WorldWideScience

Sample records for threatened marine turtles

  1. Use of Dry Tortugas National Park by threatened and endangered marine turtles: Chapter 5

    Science.gov (United States)

    Hart, Kristin M.; Fujisaki, Ikuko; Sartain-Iverson, Autumn R.

    2012-01-01

    Satellite and acoustic tracking results for green turtles, hawksbills, and loggerheads have revealed patterns in the proportion of time that tagged turtles spend within various zones of the park, including the RNA. Green turtles primarily utilize the shallow areas in the northern portion of the park. Hawksbills were mostly observed near Garden Key and loggerheads were observed throughout DRTO. Our record of turtle captures, recaptures, and sightings over the last 4 years serves as a baseline database for understanding the size classes of each species present in the park, as well as species-specific habitats in DRTO waters.

  2. PIR Marine Turtle Nesting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  3. PIR Marine Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  4. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas

    NARCIS (Netherlands)

    Christianen, Marjolijn J. A.; Herman, Peter M. J.; Bouma, Tjeerd J.; Lamers, Leon P. M.; van Katwijk, Marieke M.; van der Heide, Tjisse; Mumby, Peter J.; Silliman, Brian R.; Engelhard, Sarah L.; de Kerk, Madelon van; Kiswara, Wawan; van de Koppel, Johan

    2014-01-01

    Marine protected areas (MPAs) are key tools for combatting the global over-exploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing

  5. Status of marine turtle rehabilitation in Queensland

    OpenAIRE

    Jaylene Flint; Mark Flint; Colin James Limpus; Paul Mills

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-...

  6. 77 FR 45571 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition To Delist the Green Turtle in...

    Science.gov (United States)

    2012-08-01

    ... [Docket No. 120425024-1024-01] RIN 0648-XB089 Endangered and Threatened Wildlife; 90-Day Finding on a Petition To Delist the Green Turtle in Hawaii and Notice of Status Review AGENCY: National Marine Fisheries... 90-day finding on a petition to identify the Hawaiian population of the green turtle (Chelonia mydas...

  7. Status of marine turtle rehabilitation in Queensland

    Directory of Open Access Journals (Sweden)

    Jaylene Flint

    2017-03-01

    Full Text Available Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59% of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39% turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental

  8. Status of marine turtle rehabilitation in Queensland.

    Science.gov (United States)

    Flint, Jaylene; Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  9. Status of marine turtle rehabilitation in Queensland

    Science.gov (United States)

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  10. PIR Marine Turtle Ocean Captures & Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  11. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  12. A continuation of base-line studies for environmentally monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Volume 4: Threatened and endangered species of the Kennedy Space Center. Part 1: Marine turtle studies

    Science.gov (United States)

    Ehrhart, L. M.

    1980-01-01

    The status of marine turtle populations in the KSC area was studied using data from previous results from ground and aerial surveillance conducted from 1976 to April 1979. During ground surveillance, various data were recorded on emergent turtles such as: species, weight, tag number (if previously tagged), time discovered, activity at discovery and the location of discovery. Observations were also made on nesting and reproductive characteristics, population estimates, immigration and emigration and growth rate of the turtles. Mortality studies were additionally made and autopsies performed on dead turtles found in the area. It is concluded that further mortality documentation should be done just prior to and just after a future space launch operation in order to accurately assess the cause and effect relationship of such a launch on the turtle population.

  13. Global conservation priorities for marine turtles.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs, and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58. We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority

  14. Marine Mammal and Sea Turtle Research Collection (MMASTR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Fisheries Science Center in La Jolla houses one of the largest marine mammal and marine turtle sample collections in the world, with over 140,000...

  15. Advances in the Application of Genetics in Marine Turtle Biology and Conservation

    Directory of Open Access Journals (Sweden)

    Lisa M. Komoroske

    2017-06-01

    Full Text Available Marine turtles migrate across long distances, exhibit complex life histories, and occupy habitats that are difficult to observe. These factors present substantial challenges to understanding fundamental aspects of their biology or assessing human impacts, many of which are important for the effective conservation of these threatened and endangered species. The early development and application of genetic tools made important contributions to understanding marine turtle population and evolutionary biology, such as providing evidence of regional natal homing by breeding adults, establishing connectivity between rookeries and foraging habitats, and determining phylogeography and broad scale stock structure for most marine turtle species. Recent innovations in molecular technologies, statistical methods, and creative application of genetic tools have significantly built upon this knowledge to address key questions in marine turtle biology and conservation management. Here, we evaluate the latest major advances and potential of marine turtle genetic applications, including improved resolution and large-scale syntheses of population structure, connectivity and phylogeography, estimation of key demographic rates such as age to maturity and operational or breeding sex ratios, insight into reproductive strategies and behavior, and assessment of differential human impacts among populations. We then discuss remaining challenges and emerging capabilities, such as rapid, multiplexed genotyping, and investigation of the genomic underpinnings of adaptive variation afforded by high-throughput sequencing technologies.

  16. Economic Incentives, Perceptions and Compliance with Marine Turtle Egg Harvesting Regulation in Nicaragua

    Directory of Open Access Journals (Sweden)

    Róger Madrigal-Ballestero

    2017-01-01

    Full Text Available La Flor Wildlife Refuge and nearby beaches on the Pacific coast of Nicaragua are important nesting sites for various species of endangered marine turtles. However, illegal harvesting of turtle eggs threatens the survival of marine turtles. In this study, we analysed the different motivations of local villagers for complying with a ban on harvesting marine turtle eggs in a context, in which government authorities do not have the means to fully enforce existing regulations. We also analysed the effectiveness and the participation of locals in an incipient performance-based nest conservation payment programme to protect turtle eggs. The analysis of survey-based data from 180 households living in Ostional, the largest village near La Flor Wildlife Refuge, indicates remarkable socio-economic differences between harvesters and non-harvesters. Our findings suggest that harvesters are associated mainly with a lack of income from other activities and the absence of productive assets, such as land for cattle and/or agriculture. In addition, the lack of legitimacy of prevailing institutions (i.e., actual regulations also seems to perpetuate illegal harvesting. The performance-based payments programme is an effective option for protecting nests on isolated beaches, however, it is not clear if it changes harvesting behaviour overall. Normative motivations to protect the turtles are important determinants of participation in this programme, although the financial reward is also an important incentive, particularly since most participants who are egg harvesters depend on this activity as their main source of income.

  17. Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia.

    Science.gov (United States)

    Wilcox, Chris; Heathcote, Grace; Goldberg, Jennifer; Gunn, Riki; Peel, David; Hardesty, Britta Denise

    2015-02-01

    Globally, 6.4 million tons of fishing gear are lost in the oceans annually. This gear (i.e., ghost nets), whether accidently lost, abandoned, or deliberately discarded, threatens marine wildlife as it drifts with prevailing currents and continues to entangle marine organisms indiscriminately. Northern Australia has some of the highest densities of ghost nets in the world, with up to 3 tons washing ashore per kilometer of shoreline annually. This region supports globally significant populations of internationally threatened marine fauna, including 6 of the 7 extant marine turtles. We examined the threat ghost nets pose to marine turtles and assessed whether nets associated with particular fisheries are linked with turtle entanglement by analyzing the capture rates of turtles and potential source fisheries from nearly 9000 nets found on Australia's northern coast. Nets with relatively larger mesh and smaller twine sizes (e.g., pelagic drift nets) had the highest probability of entanglement for marine turtles. Net size was important; larger nets appeared to attract turtles, which further increased their catch rates. Our results point to issues with trawl and drift-net fisheries, the former due to the large number of nets and fragments found and the latter due to the very high catch rates resulting from the net design. Catch rates for fine-mesh gill nets can reach as high as 4 turtles/100 m of net length. We estimated that the total number of turtles caught by the 8690 ghost nets we sampled was between 4866 and 14,600, assuming nets drift for 1 year. Ghost nets continue to accumulate on Australia's northern shore due to both legal and illegal fishing; over 13,000 nets have been removed since 2005. This is an important and ongoing transboundary threat to biodiversity in the region that requires attention from the countries surrounding the Arafura and Timor Seas. © 2014 Society for Conservation Biology.

  18. Willingness to Pay for Marine Turtle Conservation in Asia: A Cross-Country Perspective

    OpenAIRE

    Jin Jiangjun; Rodelio Subade; Orapan Nabangchang; Truong Dang Thuy; Anabeth L. Indab

    2009-01-01

    Marine turtles are important, not only for their economic and intrinsic value, but because an adequate population of marine turtles is often an indicator of healthy marine ecosystem. Of the seven species of marine turtles, four are critically endangered, while two are in the next-highest risk category.

  19. 50 CFR 223.205 - Sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...

  20. Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles

    OpenAIRE

    Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are i...

  1. The status of marine turtles in Montserrat (Eastern Caribbean

    Directory of Open Access Journals (Sweden)

    Martin, C. S.

    2005-12-01

    Full Text Available The status of marine turtles in Montserrat (Eastern Caribbean is reviewed following five years of monitoring (1999-2003. The mean number of nests recorded during the annual nesting season (June-October was 53 (± 24.9 SD; range: 13-43. In accordance with earlier reports, the nesting of hawksbill (Eretmochelys imbricata and green (Chelonia mydas turtles was confirmed on several beaches around the island. Only non-nesting emergences were documented for loggerhead turtles (Caretta caretta and there was no evidence of nesting by leatherback turtles (Dermochelys coriacea; however, it is possible that additional survey effort would reveal low density nesting by these species. Officially reported turtle capture data for 1993-2003 suggest that a mean of 0.9 turtle per year (±1.2 SD; range: 0-4 were landed island-wide, with all harvest having occurred during the annual open season (1 October to 31 May. Informed observers believe that the harvest is significantly under-reported and that fishermen avoid declaring their catch by butchering turtles at sea (both during and outside the open season. Of concern is the fact that breeding adults are potentially included in the harvest, and that the open season partially coincides with the breeding season. The present study has shown that although Montserrat is not a major nesting site for sea turtles, it remains important on a regional basis for the Eastern Caribbean.

  2. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  3. Diversity, habitat distribution, and indigenous hunting of marine turtles in the Calamian Islands, Palawan, Republic of the Philippines

    Directory of Open Access Journals (Sweden)

    Christopher N.S. Poonian

    2016-03-01

    Full Text Available All of the world’s seven species of marine turtle are threatened by a multitude of anthropogenic pressures across all stages of their life history. The Calamian Islands, Palawan, Philippines provide important foraging and nesting grounds for four species: green turtles (Chelonia mydas, hawksbill turtles (Eretmochelys imbricata, loggerheads (Caretta caretta, and leatherbacks (Dermochelys coriacea. This work aimed to assess the relative importance of turtle nesting beaches and local threats using a combination of social science and ecological research approaches. Endangered green turtles and critically endangered hawksbills were found to nest in the Calamianes. The most important nesting sites were located on the islands off the west of Busuanga and Culion, particularly Pamalican and Galoc and along the north coast of Coron, particularly Linamodio Island. Opportunistic hunting and egg collection, conducted legally by indigenous communities, is the most significant threat to sea turtles in the area. Sites particularly vulnerable to hunting were found to be Galoc Island, Pamalican Island, and Panlaitan Island. Raising awareness, community engagement, and understanding of socio-cultural drivers of sea turtle exploitation, particularly among indigenous communities, are essential to gain support for any effective conservation program. Additionally, more effective enforcement of laws related to the trade in sea turtle products is required to close the commercial and export markets.

  4. Marine turtles use geomagnetic cues during open-sea homing.

    Science.gov (United States)

    Luschi, Paolo; Benhamou, Simon; Girard, Charlotte; Ciccione, Stephane; Roos, David; Sudre, Joël; Benvenuti, Silvano

    2007-01-23

    Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.

  5. Plastic and marine turtles: a review and call for research

    OpenAIRE

    Nelms, SE; Duncan, EM; Broderick, AC; Galloway, TSG; Godfrey, MH; Hamann, M; Lindeque, PK; Godley, BJ

    2016-01-01

    Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including expos...

  6. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  7. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  8. 75 FR 25840 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2010-05-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XS00 Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCIES...-National Recovery Plan (Plan) for the Kemp's Ridley Sea Turtle (Lepidochelys kempii). The Kemp's Ridley...

  9. 75 FR 12496 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2010-03-16

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XS00 Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCIES... Plan (Plan) for the Kemp's Ridley Sea Turtle (Lepidochelys kempii). The Kemp's Ridley Recovery Plan is...

  10. 76 FR 58781 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2011-09-22

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XS00 Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCY... Sea Turtle (Lepidochelys kempii). The Recovery Plan is a bi-national plan developed by the NMFS and...

