problem with 1/r2 potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles.

  11. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2016-10-01

    Full Text Available Due to its excellent glass-forming ability (GFA, the Zr48Cu36Al8Ag8 bulk metallic glass (BMG is of great importance in glass transition investigations and new materials development. However, due to the lack of detailed structural information, the local structure and atomic packing of this alloy is still unknown. In this work, synchrotron measurement and reverse Monte Carlo simulation are performed on the atomic configuration of a Zr-based bulk metallic glass. The local structure is characterized in terms of bond pairs and Voronoi tessellation. It is found that there are mainly two types of bond pairs in the configuration, as the body-centered cubic (bcc-type and icosahedral (ico-type bond pairs. On the other hand, the main polyhedra in the configuration are icosahedra and the bcc structure. That is, the bcc-type bond pairs, together with the ico-type bond pairs, form the bcc polyhedra, introducing the distortion in bcc clusters in short range. However, in the medium range, the atoms formed linear or planar structures, other than the tridimensional clusters. That is, the medium-range order in glass is of 1D or 2D structure, suggesting the imperfect ordered packing feature.

  12. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  13. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  14. Properties of three-body decay functions derived with time-like jet calculus beyond leading order

    International Nuclear Information System (INIS)

    Sugiura, Tetsuya

    2002-01-01

    Three-body decay functions in time-like parton branching are calculated using the jet calculus to the next-to-leading logarithmic (NLL) order in perturbative quantum chromodynamics (QCD). The phase space contributions from each of the ladder diagrams and interference diagrams are presented. We correct part of the results for the three-body decay functions calculated previously by two groups. Employing our new results, the properties of the three-body decay functions in the regions of soft partons are examined numerically. Furthermore, we examine the contribution of the three-body decay functions modified by the restriction resulting from the kinematical boundary of the phase space for two-body decay in the parton shower model. This restriction leads to some problems for the parton shower model. For this reason, we propose a new restriction introduced by the kinematical boundary of the phase space for two-body decay. (author)

  15. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  16. Anomalous X-ray scattering studies of short-, intermediate- and extended-range order in glasses

    International Nuclear Information System (INIS)

    Price, D.L.; Saboungi, M.L.; Armand, P.; Cox, D.E.

    1998-01-01

    The authors present the formalism of anomalous x-ray scattering as applied to partial structure analysis of disordered materials, and give an example of how the technique has been applied, together with that of neutron diffraction, to investigate short-, intermediate- and extended-range order in vitreous germania and rubidium germanate

  17. Three-body interactions and the Landau levels using Nikiforov

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given.

  18. The body force in a three-dimensional Lame system identification and regularization

    DEFF Research Database (Denmark)

    Trong, Dang Duc; Phan, Thanh Nam; Thuc, Phung Trong

    2012-01-01

    Let a three-dimensional isotropic elastic body be described by the Lamé system with the body force of the form F(x, t) = (t)f (x), where is known. We consider the problem of determining the unknown spatial term f (x) of the body force when the surface stress history is given...

  19. On the libration collinear points in the restricted threebody problem

    Directory of Open Access Journals (Sweden)

    Alzahrani F.

    2017-03-01

    Full Text Available In the restricted problem of three bodies when the primaries are triaxial rigid bodies, the necessary and sufficient conditions to find the locations of the three libration collinear points are stated. In addition, the Linear stability of these points is studied for the case of the Euler angles of rotational motion being θi = 0, ψi + φi = π/2, i = 1, 2 accordingly. We underline that the model studied in this paper has special importance in space dynamics when the third body moves in gravitational fields of planetary systems and particularly in a Jupiter model or a problem including an irregular asteroid.

  20. Control of strength and stability of emulsion-gels by a combination of long- and short-range interactions

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Hendriks, W.P.G.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2003-01-01

    This paper discusses the change in phase behavior and mechanical properties of oil-in-water emulsion gels brought about by variation of long- and short-range attractive interactions. The model system studied consisted of oil droplets stabilized by the protein -lactoglobulin (-lg). A long-range

  1. A model for short and medium range dispersion of radionuclides released to the atmosphere

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1979-09-01

    A Working Group was established to give practical guidance on the estimation of the dispersion of radioactive releases to the atmosphere. The dispersion is estimated in the short and medium range, that is from about 100 m to a few tens of kilometres from the source, and is based upon a Gaussian plume model. A scheme is presented for categorising atmospheric conditions and values of the associated dispersion parameters are given. Typical results are presented for releases in specific meteorological conditions and a scheme is included to allow for durations of release of up to 24 hours. Consideration has also been given to predicting longer term average concentrations, typically annual averages, and results are presented which facilitate site specific calculations. The results of the models are extended to 100 km from the source, but the increasing uncertainty with which results may be predicted beyond a few tens of kilometres from the source is emphasised. Three technical appendices provide some of the rationale behind the decisions made in adopting the various models in the proposed dispersion scheme. (author)

  2. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  3. Two-body density matrix for closed s-d shell nuclei

    International Nuclear Information System (INIS)

    Dimitrova, S.S.; Kadrev, D.N.; Antonov, A.N.; Stoitsov, M.V.

    2000-01-01

    The two-body density matrix for 4 He, 16 O and 40 Ca within the Low-order approximation of the Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix, the center of mass and relative local densities and momentum distributions are presented. The effects of the short-range correlations on the two-body nuclear characteristics are investigated. (orig.)

  4. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  5. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    Science.gov (United States)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-03-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.

  6. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2011-07-01

    Full Text Available Abstract Background The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification. Results We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade

  7. Altered Long- and Short-Range Functional Connectivity in Patients with Betel Quid Dependence: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2016-12-01

    Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.

  8. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  9. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  10. Laparoscopic Sleeve Gastrectomy for Mildly Obese Patients (Body Mass Index of 30 <35 kg/m2: Operative Outcome and Short-Term Results

    Directory of Open Access Journals (Sweden)

    Roger Noun

    2012-01-01

    Full Text Available Background. Data concerning laparoscopic sleeve gastrectomy (LSG in mild obesity are under investigation. Aim/Objective. May 2010 to May 2012, 122 consecutive patients with preoperative body mass index (BMI of 33±2.5 kg/m2 (range 30–34.9 undergoing LSG were studied. Mean age was 33±10 years (range 15–60, and 105 (86% were women. Mean preoperative weight was 91±9.7 kg (range 66–121, and preoperative excess weight was 30±6.7 kg (range 19–43. Comorbidities were detected in 44 (36% patients. Results. Mean operative time was 58±15 min (range 40–95, and postoperative stay was 1.8±0.19 days (range 1.5–3. There were no admissions to intensive care unit and no deaths within 30 days of surgery. The rates of leaks and strictures were 0%, and of hemorrhage 1.6%. At 12 months, BMI decreased to 24.7±2, and the percentage of excess weight loss (% EWL reached 76.5%. None of the patients had a BMI below 20 kg/m2. Comorbidities resolved in 70.5% or improved in 29.5%. Patient satisfaction scoring (1–5 at least 1 year after was 4.6±0.8 for body image and 4.4±0.6 for food tolerance. Conclusion. LSG for mildly obese patients has proved to be technically relatively easy, safe, and benefic in the short term.

  11. Short-range order studies in nonstoichiometric transition metal carbides and nitrides by neutron diffuse scattering

    International Nuclear Information System (INIS)

    Priem, Thierry

    1988-01-01

    Short-range order in non-stoichiometric transition metal carbides and nitrides (TiN 0.82 , TiC 0.64 , TiC 0.76 , NbC 0.73 and NbC 0.83 ) was investigated by thermal neutron diffuse scattering on G4-4 (L.L.B - Saclay) and D10 (I.L.L. Grenoble) spectrometers. From experimental measurements, we have found that metalloid vacancies (carbon or nitrogen) prefer the f.c.c. third neighbour positions. Ordering interaction energies were calculated within the Ising model framework by three approximations: mean field (Clapp and Moss formula), Monte-Carlo simulation, Cluster variation Method. The energies obtained by the two latter methods are very close, and in qualitative agreement with theoretical values calculated from the band structure. Theoretical phase diagrams were calculated from these ordering energies for TiN x and TiC x ; three ordered structures were predicted, corresponding to compositions Ti 6 N 5 Ti 2 C and Ti 3 C 2 . On the other hand, atomic displacements are induced by vacancies. The metal first neighbours were found to move away from a vacancy, whereas the second neighbours move close to it. Near neighbour atomic displacements were theoretically determined by the lattice statics formalism with results in good agreement with experiment. (author) [fr

  12. On the inherent self-excited macroscopic randomness of chaotic three-body system

    OpenAIRE

    Liao, Shijun; Li, Xiaoming

    2014-01-01

    What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...

  13. How Confinement-Induced Structures Alter the Contribution of Hydrodynamic and Short-Ranged Repulsion Forces to the Viscosity of Colloidal Suspensions

    Directory of Open Access Journals (Sweden)

    Meera Ramaswamy

    2017-10-01

    Full Text Available Confined systems ranging from the atomic to the granular are ubiquitous in nature. Experiments and simulations of such atomic and granular systems have shown a complex relationship between the microstructural arrangements under confinement, the short-ranged particle stresses, and flow fields. Understanding the same correlation between structure and rheology in the colloidal regime is important due to the significance of such suspensions in industrial applications. Moreover, colloidal suspensions exhibit a wide range of structures under confinement that could considerably modify such force balances and the resulting viscosity. Here, we use a combination of experiments and simulations to elucidate how confinement-induced structures alter the relative contributions of hydrodynamic and short-range repulsive forces to produce up to a tenfold change in the viscosity. In the experiments we use a custom-built confocal rheoscope to image the particle configurations of a colloidal suspension while simultaneously measuring its stress response. We find that as the gap decreases below 15 particle diameters, the viscosity first decreases from its bulk value, shows fluctuations with the gap, and then sharply increases for gaps below 3 particle diameters. These trends in the viscosity are shown to strongly correlate with the suspension microstructure. Further, we compare our experimental results to those from two different simulations techniques, which enables us to determine the relative contributions of hydrodynamic and short-range repulsive stresses to the suspension rheology. The first method uses the lubrication approximation to find the hydrodynamic stress and includes a short-range repulsive force between the particles while the second is a Stokesian dynamics simulation that calculates the full hydrodynamic stress in the suspension. We find that the decrease in the viscosity at moderate confinements has a significant contribution from both the

  14. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-01-15

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.

  15. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    International Nuclear Information System (INIS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied

  16. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits

    Science.gov (United States)

    Li, XiaoMing; Liao, ShiJun

    2017-12-01

    The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this "three-body problem" was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/L f, where L f is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T | E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere" can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.

  17. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  18. Utilizing Context in Location-Aware Short-Range Wireless Communication

    Directory of Open Access Journals (Sweden)

    Vesa A. Korhonen

    2010-01-01

    Full Text Available We discuss how a short-range wireless communication service implemented for modern mobile communication devices can provide additional value for both the consumer and the service/product provider. When used as an information search tool, such systems allow services and products being promoted at the location they are available. For the customer, it may provide a “digitally augmented vision”, an enhanced view to the current environment. With data filtering and search rules, this may provide a self-manageable context, where the user's own personal environment and preferences to the features available in the current surroundings cooperate with a direct connection to the web-based social media. A preliminary design for such service is provided. The conclusion is that the method can generate additional revenue to the company and please the customers' buying process. In addition to the marketing, the principles described here are also applicable to other forms of human interaction.

  19. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    International Nuclear Information System (INIS)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-01-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)

  20. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  1. SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH

    International Nuclear Information System (INIS)

    WANG, H.; PALMER, R.B.; GALLARDO, J.

    2001-01-01

    The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities

  2. Short-range structure and thermal properties of lead tellurite glasses

    Science.gov (United States)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  3. Effects of long or short duration stimulus during high-intensity interval training on physical performance, energy intake, and body composition.