  11. Latitudinal diversity gradients in Mesozoic non-marine turtles

    Science.gov (United States)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  12. 77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-12-26

    ... to implement programs to conserve marine life listed as endangered or threatened. All sea turtles... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... turtles endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs...

  13. Post-breeding migration routes of marine turtles from Bonaire and Klein Bonaire, Caribbean Netherlands

    OpenAIRE

    Becking, L.E.; Christianen, M.J.A.; Nava, M.I.; Miller, N.; Willis, S.; Dam, Van, R.P.

    2016-01-01

    The management of small rookeries is key to conserving the regional genetic diversity of marine turtle populations and requires knowledge on population connectivity between breeding and foraging areas. To elucidate the geographic scope of the populations of marine turtles breeding at Bonaire and Klein Bonaire (Caribbean Netherlands) we examined the post-breeding migratory behavior of 5 female loggerheads Caretta caretta, 4 female green turtles Chelonia mydas, and 2 male and 13 female hawksbil...

  14. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    Science.gov (United States)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  15. Post-breeding migration routes of marine turtles from Bonaire and Klein Bonaire, Caribbean Netherlands

    NARCIS (Netherlands)

    Becking, L.E.; Christianen, M.J.A.; Nava, M.I.; Miller, N.; Willis, S.; Dam, Van R.P.

    2016-01-01

    The management of small rookeries is key to conserving the regional genetic diversity of marine turtle populations and requires knowledge on population connectivity between breeding and foraging areas. To elucidate the geographic scope of the populations of marine turtles breeding at Bonaire and

  16. Conservation Status of Marine Biodiversity in Oceania: An Analysis of Marine Species on the IUCN Red List of Threatened Species

    Directory of Open Access Journals (Sweden)

    Beth A. Polidoro

    2011-01-01

    Full Text Available Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.

  17. 76 FR 15932 - Endangered and Threatened Species; Proposed Listing of Nine Distinct Population Segments of...

    Science.gov (United States)

    2011-03-22

    ... Loggerhead Sea Turtles as Endangered or Threatened AGENCIES: National Marine Fisheries Service (NMFS... Distinct Population Segments (DPS) of loggerhead sea turtles, Caretta caretta, as endangered or threatened... populations of loggerhead sea turtle'' as an endangered species under the ESA. NMFS published a notice in the...

  18. The feeding habit of sea turtles influences their reaction to artificial marine debris

    Science.gov (United States)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris. PMID:27305858

  19. Studies on transplantation of marine turtle nests at Karachi coast (Sindh), Pakistan

    International Nuclear Information System (INIS)

    Firdous, F.

    2011-01-01

    Egg clutches of two species of marine turtles, namely Chelonia mydas and Lepidochelys olivacea, were collected during 1974 to 1997 and transplanted to the protected enclosures. The emerging hatching were released to the natural environment. The experiment helped to produce an average of 19495.5 hatch lings per year of green and 1174.5 per year of olive ridley turtles. (author)

  20. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  1. Software for improved field surveys of nesting marine turtles.

    Science.gov (United States)

    Anastácio, R; Gonzalez, J M; Slater, K; Pereira, M J

    2017-09-07

    Field data are still recorded on paper in many worldwide beach surveys of nesting marine turtles. The data must be subsequently transferred into an electronic database, and this can introduce errors in the dataset. To minimize such errors, the "Turtles" software was developed and piloted to record field data by one software user accompanying one Tortuguero in Akumal beaches, Quintana Roo, Mexico, from June 1 st to July 31 st during the night patrols. Comparisons were made between exported data from the software with the paper forms entered into a database (henceforth traditional). Preliminary assessment indicated that the software user tended to record a greater amount of metrics (i.e., an average of 18.3 fields ± 5.4 sd vs. 8.6 fields ± 2.1 sd recorded by the traditional method). The traditional method introduce three types of "errors" into a dataset: missing values in relevant fields (40.1%), different answers for the same value (9.8%), and inconsistent data (0.9%). Only 5.8% of these (missing values) were found with the software methodology. Although only tested by a single user, the software may suggest increased efficacy and warrants further examination to accurately assess the merit of replacing traditional methods of data recording for beach monitoring programmes.

  2. Protection of marine birds and turtles at St Brandon's Rock, Indian ...

    African Journals Online (AJOL)

    Protection of marine birds and turtles at St Brandon's Rock, Indian Ocean, requires conservation of the entire atoll. SW Evans, N Cole, H Kylin, NS Choong Kwet Yive, V Tatayah, J Merven, H Bouwman ...

  3. Heavy metal residues in tissues of marine turtles

    International Nuclear Information System (INIS)

    Storelli, M.M.; Marcotrigiano, G.O.

    2003-01-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour

  4. Heavy metal residues in tissues of marine turtles

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, M.M.; Marcotrigiano, G.O

    2003-04-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour.

  5. To Eat or Not to Eat? Debris Selectivity by Marine Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894

  6. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  7. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.

  8. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be subject...

  9. 75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2010-12-27

    ... implement programs to conserve marine life listed as endangered or threatened. All sea turtles found in U.S... endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs of recovery... attempting to engage in any such conduct), including incidental take, of endangered sea turtles. Pursuant to...

  10. Marine tourism and the locations of protected turtles on Sukamade Beach, Meru Betiri National Park, East Java

    Science.gov (United States)

    Prihadi, D. J.; Shofiyullah, A.; Dhahiyat, Y.

    2018-04-01

    The research was conducted in Sukamade Beach, Meru Betiri National Park, East Java. The purpose of this research was to identify marine tourism activity and to determine the differences in the characteristics of turtle-nesting beaches towards the number and species of turtles that came to the beach. Data collection conducted in August-September 2014. The method used in this research was a survey method at 7 reseach stations to collect primary data (biophysical characteristics) and secondary data. The Primary data was collected by monitoring turtles, width and slope of the beach, temperature, pH, moisture, sand texture, and beach vegetation conditions at each station. The results of the research shows that marine tourisms always involve tourists who attend to see turtle nesting, when turtles arrive at the beach, and turtles return to the sea, how large the turtles and how they lay eggs on the beach, and the release of little turtles (tukik). The number of turtles that landed from station 1 to station 7 is as many as 311 individuals of three species. The most dominant species of turtles that arrived at the beach is green turtle (Chelonia mydas), followed by olive ridley turtles (Lepidochelys olivaceae) and leatherbacks turtles (Dermochelys coriacea).

  11. Nesting phenology of marine turtles: insights from a regional comparative analysis on green turtle (Chelonia mydas.

    Directory of Open Access Journals (Sweden)

    Mayeul Dalleau

    Full Text Available Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO. We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte but not with the eastern and southern rookeries (Europa, Tromelin, differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found.

  12. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles

    NARCIS (Netherlands)

    Schuyler, Qamar A.; Wilcox, Chris; Townsend, Kathy A.; Wedemeyer-Strombel, Kathryn R.; Balazs, George; van Sebille, Erik|info:eu-repo/dai/nl/304831921; Hardesty, Britta Denise

    2016-01-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with

  13. Leatherback sea turtle stewardship to attain local, regional, and global marine conservation and management

    Science.gov (United States)

    Randall Arauz; Todd Steiner

    2007-01-01

    The leatherback sea turtle (Dermochelys coriacea) is the largest marine reptile with one of the longest known ocean migrations in the world and an important part of marine biodiversity. It is also important to the economies of coastal communities in developing countries, especially in areas where eco-tourism has replaced unsustainable harvest and...

  14. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to the...

  15. An Immunohistochemical Approach to Identify the Sex of Young Marine Turtles.

    Science.gov (United States)

    Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette

    2017-08-01

    Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures, nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries overexpressed a particular cold-induced RNA-binding protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H&E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. Anat Rec, 300:1512-1518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  17. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida in Marine Turtles.

    Directory of Open Access Journals (Sweden)

    Francesc Domènech

    Full Text Available Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80% on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km-2 in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  18. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae).

    Science.gov (United States)

    Carabajal, Ariana Paulina; Sterli, Juliana; Müller, Johannes; Hilger, André

    2013-01-01

    Turtles are one of the least explored clades regarding endocranial anatomy with few available descriptions of the brain and inner ear of extant representatives. In addition, the paleoneurology of extinct turtles is poorly known and based on only a few natural cranial endocasts. The main goal of this study is to provide for the first time a detailed description of the neuroanatomy of an extinct turtle, the Late Jurassic Plesiochelysetalloni, including internal carotid circulation, cranial endocast and inner ear, based on the first digital 3D reconstruction using micro CT scans. The general shape of the cranial endocast of P. etalloni is tubular, with poorly marked cephalic and pontine flexures. Anteriorly, the olfactory bulbs are clearly differentiated suggesting larger bulbs than in any other described extinct or extant turtle, and indicating a higher capacity of olfaction in this taxon. The morphology of the inner ear of P. etalloni is comparable to that of extant turtles and resembles those of slow-moving terrestrial vertebrates, with markedly low, short and robust semicircular canals, and a reduced lagena. In P. etalloni the arterial pattern is similar to that found in extant cryptodires, where all the internal carotid branches are protected by bone. As the knowledge of paleoneurology in turtles is scarce and the application of modern techniques such as 3D reconstructions based on CT scans is almost unexplored in this clade, we hope this paper will trigger similar investigations of this type in other turtle taxa.

  19. Rise and fall over 26 years of a marine epizootic in Hawaiian green sea turtles.

    Science.gov (United States)

    Chaloupka, Milani; Balazs, George H; Work, Thierry M

    2009-10-01

    Estimates of chronic disease prevalence are needed to improve our understanding of marine disease epizootiology, which is poorly known for marine megafauna such as marine turtles. An emerging worldwide threat to green sea turtles (Chelonia mydas) is fibropapillomatosis (FP), which is a pandemic tumor-forming disease associated with herpes-viruses. We report on a 26-yr FP epidemic in the Hawaiian Archipelago and show that apparent disease prevalence in the world's main endemic hot spot increased rapidly following a late 1980s outbreak, peaked during the mid-1990s, and then declined steadily ever since. While this disease is a major cause of sea turtle stranding in Hawaiian waters and can be fatal, we also show that long-term tumor regression can occur even for turtles with advanced FP. The endemic Hawaiian green turtle stock was severely depleted by overexploitation prior to protection under the US Endangered Species Act in 1978. This stock has increased significantly ever since, despite exposure to a major chronic disease epidemic that is currently declining.

  20. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores

    Science.gov (United States)

    Okuyama, Junichi; Nakajima, Kana; Noda, Takuji; Kimura, Satoko; Kamihata, Hiroko; Kobayashi, Masato; Arai, Nobuaki; Kagawa, Shiro; Kawabata, Yuuki; Yamada, Hideaki

    2013-01-01

    Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors), microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness. PMID:23840367

  1. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores.

    Directory of Open Access Journals (Sweden)

    Junichi Okuyama

    Full Text Available Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors, microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness.

  2. Anatomical Evidence for Intracardiac Blood Shunting in Marine Turtles

    African Journals Online (AJOL)

    ... suggests that right to left intra-cardiac blood shunts may be a feature of diving in sea turtles; the sphincter providing a mechanism for the control of blood flow through the heart. The comparative anatomy of the pulmonary arteries of selected terrestrial reptiles suggests that a similar mechanism exists in non-diving species.

  3. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    Science.gov (United States)

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Incentive-based approaches in marine conservation: Applications for sea turtles

    Directory of Open Access Journals (Sweden)

    Gjertsen Heidi

    2010-01-01

    Full Text Available Conservation practitioners are increasingly turning to incentive-based approaches to encourage local resource users to change behaviors that impact biodiversity and natural habitat. We assess the design and performance of marine conservation interventions with varying types of incentives through an analysis of case studies from around the world. Here we focus on seven examples that are particularly relevant to designing incentives for sea turtle conservation. Four of the cases are focused on sea turtle conservation, and the others contain elements that may be applied to turtle projects. Many more opportunities exist for interventions that combine the strengths of these approaches, such as performance-based agreements that provide funds for education or alternative livelihood development, and leasing fishing rights to reduce bycatch.

  5. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ingestion of marine plastic debris by green turtle(Chelonia mydas) in davao gulf, Mindanao, Philippines

    NARCIS (Netherlands)

    Abreo, Neil A.S.; Macusi, Edison D.; Blatchley, Darrell D.