    Science.gov (United States)

    Alves, Elaine Domingues; Salermo, Gabriela Pires; Panissa, Valéria Leme Gonçalves; Franchini, Emerson; Takito, Monica Yuri

    2017-08-01

    To compare the effects of 6 weeks of long or short high-intensity interval training (long- or short-HIIT) on body composition, hunger perception, food intake and rating of perceived exertion (RPE). Twenty previously untrained women (25±5 years) were randomly assigned to do a long-HIIT (n=10) or a short-HIIT (n=10). The long-HIIT group performed fifteen 1-min bouts at 90% of maximum heart rate (HRmax), interspersed by 30-sec active recovery (60% HRmax). The short-HIIT group performed forty-five 20-sec bouts at 90% of HRmax, interspersed by 10-sec active recovery (60% HRmax). The training for both groups was conducted 3 times a week for 6 weeks. All subjects performed the Astrand cycle ergometer test to estimate maximal oxygen consumption (VO 2max ) 1 week before and after the training period, as well as body composition, which was estimated through circumferences and skinfold thicknesses. For all training sessions, the heart rate, visual scale of hunger, internal load, and RPE were recorded. In the first and last week of training, subjects were asked to record a 24-hr food diary for 3 days. Both training induced significant pre to post decreases for fat mass, fat percentage, waist circumference, sum of seven skinfolds and RPE. As expected estimated, the VO 2max increased in both groups. There were no differences for hunger perception, energy intake, and body mass. Long and short-HIIT resulted in fat loss, without altering the energy intake.

  4. Short-Range Correlated Magnetic Core-Shell CrO₂/Cr₂O₃ Nanorods: Experimental Observations and Theoretical Considerations.

    Science.gov (United States)

    Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun

    2018-05-09

    With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  5. Three-body cluster state in 11B

    International Nuclear Information System (INIS)

    Kawabata, T.; Akimune, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hara, K.; Hatanaka, K.; Itoh, M.; Kanada-En'yo, Y.; Kishi, S.; Nakanishi, K.; Sakaguchi, H.; Shimbara, Y.; Tamii, A.; Terashima, S.; Uchida, M.; Wakasa, T.; Yasuda, Y.; Yoshida, H.P.; Yosoi, M.

    2007-01-01

    The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d,d ' ) reaction at E d =200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 3 - state at E x =8.56 MeV is well described by the AMD calculation and is an evidence for a developed three-body 2α+t cluster structure

  6. Image interpolation used in three-dimensional range data compression.

    Science.gov (United States)

    Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian

    2016-05-20

    Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.

  7. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  8. Body typing of children and adolescents using 3D-body scanning.

    Directory of Open Access Journals (Sweden)

    Henry Loeffler-Wirth

    Full Text Available Three-dimensional (3D- body scanning of children and adolescents allows the detailed study of physiological development in terms of anthropometrical alterations which potentially provide early onset markers for obesity. Here, we present a systematic analysis of body scanning data of 2,700 urban children and adolescents in the age range between 5 and 18 years with the special aim to stratify the participants into distinct body shape types and to describe their change upon development. In a first step, we extracted a set of eight representative meta-measures from the data. Each of them collects a related group of anthropometrical features and changes specifically upon aging. In a second step we defined seven body types by clustering the meta-measures of all participants. These body types describe the body shapes in terms of three weight (lower, normal and overweight and three age (young, medium and older categories. For younger children (age of 5-10 years we found a common 'early childhood body shape' which splits into three weight-dependent types for older children, with one or two years delay for boys. Our study shows that the concept of body types provides a reliable option for the anthropometric characterization of developing and aging populations.

  9. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Agnese Arduini

    2017-02-01

    Full Text Available In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min, 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score (p < 0.05, which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  10. Molecular dynamics simulations of short-range force systems on 1024-node hypercubes

    International Nuclear Information System (INIS)

    Plimpton, S.J.

    1990-01-01

    In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined

  11. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)

    2013-12-01

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  12. Three-particle decays of light-nuclei resonances

    DEFF Research Database (Denmark)

    Álvarez-Rodríguez, R.; Jensen, A.S.; Garrido, E.

    2012-01-01

    We have studied the three-particle decay of 12C, 9Be and 6Be resonances. These nuclei have been described as three-body systems by means of the complex scaled hyperspherical adiabatic expansion method. The short-distance part of the wave function is responsible for the energies, whereas the infor...

  13. Chemical Changes of Short-Bodied Mackerel (Rastrelliger Brachysoma) Muscle at Chilled and Frozen Storage

    International Nuclear Information System (INIS)

    Emilia Azrina Mohd Bakri; Norizzah Abd Rashid; Seng, C.C.; Anida Yusoff; Fazilah Fazilin Juhari

    2016-01-01

    This study was carried out to evaluate the chemical changes in short-bodied mackerel during chilled (4 degree Celcius) and frozen (-18 degree Celicus) storage for 18 days. The chemical changes were monitored at three days interval using Peroxide Value (PV), Thiobarbituric Acid (TBA), Total Volatile Base Nitrogen (TVBN) and Trimethylamine (TMA) tests. The PV of both chilled and frozen mackerel significantly increased (p<0.05) with storage time and the rate was significantly higher in chilled than frozen mackerel. Based on the results, the chilled and frozen mackerel started to become rancid at day 15 and day 18, respectively. Similar trend was observed for TBA value, where the malonaldehyde content significantly increased (p<0.05) for both chilled and frozen mackerel with storage time, and the rate of increase was higher in chilled than frozen mackerel. The TVBN and TMA of chilled mackerel increased significantly during storage time, but the values declined in frozen mackerel which might be due to inhibitory effects of freezing on the bacterial activities and hence avoid accumulation of TMA. Based on the chemical analyses, chilled mackerel spoiled rapidly compared to frozen mackerel. (author)

  14. Three-dimensional image capturing and representation for multimedia ambiance communication

    Science.gov (United States)

    Ichikawa, Tadashi; Iwasawa, Shoichiro; Yamada, Kunio; Kanamaru, Toshifumi; Naemura, Takeshi; Aizawa, Kiyoharu; Morishima, Shigeo; Saito, Takahiro

    2001-02-01

    Multimedia Ambiance Communication is as a means of achieving shared-space communication in an immersive environment consisting of an arch-type stereoscopic projection display. Our goal is to enable shared-space communication by creating a photo-realistic three-dimensional (3D) image space that users can feel a part of. The concept of a layered structure defined for painting, such as long-range, mid-range, and short-range views, can be applied to a 3D image space. New techniques, such as two-plane expression, high quality panorama image generation and setting representation for image processing, 3D image representation and generation for photo- realistic 3D image space have been developed. Also, we propose a life-like avatar within the 3D image space. To obtain the characteristics of user's body, a human subject is scanned using a CyberwareTM whole body scanner. The output from the scanner, a range image, is a good start for modeling the avatar's geometric shape. A generic human surface model is fitted to the range image. The obtained model is topologically equivalent even if our method is applied to another subject. If a generic model with motion definitions is employed, and common motion rules can be applied to all models made from the generic model.

  15. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  16. Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two- and three-body interactions

    KAUST Repository

    Crosta, M.; Trillo, S.; Fratalocchi, Andrea

    2012-01-01

    We show that the perturbative nonlinearity associated with three-atom interactions, competing with standard two-body repulsive interactions, can change dramatically the evolution of one-dimensional (1D) dispersive shock waves in a Bose-Einstein condensate. In particular, we prove the existence of a rich crossover dynamics, ranging from the formation of multiple shocks regularized by nonlinear oscillations culminating in coexisting dark and antidark matter waves to 1D-soliton collapse. For a given scattering length, all these different regimes can be accessed by varying the density of atoms in the condensate.

  17. Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two- and three-body interactions

    KAUST Repository

    Crosta, M.

    2012-04-10

    We show that the perturbative nonlinearity associated with three-atom interactions, competing with standard two-body repulsive interactions, can change dramatically the evolution of one-dimensional (1D) dispersive shock waves in a Bose-Einstein condensate. In particular, we prove the existence of a rich crossover dynamics, ranging from the formation of multiple shocks regularized by nonlinear oscillations culminating in coexisting dark and antidark matter waves to 1D-soliton collapse. For a given scattering length, all these different regimes can be accessed by varying the density of atoms in the condensate.

  18. Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems

    International Nuclear Information System (INIS)

    Yahalom, A.; Levitan, J.; Lewkowicz, M.; Horwitz, L.

    2011-01-01

    In this Letter we show that although the application of standard Lyapunov analysis predicts that completely integrable Kepler motion is unstable, the geometrical analysis of Horwitz et al. predicts the observed stability. This seems to us to provide evidence for both the incompleteness of the standard Lyapunov analysis and the strength of the geometrical analysis. Moreover, we apply this approach to the three body problem in which the third body is restricted to move on a circle of large radius which induces an adiabatic time dependent potential on the second body. This causes the second body to move in a very interesting and intricate but periodic trajectory; however, the standard Lyapunov analysis, as well as methods based on the parametric variation of curvature associated with the Jacobi metric, incorrectly predict chaotic behavior. The geometric approach predicts the correct stable motion in this case as well. - Highlights: → Lyapunov analysis predicts Kepler motion to be unstable. → Geometrical analysis predicts the observed stability. → Lyapunov analysis predicts chaotic behavior in restricted three body problem. → The geometric approach predicts the correct stable motion in restricted three body problem.

  19. Cellular Controlled Short-Range Communication for Cooperative P2P Networking

    DEFF Research Database (Denmark)

    Fitzek, Frank H. P.; Katz, Marcos; Zhang, Qi

    2009-01-01

    -range communication network among cooperating mobile and wireless devices. The role of the mobile device will change, from being an agnostic entity in respect to the surrounding world to a cognitive device. This cognitive device is capable of being aware of the neighboring devices as well as on the possibility......This article advocates a novel communication architecture and associated collaborative framework for future wireless communication systems. In contrast to the dominating cellular architecture and the upcoming peer-to-peer architecture, the new approach envisions a cellular controlled short...... to establish cooperation with them. The novel architecture together with several possible cooperative strategies will bring clear benefits for the network and service providers, mobile device manufacturers and also end users....

  20. Short range correlations in the pion s-wave self-energy of pionic atoms

    OpenAIRE

    Salcedo, L. L.; Holinde, K.; Oset, E.; Schütz, C.

    1995-01-01

    We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected ...

  1. [Three cases of an intracranial wooden foreign body].

    Science.gov (United States)

    Fujimoto, S; Onuma, T; Amagasa, M; Okudaira, Y

    1987-07-01

    Three cases of intracranial wooden foreign body are reported discussing the diagnostic and therapeutic problems. First case is a 50-year-old man. After drinking, he drove a bike and fell to the ground. On admission the wooden foreign body could not been detected in appearance. CT scan showed low density area similar to air in bilateral anterior horn of lateral ventricle. The patient was treated for traumatic pneumocephalus at first. Later, it proved that he was stabbed with a foreign body penetrating into the contralateral frontal lobe through the left nasal cavity. It was extracted by endonasal approach by otolaryngologist, fortunately without trouble. The foreign body was a branch of tree. The second case is an 18-year-old man. He was driving a car, and suffered injury. He was stabbed with a wooden stake penetrating into his left eye. Immediately, bifrontal craniotomy was performed and the stake was withdrawn carefully. Moreover bone fragments were removed. The third case is a 61-year-old man. When he cut the timber by chain saw, a piece of wood hit and stabbed his right eye directly. Immediately right front temporal craniotomy was performed. The piece of wood was withdrawn from the right eye, and pieces of glass, wood and bone fragments were evacuated. It is difficult to confirm intracranial foreign body accurately by means of only plain skull film and usual CT scans. It is necessary to utilize various function of CT scanner. For example, it is useful to know CT values or select measure mode with window width and level or make reconstruction image to sagittal or coronal section, and so on.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Geurts, A.C.H.; Hendricks, H.T.; Duysens, J.E.J.