    2016-01-01

    Marine plastic debris is a global problem that is threatening marine biodiversity. Different marine organisms have been exposed to the lethal and sub-lethal effects of this problem. Sub-lethal effects include reduced fitness due to reduced feeding, reduced reproductive output, limb amputation,

  7. Incidental catch of marine turtles by the artisanal fisheries on Santa Catarina Island, SC, Brazil

    Directory of Open Access Journals (Sweden)

    Natalia Hanazaki

    2006-12-01

    Full Text Available The five species of sea turtles, which inhabit the Brazilian shore, have a wordwide distribution and are threatened with extinction. The south of Brazil is characterized as a feeding and breeding area of at least three of these species. The presence of turtles close to the shore and their incidental catch are occurrences reported by artisan fishermen of the Island of Santa Catarina in this work. The study was based on a questionnaire, applied to fishermen and fishfarmers at selected spots on the island. Scientific and popular names were matched using illustrations. The spots with the highest number of events and captures were close to the islands, rocky coasts and stony grounds, i.e. areas related with the foraging habits of the most abundant species, Chelonia mydas. The place, depth and size of the net are characteristics, which influence the capture. The time the net remains in the water is a factor which is fundamental to the survival of the captured turtles. The flesh of the turtle is used as an occasional feeding resource. Capacitation programs and training applied to the communities involved are recommended.

  8. Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales.

    Science.gov (United States)

    Wallace, Bryan P; DiMatteo, Andrew D; Hurley, Brendan J; Finkbeiner, Elena M; Bolten, Alan B; Chaloupka, Milani Y; Hutchinson, Brian J; Abreu-Grobois, F Alberto; Amorocho, Diego; Bjorndal, Karen A; Bourjea, Jerome; Bowen, Brian W; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B C; Costa, Alice; Dutton, Peter H; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A; Musick, John A; Nel, Ronel; Pilcher, Nicolas J; Seminoff, Jeffrey A; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B

    2010-12-17

    Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework--including maps and supporting metadata--will be an

  9. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Science.gov (United States)

    Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2010-01-01

    Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition

  10. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    Science.gov (United States)

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p turtles.

  11. Is arsenobetaine the major arsenic compound in the liver of birds marine mammals, and sea turtles?

    Science.gov (United States)

    Kubota, R.; Kunito, T.; Tanabe, S.

    2003-05-01

    Concentrations of total arsenic and individual arsenic compounds were determined in the livers of birds, marine mammals, and sea turtles by using hydride generation-atomic absorption spectrometry (HG-AAS) and high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). Marine mammals feeding on cephalopods and crustaceans accumulated higher arsenic concentrations than the species feeding on fishes. No significant age and gender differences in arsenic concentrations were observed for most of the species of marine mammals. Elevated total arsenic concentrations were found in livers of black-footed albatross and loggerhead turtles and these values were comparable to those of lower trophic marine animals. Arsenobetaine was the major arsenical in the livers of most of the species examined. Particularly, in seabirds, mean proportions of arsenobetaine was more than90% of total extractable arsenic In contast, arsenobetaine was a minor constituent in dugong. The compositions of arsenic compounds were different among the species examined. These results might be due to the differences in the metabolic capacity among species and/or the different compositions of arsenic compounds in their preys.

  12. Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.

    Science.gov (United States)

    Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C

    2011-09-01

    1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic

  13. Interaction between loggerhead sea turtles (Caretta caretta) and marine litter in Sardinia (Western Mediterranean Sea).

    Science.gov (United States)

    Camedda, Andrea; Marra, Stefano; Matiddi, Marco; Massaro, Giorgio; Coppa, Stefania; Perilli, Angelo; Ruiu, Angelo; Briguglio, Paolo; de Lucia, G Andrea

    2014-09-01

    Anthropogenic debris in the environment affects many species that accidentally ingest it. The aim of this study is to evaluate the quantity and composition of marine litter ingested by loggerheads in Sardinia, thus supplying for the lack of data in the existing literature for this area. Seventeen of the 121 (14.04%) monitored turtles presented debris in their digestive tracts. Litter in faecal pellet of alive individuals (n = 91) and in gastro-intestinal contents of dead ones (n = 30) was categorized, counted and weighed. User plastic was the main category of ingested debris with a frequency of occurrence of 13.22% of the total sample, while sheet (12.39%) and fragments (9.09%) were the most relevant sub-categories. This study highlights for the first time the incidence of litter in alive turtles in Sardinia. This contribution improves the knowledge about marine litter interaction on Caretta caretta as bio-indicator. Results will be useful for the Marine Strategy implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The current situation of inorganic elements in marine turtles: A general review and meta-analysis.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Romero, Diego; Girondot, Marc

    2017-10-01

    Inorganic elements (Pb, Cd, Hg, Al, As, Cr, Cu, Fe, Mn, Ni, Se and Zn) are present globally in aquatic systems and their potential transfer to marine turtles can be a serious threat to their health status. The environmental fate of these contaminants may be traced by the analysis of turtle tissues. Loggerhead turtles (Caretta caretta) are the most frequently investigated of all the sea turtle species with regards to inorganic elements, followed by Green turtles (Chelonia mydas); all the other species have considerably fewer studies. Literature shows that blood, liver, kidney and muscle are the tissues most frequently used for the quantification of inorganic elements, with Pb, Cd, Cu and Zn being the most studied elements. Chelonia mydas showed the highest concentrations of Cr in muscle (4.8 ± 0.12), Cu in liver (37 ± 7) and Mg in kidney (17 μg g -1 ww), Cr and Cu from the Gulf of Mexico and Mg from Japanese coasts; Lepidochelys olivacea presented the highest concentrations of Pb in blood (4.46 5) and Cd in kidney (150 ± 110 μg g -1 ww), both from the Mexican Pacific; Caretta caretta from the Mediterranean Egyptian coast had the highest report of Hg in blood (0.66 ± 0.13 μg g -1 ww); and Eretmochelys imbricata from Japan had the highest concentration of As in muscle (30 ± 13 13 μg g -1 ww). The meta-analysis allows us to examine some features that were not visible when data was analyzed alone. For instance, Leatherbacks show a unique pattern of concentration compared to other species. Additionally, contamination of different tissues shows some tendencies independent of the species with liver and kidney on one side and bone on the other being different from other tissues. This review provides a general perspective on the accumulation and distribution of these inorganic elements alongside existing information for the 7 sea turtle species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Turtle Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles on the high-seas to...

  16. The role of social marketing, marine turtles and sustainable tourism in reducing plastic pollution.

    Science.gov (United States)

    Eagle, Lynne; Hamann, Mark; Low, David R

    2016-06-15

    Environmental plastic pollution constitutes a significant hazard to marine turtles, human health and well-being. We describe a transdisciplinary approach to draw together findings from diverse disciplines in order to highlight key environmental pollution problems and their consequences, together with social marketing-based strategies to address the problems. The example of plastic pollution and impacts to marine turtles illustrates the severity of the problem. Wildlife tourism and sustainable tourism activity have not focussed on specific behaviours to change and have had minimal impact on subsequent human behaviour regarding environmental issues, indicating the need for new strategies. Social marketing principles offer promise, but there is a need to investigate the utility of various theoretical foundations to aid the design and implementation of interventions. We offer insight towards using sophisticated multi-method research to develop insights into behaviours and segmentation-based strategies, that can aid the identification of barriers to, and enablers of, sustained behaviour change. Copyright © 2016. Published by Elsevier Ltd.

  17. 77 FR 16554 - Endangered and Threatened Wildlife and Plants; Receipt of Applications for Incidental Take...

    Science.gov (United States)

    2012-03-21

    ... nesting habitat of endangered and threatened sea turtle species in Sarasota County, Florida, for the... nesting habitat of the threatened loggerhead sea turtle (Caretta caretta), endangered leatherback sea turtle (Dermochelys coriacea), endangered green sea turtle (Chelonia mydas), endangered hawksbill sea...

  18. Review of scientific information on impacts of seismic sound on fish, invertebrates, marine turtles and marine mammals

    Energy Technology Data Exchange (ETDEWEB)

    Bain, H.

    2004-09-01

    This review of scientific literature on impacts of seismic sound on aquatic organisms was initiated following a 2003 workshop to develop a decision framework for seismic survey referrals in Canadian waters. That workshop revealed that there are sources of uncertainty about the effects of seismic sound on aquatic organisms. It was determined that seismic sounds on the marine environment are not completely without consequence nor are they certain to result in serious harm. Following the workshop, and in order to clearly determine the level of risk posed by seismic sounds, teams of scientists prepared reviews of literature on experimental studies and field monitoring on the effects of seismic sound on marine organisms. Standards and mitigation methods were also reviewed. The scientific deliberations resulted in a body of information that allowed several conclusions to be reached that provide a scientific basis for developing a regulatory framework for conducting seismic surveys in marine environments. This paper presented literature highlights regarding: habitat concern; management considerations; physical and behavioural effects on fish; functional uses of sound; physical, physiological and behavioural effects on invertebrates; effects of seismic sound on zooplankton, eggs, larvae of fish and invertebrates; effect of seismic sound on marine turtles; and mortality, physical and behavioural effects on marine mammals. The literature review sought to seek if seismic sound contributed to displacement and migratory diversion; changes in dive and respiratory patterns; changes in social behaviour; and changes in vocalisation patterns. Several areas of future research needs were identified following this literature review which revealed that the long-term effects of seismic sound on marine animals remain inconclusive. 2 refs., 1 fig.

  19. Loggerhead sea turtles (Caretta caretta): A target species for monitoring litter ingested by marine organisms in the Mediterranean Sea.

    Science.gov (United States)

    Matiddi, Marco; Hochsheid, Sandra; Camedda, Andrea; Baini, Matteo; Cocumelli, Cristiano; Serena, Fabrizio; Tomassetti, Paolo; Travaglini, Andrea; Marra, Stefano; Campani, Tommaso; Scholl, Francesco; Mancusi, Cecilia; Amato, Ezio; Briguglio, Paolo; Maffucci, Fulvio; Fossi, Maria Cristina; Bentivegna, Flegra; de Lucia, Giuseppe Andrea

    2017-11-01

    Marine litter is any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Ingestion of marine litter can have lethal and sub-lethal effects on wildlife that accidentally ingests it, and sea turtles are particularly susceptible to this threat. The European Commission drafted the 2008/56/EC Marine Strategy Framework Directive with the aim to achieve a Good Environmental Status (GES), and the loggerhead sea turtle (Caretta caretta, Linnaeus 1758) was selected for monitoring the amount and composition of litter ingested by marine animals. An analogous decision has been made under the UNEP/MAP Barcelona Convention for the protection of the Mediterranean Sea, following the Ecosystem Approach. This work provides for the first time, two possible scenarios for the Marine Strategy Framework Directive GES, both related to "Trends in the amount and composition of litter ingested by marine animals" in the Mediterranean Sea. The study validates the use of the loggerhead turtle as target indicator for monitoring the impact of litter on marine biota and calls for immediate use of this protocol throughout the Mediterranean basin and European Region. Both GES scenarios are relevant worldwide, where sea turtles and marine litter are present, for measuring the impact of ingested plastics and developing policy strategies to reduce it. In the period between 2011 and 2014, 150 loggerhead sea turtles, found dead, were collected from the Italian Coast, West Mediterranean Sea Sub-Region. The presence of marine litter was investigated using a standardized protocol for necropsies and lab analysis. The collected items were subdivided into 4 main categories, namely, IND-Industrial plastic, USE-User plastic, RUB-Non plastic rubbish, POL-Pollutants and 14 sub-categories, to detect local diversity. Eighty-five percent of the individuals considered (n = 120) were found to have ingested an average of 1.3 ± 0.2 g of

  20. Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris

    Science.gov (United States)

    Clukey, Katharine; Lepczyk, Christopher A.; Balazs, George H.; Work, Thierry M.; Li, Qing X.; Bachman, Melanie J.; Lynch, Jennifer M.