    2004-01-01

    The short-term effects of whole-body vibration as a novel method of somatosensory stimulation on postural control were investigated in 23 chronic stroke patients. While standing on a commercial platform, patients received 30-Hz oscillations at 3 mm of amplitude in the frontal plane. Balance was

  3. Intentionally Short Range Communications (ISRC)

    Science.gov (United States)

    1993-05-01

    molecular oxygen in the atmosphere at 60 GHz (figure 9 LIppolito, 1981]). The MMW range is similar to that of the UV links. 3.3.1 Variable Range Similar to...option also requires that the signal be strong enough to overcome the noise from the solar and background sources, although the molecular oxygen and... emisions . Lasing will occur only within the cavity when the alignment is correct and not lasing othem ise. Such a cavity is dcteclable only when an observer

  4. New trends in few-body systems a 30th anniversary collection

    CERN Document Server

    2017-01-01

    Few-Body Systems refer to a multidisciplinary subject of research in different sectors of physics in which the number of degrees of freedom governing the dynamics is sufficiently low to allow a description with controlled approximations. Examples can be found in atomic, nuclear and subnuclear physics as well as in some aspects of condensed matter. This issue, celebrating the 30th Anniversary of the Journal, contains two review articles, one in exotic hadrons and one in antikaon-nucleon systems, as well as a selection of original articles on experimental and theoretical physics in which modern problems in few-body systems are discussed. Specific arguments, presented by world expert leaders, are very extensive and include the three and four-nucleon system, short-range correlations, universal behavior in few-boson systems, perspectives on the origin of hadron masses, scattering problems and studies using electromagnetic probes. This issue gives an overview of actual problems in Few-Body Systems.

  5. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    Science.gov (United States)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  6. Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys

    International Nuclear Information System (INIS)

    Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.

    1990-01-01

    Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH

  7. Virtual states, halos and resonances in three-body atomic and nuclear systems

    International Nuclear Information System (INIS)

    Frederico, T.; Yamashita, M.T.; Tomio, L.

    2009-01-01

    By considering nuclear and ultracold trapped atomic systems, we review the trajectory of Efimov excited states in the complex plane by changing the two-body scattering lengths and one three-body scale. This article is based on the presentation by T. Frederico at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  8. Folding of polymer chains with short-range binormal interactions

    International Nuclear Information System (INIS)

    Craig, A; Terentjev, E M

    2006-01-01

    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils

  9. Short-range order and local conservation of quantum numbers in multiparticle production

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1976-01-01

    These lectures discuss the implications of the hypotheses of short-range order (SRO) and local conservation of quantum numbers (LCQN) for multiple production of elementary particles at high energies. The consequences of SRO for semi-inclusive correlations and the distribution of rapidity gaps are derived, essentially in the framework of the cluster model. Then the experimental status of local conservation of charge and transverse momentum is reviewed. Finally, by making use of the unitarity relation, it is shown that LCQN has important consequences for the elastic amplitude. The derivation is given both in a model-independent way, and in specific multiperiheral models. (Author)

  10. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  11. Structural study of liquids with strong short-range correlation in the atomic distribution

    International Nuclear Information System (INIS)

    Uzuki, Kenji

    1976-01-01

    Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de

  12. The comparing results of carcinoma between three-phase and delayed whole body bone scan

    International Nuclear Information System (INIS)

    Si Hongwei; Li Xianfeng

    2004-01-01

    Purpose: Three phase bone scan is an imaging technology in nuclear medicine, which composed of blood flow phase, blood pool phase and delayed phase and the last one is often performed in routine works in department of nuclear medicine. The purpose of this study is to evaluate the merit of three-phase bone scan.Methods: In this study, we chose 54 patients who were having an regional pain which caused by benign or malignant carcinoma that diagnosed by CT, X-ray, ECT, MRI or other examinations. The imaging were acquired simultaneously from both anterior and posterior views, after a bolus injection of 1110 MBq technetium-99m-labelled methylene diphosphonate (MDP), blood phase contains 20 frame sand 3 seconds per frame, blood pool phase contains 5 frames and 1 minute per frame, delayed phase was performed 2.5 hour later. According to the results of three-phase bone scan, the patients were divided into 2 groups: normal and abnormal groups. The abnormal group includes early phase positive,delay positive and all three phase positive sets. The comparing among the 3 sets were analyzed by chi-square test and other statistic means.Results: There were 54 patients who had suffered lung cancer, breast cancer and other cancer,involved in this study, 34 males and 20 females, ranged age 17 to 88 years, were normal in 15 cases,positive in 22 cases, the results in delayed phase were positive in 9 cases, blood flow and blood pool phase showed blood flow changes in 4 cases and soft tissue tumors were seen in 4 cases. Three phase bone scan was more sensitive than delayed whole body bone scan in detecting the abnormal sites (p 0.05) The sensitivity of detecting tumors in blood flow and blood pool phase,delayed phase were respectively lower than in three phase bone scan (p<0.001).Conclusion: It is more sensitivity of detecting tumor lesions in three phase bone scan than in delayed phase whole body bone scan and the changes of blood flow and soft tissue can be seen in three phase bone scan

  13. The relationship between general measures of fitness, passive range of motion and whole-body movement quality.

    Science.gov (United States)

    Frost, David; Andersen, Jordan; Lam, Thomas; Finlay, Tim; Darby, Kevin; McGill, Stuart

    2013-01-01

    The goal of this study was to establish relationships between fitness (torso endurance, grip strength and pull-ups), hip range of motion (ROM) (extension, flexion, internal and external rotation) and movement quality in an occupational group with physical work demands. Fifty-three men from the emergency task force of a major city police force were investigated. The movement screen comprised standing and seated posture, gait, segmental spine motion and 14 tasks designed to challenge whole-body coordination. Relationships were established between each whole-body movement task, the measures of strength, endurance and ROM. In general, fitness and ROM were not strongly related to the movement quality of any task. This has implications for worker training, in that strategies developed to improve ROM or strength about a joint may not enhance movement quality. Worker-centered injury prevention can be described as fitting workers to tasks by improving fitness and modifying movement patterns; however, the current results show weak correlations between strength, endurance and ROM, and the way individuals move. Therefore, the development of occupation-specific injury prevention strategies may require both fitness and movement-oriented objectives.

  14. An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2012-01-01

    Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.

  15. Incorporation of threshold phenomena in the three-body Coulomb continuum wavefunctions

    International Nuclear Information System (INIS)

    Berakdar, J.

    1996-01-01

    In this work a three-body Coulomb wavefunction for the description of two continuum electrons moving in the field of a nucleus is constructed such that the Wannier threshold law for double escape is reproduced and the asymptotic Coulomb boundary conditions as well as the Kato cusp conditions are satisfied. It is shown that the absolute value of the total cross section, as well as the spin asymmetry, are well described by the present approach. Further, the excess-energy sharing between the two escaping electrons is calculated and analysed in light of the Wannier theory predictions. This is the first time an analytical three-body wavefunction is presented which is asymptotically exact and capable of describing threshold phenomena. 37 refs., 3 figs

  16. Does short-term lemon honey juice fasting have effect on lipid profile and body composition in healthy individuals?

    Directory of Open Access Journals (Sweden)

    Prashanth Shetty

    2016-03-01

    Full Text Available Fasting is one of the fundamental treatments of naturopathy. Use of lemon and honey for various medicinal purposes were documented since ancient days but there is a lack of evidence on short-term effects of lemon honey juice fasting (LHJF. Hence, we aim at evaluating the short-term effect of LHJF on lipid profile and body composition in healthy individuals. A total of 50 healthy subjects were recruited and they received 300-ml of LHJ, 4 times a day for four successive days of fasting. Assessments were performed before and after the intervention. Statistical analysis was performed by student's paired t-test with the use of Statistical Package for the Social Sciences (SPSS version-16. Our study showed significant reduction in weight, body mass index (BMI, fat mass (FM, free FM (FFM, and total serum triglycerides (TSTGs with insignificant reduction in fat percentage and total serum cholesterol compared to baseline. Within group analysis of females showed similar results, unlike males. Our results suggest that LHJF may be useful for reduction of body weight, BMI, FM, FFM, and TSTG in healthy individuals, which might be useful for the prevention of obesity and hypertriglyceridemia.

  17. Three-month-old human infants use vocal cues of body size.

    Science.gov (United States)

    Pietraszewski, David; Wertz, Annie E; Bryant, Gregory A; Wynn, Karen

    2017-06-14

    Differences in vocal fundamental ( F 0 ) and average formant ( F n ) frequencies covary with body size in most terrestrial mammals, such that larger organisms tend to produce lower frequency sounds than smaller organisms, both between species and also across different sex and life-stage morphs within species. Here we examined whether three-month-old human infants are sensitive to the relationship between body size and sound frequencies. Using a violation-of-expectation paradigm, we found that infants looked longer at stimuli inconsistent with the relationship-that is, a smaller organism producing lower frequency sounds, and a larger organism producing higher frequency sounds-than at stimuli that were consistent with it. This effect was stronger for fundamental frequency than it was for average formant frequency. These results suggest that by three months of age, human infants are already sensitive to the biologically relevant covariation between vocalization frequencies and visual cues to body size. This ability may be a consequence of developmental adaptations for building a phenotype capable of identifying and representing an organism's size, sex and life-stage. © 2017 The Author(s).

  18. n-p Short-Range Correlations from (p,2p+n) Measurements

    Science.gov (United States)

    Tang, A.; Watson, J. W.; Aclander, J.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Gushue, S.; Heppelmann, S.; Leksanov, A.; Makdisi, Y.; Malki, A.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Zhalov, D.

    2003-01-01

    We studied the 12C(p,2p+n) reaction at beam momenta of 5.9, 8.0, and 9.0 GeV/c. For quasielastic (p,2p) events pf, the momentum of the knocked-out proton before the reaction, was compared (event by event) with pn, the coincident neutron momentum. For |pn|>kF=0.220 GeV/c (the Fermi momentum) a strong back-to-back directional correlation between pf and pn was observed, indicative of short-range n-p correlations. From pn and pf we constructed the distributions of c.m. and relative motion in the longitudinal direction for correlated pairs. We also determined that 49±13% of events with |pf|>kF had directionally correlated neutrons with |pn|>kF.

  19. Resonant tunnelling through short-range singular potentials

    International Nuclear Information System (INIS)

    Zolotaryuk, A V; Christiansen, P L; Iermakova, S V

    2007-01-01

    A three-parameter family of point interactions constructed from sequences of symmetric barrier-well-barrier and well-barrier-well rectangles is studied in the limit, when the rectangles are squeezed to zero width but the barrier height and the well depth become infinite (the zero-range limit). The limiting generalized potentials are referred to as the second derivative of Dirac's delta function ±λδ-prime(x) with a renormalized coupling constant λ > 0 or simply as ±δ-prime-like point interactions. As a result, a whole family of self-adjoint extensions of the one-dimensional Schroedinger operator is shown to exist, which results in full and partial resonant tunnelling through this class of singular potentials. The resonant tunnelling occurs for countable sets of interaction strength values in the λ-space which are the roots of several transcendental equations. The comparison with the previous results for δ'-like point interactions is also discussed

  20. A non-orthogonal harmonic-oscillator basis for three-body problems

    International Nuclear Information System (INIS)

    Agrello, D.A.; Aguilera-Navarro, V.C.; Chacon, E.

    1979-01-01

    A set of harmonic-oscillator states suitable for the representation of the wave function of the bound states of a system of three identical particles, is presented. As an illustration of the possibilities of the states defined in this paper, they are applied in a variational determination of the lowest symmetric S state of 12 C, in the model of three structureless α particles interacting through the Coulomb force plus a phenomenological two-body force. (author) [pt

  1. Physical Activity and Health Perception in Aging: Do Body Mass and Satisfaction Matter? A Three-Path Mediated Link.

    Science.gov (United States)

    Condello, Giancarlo; Capranica, Laura; Stager, Joel; Forte, Roberta; Falbo, Simone; Di Baldassarre, Angela; Segura-Garcia, Cristina; Pesce, Caterina

    2016-01-01

    Although ageing people could benefit from healthy diet and physical activity to maintain health and quality of life, further understandings of the diet- and physical activity-related mechanisms that may cause changes in health and quality of life perception are necessary. The purpose of the study was to investigate the effect of eating attitudes, body mass and image satisfaction, and exercise dependence in the relationship between physical activity and health and quality of life perception in older individuals. Hundred and seventy-nine late middle-aged, (55-64 yrs), young-old (65-74 yrs), and old (75-84 yrs) senior athletes (n = 56), physically active (n = 58) or sedentary adults (n = 65) were submitted to anthropometric evaluations (body mass, height) and self-reported questionnaires: Body Image Dimensional Assessment, Exercise Dependence Scale, Eating Attitude Test, and Short Form Health Survey (Physical Component Summary [PCS] and Mental Component Summary [MCS] of and health and quality of life perception). Senior athletes, physically active, and sedentary participants subgroups differed (Psatisfaction. Findings confirm the relevant role of physically active life habits for older individuals to perceive good physical and mental health. The novelty of the three-path mediated link between physical activity level and mental health perception suggests that the beneficial effect of a physically active lifestyle on weight control can positively impinge on the cognitive-emotional dimension of mental health by ensuring the maintenance, also at older age, of a satisfactory body image.