    2017-01-01

    In addition to eating contaminated prey, sea turtles may be exposed to persistent organic pollutants (POPs) from ingesting plastic debris that has absorbed these chemicals. Given the limited knowledge about POPs in pelagic sea turtles and how plastic ingestion influences POP exposure, our objectives were to: 1) provide baseline contaminant levels of three species of pelagic Pacific sea turtles; and 2) assess trends of contaminant levels in relation to species, sex, length, body condition and capture location. In addition, we hypothesized that if ingesting plastic is a significant source of POP exposure, then the amount of ingested plastic may be correlated to POP concentrations accumulated in fat. To address our objectives we compared POP concentrations in fat samples to previously described amounts of ingested plastic from the same turtles. Fat samples from 25 Pacific pelagic sea turtles [2 loggerhead (Caretta caretta), 6 green (Chelonia mydas) and 17 olive ridley (Lepidochelys olivacea) turtles] were analyzed for 81 polychlorinated biphenyls (PCBs), 20 organochlorine pesticides, and 35 brominated flame-retardants. The olive ridley and loggerhead turtles had higher ΣDDTs (dichlorodiphenyltrichloroethane and metabolites) than ΣPCBs, at a ratio similar to biota measured in the South China Sea and southern California. Green turtles had a ratio close to 1:1. These pelagic turtles had lower POP levels than previously reported in nearshore turtles. POP concentrations were unrelated to the amounts of ingested plastic in olive ridleys, suggesting that their exposure to POPs is mainly through prey. In green turtles, concentrations of ΣPCBs were positively correlated with the number of plastic pieces ingested, but these findings were confounded by covariance with body condition index (BCI). Green turtles with a higher BCI had eaten more plastic and also had higher POPs. Taken together, our findings suggest that sea turtles accumulate most POPs through their prey rather

  1. The feeding habit of sea turtles influences their reaction to artificial marine debris

    OpenAIRE

    Takuya Fukuoka; Misaki Yamane; Chihiro Kinoshita; Tomoko Narazaki; Greg J. Marshall; Kyler J. Abernathy; Nobuyuki Miyazaki; Katsufumi Sato

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris...

  2. Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (Chelonia mydas) as implications for rehabilitation.

    Science.gov (United States)

    Colferai, André S; Silva-Filho, Rodolfo Pinho; Martins, Aryse Moreira; Bugoni, Leandro

    2017-06-15

    Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (Chelonia mydas) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24g) and area (146.74cm 2 ) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Effects of Inter-annual Climate Variability on the Departures of Leatherback Marine Turtles from the California Current Ecosystem

    OpenAIRE

    Van Zerr, Vanessa E

    2013-01-01

    The Pacific Ocean is a highly variable environment, and changes in oceanographic conditions impact the distributions of many organisms. Inter-annual climate variability, especially the El Niño/Southern Oscillation, is known to have wide-ranging impacts on organisms in the California Current. Understanding the factors that drive changes in the spatial ecology of organisms, such as inter-annual climate variability, is essential in many cases for effective conservation. Leatherback marine turtle...

  4. Loggerhead sea turtle bycatch data in artisanal fisheries within a marine protected area: fishermen surveys versus scientific observations

    Directory of Open Access Journals (Sweden)

    Lozano, M.

    2011-06-01

    Full Text Available Loggerhead sea turtles can be incidentally captured by artisanal gears but information about the impact of this fishing is inconsistent and scarce. Recent studies have observed that the bycatch, or incidental catch rate, in fishermen surveys is irregular. The aim of this study was to compare direct data (onboard observers concerning the incidental catch of loggerhead sea turtles by the artisanal vessels versus data from fishermen surveys. The study area was the Cabo de Gata-Níjar marine protected area, situated in the western Mediterranean (southeast of the Iberian peninsula. We observed two loggerhead turtles that were incidentally caught in a total of 165 fishing operations. According to fishermen surveys, a total of nine loggerheads were incidentally caught in 861 fishing operations. The differences between the loggerhead sea turtle bycatch reported by fishermen surveys and scientific observations versus random distribution (x2 = 0.3146, P = 0.575, df = 1 were not significant. We conclude that the surveys are useful but that findings should be interpreted with caution.

  5. Sea Turtle Stranding Network Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Stranding and Salvage Network (STSSN) was formally established in 1980 to collect information on and document the stranding of marine turtles along...

  6. 78 FR 54553 - Taking of Threatened or Endangered Marine Mammals Incidental to Commercial Fishing Operations...

    Science.gov (United States)

    2013-09-04

    ... pot fishery for the CA/OR/WA fin and sperm whale stocks. Response: NMFS agrees and is issuing the... individuals of three stocks of marine mammals listed as threatened or endangered under the Endangered Species...) and the incidental, but not intentional, taking of individuals from one stock by the Washington/Oregon...

  7. The Biophysical Characteristics Of Hatching Habitat Of Lekang Turtle (Lepidhochelys olivacea) Eggs In Turtle Conservation And Education Center, Bali

    Science.gov (United States)

    Suryono; Ario, R.; Wibowo, E.; Handoyo, G.

    2018-02-01

    Lekang turtle (Lepidhochelys olivacea) is one of the fauna that is protected as an endangered population. This marine reptile was able to migrate in great distance along the Indian Ocean, the Pacific Ocean, and South East Asia. Its existence has long been threatened, either by nature or human activities that endangered the population directly or indirectly. The decreasing number of sea turtle population that nest in Bali area is one indication of the reducing number of Lekang turtle in Indonesia. If left unchecked, it will result in the loss of Lekang turtle. This study aims to determine the successful percentage of conservation techniques and Lekang turtle hatching eggs (olive ridley sea turtle) in TCEC, Bali. The method used in this research is the method of observation or direct observation done in the field. Data collection is done by direct observation in the field. The results showed that the turtle breeding site is located in an area that is less strategic because too far from the sea, so that the temperature and humidity cannot be stable. Water content is most an important factor in the growth of embryo and egg hatching. This will lead to the decrease of hatching percentage of turtle eggs.

  8. Sedimentology, geochemistry and rock magnetic properties of beach sands in Galapagos Islands - implications for nesting marine turtles

    Science.gov (United States)

    Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.

    2007-12-01

    Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum

  9. Determining sex ratios of turtle hatchlings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Previous status assessments of marine turtles have assumed that the natural sex ratio of a marine turtle population is 1:1 (e.g. Conant et al. 2009). However, this...

  10. Notes on the status and incidental capture of marine turtles by the ...

    African Journals Online (AJOL)

    turtle by eight subsistence fishing communities in south west Madagascar. Data were collected through semi-structured interviews with fishers from each community over a period of three weeks during March 2002. Turtles were captured as part of a seasonal, multi-species fishery using spear guns and shark gill nets.

  11. Elucidation of the first definitively identified life cycle for a marine turtle blood fluke (Trematoda: Spirorchiidae) enables informed control.

    Science.gov (United States)

    Cribb, Thomas H; Crespo-Picazo, Jose L; Cutmore, Scott C; Stacy, Brian A; Chapman, Phoebe A; García-Párraga, Daniel

    2017-01-01

    Blood flukes of the family Spirorchiidae are significant pathogens of both free-ranging and captive marine turtles. Despite a significant proportion of marine turtle mortality being attributable to spirorchiid infections, details of their life cycles remain almost entirely unknown. Here we report on the molecular elucidation of the complete life cycle of a marine spirorchiid, identified as Amphiorchis sp., infecting vermetid gastropods and captive hatched neonate Caretta caretta in the Oceanogràfic Aquarium, in Valencia, Spain. Specimens of a vermetid gastropod, Thylaeodus cf. rugulosus (Monterosato, 1878), collected from the aquarium filtration system housing diseased C. caretta, were infected with sporocysts and cercariae consistent with the family Spirorchiidae. We generated rDNA sequence data [internal transcribed spacer 2 (ITS2) and partial 28S rDNA] from infections from the vermetid which were identical to sequences generated from eggs from the serosa of the intestine of neonate C. caretta, and an adult spirorchiid from the liver of a C. caretta from Florida, USA. Given the reliability of these markers in the delineation of trematode species, we consider all three stages to represent the same species and tentatively identify it as a species of Amphiorchis Price, 1934. The source of infection at the Oceanogràfic Foundation Rehabilitation Centre, Valencia, Spain, is inferred to be an adult C. caretta from the western Mediterranean being rehabilitated in the same facility. Phylogenetic analysis suggests that this Amphiorchis sp. is closely related to other spirorchiids of marine turtles (species of Carettacola Manter & Larson, 1950, Hapalotrema Looss, 1899 and Learedius Price, 1934). We discuss implications of the present findings for the control of spirorchiidiasis in captivity, for the better understanding of epidemiology in wild individuals, and the elucidation of further life cycles. Copyright © 2016 Australian Society for Parasitology. Published by

  12. Environmental effects of dredging: Alternative dredging equipment and operational methods to minimize sea turtle mortalities. Technical notes

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, D.D.; Nelson, D.A.

    1990-12-01

    Five species of sea turtles occur along the United States coastlines and are listed as threatened or endangered. The loggerhead sea turtle (Caretta caretta) is listed as threatened, while the Kemp`s ridley (Lepidochelys kenipi), the hawksbill (Eretmochelys imbricata), and the leatherback (Dermochelys coriacea) are all less abundant and listed as endangered. Florida breeding populations of the green sea turtle (Chelonia mydas) are listed as endangered, but green turtles in other US waters are considered threatened. The National Marine Fisheries Service (NMFS) has determined, based on the best available information, that because of their life cycle and behavioral patterns only the loggerhead, the green, and the Kemp`s ridley are put at risk by hopper dredging activities (Studt 1987).

  13. The green turtle Chelonia mydas as a marine and coastal environmental sentinels: anthropogenic activities and diseases

    Directory of Open Access Journals (Sweden)

    Isabela Guarnier Domiciano

    2017-10-01

    Full Text Available The green turtle Chelonia mydas is a widely distributed, slowly maturing species with a complex life cycle, using both oceanic and coastal environments. The species is exposed to different threats and is considered an environmental sentinel that indicates variation among, and the severity of hazards to marine ecosystems. This study aimed to describe both anthropogenic impacts, and infectious and parasitic diseases in C. mydas - including cases along the Brazilian coast - and implications for conservation. Bycatch is reported as the main threat to the conservation of this species, followed by debris ingestion, collisions with boats, dredging, and chronic environmental contamination. All of these impacts may directly or indirectly cause death, by facilitating contact with pathological agents and by increasing vulnerability to secondary diseases. The pathological agents associated with lesions include viruses, bacteria, fungi, protozoa, and helminths. Fibropapillomatosis is an example of a chronic disease characterized by cutaneous and visceral tumors that affects mostly juvenile C. mydas worldwide and is associated with the Chelonid herpesvirus 5. The bacterias Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas fluorescens are found in the aquatic environment and among C. mydas lesions in various organs. Trematode adults and eggs of the family Spirorchiidae are also frequent in systemic cardiovascular diseases of C. mydas. The direct impacts of anthropogenic activities and diseases are synergistic and may affect the specie’s health and conservation. Therefore, the monitoring and systematic diagnosing of diseases and causes of death - including necropsy, histopathology, and molecular exams - are necessary to assess a population’s health, to support appropriate decisions of coastal management and to target future research topics that optimize C. mydas conservation.

  14. Use of coral reefs by hawksbill turtles in the Florida Keys National Marine Sanctuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ongoing mark-recapture and satellite tagging are being conducted to understand how public use of reefs impacts hawksbill turtle habitat use and relative abundance

  15. Managing conflicts between economic activities and threatened migratory marine species toward creating a multiobjective blue economy.

    Science.gov (United States)

    Harris, Linda R; Nel, Ronel; Oosthuizen, Herman; Meÿer, Mike; Kotze, Deon; Anders, Darrell; McCue, Steven; Bachoo, Santosh

    2018-04-01

    Harnessing the economic potential of the oceans is key to combating poverty, enhancing food security, and strengthening economies. But the concomitant risk of intensified resource extraction to migratory species is worrying given these species contribute to important ecological processes, often underpin alternative livelihoods, and are mostly already threatened. We thus sought to quantify the potential conflict between key economic activities (5 fisheries and hydrocarbon exploitation) and sea turtle migration corridors in a region with rapid economic development: southern and eastern Africa. We satellite tracked the movement of 20 loggerhead (Caretta caretta) and 14 leatherback (Dermochelys coriacea) turtles during their postnesting migrations. We used movement-based kernel density estimation to identify migration corridors for each species. We overlaid these corridors on maps of the distribution and intensity of economic activities, quantified the extent of overlap and threat posed by each activity on each species, and compared the effects of activities. These results were compared with annual bycatch rates in the respective fisheries. Both species' 3 corridors overlapped most with longline fishing, but the effect was worse for leatherbacks: their bycatch rates of approximately 1500/year were substantial relative to the regional population size of 50 years of conservation, potentially affecting >80% of loggerheads, 33% of the (critically endangered) leatherbacks, and their nesting beaches. We support establishing blue economies (i.e., generating wealth from the ocean), but oceans need to be carefully zoned and responsibly managed in both space and time to achieve economic (resource extraction), ecological (conservation, maintenance of processes), and social (maintenance of alternative livelihood opportunities, alleviate poverty) objectives. © 2017 Society for Conservation Biology.

  16. Impact of jaguar Panthera onca(Carnívora: Felidae predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica

    Directory of Open Access Journals (Sweden)

    Stephanny Arroyo-Arce

    2015-09-01

    Full Text Available Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriáceaand Eretmochelys imbricatathat nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005 and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD= 45 and 2 (SD= 3 green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  17. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  18. Marine debris and human impacts on sea turtles in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bugoni, Leandro; Krause, Ligia [Universidade Federal do Rio Grande do Sul, Dept. de Zoologia, Porto Alegre, RS (Brazil); Petry, Maria Virginia [Universidade do Rio dos Sinos, Museu de Zoologia, Sao Leopoldo, RS (Brazil)

    2001-07-01

    Dead stranded sea turtles were recovered and examined to determine the impact of anthropogenic debris and fishery activities on sea turtles on the coast of Rio Grande do Sul State, Brazil. Esophagus/stomach contents of 38 juvenile green Chelonia mydas, 10 adults and sub-adults loggerhead Caretta caretta, and two leatherback Dermochelys coriacea turtle (adult or sub-adult) included plastic bags as the main debris ingested, predominated by white and colorless pieces. The ingestion of anthropogenic debris accounted for the death of 13.2% of the green turtles examined. Signs of damage over the body and carapace indicated that fishing activities caused the death of 13.6% (3/22) of loggerheads and 1.5% (1/56) of green turtles. Therefore, it appears that direct and indirect effects of fishing activities may pose a threat to these species in Brazilian waters. Other sources of plastic debris should be investigated as well a the direct impact of fisheries, especially bottom trawl and gill nets, in order to establish effective conservation action. (Author)

  19. Land use, macroalgae, and a tumor-forming disease in marine turtles.

    Directory of Open Access Journals (Sweden)

    Kyle S Van Houtan

    Full Text Available Wildlife diseases are an increasing concern for endangered species conservation, but their occurrence, causes, and human influences are often unknown. We analyzed 3,939 records of stranded Hawaiian green sea turtles (Chelonia mydas over 28 years to understand fibropapillomatosis, a tumor-forming disease linked to a herpesvirus. Turtle size is a consistent risk factor and size-standardized models revealed considerable spatial and temporal variability. The disease peaked in some areas in the 1990s, in some regions rates remained constant, and elsewhere rates increased. Land use, onshore of where the turtles feed, may play a role. Elevated disease rates were clustered in watersheds with high nitrogen-footprints; an index of natural and anthropogenic factors that affect coastal eutrophication. Further analysis shows strong epidemiological links between disease rates, nitrogen-footprints, and invasive macroalgae and points to foraging ecology. These turtles now forage on invasive macroalgae, which can dominate nutrient rich waters and sequester environmental N in the amino acid arginine. Arginine is known to regulate immune activity, promote herpesviruses, and contribute to tumor formation. Our results have implications for understanding diseases in aquatic organisms, eutrophication, herpesviruses, and tumor formation.

  20. Potential Applicability of Persuasive Communication to Light-Glow Reduction Efforts: A Case Study of Marine Turtle Conservation

    Science.gov (United States)

    Kamrowski, Ruth L.; Sutton, Stephen G.; Tobin, Renae C.; Hamann, Mark

    2014-09-01

    Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents ( n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R 2 = 0.54-0.69, P benefits to the local economy" ( P Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.

  1. In vitro cultivation of Cymatocarpus solearis (Brachycoeliidae) metacercariae to obtain the adult stage without the marine turtle definitive host.

    Science.gov (United States)

    Grano-Maldonado, Mayra; Alvarez-Cadena, José

    2010-03-01

    In vitro cultivation of trematodes would assist studies on the basic biology of the parasites and their hosts. This is the first study to use the yolk of unfertilized chicken eggs as a simple and successful method of ovocultivation and the first time to obtain the adult-stage of the trematode Cymatocarpus solearis Braun, 1899 (Digenea: Brachycoeliidae). Chicken eggs were inoculated with metacercariae from the muscle of the spiny lobster, Panulirus argus (Latreille, 1804). The metacercariae were excysted and incubated for 576 hr (24 days) at 38 to obtain the adult stage. Eggs in utero were normal in shape and light brown color. The metacercariae developed into mature parasites that have been identified as the adult-stage found in marine turtles. The adult lobsters collected in Quintana Roo State, Mexico, showed the prevalence of 49.4% and the mean intensity of 26.0 per host (n = 87). A statistical study was performed to determine that no parasitic preference was detected for male versus female parasitized lobsters. Morphometric measurements of the adult-stage of C. solearis obtained in our study have been deposited in the National Helminths Collection of the Institute of Biology of the National Autonomous University of Mexico. This study is significant because it is the first time that a digenean of the family Brachycoeliidae has been demonstrated to develop in vitro from metacercariae into adults capable of producing eggs using the yolk of unfertilized chicken eggs. Secondly, this technique allows to obtain the adult stage of C. solearis without the presence of its marine turtle host, allows us to describe the mature parasites, and thus contribute to our understanding of the biology of C. solearis.

  2. In Vitro Cultivation of Cymatocarpus solearis (Brachycoeliidae) Metacercariae to Obtain the Adult Stage without the Marine Turtle Definitive Host

    Science.gov (United States)

    Álvarez-Cadena, José

    2010-01-01

    In vitro cultivation of trematodes would assist studies on the basic biology of the parasites and their hosts. This is the first study to use the yolk of unfertilized chicken eggs as a simple and successful method of ovocultivation and the first time to obtain the adult-stage of the trematode Cymatocarpus solearis Braun, 1899 (Digenea: Brachycoeliidae). Chicken eggs were inoculated with metacercariae from the muscle of the spiny lobster, Panulirus argus (Latreille, 1804). The metacercariae were excysted and incubated for 576 hr (24 days) at 38℃ to obtain the adult stage. Eggs in utero were normal in shape and light brown color. The metacercariae developed into mature parasites that have been identified as the adult-stage found in marine turtles. The adult lobsters collected in Quintana Roo State, Mexico, showed the prevalence of 49.4% and the mean intensity of 26.0 per host (n = 87). A statistical study was performed to determine that no parasitic preference was detected for male versus female parasitized lobsters. Morphometric measurements of the adult-stage of C. solearis obtained in our study have been deposited in the National Helminths Collection of the Institute of Biology of the National Autonomous University of Mexico. This study is significant because it is the first time that a digenean of the family Brachycoeliidae has been demonstrated to develop in vitro from metacercariae into adults capable of producing eggs using the yolk of unfertilized chicken eggs. Secondly, this technique allows to obtain the adult stage of C. solearis without the presence of its marine turtle host, allows us to describe the mature parasites, and thus contribute to our understanding of the biology of C. solearis. PMID:20333285

  3. Thalassemys bruntrutana n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland, and the paleobiogeography of the Thalassemydidae

    Directory of Open Access Journals (Sweden)

    Christian Püntener

    2015-09-01

    Full Text Available Background. The Swiss Jura Mountains are a key region for Late Jurassic eucryptodiran turtles. Already in the mid 19th century, the Solothurn Turtle Limestone (Solothurn, NW Switzerland yielded a great amount of Kimmeridgian turtles that are traditionally referred to Plesiochelyidae, Thalassemydidae, and Eurysternidae. In the past few years, fossils of these coastal marine turtles were also abundantly discovered in the Kimmeridgian of the Porrentruy region (NW Switzerland. These findings include numerous sub-complete shells, out of which we present two new specimens of Thalassemys (Thalassemydidae in this study.Methods. We compare the new material from Porrentruy to the type species Th. hugii, which is based on a well preserved specimen from the Solothurn Turtle Limestone (Solothurn, Switzerland. In order to improve our understanding of the paleogeographic distribution of Thalassemys, anatomical comparisons are extended to Thalassemys remains from other European countries, notably Germany and England.Results. While one of the two Thalassemys specimens from Porrentruy can be attributed to Th. hugii, the other specimen represents a new species, Th. bruntrutana n. sp. It differs from Th. hugii by several features: more elongated nuchal that strongly thickens anterolaterally; wider vertebral scales; proportionally longer plastron; broader and less inclined xiphiplastron; wider angle between scapular process and acromion process. Our results show that Th. hugii and Th. bruntrutana also occur simultaneously in the Kimmeridgian of Solothurn as well as in the Kimmeridgian of England (Kimmeridge Clay. This study is an important step towards a better understanding of the paleobiogeographic distribution of Late Jurassic turtles in Europe.

  4. Marine turtles are not fussy nesters: a novel test of small-scale nest site selection using structure from motion beach terrain information

    Directory of Open Access Journals (Sweden)

    Ilana Kelly

    2017-01-01

    Full Text Available Background Nest selection is widely regarded as a key process determining the fitness of individuals and viability of animal populations. For marine turtles that nest on beaches, this is particularly pivotal as the nesting environment can significantly control reproductive success.The aim of this study was to identify the environmental attributes of beaches (i.e., morphology, vegetation, urbanisation that may be associated with successful oviposition in green and loggerhead turtle nests. Methods We quantified the proximity of turtle nests (and surrounding beach locations to urban areas, measured their exposure to artificial light, and used ultra-high resolution (cm-scale digital surface models derived from Structure-from-Motion (SfM algorithms, to characterise geomorphic and vegetation features of beaches on the Sunshine Coast, eastern Australia. Results At small spatial scales (i.e., <100 m, we found no evidence that turtles selected nest sites based on a particular suite of environmental attributes (i.e., the attributes of nest sites were not consistently different from those of surrounding beach locations. Nest sites were, however, typically characterised by occurring close to vegetation, on parts of the shore where the beach- and dune-face was concave and not highly rugged, and in areas with moderate exposure to artificial light. Conclusion This study used a novel empirical approach to identify the attributes of turtle nest sites from a broader ‘envelope’ of environmental nest traits, and is the first step towards optimizing conservation actions to mitigate, at the local scale, present and emerging human impacts on turtle nesting beaches.

  5. Hatchlings of the Marine Turtle Lepidochelys olivacea Display Signs of Prenatal Stress at Emergence after Being Incubated in Man-Made Nests: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ma. A. Herrera-Vargas

    2017-12-01

    Full Text Available Egg translocation and incubation in man-made nests (MMN are common conservation practices through marine turtle hatcheries worldwide. These measures have been associated with reduced hatching rates, altered hatchling sex ratio, fetal dysmorphic anatomical features, and feeble hatchlings health. Previous studies have shown that MMN and natural nests (NN provide different incubatory conditions. Therefore, incubatory challenges imposed by MMN conditions on fetal development could induce stress responses affecting hatchlings functional morphology later on life. There is no evidence of incubatory stress associated with conservation measures in turtle fetuses or hatchlings. Thus, in this paper we tested the hypothesis that MMN incubation exposes turtle fetuses to stressing conditions. Given that the hypothalamic-pituitary-interrenal axis begins functioning by day 11 of incubation in reptiles, our experiments explored the effects of incubatory conditions, rather than those associated with translocation, on fetal stress responses. We showed that Lepidochelys olivacea hatchlings incubated in MMN displayed reduced body weight, hypertrophic inter-renal glands, testicular hypotrophy and hypotrophic dorso-medial cortical pyramidal neurons, when compared with hatchlings emerging from NN. Furthermore, MMN hatchlings had higher serum levels of corticosterone at emergence, and displayed an attenuated acute stress response after traversing the beach. Therefore, the relocation of nests to protect them could negatively impact the health and survival of sea turtles. Thus, this action should only be undertaken when no alternative is available.

  6. The status of marine biodiversity in the Eastern Central Atlantic (West and Central Africa)

    DEFF Research Database (Denmark)

    Polidoro, Beth A.; Ralph, Gina M.; Strongin, Kyle

    2017-01-01

    . This study provides the first comprehensive documentation of the presence, status, and level of extinction risk, based on IUCN Red List assessment methodology, for more than 1800 marine species, including all taxonomically described marine vertebrates (marine mammals, sea turtles, seabirds, fishes); complete...... clades of selected marine invertebrates (sea cucumbers, cone snails, cephalopods, lobsters, reef-building corals); and marine plants (mangroves, seagrasses). Approximately 8% of all marine species assessed in the ECA are in threatened categories, while 4% are listed as Near Threatened, 73% are Least...

  7. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Takagi, Kozue; Kubota, Reiji; Anan, Yasumi; Iwata, Hisato; Tanabe, Shinsuke

    2008-01-01

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic

  8. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Agusa, Tetsuro; Takagi, Kozue [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Kubota, Reiji [Division of Environmental Chemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Anan, Yasumi [Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Iwata, Hisato [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)], E-mail: shinsuke@agr.ehime-u.ac.jp

    2008-05-15

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic.