  2. The three-body problem in quantum mechanics

    International Nuclear Information System (INIS)

    Antunes, A.C.B.

    1973-01-01

    Different methods used in the analysis of the scattering of an elementary particle by a system of two bound particles are compared. All particles are considered spinless and distinguishable from each other. Two approaches are used in the treatment of the problem. In the first method we build an effective - potential which accounts for the interaction of the incident particle with the bound system. The second approach consists in treating the target as a system of two particles, whose momentum distribution is given by the bound state wavefunction. The three body system is then treated by the techniques of the multiple scattering series and of Glauber theory. (author)

  3. Effect of three-body transformed Hamiltonian (H3) using full ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 3 ... Research Article Volume 90 Issue 3 March 2018 Article ID 36 ... Valence universal multireference coupled cluster (VUMRCC) method via eigenvalue independent partitioning has been applied to estimate the effect of three-body transformed Hamiltonian ...

  4. Long-Range Planning Can Improve the Efficiency of Agricultural Research and Development.

    Science.gov (United States)

    1981-07-24

    planning is not done » Conclusions Recommendat ion Agency comments ADVISORY BODIES HAVE HAD MIXED SUCCESS IN AFFECTING LONG-RANGE PLANNING... kfc r Their efforts have more impact on determining priorities for the short-range budgeting cycle rather than influencing development of long...cultural products, (2) developing an efficient marketing and processing system, (3) conserving natural resources, and (4) im- proving the well-being of

  5. Generating families in the restricted three-body problem

    CERN Document Server

    Hénon, Michel

    The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems.

  6. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  7. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  8. Laser-induced short- and long-range orderings of Co nanoparticles on SiO2

    International Nuclear Information System (INIS)

    Favazza, C.; Trice, J.; Krishna, H.; Kalyanaraman, R.; Sureshkumar, R.

    2006-01-01

    Laser irradiation of ultrathin Co films leads to pattern formation by dewetting with short-range order (SRO) as well as long-range order (LRO). When a 1.5 nm thick Co film is irradiated by a single laser beam, a monomodal size distribution of particles with average diameter of 31±10 nm and nearest-neighbor spacing of 75 nm is observed. Moreover, melting by two-beam interference irradiation produces LRO as well as SRO giving a quasi-two-dimensional arrangement of nanoparticles. The SRO is attributed to spinodal dewetting while the LRO is conjectured to be induced by in-plane interfacial tension gradients. Laser-induced dewetting of metals could be a simple technique to fabricate ordered metal nanoarrays

  9. Investigation of halo structure of He by hyperspherical three-body ...

    Indian Academy of Sciences (India)

    Abstract. Hyperspherical harmonics expansion method is applied to a three-body model of two neutron halo nuclei. Convergence of the expansion has been ensured. A repulsive part is introduced in the interaction between the core and the extra-core neutron, to simulate Pauli principle. Two neutron separation energy ...

  10. Photofragment translational spectroscopy of three body dissociations and free radicals

    Energy Technology Data Exchange (ETDEWEB)

    North, Simon William [Univ. of California, Berkeley, CA (United States)

    1995-04-01

    This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that T> is invariant to the available energy. A fraction of the nascent CH3CO radicals spontaneously dissociate following rotational averaging. The T> for the second C-C bond cleavage also matches the exit barrier height. At 193 nm the experimental data can be successfully fit assuming that the dynamics are analogous to those at 248 nm. A simplified model of energy partitioning which adequately describes the experimental results is discussed. Experiments on acetyl halides provide additional evidence to support the proposed acetone dissociation mechanism. A value of 17.0±1.0 kcal/mole for the barrier height, CH3CO decomposition has been determined. The photodissociation of methyl radical at 193 nm and 212.8 nm is discussed in the chapter 5. The formation of CH2(1Al) and H (2S) was the only single photon dissociation pathway observed at both wavelengths.

  11. Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems

    DEFF Research Database (Denmark)

    Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal

    2010-01-01

    Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... parameters of the system are the finite detecting area of the photodiode and the laser frequency chirp. Furthemore, we show that the use of the central launch technique inherently determines a lower impact of modal noise fluctuations with respect to the offset launch one. This makes CL more convenient...

  12. A UHF RFID system with on-chip-antenna tag for short range communication

    International Nuclear Information System (INIS)

    Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua

    2015-01-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)

  13. Modified Strum functions method in the nuclear three body problem

    International Nuclear Information System (INIS)

    Nasyrov, M.; Abdurakhmanov, A.; Yunusova, M.

    1997-01-01

    Fadeev-Hahn equations in the nuclear three-body problem were solved by modified Sturm functions method. Numerical calculations were carried out the square well potential. It was shown that the convergence of the method is high and the binding energy value is in agreement with experimental one (A.A.D.)

  14. Baseline glucocorticoids are drivers of body mass gain in a diving seabird.

    Science.gov (United States)

    Hennin, Holly L; Wells-Berlin, Alicia M; Love, Oliver P

    2016-03-01

    Life-history trade-offs are influenced by variation in individual state, with individuals in better condition often completing life-history stages with greater success. Although resource accrual significantly impacts key life-history decisions such as the timing of reproduction, little is known about the underlying mechanisms driving resource accumulation. Baseline corticosterone (CORT, the primary avian glucocorticoid) mediates daily and seasonal energetics, responds to changes in food availability, and has been linked to foraging behavior, making it a strong potential driver of individual variation in resource accrual and deposition. Working with a captive colony of white-winged scoters (Melanitta fusca deglandi), we aimed to causally determine whether variation in baseline CORT drives individual body mass gains mediated through fattening rate (plasma triglycerides corrected for body mass). We implanted individuals with each of three treatment pellets to elevate CORT within a baseline range in a randomized order: control, low dose of CORT, high dose of CORT, then blood sampled and recorded body mass over a two-week period to track changes in baseline CORT, body mass, and fattening rates. The high CORT treatment significantly elevated levels of plasma hormone for a short period of time within the biologically relevant, baseline range for this species, but importantly did not inhibit the function of the HPA (hypothalamic-pituitary-adrenal) axis. Furthermore, an elevation in baseline CORT resulted in a consistent increase in body mass throughout the trial period compared to controls. This is some of the first empirical evidence demonstrating that elevations of baseline CORT within a biologically relevant range have a causal, direct, and positive influence on changes in body mass.

  15. Baseline glucocorticoids are drivers of body mass gain in a diving seabird

    Science.gov (United States)

    Hennin, Holly; Berlin, Alicia; Love, Oliver P.

    2016-01-01

    Life-history trade-offs are influenced by variation in individual state, with individuals in better condition often completing life-history stages with greater success. Although resource accrual significantly impacts key life-history decisions such as the timing of reproduction, little is known about the underlying mechanisms driving resource accumulation. Baseline corticosterone (CORT, the primary avian glucocorticoid) mediates daily and seasonal energetics, responds to changes in food availability, and has been linked to foraging behavior, making it a strong potential driver of individual variation in resource accrual and deposition. Working with a captive colony of white-winged scoters (Melanitta fusca deglandi), we aimed to causally determine whether variation in baseline CORT drives individual body mass gains mediated through fattening rate (plasma triglycerides corrected for body mass). We implanted individuals with each of three treatment pellets to elevate CORT within a baseline range in a randomized order: control, low dose of CORT, high dose of CORT, then blood sampled and recorded body mass over a two-week period to track changes in baseline CORT, body mass, and fattening rates. The high CORT treatment significantly elevated levels of plasma hormone for a short period of time within the biologically relevant, baseline range for this species, but importantly did not inhibit the function of the HPA (hypothalamic–pituitary–adrenal) axis. Furthermore, an elevation in baseline CORT resulted in a consistent increase in body mass throughout the trial period compared to controls. This is some of the first empirical evidence demonstrating that elevations of baseline CORT within a biologically relevant range have a causal, direct, and positive influence on changes in body mass.

  16. Measurement invariance of the Mental Health Continuum-Short Form (MHC-SF) across three cultural groups

    NARCIS (Netherlands)

    Joshanloo, Mohsen; Wissing, Marie P.; Khumalo, Itumeleng P.; Lamers, S.M.A.

    2013-01-01

    This study investigated the factorial structure and invariance of the Mental Health Continuum-Short Form (MHC-SF) across cultural groups from three nations, namely, the Netherlands, South Africa, and Iran (N = 1120). The three-dimensional structure of mental well-being was supported in all the

  17. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1986-07-01

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)

  18. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training.

    Science.gov (United States)

    Fyfe, Jackson J; Bartlett, Jonathan D; Hanson, Erik D; Stepto, Nigel K; Bishop, David J

    2016-01-01

    We determined the effect of concurrent training incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT) on maximal strength, counter-movement jump (CMJ) performance, and body composition adaptations, compared with single-mode resistance training (RT). Twenty-three recreationally-active males (mean ± SD: age, 29.6 ± 5.5 y; [Formula: see text], 44 ± 11 mL kg -1 ·min -1 ) underwent 8 weeks (3 sessions·wk -1 ) of either: (1) HIT combined with RT (HIT+RT group, n = 8), (2) work-matched MICT combined with RT (MICT+RT group, n = 7), or (3) RT performed alone (RT group, n = 8). Measures of aerobic capacity, maximal (1-RM) strength, CMJ performance and body composition (DXA) were obtained before (PRE), mid-way (MID), and after (POST) training. Maximal (one-repetition maximum [1-RM]) leg press strength was improved from PRE to POST for RT (mean change ± 90% confidence interval; 38.5 ± 8.5%; effect size [ES] ± 90% confidence interval; 1.26 ± 0.24; P body lean mass was similarly increased for RT (4.1 ± 2.0%; ES; 0.33 ± 0.16; P = 0.023) and MICT+RT (3.6 ± 2.4%; ES; 0.45 ± 0.30; P = 0.052); however, this change was attenuated for HIT+RT (1.8 ± 1.6%; ES; 0.13 ± 0.12; P = 0.069). We conclude that concurrent training incorporating either HIT or work-matched MICT similarly attenuates improvements in maximal lower-body strength and indices of CMJ performance compared with RT performed alone. This suggests endurance training intensity is not a critical mediator of interference to maximal strength gain during short-term concurrent training.

  19. Models with short- and long-range interactions: the phase diagram and the reentrant phase

    International Nuclear Information System (INIS)

    Dauxois, Thierry; Lori, Leonardo; Ruffo, Stefano; De Buyl, Pierre

    2010-01-01

    We study the phase diagram of two different Hamiltonians with competing local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example: the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min–max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, for a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first-order phase transitions with ensemble inequivalence, as one parameter is varied continuously

  20. Muonic molecules as three-body Coulomb problem in adiabatic approximation

    International Nuclear Information System (INIS)

    Decker, M.

    1994-04-01

    The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)

  1. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity

    Science.gov (United States)

    Leigh, Nathan W. C.; Wegsman, Shalma

    2018-05-01

    We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.

  2. New successive variational method of tensor-optimized antisymmetrized molecular dynamics for nuclear many-body systems

    Science.gov (United States)

    Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro

    2017-07-01

    We recently proposed a new variational theory of “tensor-optimized antisymmetrized molecular dynamics” (TOAMD), which treats the strong interaction explicitly for finite nuclei [T. Myo et al., Prog. Theor. Exp. Phys. 2015, 073D02 (2015)]. In TOAMD, the correlation functions for the tensor force and the short-range repulsion and their multiple products are successively operated to the AMD state. The correlated Hamiltonian is expanded into many-body operators by using the cluster expansion and all the resulting operators are taken into account in the calculation without any truncation. We show detailed results for TOAMD with the nucleon-nucleon interaction AV8‧ for s-shell nuclei. The binding energy and the Hamiltonian components are successively converged to exact values of the few-body calculations. We also apply TOAMD to the Malfliet-Tjon central potential having a strong short-range repulsion. TOAMD can treat the short-range correlation and provided accurate energies of s-shell nuclei, reproducing the results of few-body calculations. It turns out that the numerical accuracy of TOAMD with double products of the correlation functions is beyond the variational Monte Carlo method with Jastrow's product-type correlation functions.

  3. Few body problems in nuclear and particle physics

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Cujec, B.; Ramavataram, K.

    1975-01-01

    Nucleon-nucleon interactions at all energies, meson-nucleon and meson-deuteron interactions, nuclear bremsstrahlung, on-shell and off-shell interactions, final-state interactions, bound and scattering states, few-body forces, polarization phenomena, short range correlations, quasi-free scattering, composite hadron models, subnucleon structure, multiparticle and coherent production processes, break-up reactions, electrodisintegration, relativistic effects and future resources in nuclear and particle physics are discussed in relation to the state of few-body physics in 1974. (B.F.G.)

  4. The annihilation diagram in three-body D-meson decay

    International Nuclear Information System (INIS)

    Donoghue, J.F.; Holstein, B.R.

    1981-01-01

    We discuss some features of three-body decays of the D meson cohich are puzzling from the standpoint of the annihilation diagram. As a result, we (1) provide an upper bound on the lifetime ratio of D's, tau + sub(D)/tau 0 sub(D) smaller than 2.5 +- 3.4 and (2) argue that the puzzles are resolved, even if somewhat inelegantly, if final state interactions generate the annihilation diagram. (orig.)

  5. Baseline Body Composition in Prepubertal Short Stature Children with Severe and Moderate Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Pawel Matusik

    2016-01-01

    Full Text Available Objective. To compare body composition parameters in short children with severe versus moderate and no growth hormone deficiency (GHD. Design and Method. 61 children (40 boys were studied. Height SDS, BMI Z-score, waist/height ratio (W/HtR, and body composition parameters (BIA as fat tissue (FAT%, fat-free mass (FFM%, predicted muscle mass (PMM%, and total body water (TBW% were evaluated. GH secretion in the overnight profile and two stimulation tests and insulin-like growth factor 1 (IGF-1 level were measured. Results. Overall, in 16 (26% moderate (7.0 > peak GH < 10 ng/mL and in 11 (18% severe (GH ≤ 7.0 ng/mL GHD was diagnosed. In children with sGHD BMI Z-score, W/HtR and FAT% were significantly higher, while FFM%, PMM%, and TBW% were significantly lower versus mGHD and versus noGHD subgroups. No significant differences between mGHD and noGHD were found. There were no differences in height SDS and IGF-1 SDS between evaluated subgroups. Night GH peak level correlated significantly with FAT%, FFM%, PMM%, and TBW%, (p<0.05 in the entire group. Conclusions. Only sGHD is associated with significant impairment of body composition. Body composition analysis may be a useful tool in distinguishing between its severe and moderate form of GHD.

  6. Shell structure of the A = 6 ground states from three-body dynamics

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.

    1983-01-01

    Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models

  7. Nuclear collision theory with many-body correlations, 2

    International Nuclear Information System (INIS)

    Kurihara, Yukio.

    1984-12-01

    A nuclear collision theory, in which the many-body correlation induced by the strong short-ranged repulsion and medium-ranged attraction of the realistic NN interaction is explicitly included, is applied to the deuteron+deuteron elastic scattering at low energies. Pair correlation functions calculated by the present theory are very different from the Hackenbroich et al. 's one. They contain not only the short-ranged suppressive correlation, but also the medium-ranged enhancing correlation. The former changes the shape of the d-d potential from the wine-bottle one. And the latter makes the d-d potential much more attractive. This effect is necessary for reproducing a bump around thatesub(cm)=90 0 in the experimental elastic differential cross section. The phase shifts evaluated by the present theory are compared with those from the resonating-group method. (author)

  8. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  9. A method for solving a three-body problem with energy-dependent interactions

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1994-01-01

    A method is proposed for solving a three-body problem with energy-dependent interactions. This method is based on introducing the dependence of scattering operators and state vectors on an additional external parameter. Effects caused by the energy dependence of the interaction operator are investigated by using the unitary condition for the amplitude of the 2 → 2 and 2 → 3 transitions. It is shown, in particular, that taking this dependence into account leads to a change in the relation between the asymptotic normalization factor of the wave function of the three-body bound state and the vertex constant of virtual dissociation (synthesis) of the system into two fragments. 15 refs

  10. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    Science.gov (United States)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  11. Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation

    Science.gov (United States)

    Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2018-03-01

    A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

  12. Higher-order glass-transition singularities in systems with short-ranged attractive potentials

    International Nuclear Information System (INIS)

    Goetze, W; Sperl, M

    2003-01-01

    Within the mode-coupling theory for the evolution of structural relaxation, the A 4 -glass-transition singularities are identified for systems of particles interacting with a hard-sphere repulsion complemented by different short-ranged potentials: Baxter's singular potential regularized by a large-wavevector cut-off, a model for the Asakura-Oosawa depletion attraction, a triangular potential, a Yukawa attraction, and a square-well potential. The regular potentials yield critical packing fractions, critical Debye-Waller factors, and critical amplitudes very close to each other. The elastic moduli and the particle localization lengths for corresponding states of the Yukawa system and the square-well system may differ by up to 20 and 10%, respectively

  13. Direct separation of short range order in intermixed nanocrystalline and amorphous phases

    International Nuclear Information System (INIS)

    Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.

    2002-01-01

    Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases

  14. Speedy motions of a body immersed in an infinitely extended medium

    OpenAIRE

    Buttà, P.; Ferrari, G.; Marchioro, C.

    2009-01-01

    We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Psi. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound "runaway effect". Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a he...

  15. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals.

    Science.gov (United States)

    Gateau, Jerome; Caballero, Miguel Angel Araque; Dima, Alexander; Ntziachristos, Vasilis

    2013-01-01

    Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. The detection geometry was tested using a 128-element linear array (5.0∕7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation∕translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms and ex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. The resolution of the optoacoustic tomography system was measured to be better than 130 μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.

  16. Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    Directory of Open Access Journals (Sweden)

    Maria Carmela Padula

    Full Text Available Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.

  17. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  18. Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games

    Science.gov (United States)

    Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon

    2016-04-01

    The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.

  19. Short communication: Jersey × Holstein crossbreds compared with pure Holsteins for body weight, body condition score, fertility, and survival during the first three lactations.

    Science.gov (United States)

    Heins, B J; Hansen, L B; Hazel, A R; Seykora, A J; Johnson, D G; Linn, J G

    2012-07-01

    Crossbred cows (n=80) resulting from the use of Jersey (JE) semen on their pure Holstein (HO) dams were compared with pure HO cows (n=77) for body weight, body condition score, fertility, and survival during their first 3 lactations. Cows were in 2 research herds of the University of Minnesota and calved from September 2003 to June 2008. The JE × HO crossbred cows had significantly less body weight during the first (-56 kg), second (-67 kg), and third (-82 kg) lactations than pure HO cows. However, JE × HO cows had significantly greater body condition score during the first (2.94 vs. 2.84), second (2.97 vs. 2.84), and third (2.99 vs. 2.87) lactations than pure HO cows. For fertility, JE × HO cows had fewer days to first breeding during the first (-10.6d), second (-8.4d), and third (-12.3d) lactations than pure HO cows. Crossbred cows were not significantly different from pure HO cows for number of services during first lactation; however, JE × HO cows had significantly fewer services (2.2) than pure HO cows (2.7) during the second lactation. Also, JE × HO cows had significantly fewer days open than pure HO cows in the first (-24 d), second (-42 d), and third (-42 d) lactations. For survival, JE × HO cows were not significantly different from pure HO cows for percentage of cows calving a second time; however, a tendency existed for a higher percentage of JE × HO cows (63.8%) than pure HO cows (49.4%) to calve a third time, and a higher percentage of JE × HO cows calved a third time within 28, 34, and 40 mo of first calving than pure HO cows. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs.

    Science.gov (United States)

    Raeber, Alexandra E; Wong, Bryan M

    2015-05-12

    We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.

  1. Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: An atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)

    2015-04-01

    Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.

  2. Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions

    International Nuclear Information System (INIS)

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  3. Study of the short-range 3He structure from the dd→3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.V.

    1995-01-01

    An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs

  4. An attitude of gratitude: The effects of body-focused gratitude on weight bias internalization and body image.

    Science.gov (United States)

    Dunaev, Jamie; Markey, Charlotte H; Brochu, Paula M

    2018-06-01

    Internalized weight bias and body dissatisfaction are associated with a number of negative psychological and physical health outcomes. The current study examined the effectiveness of body-focused gratitude, through a short writing exercise, as a strategy to reduce internalized weight bias and improve body image. Young adults (M age  = 22.71, SD = 2.08, 51.2% female) were randomly assigned to either a body gratitude condition (n = 185) or a control condition (n = 184). Results indicated that participants in the gratitude condition reported significantly lower weight bias internalization and significantly more favorable appearance evaluation and greater body satisfaction when compared to the control condition. These effects were in the small range (ds = 0.27-0.33), and neither gender nor BMI moderated these effects. These findings provide preliminary support for body-focused gratitude writing exercises as an effective individual-level strategy for both reducing internalized weight bias and improving body image. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials.

    Science.gov (United States)

    Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard

    2010-01-01

    To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact

  6. Three-body problem in the ground-state representation

    International Nuclear Information System (INIS)

    Gonzalez, A.

    1993-01-01

    The ground-state probability density of a three-body system is used to construct a classical potential U whose minimum coincides exactly with the ground-state energy. The spectrum of excited states may approximately be obtained by imposing quasiclassical quantization conditions over the classical motion in U. We show nontrivial one-dimensional models in which either this quantization condition is exact or considerably improves the usual semiclassical quantization. For three-dimensional problems, the small-oscillation frequencies in states with total angular momentum L = 0 are computed. These frequencies could represent an improvement over the frequencies of triatomic molecules computed with the use of ordinary quasiclassics for the motion of the nuclei in the molecular term. By providing a semiclassical description of the first excited quantum states, the sketched approach rises some interesting questions such as, for example, the relevance (once again) of classical chaos to quantum mechanics

  7. On-chip patch antenna on InP substrate for short-range wireless communication at 140 GHz

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2017-01-01

    This paper presents the design of an on-chip patch antenna on indium phosphide (InP) substrate for short-range wireless communication at 140 GHz. The antenna shows a simulated gain of 5.3 dBi with 23% bandwidth at 140 GHz and it can be used for either direct chip-to-chip communication or chip...

  8. Physical Activity and Health Perception in Aging: Do Body Mass and Satisfaction Matter? A Three-Path Mediated Link.

    Directory of Open Access Journals (Sweden)

    Giancarlo Condello

    Full Text Available Although ageing people could benefit from healthy diet and physical activity to maintain health and quality of life, further understandings of the diet- and physical activity-related mechanisms that may cause changes in health and quality of life perception are necessary. The purpose of the study was to investigate the effect of eating attitudes, body mass and image satisfaction, and exercise dependence in the relationship between physical activity and health and quality of life perception in older individuals. Hundred and seventy-nine late middle-aged, (55-64 yrs, young-old (65-74 yrs, and old (75-84 yrs senior athletes (n = 56, physically active (n = 58 or sedentary adults (n = 65 were submitted to anthropometric evaluations (body mass, height and self-reported questionnaires: Body Image Dimensional Assessment, Exercise Dependence Scale, Eating Attitude Test, and Short Form Health Survey (Physical Component Summary [PCS] and Mental Component Summary [MCS] of and health and quality of life perception. Senior athletes, physically active, and sedentary participants subgroups differed (P<0.05 from each other in body mass index (BMI and several components of body image and exercise dependence. Senior athletes showed, compared to their sedentary counterparts, further differences (P<0.05 in eating attitudes and in both PCS and MCS. Mediation analysis showed that the relationship between physical activity habit and MCS, but not PCS, was indirectly explained by a serial mediation chain composed of objective BMI and subjective body image (dissatisfaction. Findings confirm the relevant role of physically active life habits for older individuals to perceive good physical and mental health. The novelty of the three-path mediated link between physical activity level and mental health perception suggests that the beneficial effect of a physically active lifestyle on weight control can positively impinge on the cognitive-emotional dimension of mental health

  9. Exact Analytical Solutions in Three-Body Problems and Model of Neutrino Generator

    Directory of Open Access Journals (Sweden)

    Takibayev N.Zh.