  9. Australia’s protected area network fails to adequately protect the world’s most threatened marine fishes

    Directory of Open Access Journals (Sweden)

    Karen R. Devitt

    2015-01-01

    Full Text Available In order to maintain ecosystems and biodiversity, Australia has long invested in the development of marine and terrestrial protected area networks. Within this land- and sea-scape, northern Australia represents a global population stronghold for four species of the world’s most threatened marine fish family, the sawfishes (family Pristidae. The distribution of sawfishes across northern Australia has previously only been coarsely estimated, and the adequacy of their representation in protected areas has not been evaluated. The calculated range of each species was intersected with Australia’s marine and terrestrial protected area datasets, and targets of 10% marine and 17% inland range protection were used to determine adequacy of sawfish range protection. Marine targets have been achieved for all species, but the inland range protection targets have not been met for any species. Results indicate that further protection of inland habitats is required in order to improve sawfish protection and habitat connectivity.

  10. Evidence of opposing fitness effects of parental heterozygosity and relatedness in a critically endangered marine turtle?

    Science.gov (United States)

    Phillips, K P; Jorgensen, T H; Jolliffe, K G; Richardson, D S

    2017-11-01

    How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity-fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity ('relatedness') derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single-locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female-biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male-biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Projected response of an endangered marine turtle population to climate change

    Science.gov (United States)

    Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián

    2012-11-01

    Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.

  12. Identification of Chelonid herpesvirus 5 (ChHV5) in endangered green turtles (Chelonia mydas) with fibropapillomatosis in Asia

    Science.gov (United States)

    Li, Tsung-Hsien; Hsu, Wei-Li; Lan, Yu-Ching; Balazs, George H.; Work, Thierry M.; Tseng, Cheng-Tsung; Chang, Chao-Chin

    2017-01-01

    Fibropapillomatosis (FP), a debilitating tumor disease of sea turtles, was first identified in green turtles [Chelonia mydas (Linnaeus, 1758)] in Florida in 1938. In recent decades, FP has been observed globally and is an emerging panzootic disease in sea turtles. However, few reports of FP in Asia exist. Here, we provide the first evidence of Chelonid herpesvirus 5 (ChHV5) DNA associated with FP in endangered green turtles from Taiwan, through molecular characterization, phylogenetic analysis, and histopathological examination. In our study, ChHV5 was successfully detected by PCR in the FP tumor lesions of green turtles. The sequences were found to be consistent with those of tumor-inducing viruses shown to affect sea turtles in the other parts of the world. ChHV5 RNA from the FP tissues was further detected by RT-PCR, indicating active replication of the viruses inside FP tumors. In addition to the molecular evidence of ChHV5 in FP, epidermal intranuclear inclusions were identified in tumor lesions upon histopathological examination. This further suggests that ChHV5 should be in a transcriptionally active (i.e., non-latent) state in FP tumors of affected green turtles. The phylogenetic tree revealed that ChHV5 from the green turtles in Taiwan were closest to the ChHV5 from Hawaii, Puerto Rico, and Sao Tome. For conservation of endangered sea turtles, ChHV5 should be considered an emerging virus, which threatens sea turtles in marine waters in Asia.

  13. Decline of the Sea Turtles: Causes and Prevention.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  14. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    Science.gov (United States)

    Joyce, Walter G; Gauthier, Jacques A

    2004-01-07

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.

  15. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-01-05

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever they occur...

  16. 78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2013-12-23

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... imbricata) sea turtles are listed as endangered. Loggerhead (Caretta caretta; Northwest Atlantic distinct... and olive ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever...

  17. 76 FR 37050 - Intent To Prepare an Environmental Impact Statement for Sea Turtle Conservation and Recovery...

    Science.gov (United States)

    2011-06-24

    ... requirements are proposed to protect threatened and endangered sea turtles in the western Atlantic Ocean and... Pacific coast of Mexico, which are listed as endangered. Sea turtles are incidentally taken, and some are... variety of regulatory measures to reduce the bycatch of threatened and endangered sea turtles in the...

  18. A report on the hybridization between two species of threatenedAsian box turtles (Testudines: Cuora) in the wild on Hainan Island(China) with comments on the origin of 'Serrata'-like turtles.

    Energy Technology Data Exchange (ETDEWEB)

    Shi, H.; Parham, James F.; Simison, W. Brian; Wang, J.; Gong, S.; Fu, B.

    2004-03-01

    Ten new turtle taxa were described from pet trade specimens from China since the 1980s (see Fritz and Obst, 1998; Fritz and Obst, 1999; Parham et al., 2001 for a review). Specimens similar to one of these taxa, Cuora serrata Iverson and McCord, 1992 (originally Cuora galbinifrons serrata, elevated by Fritz and Obst, 1997), were shown to be hybrids of male Cuora mouhotii (Gray, 1862; formerly Pyxidea, but see Stuart and Parham, 2004) and females of Cuora galbinifrons Bourret, 1939 or Cuora bourreti Obst and Reimann, 1994 (Parham et al., 2001; and Stuart and Parham, 2004).

  19. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    Science.gov (United States)

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  20. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta in Core Sound, North Carolina, USA.

    Directory of Open Access Journals (Sweden)

    Terra R Kelly

    Full Text Available The loggerhead sea turtle (Caretta caretta is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing

  1. Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    Science.gov (United States)

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.

    2016-02-01

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

  2. Mitochondrial DNA markers of loggerhead marine turtles (Caretta caretta (Testudines: Cheloniidae nesting at Kyparissia Bay, Greece, confirm the western Greece unit and regional structuring

    Directory of Open Access Journals (Sweden)

    Carlos Carreras

    2014-03-01

    Full Text Available Genetic markers have been widely used in marine turtles to assess population structuring and origin of individuals in common feeding grounds, which are key elements for understanding their ecology and for developing conservation strategies. However, these analyses are very sensitive to missing information, especially from abundant nesting sites. Kyparissia Bay (western Greece hosts the second largest Mediterranean nesting aggregation of the loggerhead turtle (Caretta caretta, but the genetic profile of this nesting site has not, as yet, been described using the extended version of the historically used mitochondrial DNA (mtDNA marker. This marker was genotyped for 36 individuals nesting at Kyparissia Bay and haplotype frequencies obtained were compared with published data from other Mediterranean nesting sites. The results confirmed the connection between Kyparissia and other western Greek nesting sites and the isolation of this western Greek group from other Mediterranean nesting areas. As a consequence of this isolation, this abundant group of nesting aggregations (almost 30% of the Mediterranean stock is not likely to significantly contribute to the recovery of other declining Mediterranean units.

  3. 75 FR 81972 - Taking of Threatened or Endangered Marine Mammals Incidental to Commercial Fishing Operations...

    Science.gov (United States)

    2010-12-29

    ..., and Steller sea lions (Western U.S. stock and Eastern U.S. stock) incidental to the fisheries... fin whales, NP sperm whales, Western U.S. stock of Steller sea lions, and the threatened Eastern U.S... Pacific (CNP) humpback whales, Western North Pacific (WNP) stock of humpback whales, Northeast Pacific...

  4. The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle.

    Science.gov (United States)

    Spinks, Phillip Q; Thomson, Robert C; Shaffer, H Bradley

    2014-05-01

    As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well-studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller-scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management. © 2014 John Wiley & Sons Ltd.

  5. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  6. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  7. Turtle Girls

    Science.gov (United States)

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  8. Terrestrial Turtle Habitats Potentially Impacted

    National Research Council Canada - National Science Library

    Dickerson, Dena

    1999-01-01

    .... This group includes the tortoises and box turtles with two species Federally threatened and three species having protection in at least one state. Three of these protected species are associated with environmental issues at 21 USACE projects from 5 USACE Districts.

  9. Willingness to pay for threatened and endangered marine species:A review of the literature and prospects for policy use

    Directory of Open Access Journals (Sweden)

    Daniel K Lew

    2015-11-01

    Full Text Available Non-market valuation methods have been employed to estimate willingness to pay for numerous threatened, endangered, and rare (TER species over the past few decades. While most of these efforts have focused on terrestrial species, over 30 published studies have been conducted to measure economic values associated with the preservation, protection, and enhancement of scores of marine species. In this paper, this literature is reviewed and assessed, and an evaluation of the suitability of existing TER species values as inputs for the analysis of marine and coastal policies, and the prospects and challenges for improving them, are discussed. The published literature is found to suffer from coverage issues, both geographical and in terms of species types. It includes stated preference valuation studies focused on marine species only in developed countries (United States, Canada, Australia, United Kingdom, Spain, and Greece, with the highest concentration of studies occurring in the United States. The species valued primarily can be classified as charismatic megafauna—seals and sea lions, whales, and sea turtles—plus well-known fish species, like salmon. Only a small handful of lesser known species are included among those valued to date. Species value estimates were as much as $356 (2013 U.S. dollars, but differed in the frequency of payments (e.g., lump sum vs. annual, the entity paying (e.g., household, resident, or visitor, and the specific good being valued (e.g., species preservation or a type of enhancement. Potential sources of errors arising from the use of these values for policy analyses, and the temporal stability of them, provide reasons to be cautious in their application. Nevertheless, several trends in the literature appear to provide reasons to be optimistic about the literature, particularly the recent expansion of types of species valued and more policy-relevant values.

  10. Applying new genetic approaches to improve quality of population assessment of green and loggerhead turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As the NOAA-Fisheries? National Sea Turtle Genetics Lab, the SWFSC Marine Turtle Genetics Program has the lead responsibility for generating, analyzing and...

  11. LEGACY - Photographs resulting from experiment remote camera viewing of sea turtles and habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles to voluminous, complex...

  12. Turtles: Freshwater

    Science.gov (United States)

    Gibbons, J. Whitfield; Lovich, Jeffrey E.; Bowden, R.M.

    2017-01-01

    With their iconic shells, turtles are morphologically distinct in being the only extant or extinct vertebrate animals to have their shoulders and hips inside their rib cages. By the time an asteroid hit the earth 65.5 million years ago, causing the extinction of dinosaurs, turtles were already an ancient lineage that was 70% through their evolutionary history to date. The remarkable evolutionary success of turtles over 220 million years is due to a combination of both conservative and effective life history traits and an essentially unchanging morphology that withstood the test of time. However, the life history traits of many species make them particularly susceptible to overharvest and habitat destruction in the modern world, and a majority of the world’s species face serious conservation challenges with several extinctions documented in modern times. The global plight of turtles is underscored by the fact that the percentage of imperiled species exceeds that of even the critically endangered primates.Freshwater turtles, with over 260 recognized species, have become a focus on a worldwide scale for many conservation issues. This article is a synthesis of a diverse body of information on the general biology of freshwater turtles, with particular emphasis on the extensive research on ecology, life history, and behavior that has been accomplished in the last half century. Much of the research has been applicable to the aforementioned conservation challenges. The studies presented include a combination of laboratory and field experiments and observational studies on this intriguing group of animals.

  13. ARSENIC, CADMIUM, CHROMIUM, LEAD, MERCURY, AND SELENIUM LEVELS IN BLOOD OF FOUR SPECIES OF TURTLES FROM THE AMAZON IN BRAZIL

    OpenAIRE

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Po...

  14. Use of population viability analysis to evaluate CITES trade-management options for threatened marine fishes.

    Science.gov (United States)

    Curtis, Janelle M R; Vincent, Amanda C J

    2008-10-01

    Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10-cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (> or =34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade-off between conservation threat to and long-term cumulative income from these exploited marine fishes of high conservation concern. We used the European long-snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved--at a cost of only a 5.6% reduction in long-term catches--by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.

  15. Notes upon some Sea Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1961-01-01

    In recent years much attention is being paid to marine turtles, and it is the merit of Deraniyagala, Carr, and others to have contributed much to our knowledge of this group. Nevertheless, our knowledge of the species and subspecies that may be recognized, and that of their distribution is as yet

  16. 75 FR 47825 - Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles Affected by the...

    Science.gov (United States)

    2010-08-09

    ...] Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles Affected by the Deepwater... threaten the Gulf of Mexico environment and its inhabitants, including five sea turtle species. We, the U.S...) permit, to aid sea turtles affected by the oil spill. ADDRESSES: Documents and other information...

  17. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. First application of comet assay in blood cells of Mediterranean loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Caliani, Ilaria; Campani, Tommaso; Giannetti, Matteo; Marsili, Letizia; Casini, Silvia; Fossi, Maria Cristina

    2014-05-01

    The aim of this study was to validate the comet assay in erythrocytes of Caretta caretta, a species never investigated for genotoxicity. We studied 31 loggerhead sea turtles from three Italian marine rescue centres. Peripheral blood samples were collected from all the animals and the comet assay applied. All comet cells were analysed using two methods: visual scoring and computer image analysis. The % DNA in tail mean value ± SD and Damage Index were 21.56 ± 15.41 and 134.83 ± 94.12, respectively. A strong and statistically significant statistically correlation between the two analytical methods was observed (r = 0.95; p comet assay is a useful method to detect the possible effects of genotoxic agents in loggerhead sea turtle and to increase the knowledge about the ecotoxicological health status of this threatened species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA

    Science.gov (United States)

    T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...