    2010-04-01

    Full Text Available Exact analytic solutions are obtained in three-body problem for the scattering of light particle on the subsystem of two fixed centers in the case when pair potentials have a separable form. Solutions show an appearance of new resonance states and dependence of resonance energy and width on distance between two fixed centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two heavy nuclei fixed in nodes of crystalline lattice. It is shown that some resonance states have widths close to zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions between states. One of these transitions between three-body resonance states could be connected with process of electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading to the cooling of star without nuclear reactions is discussed.

  10. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    Science.gov (United States)

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients

  11. Differentiation study of porous hydroxyapatite body fabricated by using three different additives

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Idris Besar; Rusnah Mustaffa; Mohd Reusmaazran Yusof

    2005-01-01

    Porous hydroxyapatite is suitable for bone surgery applications because it allows bone ingrowth and promotes faster healing. In this study, a porous hydroxyapatite body was fabricated by slip casting route, followed by a comprehensive investigation of its physical properties. The porous body was prepared by mixing the hydroxyapatite slurry with three different additives namely; sago beads, potassium oleate and sodium dodecyl sulphate (SDS). The mixture of slurry and additives was then casted in plaster mold before it was dried and sintered at high temperature. The structure of the porous body could be tailored by using different composition and parameters of the additives; sago beads (pore former agent), potassium oleate (foaming agent) and SDS (foaming agent). The role of these three additives was investigated by several chemical, physical and mechanical evaluations method. The identification of additives was determined by FTIR, the porosity of porous hydroxyapatite was measured by Densitometer and the morphology of the porous structure was observed under Scanning Electron Microscopy and Image Analyzer. The results showed that potassium oleate contribute significantly towards porosity. However the resulting porosity would actually very dependent on the proportions of the additives, the more additives being added, the higher the porosity. All three additives produced macrostructure with pores larger than 100 mm, however the one produced by using sago beads showed a less pore interconnection structure compared to those obtained by both foaming agent. Playing with different proportions of these additives, it was possible to improve the foam stability, size of pores and pore connectivity in order to reproduce the porous hydroxyapatite body that having a similar pore structure of the natural bone. (Author)

  12. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    Science.gov (United States)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  13. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    Science.gov (United States)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  14. One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Avelar, A. T.; Bazeia, D.

    2011-01-01

    We deal with the three-dimensional Gross-Pitaevskii equation which is used to describe a cloud of dilute bosonic atoms that interact under competing two- and three-body scattering potentials. We study the case where the cloud of atoms is strongly confined in two spatial dimensions, allowing us to build an unidimensional nonlinear equation,controlled by the nonlinearities and the confining potentials that trap the system along the longitudinal coordinate. We focus attention on specific limits dictated by the cubic and quintic coefficients, and we implement numerical simulations to help us to quantify the validity of the procedure.

  15. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  16. Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information

    Science.gov (United States)

    Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.

    2017-04-01

    We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.

  17. Role of three-body forces in lattice dynamics of neodymium antimonide

    International Nuclear Information System (INIS)

    Gupta, H.N.; Kanti Chandra

    1979-01-01

    Recently the experimental phonon-dispersion curves of neodymium antimonide (NdSb) have been reported by Wakabayashi and Furrer (1976). These results have been analysed using an extended three-body force shell model (ESTM) in its nearest-neighbour version which provides a very good agreement for acoustic- and a reasonably good agreement for optical-branches of dispersion curves. This shows clearly the effect of three-body forces in this solid. The lack in degree of agreement in the optical branches may be ascribed to the presence of (i) zero Lyddane-Sachs-Teller (LST) splitting of zone-centre optical vibration frequencies (ωsub(Lo) and ωsub(To)) (ii) some anomalous wiggles in those branches. While the former is explained by setting Lundquist's effective charge parameter (esub(L)) equal to zero in the theory of ESTM, the later is expected to be explained satisfactorily by including free-electron screening effects in the theoretical framework of ESTM. (auth.)

  18. Realizing all reduced syzygy sequences in the planar three-body problem

    International Nuclear Information System (INIS)

    Moeckel, Richard; Montgomery, Richard

    2015-01-01

    The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences. Each homotopy class corresponds to a unique ‘reduced’ syzygy sequence. We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum, repeatedly come very close to triple collision, and have lots of ‘stutters’—repeated syzygies of the same type, which cancel out up to homotopy. The heart of the proof stems from the work by one of us on symbolic dynamics arising out of the central configurations after the triple collision is blown up using McGehee's method. We end with a list of open problems. (paper)

  19. Predicting Long-Range Traversability from Short-Range Stereo-Derived Geometry

    Science.gov (United States)

    Turmon, Michael; Tang, Benyang; Howard, Andrew; Brjaracharya, Max

    2010-01-01

    Based only on its appearance in imagery, this program uses close-range 3D terrain analysis to produce training data sufficient to estimate the traversability of terrain beyond 3D sensing range. This approach is called learning from stereo (LFS). In effect, the software transfers knowledge from middle distances, where 3D geometry provides training cues, into the far field where only appearance is available. This is a viable approach because the same obstacle classes, and sometimes the same obstacles, are typically present in the mid-field and the farfield. Learning thus extends the effective look-ahead distance of the sensors.

  20. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    Science.gov (United States)

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.

  1. Different behaviour-body length correlations in two populations of juvenile three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    De Winter, Gunnar; Martins, Henrique Ramalho; Trovo, Rafael Arnoni; Chapman, Ben B

    2016-01-01

    Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.

    Science.gov (United States)

    Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph

    2014-06-13

    Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.

  3. Solution of the Chandler-Gibson equations for a three-body test problem

    International Nuclear Information System (INIS)

    Gibson, A.G.; Waters, A.J.; Berthold, G.H.; Chandler, C.

    1991-01-01

    The Chandler-Gibson (CG) N-body equations are tested by considering the problem of three nonrelativistic particles moving on a line and interacting through attractive delta-function potentials. In particular, the input Born and overlap matrix-valued functions are evaluated analytically, and the CG equations are solved using a B-spline collocation method. The computed scattering matrix elements are within 0.5% of the known exact solutions, and the corresponding scattering probabilities are within 0.001% of the exact probabilities, both below and above the 3-body breakup threshold. These results establish that the CG method is practical, as well as theoretically correct, and may be a valuable approach for solving certain more complicated N-body scattering problems

  4. Influence of short range chemical order on density of states in α-ZrNi

    International Nuclear Information System (INIS)

    Duarte Junior, J.

    1986-01-01

    Calculations of the density of electronic states for amorphous alloys of ZrNi and ZrCu with different chemical order degrees, in order to verify the effect of chemical ordering on this property, are presented. The results obtained for ZrCu shown that the density of states at Fermi level do not vary significantly with the ordering. The results for ZrNi shown that the introduction of short range chemical order can decrease significantly the density of states at Fermi level, leading to better agreement with experimental results. (M.C.K.) [pt

  5. Three-loop corrections in a covariant effective field theory

    International Nuclear Information System (INIS)

    McIntire, Jeff

    2008-01-01

    Chiral effective field theories have been used with success in the study of nuclear structure. It is of interest to systematically improve these energy functionals (particularly that of quantum hadrodynamics) through the inclusion of many-body correlations. One possible source of improvement is the loop expansion. Using the techniques of Infrared Regularization, the short-range, local dynamics at each order in the loops is absorbed into the parameterization of the underlying effective Lagrangian. The remaining nonlocal, exchange correlations must be calculated explicitly. Given that the interactions of quantum hadrodynamics are relatively soft, the loop expansion may be manageable or even perturbative in nuclear matter. This work investigates the role played by the three-loop contributions to the loop expansion for quantum hadrodynamics

  6. The scattering matrix element of the three body reactive collision

    International Nuclear Information System (INIS)

    Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.

    1980-08-01

    The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)

  7. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification

    International Nuclear Information System (INIS)

    Aziz, M.J.; Boettinger, W.J.

    1994-01-01

    Short-range diffusion-limited growth, collision-limited growth, and the transition between the two regimes are explained as natural consequences of a single model for the kinetics of alloy solidification. Analytical expressions are developed for the velocity-undercooling function of a planar interface during dilute alloy solidification, using Turnbull's collision-limited growth model and the Continuous Growth Solute Trapping Model of Aziz and Kaplan both with and without a solute drag effect. The interface mobility, -dv/dT, is shown to be very high (proportional to the speed of sound) if the alloy is sufficiently dilute or if the growth rate is sufficiently rapid for nearly complete solute trapping. The interface mobility is reduced by the three orders of magnitude (becoming proportional to the diffusive speed) at intermediate growth rates where partial solute trapping occurs. Differences in low velocity predictions of the models with and without solute drag are also discussed. Comparison of the results of the analytical expressions to numerical solutions of the non-dilute kinetic model for Al-Be alloys shows that the dilute approximation breaks down at melt compositions on the order of 10 at.%. Similar variations in the interface mobility are shown for the disorder-trapping model of Boettinger and Aziz

  8. On the skill of various ensemble spread estimators for probabilistic short range wind forecasting

    Science.gov (United States)

    Kann, A.

    2012-05-01

    A variety of applications ranging from civil protection associated with severe weather to economical interests are heavily dependent on meteorological information. For example, a precise planning of the energy supply with a high share of renewables requires detailed meteorological information on high temporal and spatial resolution. With respect to wind power, detailed analyses and forecasts of wind speed are of crucial interest for the energy management. Although the applicability and the current skill of state-of-the-art probabilistic short range forecasts has increased during the last years, ensemble systems still show systematic deficiencies which limit its practical use. This paper presents methods to improve the ensemble skill of 10-m wind speed forecasts by combining deterministic information from a nowcasting system on very high horizontal resolution with uncertainty estimates from a limited area ensemble system. It is shown for a one month validation period that a statistical post-processing procedure (a modified non-homogeneous Gaussian regression) adds further skill to the probabilistic forecasts, especially beyond the nowcasting range after +6 h.

  9. Short-Term Dynamics of Behavioral Thermoregulation by Adults of the Grasshopper Melanoplus sanguinipes

    Science.gov (United States)

    O'Neill, Kevin M.; Rolston, Marni G.

    2007-01-01

    The short-term behavioral responses of adult grasshoppers, Melanoplus sanguinipes (F.) (Orthoptera: Acrididae), were examined after they experienced changes in microclimate when beingforced to change positions in their habitat. It was also determined if and when behavioral tactics allowed adults to achieve body temperatures within their preferred range. The preferred or set-point range, here taken as the interquartile range of temperatures selected on a laboratory thermal gradient, was estimated to be 37.4–40.5°C. In the field, adults progressed through a relatively consistent daily sequence of behaviors, basking on the soil early in the day, but moving onto vegetation as temperatures increased. Although basking allowed grasshoppers to maximize body temperature within the available range, as much as 7°C in excess of air temperature, they could not attain preferred body temperatures until soil surface temperatures reach about 35°C. Basking was more effective in grazed than ungrazed pastures due to a lower degree of shading of the soil surface. As soil surface temperatures exceeded 35°C, grasshoppers could achieve body temperatures within the preferred range by moving to the appropriate height on vegetation. These results illustrate the advantage of assessing behavior in the field in relation to preferred body temperatures determined in the laboratory. PMID:20302531

  10. Analytic scattering theory of quantum mechanical three-body systems

    International Nuclear Information System (INIS)

    Balslev, Erik

    1980-01-01

    We consider a three-body Schroedinger operator H=H 0 +V in L 2 (Rsup(2n)), where V=Σ Vsub(α) and each Vsub(α) is a dilation-analytic two-body interaction decreasing faster than rsup(-β), where β>1 for negative energies and β>2 for positive energies. Together with H we consider the associated self-adjoint analytic family of operator given in momentum space by H(z)=z 2 H 0 +V(z), /Arg z/ 0 , H). The local inverse wave operators are constructed and asymptotic completeness proved. The full S-matrix S(μ) and for phi not equal to 0 the channel S-matrices are expressed in terms of boundary values of the resolvent. It is proved that the function is an analytic continuation into the lower half-plane of the diagonal element with poles at most at resolvent resonances and, under some reasonable assumptions, precisely at these resonances

  11. Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Alessio; Terentjev, Eugene M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-01-21

    The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopic derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.