  20. Assessing the viability of the Species at Risk Act in managing commercial exploitation and recovery of threatened and endangered marine fish in Canada

    OpenAIRE

    Druce, Courtney Danielle

    2012-01-01

    Commercially exploited threatened or endangered marine fish are consistently declined for listing under Canada’s Species at Risk Act (SARA), largely due to predicted socio-economic impacts associated with SARA’s prohibitions. However, commercial exploitation can be exempted from SARA’s general prohibitions. If exemptions were utilized, commercially exploited species could benefit from other aspects of SARA listing, and support continued economic opportunities for fishers. I conducted a litera...

  1. Evaluating spatial patterns of dioxins in sediments to aid determination of potential implications for marine reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Hermanussen, S.; Gaus, C. [National Research Centre for Environmental Toxicology, Brisbane (Australia); Limpus, C.J. [Queensland Environmental Protection Agency, Brisbane (Australia); Paepke, O. [ERGO Forschungsgesellschaft mbH, Hamburg (Germany); Blanshard, W. [Sea World, Gold Coast (Australia); Connell, D. [School of Public Health, Griffith Univ., Brisbane (Australia)

    2004-09-15

    Recent investigations have identified elevated concentrations of polychlorinated dibenzo-p-dioxins (dioxins) in marine sediments and wildlife of Queensland, Australia. While it has been demonstrated that the contamination is widespread and predominantly land-based, limited information exists on the pathways and fate of these compounds within the near-shore marine system. This environment supports unique and threatened species including green sea turtles (Chelonia mydas). Adult green turtles are predominantly herbivorous, feeding on seagrass and algae. Apart from initial migration to feeding grounds (at {proportional_to}10 years of age) and intermittent migrations to breeding grounds (at {proportional_to}30-50 years and thereafter), green turtles remain and feed within relatively small home ranges. Long life-span (50 years or more), near-shore feeding grounds and highly specialized food requirements render green turtles potentially vulnerable to contaminant exposure. Recent studies have shown a relationship between PCDD/F concentrations found in herbivorous marine wildlife and concentrations in sediments of their habitats. Hence, the spatial evaluation of sediment PCDD/F distribution may assist the assessment of green turtle exposure and its potential implications. The present study provides baseline information on green turtle PCDD/F concentrations in Queensland, Australia and investigates exposure pathways. In addition, spatial distribution of PCDD/Fs in sediments from known green turtle feeding regions is assessed using geographic information systems. This represents the first stage of a large scale investigation into the exposure and sensitivity of marine reptiles to dioxins and dioxin-like compounds and to evaluate whether poor health status observed in some populations may be related to contaminant exposure.

  2. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Permits for listed species of sea turtles... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific... survival of endangered or threatened species of sea turtles; zoological exhibition or educational purposes...

  3. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  4. 75 FR 30769 - Endangered and Threatened Species; Proposed Listing of Nine Distinct Population Segments of...

    Science.gov (United States)

    2010-06-02

    ... Oceanic and Atmospheric Administration 50 CFR Parts 223 and 224 RIN 0648-AY49 Endangered and Threatened Species; Proposed Listing of Nine Distinct Population Segments of Loggerhead Sea Turtles as Endangered or... loggerhead sea turtles as endangered or threatened, which was published on March 16, 2010, until September 13...

  5. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  6. Conservation of freshwater turtles in Amazonia: retrospective and future prospects

    Directory of Open Access Journals (Sweden)

    Aderson de Souza Alcântara

    2014-08-01

    Full Text Available This paper aims to discuss the current status of conservation of freshwater turtles of the Amazon and the absence of the genus Podocnemis the Official List of Species of Brazilian Fauna Threatened with Extinction. Amazonian turtles are used as food by indigenous people and fisherman communities. However, fishing of adult females, uncontrolled egg collecting, habitat degradation and trafficking in wildlife have caused the decline of these populations. Nevertheless, Podocnemis expansa and Podocnemis unifilis were not included in the Brazil’s official list of animals threatened. Therefore, the turtles remain at great risk, due to the intense pressure that they are suffering. It is recommended that the criteria and the conservation status are reviewed including those animals in the category of vulnerable and to ensure a thorough review and modification in the current Brazilian law to be covered studies and management of turtles for subsistence, respecting and adding value to way of life of Amazonian peoples.

  7. Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil.

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Podocnemis erythrocephala), big-headed Amazon (river) turtle (Peltocephalus dumerilianus), and matamata turtle (Chelus fimbriatus). Blood samples were taken from the vein in the left hind leg of each turtle. There were significant interspecific differences in the sizes of the turtles from the Rio Negro, and in concentrations of Pb, Hg, and Se; the smallest species (red-headed turtles) had the highest levels of Pb in their blood, while Se levels were highest in big-headed turtles and lowest in red-headed turtles. Hg in blood was highest in matamata, intermediate in big-headed, and lowest in the other two turtles. Even though females were significantly larger than males, there were no significant differences in metal levels as a function of gender, and the only relationship of metals to size was for Cd. Variations in metal levels among species suggest that blood may be a useful bioindicator. Metal levels were not high enough to pose a health risk to the turtles or to consumers, such as humans.

  8. An ancestral turtle from the Late Triassic of southwestern China.

    Science.gov (United States)

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  9. TurtleCam: A “Smart” Autonomous Underwater Vehicle for Investigating Behaviors and Habitats of Sea Turtles

    Directory of Open Access Journals (Sweden)

    Kara L. Dodge

    2018-03-01

    Full Text Available Sea turtles inhabiting coastal environments routinely encounter anthropogenic hazards, including fisheries, vessel traffic, pollution, dredging, and drilling. To support mitigation of potential threats, it is important to understand fine-scale sea turtle behaviors in a variety of habitats. Recent advancements in autonomous underwater vehicles (AUVs now make it possible to directly observe and study the subsurface behaviors and habitats of marine megafauna, including sea turtles. Here, we describe a “smart” AUV capability developed to study free-swimming marine animals, and demonstrate the utility of this technology in a pilot study investigating the behaviors and habitat of leatherback turtles (Dermochelys coriacea. We used a Remote Environmental Monitoring UnitS (REMUS-100 AUV, designated “TurtleCam,” that was modified to locate, follow and film tagged turtles for up to 8 h while simultaneously collecting environmental data. The TurtleCam system consists of a 100-m depth rated vehicle outfitted with a circular Ultra-Short BaseLine receiver array for omni-directional tracking of a tagged animal via a custom transponder tag that we attached to the turtle with two suction cups. The AUV collects video with six high-definition cameras (five mounted in the vehicle nose and one mounted aft and we added a camera to the animal-borne transponder tag to record behavior from the turtle's perspective. Since behavior is likely a response to habitat factors, we collected concurrent in situ oceanographic data (bathymetry, temperature, salinity, chlorophyll-a, turbidity, currents along the turtle's track. We tested the TurtleCam system during 2016 and 2017 in a densely populated coastal region off Cape Cod, Massachusetts, USA, where foraging leatherbacks overlap with fixed fishing gear and concentrated commercial and recreational vessel traffic. Here we present example data from one leatherback turtle to demonstrate the utility of TurtleCam. The

  10. Coastal leatherback turtles reveal conservation hotspot

    Science.gov (United States)

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  11. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  12. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  13. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  14. Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia's continental shelf.

    Directory of Open Access Journals (Sweden)

    Oliver T Hogg

    Full Text Available We attempt to quantify how significant the polar archipelago of South Georgia is as a source of regional and global marine biodiversity. We evaluate numbers of rare, endemic and range-edge species and how the faunal structure of South Georgia may respond to some of the fastest warming waters on the planet. Biodiversity data was collated from a comprehensive review of reports, papers and databases, collectively representing over 125 years of polar exploration. Classification of each specimen was recorded to species level and fully geo-referenced by depth, latitude and longitude. This information was integrated with physical data layers (e.g. temperature, salinity and flow providing a visualisation of South Georgia's biogeography across spatial, temporal and taxonomic scales, placing it in the wider context of the Southern Hemisphere. This study marks the first attempt to map the biogeography of an archipelago south of the Polar Front. Through it we identify the South Georgian shelf as the most speciose region of the Southern Ocean recorded to date. Marine biodiversity was recorded as rich across taxonomic levels with 17,732 records yielding 1,445 species from 436 families, 51 classes and 22 phyla. Most species recorded were rare, with 35% recorded only once and 86% recorded <10 times. Its marine fauna is marked by the cumulative dominance of endemic and range-edge species, potentially at their thermal tolerance limits. Consequently, our data suggests the ecological implications of environmental change to the South Georgian marine ecosystem could be severe. If sea temperatures continue to rise, we suggest that changes will include depth profile shifts of some fauna towards cooler Antarctic Winter Water (90-150 m, the loss of some range-edge species from regional waters, and the wholesale extinction at a global scale of some of South Georgia's endemic species.

  15. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    Science.gov (United States)

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. © 2013 Society for Conservation Biology No claim to original US government works.

  16. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  17. Reproductive biology and genetic diversity of the green turtle (Chelonia mydas) in Vamizi island, Mozambique.

    Science.gov (United States)

    Anastácio, Rita; Santos, Camila; Lopes, Cardoso; Moreira, Helena; Souto, Luis; Ferrão, Jorge; Garnier, Julie; Pereira, Mário J

    2014-01-01

    Vamizi, an Island located in the Western Indian Ocean, is visited by a small and not fully characterized green turtle (Chelonia mydas (L.)) population. This population is threatened by natural hazards and several human activities, which are used to identify conservation priorities for marine turtles. It was our aim to contribute to the knowledge of marine turtles that nest in Vamizi, with respect to its regional management, and to an area that may possibly be included on the UNESCO World Heritage List due to its potential Outstanding Universal Value. Here, we evaluate the nesting parameters (incubation period, clutch size, hatching and emergence successes rates) and patterns over an 8-year (2003 - 2010) conservation program. We also present the results of genetic diversity based on the analysis of approximately an 850 pb fragment of the mitochondrial DNA control region. We found that Vamizi beaches host a small number of nesting females, approximately 52 per year, but these have shown a reduction in their length. High hatching success (88.5 ± SD 17.2%, N = 649), emergence success rates (84.5 ± SD 20.4%, N = 649) were observed, and genetic diversity (N = 135), with 11 haplotypes found (7 new). It was also observed, in the later years of this study, a reduction in the incubation period, a dislocation of the nesting peak activity and an increase in the number of flooded nests and an increase of the number of nests in areas with lower human activity. Some resilience and behavioral plasticity seems to occur regarding human territory occupancy and climate changes. However, regardless of the results, aspects like what seems to be the reduction of some cohorts, the number of flooded nests and the diminishing of the incubation period (East and South facing beaches), show that conservation efforts have to be improved.

  18. Statement of Canadian practice with respect to the mitigation of seismic sound in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This statement outlined mitigation requirements for marine seismic surveys conducted in all non-ice covered marine environments in Canada. During the planning phase, seismic surveys must use the minimum amount of energy and frequencies needed to achieve its objectives. Surveys must be planned to avoid impacts on individual marine mammals or species listed as endangered or threatened. Seismic surveys must also avoid displacing individual marine mammals or diverting migrating species listed as endangered or threatened. Surveys must also avoid dispersing aggregations of spawning fish or displacing groups of breeding, feeding, or nursing mammals or species. Safety zones must be established and monitored by qualified marine mammal observers for a minimum period of 30 minutes prior to the start-up of air source arrays. No cetaceans, sea turtles, endangered or threatened marine mammals must be observed in the safety zone for at least 30 minutes before the gradual ramp-up of air source arrays. Arrays must be shut down if marine mammals and species at risk are observed. Air source arrays must be shut down when seismic surveying ceases during line changes or maintenance procedures. Cetacean detection technology must be used prior to ramp-up when the full extent of the safety zone is not visible. Additional mitigation measures and modifications were presented for multiple air source arrays and surveys conducted in combination with other activities adverse to marine environmental quality.