  12. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    International Nuclear Information System (INIS)

    Rossi, F.; Dragoni, S.

    2005-01-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  13. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Dragoni, S. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Istituto Nazionale di Medicina dello Sport, Rome (Italy)

    2005-07-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  14. Breeding short-tailed shearwaters buffer local environmental variability in south-eastern Australia by foraging in Antarctic waters.

    Science.gov (United States)

    Berlincourt, Maud; Arnould, John P Y

    2015-01-01

    Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to

  15. Probing the short range behavior of nuclei with high PT photo- and electro-nuclear reactions

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The short range behavior of the nucleus and the use of the nucleus as a filter are studied. Special emphasis is given to photon and hadron induced reactions. The components of the nuclear wave function are described. The evidences of hard scattering processes in reactions induced by real photons as well as by hadrons on free nucleus are reviewed. The spin observables are also investigated. The perspectives opened by these studies in the nuclear environment are considered

  16. Mass dependence of short-range correlations in nuclei and the EMC effect

    Directory of Open Access Journals (Sweden)

    Cosyn Wim

    2014-03-01

    Full Text Available We sketch an approximate method to quantify the number of correlated pairs in any nucleus A. It is based on counting independent-particle model (IPM nucleon-nucleon pairs in a relative S-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the a2 ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-ofmass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.

  17. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  18. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  19. Application of Short-Range LIDAR in Early Alerting for Low-Level Windshear and Turbulence at Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    K. K. Hon

    2014-01-01

    Full Text Available Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC curve, and analyzes its early alerting performance.

  20. Competition between crystallization and glassification for particles with short-ranged attraction. Possible applications to protein crystallization

    Science.gov (United States)

    Zaccarelli, E.; Sciortino, F.; Tartaglia, P.; Foffi, G.; McCullagh, G. D.; Lawlor, A.; Dawson, K. A.

    2002-11-01

    We discuss the phase behaviour of spherical hard-core particles, with an attractive potential, as described by a hard-core Yukawa model. The ratio of the range of the attraction to the diameter of the particles is an important control parameter of the problem. Upon decreasing the range of the attraction, the phase diagram changes quite significantly, with the liquid-gas transition becoming metastable, and the crystal being in equilibrium with the fluid, with no intervening liquid. We also study the glass transition lines and, crucially, find that the situation, being very simple for pure repulsive potentials, becomes much richer in competition between glass and crystal phases for short-range attractions. Also a transition between attractive and repulsive glass appears somewhat in analogy with the isostructural equilibrium transition between two crystals.

  1. The three-body forces with two δ excitation and N+d scattering

    International Nuclear Information System (INIS)

    Uzu, Eizo; Koike, Yasuro; Yamaguchi, Masahiro; Kamada, Hiroyuki

    2005-01-01

    The differential cross section of 250 MeV N+d scattering was different from the results of Faddeev calculation. The possibility of δ excitation of two nucleons of deuteron in the initial state is considered and the degree of freedom of δδ excitation is applied to improve the three-body force effects. The system consisted of two nucleons, nucleon and δ particle, and two δparticles is called by NN, Nδ and δδ system, respectively. The first calculation was carried out by using AV14 potential as ordinary nuclear force and AV28 as interaction with Nδ and δδ as three-body. The results of calculation for 250 and 135 MeV N+d scattering showed no effect on the differential cross section but the large effect on the tensor resolving power. (S.Y.)

  2. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency.

    Science.gov (United States)

    Högler, Wolfgang; Briody, Julie; Moore, Bin; Lu, Pei Wen; Cowell, Christopher T

    2005-11-01

    The state of bone health and the effect of growth hormone (GH) therapy on bone and body composition in children with idiopathic short stature (ISS) are largely unknown. A direct role of GH deficiency (GHD) on bone density is controversial. Using dual-energy X-ray absorptiometry, this study measured total body bone mineral content (TB BMC), body composition, and volumetric bone mineral density (vBMD) at the lumbar spine (LS) and femoral neck (FN) in 77 children (aged 3-17 years) with ISS (n = 57) and GHD (n = 20). Fifty-five children (GHD = 13) receiving GH were followed over 24 months including measurement of bone turnover. At diagnosis, size-corrected TB BMC SDS was greater (P bone relation, as assessed by the BMC/lean mass (LTM) ratio SDS was not different between groups. During GH therapy, prepubertal GHD children gained more height (1.58 [0.9] SDS) and LTM (0.87 [0.63] SDS) compared to prepubertal ISS children (0.75 [0.27] and 0.17 [0.25] SDS, respectively). Percent body fat decreased in GHD (-5.94% [4.29]) but not in ISS children. Total body BMC accrual was less than predicted in all groups accompanied by an increase in bone turnover. Puberty led to the greatest absolute, but not relative, increments in weight, LTM, BMI, bone mass, and LSvBMD. Our results show that children with ISS and GHD differ in their response to GH therapy in anthropometry, body composition, and bone measures. Despite low vBMD values at diagnosis in both prepubertal groups, size-corrected regional or TB bone data were generally within the normal range and did not increase during GH therapy in GHD or ISS children. Growth hormone had great effects on the growth plate and body composition with subsequent gains in height, LTM, bone turnover, and bone mass accrual, but no benefit for volumetric bone density over 2 years.

  3. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2

    Science.gov (United States)

    Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.

    2018-04-01

    We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.

  4. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  5. Detector with internal gain for short-wave infrared ranging applications

    Science.gov (United States)

    Fathipour, Vala; Mohseni, Hooman

    2017-09-01

    Abstarct.Highly sensitive photon detectors are regarded as the key enabling elements in many applications. Due to the low photon energy at the short-wave infrared (SWIR), photon detection and imaging at this band are very challenging. As such, many efforts in photon detector research are directed toward improving the performance of the photon detectors operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high sensitivity at room temperature, a condition that is very difficult to achieve in conventional SWIR detectors. An EI detector offers an overall system-level sensitivity enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI detectors. The shortcomings of the first-generation devices were addressed in the second-generation detectors. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI detectors a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI detector with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR images obtained by our model show that the EI

  6. Stresses in the plantar region for long- and short-range throws in women basketball players.

    Science.gov (United States)

    Pau, Massimiliano; Ciuti, Carla

    2013-01-01

    This study aimed to assess plantar pressure pattern modifications caused by short- and long-distance shots in women basketball players. To this end, 24 experienced national- and regional-level basketball players performed 3 trials of 4 technical gestures (free throw, jump stop shot, three-point shot and lay-up) barefoot on a pressure platform placed in fixed positions on the court. Raw data were processed to calculate location and magnitude of pressure peaks in three sub-regions (forefoot, midfoot and rearfoot), and the increase ratio was calculated relative to plantar pressure measured during a static bipedal and unipedal upright stance. The results showed significant increases (ptraining and rehabilitation protocols.

  7. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    Science.gov (United States)

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  8. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  9. Three-dimensional range data compression using computer graphics rendering pipeline.

    Science.gov (United States)

    Zhang, Song

    2012-06-20

    This paper presents the idea of naturally encoding three-dimensional (3D) range data into regular two-dimensional (2D) images utilizing computer graphics rendering pipeline. The computer graphics pipeline provides a means to sample 3D geometry data into regular 2D images, and also to retrieve the depth information for each sampled pixel. The depth information for each pixel is further encoded into red, green, and blue color channels of regular 2D images. The 2D images can further be compressed with existing 2D image compression techniques. By this novel means, 3D geometry data obtained by 3D range scanners can be instantaneously compressed into 2D images, providing a novel way of storing 3D range data into its 2D counterparts. We will present experimental results to verify the performance of this proposed technique.

  10. Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children.

    Science.gov (United States)

    Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E

    2010-04-01

    Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.

  11. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults.

    Science.gov (United States)

    Won, Huiloo; Abdul Manaf, Zahara; Mat Ludin, Arimi Fitri; Shahar, Suzana

    2017-04-01

    Studies of the association between body composition, both body fat and body muscle, and cognitive function are rarely reported. The aim of the present study was to determine the association between a wide range of body composition measures with cognitive function in older adults. A total of 2322 Malaysian older adults aged 60 years and older were recruited using multistage random sampling in a population-based cross-sectional study. Out of 2322 older adults recruited, 2309 (48% men) completed assessments on cognitive function and body composition. Cognitive functions were assessed using the Malay version of the Mini-Mental State Examination, the Bahasa Malaysia version of Montreal Cognitive Assessment, Digit Span Test, Digit Symbol Test and Rey Auditory Verbal Learning Test. Body composition included body mass index, mid-upper arm circumference, waist circumference, calf circumference, waist-to-hip ratio, percentage body fat and skeletal muscle mass. The association between body composition and cognitive functions was analyzed using multiple linear regression. After adjustment for age, education years, hypertension, hypercholesterolemia, diabetes mellitus, depression, smoking status and alcohol consumption, we found that calf circumference appeared as a significant predictor for all cognitive tests among both men and women (P cognitive tests among women (P Cognitive Assessment among men (P older adults for optimal cognitive function. Geriatr Gerontol Int 2017; 17: 554-560. © 2016 Japan Geriatrics Society.

  12. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    of the reaction over a range of scales, from the atomic level on which order occurs through to large scale precipitates. Ti-15at%Al displays a phase separation mechanism involving both ordering and chemical phase decomposition which occurs in a time and temperature range that is readily accessible experimentally. Hence this alloy is an appropriate model system on which to conduct fundamental investigations into a complex decomposition mechanism and its kinetics. Both experimental and modelling results show that short range order develops rapidly in the alloy, and is followed by the formation and growth of congruent long range ordered regions of DO 19 structure. At a later stage composition variations form and increase in amplitude through a spinodal mechanism. From these findings, it cannot be ruled out that the observed decomposition sequence is due solely to the kinetics of ordering being more rapid than those of chemical phase separation. However, there are some indications which suggest that a thermodynamic criterion is operating, such that the onset of chemical phase separation occurs only after ordering has been achieved to some extent. The observed mechanism is fully consistent in appearance with the class of reactions known as conditional spinodals. (author)

  13. Stability of the three-body Coulomb systems with J=1 in the oscillator representation

    International Nuclear Information System (INIS)

    Dinejkhan, M.D.; Efimov, G.V.

    1995-01-01

    The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs

  14. LHCb: Can LHCb Study Three Body Decays with Neutrals?

    CERN Multimedia

    Fawcett, W

    2013-01-01

    In this poster we present the first attempt to use a new method to measure CP violation in Dalitz plots. This method is unbinned, model independent and has a greater sensitivity than binned methods. Preliminary studies have been made using the three body decays $D^0 \\rightarrow K_\\rm{S}^0 \\pi^+ \\pi^-$ and $D^0 \\rightarrow \\pi^+ \\pi^- \\pi^0$, which is especially challenging since there is one neutral particle in each of the final states. An attempt to visualise where CP violation occurs in Dalitz plots is also presented.

  15. Scalar three body decays and signals for new physics

    International Nuclear Information System (INIS)

    Adhikari, R.; Mukhopadhyaya, B.

    1994-07-01

    If massive invisible particles are pair-produced in a three-body decay, then the energy distribution of the other (visible) product is sensitive to the mass of the invisible pair. We use this fact in the context of a Higgs boson decaying into (i) a Z-boson and two massive neutrinos of a fourth generation, and (ii) a Z and two lightest supersymmetric particles in the minimal supersymmetric standard model. We discuss how the Z-energy spectrum in each case can reflect the values of the parameters of such models. (author). 18 refs, 3 figs

  16. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  17. Different Short-Term Mild Exercise Modalities Lead to Differential Effects on Body Composition in Healthy Prepubertal Male Rats

    Directory of Open Access Journals (Sweden)

    D. M. Sontam

    2015-01-01

    Full Text Available Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON, bipedal stance (BPS, or wheel exercise (WEX groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality.

  18. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  19. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  20. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  1. Stripping reactions in a three-body system. Comparison of DWBA and exact solutions

    International Nuclear Information System (INIS)

    Brinati, J.R.

    1976-01-01

    Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral

  2. Research on Three-dimensional Motion History Image Model and Extreme Learning Machine for Human Body Movement Trajectory Recognition

    Directory of Open Access Journals (Sweden)

    Zheng Chang

    2015-01-01

    Full Text Available Based on the traditional machine vision recognition technology and traditional artificial neural networks about body movement trajectory, this paper finds out the shortcomings of the traditional recognition technology. By combining the invariant moments of the three-dimensional motion history image (computed as the eigenvector of body movements and the extreme learning machine (constructed as the classification artificial neural network of body movements, the paper applies the method to the machine vision of the body movement trajectory. In detail, the paper gives a detailed introduction about the algorithm and realization scheme of the body movement trajectory recognition based on the three-dimensional motion history image and the extreme learning machine. Finally, by comparing with the results of the recognition experiments, it attempts to verify that the method of body movement trajectory recognition technology based on the three-dimensional motion history image and extreme learning machine has a more accurate recognition rate and better robustness.

  3. The motion and control of a complex three-body space tethered system

    Science.gov (United States)

    Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei

    2017-11-01

    This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.

  4. Free time minimizers for the three-body problem

    Science.gov (United States)

    Moeckel, Richard; Montgomery, Richard; Sánchez Morgado, Héctor

    2018-03-01

    Free time minimizers of the action (called "semi-static" solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120-131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton-Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton's three-body problem which is asymptotic to Lagrange's parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange's solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209-227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler's central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.

  5. Structure Factor of a Hard-core Fluid with Short-range Yukawa Attraction: Analytical FMSA Theory against Monte Carlo Simulations.

    Czech Academy of Sciences Publication Activity Database

    Melnyk, R.; Nezbeda, Ivo; Trokhymchuk, A.

    2016-01-01

    Roč. 114, 16-17 (2016), s. 2523-2529 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : hard-core fluid * reference system * short-range Yukawa attraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  6. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  7. Few-body bound states on a three-dimensional and two-dimensional lattice and continuum limit for one-dimensional many-body system

    International Nuclear Information System (INIS)

    Rudin, S.I.

    1984-01-01

    The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/

  8. Evolved chiral Hamiltonians at the three-body level and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Calci, Angelo

    2014-07-14

    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders and regularizations enable exciting nuclear structure investigations as well as a quantification of the fundamental uncertainties resulting from the chiral expansion and regularization. We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N interactions in nuclear structure calculations and emphasize technical developments in the three- and four-body space, such as the similarity renormalization group (SRG), the frequency conversion, and the transformation to the JT-coupled scheme. We study the predictions of the chiral NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral 3N forces improves the overall agreement with experiment for excitation energies of p-shell nuclei and it qualitatively reproduces the systematics of nuclear binding energies throughout the nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations in the three-body model space and we carefully analyze their impact and confirm the reliability of the reported results. The SRG evolution induces many-nucleon forces that generally cannot be included in the calculations and constitute a major limitation for the applicability of SRG-evolved chiral forces. We study the origin and effect of the induced many-nucleon forces and propose a modification of the interaction, which suppresses the induced beyond-3N forces. This enables applications of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formulations of SRG generators aiming to prevent the induced many-body forces from the outset. The

  9. Short-Range Correlated Magnetic Core-Shell CrO2/Cr2O3 Nanorods: Experimental Observations and Theoretical Considerations

    Directory of Open Access Journals (Sweden)

    Ashish C. Gandhi

    2018-05-01

    Full Text Available With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO2/Cr2O3 core-shell nanorods (NRs has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO2 extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  10. Modeling Short-Range Soil Variability and its Potential Use in Variable-Rate Treatment of Experimental Plots

    Directory of Open Access Journals (Sweden)

    A Moameni

    2011-02-01

    Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics

  11. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  12. Three-body fragmentation of methane dications produced by slow A r8 + -ion impact

    Science.gov (United States)

    Zhang, Y.; Jiang, T.; Wei, L.; Luo, D.; Wang, X.; Yu, W.; Hutton, R.; Zou, Y.; Wei, B.

    2018-02-01

    The three-body fragmentation dynamics of CH4 2 + dications induced by single-electron capture of slow (3-keV/u) A r8 + ions is investigated. The experiment is performed on a newly built, highly charged ion collision platform which consists of an electron cyclotron resonance ion source and a cold target recoil ion momentum spectroscopy (COLTRIMS) setup. Using the COLTRIMS methodology, the complete kinematical information is determined for two three-body breakup channels, CH4 2 +→H++CH2 ++H and CH4 2 +→H2 ++C H++H . Then analyzing the complete kinematics with the Dalitz plot, very different fragmentation mechanisms (e.g., sequential and/or concerted pathway) are clearly identified for the two channels. To confirm the existence of some possible fragmentation pathways, we also simulate corresponding Dalitz plots employing a simple classical mechanical model. For the H++CH2 ++H channel, the dependence of the fragmentation pathway on its kinetic energy release is studied, which reflects the different nature of the corresponding states of CH4 2 + dications. Furthermore, the kinetic energy ratio of two ionic fragments is analyzed to infer the three-body fragmentation mechanism of CH4 2 + dications.

  13. Exact solution of the three-boson problem at vanishing energy

    International Nuclear Information System (INIS)

    Mora, Ch.; Gogolin, A.O.; Egger, R.

    2011-01-01

    A zero-range approach is used to model resonant two-body interactions between three identical bosons. A dimensionless phase parameterizes the three-body boundary condition while the scattering length enters the Bethe-Peierls boundary condition. The model is solved exactly at zero energy for any value of the scattering length, positive or negative. From this solution, an analytical expression for the rate of three-body recombination to the universal shallow dimer is extracted. (authors)

  14. Development of a Method to Assess the Radiation Dose due to Internal Exposure to Short-lived Radioactive Materials

    International Nuclear Information System (INIS)

    Benmaman, D.; Koch, J.; Ribak, J.

    2014-01-01

    Work with radioactive materials requires monitoring of the employees' exposure to ionizing radiation. Employees may be exposed to radiation from internal and/or external exposure. Control of external exposure is mostly conducted through personal radiation dosimeters provided to employees. Control of internal exposure can be performed by measuring the concentration of radioactive substances excreted in urine or through whole-body counting in which the entire body or target organs are scanned with a sensitive detector system (1). According to the regulations in Israel an employee that may be internally exposed must undergo an exposure control at least once every three months. The idea lying behind the control of internal exposure by urine testing is that if radioactive material has penetrated into the employee body, it can be detected even if the test is performed once every three months. A model was fitted for each element describing its dispersion in the body and its excretion therefrom (2). By means of this model, one can estimate the activity that entered the body and calculate the resulting radiation dose to which the worker was exposed. There is a problem to implement this method when it comes to short-lived radioactive materials, for which it is very likely that the material that penetrated into the body has decayed and cannot be detected by testing once every three months. As a result, workers with short-lived radioactive materials are presently not monitored for internal exposure, in contradiction to the requirements of the Safety at Work Regulations. The purpose of the study is to develop an alternative method to assess the amount of radioactive material absorbed in the body and the resulting radiation dose due to internal exposure of workers to short-lived radioactive materials

  15. New results on order and spacing of levels for two- and three-body systems

    International Nuclear Information System (INIS)

    Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.

    1987-01-01

    The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces

  16. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar

    Directory of Open Access Journals (Sweden)

    Sajid Shah

    2015-05-01

    Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.

  17. Body Composition Changes after Weight-Loss Interventions among Obese Females: A Comparison of Three Protocols

    Directory of Open Access Journals (Sweden)

    Nayera E. Hassan

    2014-12-01

    Full Text Available AIM: To evaluate body composition changes after use of three different types of obesity management protocols: dietary measures and physical activity; acupuncture or laser acupuncture with healthy diet; aiming at achieving stable weight loss among obese Egyptian females. METHODS:  A randomized longitudinal prospective study included 76 obese adult females; aged 26 up to 55 years. Anthropometric, body composition, ultrasonographic and biochemical assessments were done. RESULTS: The three types of obesity management protocols showed significant improvement in body composition (decrease in fat% and increases in FFM and TBW and visceral fat by US. However, nutritional intervention showed highly significant improvement in the skin fold thickness at triceps and biceps sites and peripheral adiposity index.  Acupuncture intervention showed highly significant improvement in fasting blood glucose (decreased and lipid profile (decreased triglycerides, total cholesterol and LDL, and increased HDL. Laser intervention showed highly significant improvement in all the skin fold thickness and some parameters of lipid profile (decreased total cholesterol and LDL. CONCLUSIONS: The three obesity management protocols have significant effect on body composition, but acupuncture has the best effect in improving the lipid profile and fasting blood sugar. In addition, Laser intervention was recommended to improve skin fold thickness and subcutaneous fat.

  18. Identification and Funtional Characterization of Three Postsynaptic Short-chain Neurotoxins from Hydrophiinae, Lapemis hardwickii Gray.

    Science.gov (United States)

    Zhong, Xiao-Fen; Peng, Li-Sheng; Wu, Wen-Yan; Wei, Jian-Wen; Yang, Hong; Yang, Yan-Zhen; Xu, An-Long

    2001-01-01

    Three cDNA clones, sn12, sn36 and sn160, encoding isoforms of postsynaptic short-chain neurotoxins, were cloned by screening a cDNA library of the venom from Hydrophiinae, Lapemis hardwickii Gray. The sequences of three cDNA clones encoded proteins consisting of 60 amino acid residues. There was only one amino acid substitution among the three isoforms SN12, SN36 and SN160 at the position 46 of mature proteins, and they were Pro(46), His(46) and Arg(46), respectively. The three molecules were expressed in Escherichia coli and the recombinant proteins were characterized. Different LD(50) were obtained, namely 0.0956 mg/kg, 0.3467 mg/kg and 0.2192 mg/kg, when the SN12, SN36 and SN160 were injected into Kunming mice(i.p.). In analgesic effect assayed by the acetic acid-induced writhing method, SN12 and SN160 showed similar analgesic effect, but SN36 had effects significantly different with the other two. Our studies suggested that the amino acid residues on position 46 could affect the combination between the postsynaptic short-chain neurotoxins and the nicotinic acetylchoine receptor, since different amino acid substitution resulted in different biological activities.

  19. Efimov trimers in a harmonic potential and universality in three-body recombination

    NARCIS (Netherlands)

    Kokkelmans, S.J.J.M.F.; Portegies, J.W.; Gross, N.; Shotan, Z.; Khaykovich, L.

    2009-01-01

    We report on experimental evidence of universality in ultracold 7Li atoms’three-body recombination loss in the vicinity of a Feshbach resonance [1]. We observe a recombination minimum and an Efimov resonance in regions of positive and negative scattering lengths. Both observed features lie deeply

  20. Development and initial validation of a short three-dimensional inventory of character strengths.

    Science.gov (United States)

    Duan, Wenjie; Bu, He

    2017-09-01

    Character strength is described as a positive and organized pattern of emotions, thoughts, and behaviors. It serves as a schema that organizes categories of information toward the self, others, and the world, and provides the self-aware knowledge that facilitates the pursuit of goals, values, and ethical principles. Recent research has suggested that three reliable factors emerge from the measures of character strengths: caring, inquisitiveness, and self-control. The goal of this paper is to develop a psychometrically sound short measure of character strength. The questions were addressed in two studies using two independent samples: a cross-cultural (i.e., 518 Asians and 556 Westerners) sample, and a cross-population (i.e., 175 community participants and 171 inpatients) sample in China. Findings from the exploratory and confirmatory factor analysis suggested a cross-cultural three-factor model of character strength that could be measured by the Three-dimensional Inventory of Character Strengths (TICS). A multigroup confirmatory factor analysis further indicated that the number of factors and factor loadings was invariant in the medical and community samples. This result indicated that the brief inventory could be applied to a medical context. Internal reliability, content validity, and predictive validity were good, although the predictive validity of the three character strengths for psychological symptoms in the medical sample was more modest than that in the community sample. TICS is expected to be used for screening populations at risk, and a tool to aid mental health professionals in group-based treatment/intervention planning. It also should be noted that this short inventory should be used with caution for individual decision making.