  19. Population Structure and Growth of the Threatened Pen Shell, Pinna rudis (Linnaeus, 1758 in a Western Mediterranean Marine Protected Area

    Directory of Open Access Journals (Sweden)

    E. NEBOT COLOMER

    2016-11-01

    Full Text Available Coastal ecosystems are being extensively degraded by human activities. Benthic, slow-growing and long-lived species are highly vulnerable to these impacts. Marine protected areas might avoid biodiversity losses through habitat protection. The pen shell Pinna rudis is a protected species, but scarce data are available on its ecology and biology. The present study is a comprehensive ecological study encompassing several unknown aspects of the growth and inner record in relation to habitat types, density and size distribution. A total of 418 strip transects were conducted by scuba diving in the Marine Protected Area of Cabrera National Park (39.14° N, 2.96° E, during the summers of 2011, 2012 and 2013. Sampling was conducted across different habitats and depths exploring 152,146.35 m2 in total. Densities varied spatially within the park (from 0 to 6.89 ind./100 m2 corresponding to a wide range of sizes and ages. Most pen shells were patchily distributed and mainly concentrated in caves. Two hotspots with high densities represent the highest densities ever recorded worldwide, showing a possible link to high larval accumulation and settlement. The population size structure showed a unimodal distribution with shell width ranging from 6.2 to 25.0 cm, with an average shell width of 16.0 ± 3.4 cm. The absolute growth was asymptotic, with a maximum age and length of 28-31 years and 45 cm, respectively. This study on the biology and ecology of a well-established population of Pinna rudis in the Western Mediterranean could set a baseline for the conservation of this species in other areas.

  20. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Directory of Open Access Journals (Sweden)

    S Hoyt Peckham

    2007-10-01

    Full Text Available Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna.30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS. We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1 observe two small-scale fleets that operated closest to the high use area and 2 through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge.Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in

  1. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Science.gov (United States)

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small

  2. 77 FR 27719 - Marine Mammals; File Nos. 16109 and 15575

    Science.gov (United States)

    2012-05-11

    ...., Riverhead, NY 11901 to conduct research on marine mammals and sea turtles. ADDRESSES: The permits and... Register (76 FR 51001) that requests for permits to conduct research on marine mammals and sea turtles had... governing the taking and importing of marine mammals (50 CFR part 216), the Endangered Species Act of 1973...

  3. Turtles for tessellations

    NARCIS (Netherlands)

    Feijs, L.M.G.; Hu, J.

    2013-01-01

    We developed an approach to creating vector graphics representations of tessellations for purposes of teaching creative programming and laser cutting. The approach is based on turtle graphics. The lines of the turtle’s trail define the tiles of the tessellation. The turtle is defined in an

  4. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles.

    Science.gov (United States)

    Joyce, Walter G; Rabi, Márton; Clark, James M; Xu, Xing

    2016-10-28

    the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats.

  5. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  6. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in leatherback sea turtle lung cells.

    Science.gov (United States)

    Speer, Rachel M; Wise, Catherine F; Young, Jamie L; Aboueissa, AbouEl-Makarim; Martin Bras, Mark; Barandiaran, Mike; Bermúdez, Erick; Márquez-D'Acunti, Lirio; Wise, John Pierce

    2018-05-01

    Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. European Atlantic Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1972-01-01

    CONTENTS Preface ................... 3 Introduction .................. 5 Identification.................. 13 The records................... 25 I. Dermochelys coriacea (L.), Leathery Turtle......... 30 IA. List of records of Dermochelys coriacea (L.)......... 31 IB. List of records of unidentified

  8. AMAPPS turtle data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tags were deployed on 60 loggerhead turtles to assess dive behavior to improve estimates of abundance in aerial surveys

  9. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  10. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  11. Turtles as hopeful monsters.

    Science.gov (United States)

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation. Copyright 2001 John Wiley & Sons, Inc.

  12. Miscarriage - threatened

    Science.gov (United States)

    ... might take place before the 20th week of pregnancy. Causes Some pregnant women have some vaginal bleeding , with ... injuries or stress during the first trimester of pregnancy can cause threatened miscarriage. It occurs in almost half of ...

  13. The Classroom Animal: Snapping Turtles.

    Science.gov (United States)

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  14. Sea Turtle Radio Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio transmitters attached to sea turtles captured in various fishing gear enabled us to track and measure surfacing time of each turtle. Determining location of...

  15. 75 FR 41436 - Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition to Revise Critical...

    Science.gov (United States)

    2010-07-16

    ...-02] RIN 0648-XW94 Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition to Revise Critical Habitat for the Endangered Leatherback Sea Turtle Under the Endangered Species Act (ESA... finding on a petition to revise critical habitat for the endangered leatherback sea turtle under the...

  16. Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L

    2014-09-01

    Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.

  17. 78 FR 39258 - Marine Mammals; File No. 17355

    Science.gov (United States)

    2013-07-01

    ... Investigator: Peter Corkeron] to conduct research on marine mammals and sea turtles. ADDRESSES: The permit and... to conduct research on marine mammals and sea turtles had been submitted by the above-named applicant... mammals (50 CFR part 216), the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq...

  18. The Role of Taboos in the Protection and Recovery of Sea Turtles

    Directory of Open Access Journals (Sweden)

    LoriKim Alexander

    2017-08-01

    Full Text Available Despite increased efforts from government agencies, scientists, and non-government organizations over the past few decades, anthropogenic sources of sea turtle mortality continue to threaten the survivorship of sea turtle species around the globe. More recent efforts to engage local people with community-based sea turtle conservation programs have been based primarily on economic incentives and less on cultural and social traditions. But there is growing evidence that informal institutions such as, taboos can be extremely effective at promoting wildlife conservation. Ghana is a culturally diverse country where local traditions have shown to improve protection for primates, crocodiles, and many bird species. This study explores the presence of a sea turtle taboo in fishing communities to demonstrate that traditional practices make residents more receptive to sea turtle conservation and more willing to follow government regulations. Fishers in the communities that are aware of the taboo are also more willing to adjust fishing methods to better protect sea turtles. The traditional taboo and national laws appear to be working synergistically to enhance sea turtle conservation in some regions of Ghana. This paper extends the argument that sea turtle conservation strategies succeed when the cultural and social traditions of local communities are integrated with management activities.

  19. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef.

    Science.gov (United States)

    Ahasan, Md Shamim; Waltzek, Thomas B; Huerlimann, Roger; Ariel, Ellen

    2017-12-01

    Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Turtle Watch: Community Engagement and Action

    Science.gov (United States)

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  1. Sea Turtle Bycatch Mitigation in U.S. Longline Fisheries

    Directory of Open Access Journals (Sweden)

    Yonat Swimmer

    2017-08-01

    Full Text Available Capture of sea turtles in longline fisheries has been implicated in population declines of loggerhead (Caretta caretta and leatherback (Dermochelys coriacea turtles. Since 2004, United States (U.S. longline vessels targeting swordfish and tunas in the Pacific and regions in the Atlantic Ocean have operated under extensive fisheries regulations to reduce the capture and mortality of endangered and threatened sea turtles. We analyzed 20+ years of longline observer data from both ocean basins during periods before and after the regulations to assess the effectiveness of the regulations. Using generalized additive mixed models (GAMMs, we investigated relationships between the probability of expected turtle interactions and operational components such as fishing location, hook type, bait type, sea surface temperature, and use of light sticks. GAMMs identified a two to three-fold lower probability of expected capture of loggerhead and leatherback turtle bycatch in the Atlantic and Pacific when circle hooks are used (vs. J hook. Use of fish bait (vs. squid was also found to significantly reduce the capture probability of loggerheads in both ocean basins, and for leatherbacks in the Atlantic only. Capture probabilities are lowest when using a combination of circle hook and fish bait. Influences of light sticks, hook depth, geographic location, and sea surface temperature are discussed specific to species and regions. Results confirmed that in two U.S.-managed longline fisheries, rates of sea turtle bycatch significantly declined after the regulations. In the Atlantic (all regions, rates declined by 40 and 61% for leatherback and loggerhead turtles, respectively, after the regulations. Within the NED area alone, where additional restrictions include a large circle hook (18/0 and limited use of squid bait, rates declined by 64 and 55% for leatherback and loggerhead turtles, respectively. Gains were even more pronounced for the Pacific shallow set fishery

  2. Using expert opinion surveys to rank threats to endangered species: a case study with sea turtles.

    Science.gov (United States)

    Donlan, C Josh; Wingfield, Dana K; Crowder, Larry B; Wilcox, Chris

    2010-12-01

    Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet-based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at-sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial-based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more-striking pattern was with hazard-based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias-controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans.

  3. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  4. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study

    International Nuclear Information System (INIS)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-01-01

    Highlights: • Plastic pollution in Argentina harms vulnerable marine species of turtles and mammals. • One tool to advance their conservation is policy. • The legal and institutional framework pertinent to plastic pollution is explored. • Laws and agencies are in place, yet implementation and enforcement is deficient. • Interventions to mitigate plastic pollution and protect marine species are advanced. - Abstract: Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally

  5. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil

    OpenAIRE

    Camila Poli; Daniel Oliveira Mesquita; Cinthia Saska; Rita Mascarenhas

    2015-01-01

    ABSTRACT Currently, plastics are recognized as a major pollutant of the marine environment, representing a serious threat to ocean wildlife. Here, we examined the occurrence and effects of plastic ingestion by sea turtles found stranded along the coast of Paraíba State, Brazil from August 2009 to July 2010. Ninety-eight digestive tracts were examined, with plastic found in 20 (20.4%). Sixty five percent (n = 13) of turtles with plastic in the digestive tract were green turtles (Chelonia mydas...

  6. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    International Nuclear Information System (INIS)

    Greenblatt, Rebecca J.; Work, Thierry M.; Balazs, George H.; Sutton, Claudia A.; Casey, Rufina N.; Casey, James W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection

  7. Salmonella from Baby Turtles

    Centers for Disease Control (CDC) Podcasts

    2017-01-09

    Dr. Stacey Bosch, a veterinarian with CDC, discusses her article on Salmonella infections associated with baby turtles.  Created: 1/9/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/9/2017.

  8. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    OpenAIRE

    Joyce, Walter G.; Gauthier, Jacques A.

    2004-01-01

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserv...

  9. Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.

    Science.gov (United States)

    Houghton, J D; Hays, G C

    2001-03-01

    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised

  10. Changes of loggerhead turtle (Caretta caretta) dive behavior associated with tropical storm passage during the inter-nesting period

    DEFF Research Database (Denmark)

    Wilson, Maria; Tucker, Anton D.; Beedholm, Kristian

    2017-01-01

    To improve conservation strategies for threatened sea turtles, more knowledge on their ecology, behavior, and how they cope with severe and changing weather conditions is needed. Satellite and animal motion datalogging tags were used to study the inter-nesting behavior of two female loggerhead...... turtles in the Gulf of Mexico, which regularly has hurricanes and tropical storms during nesting season. We contrast the behavioral patterns and swimming energetics of these two turtles, the first tracked in calm weather and the second tracked before, during and after a tropical storm. Turtle 1 was highly......% of the time) with low estimated oxygen consumption (0.62 ml min-1 kg-0.83). Midway through the internesting period, turtle 2 encountered a tropical storm and became highly active (swimming 88% of the time during and 95% after the storm). Her oxygen consumption increased significantly to 0.97 ml min-1 kg-0...

  11. Deepwater Horizon MC252 marine mammal data from the Environmental Response Management Application (ERMA) containing marine mammal aerial observations, bottlenose dolphin stock boundaries, dolphin telemetry datasets, marine mammal unusual mortality events (UME), related marine mammal data, and sea turtle data collected for the DWH response between 2010-04-28 and 2010-08-25 in the Northern Gulf of Mexico (NCEI Accession 0163809)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Archival Information Package (AIP) contains Environmental Resource Management Application (ERMA) GIS layers that represent marine mammal surveys, observations,...

  12. Turtles and culverts, and alternative energy development: an unreported but potentially significant mortality threat to the desert tortoise (Gopherus agassizii)

    Science.gov (United States)

    Lovich, J.E.; Ennen, J.R.; Madrak, S.; Grover, B.

    2011-01-01

    Culverts are often used to increase the permeability of roaded landscapes for wildlife, including turtles. Although the benefits of culverts as safe passages for turtles are well documented, under some conditions culverts can entrap them and cause mortality. Here we report a culvert-related mortality in the federally threatened desert tortoise (Gopherus agassizii) at a wind energy facility in California and offer simple recommendations to mitigate the negative effects of culverts for wildlife in general.

  13. Review of potential impacts to sea turtles from underwater explosive removal of offshore structures

    International Nuclear Information System (INIS)

    Viada, Stephen T.; Hammer, Richard M.; Racca, Roberto; Hannay, David; Thompson, M. John; Balcom, Brian J.; Phillips, Neal W.

    2008-01-01

    The purpose of this study was to collect and synthesize existing information relevant to the explosive removal of offshore structures (EROS) in aquatic environments. Data sources were organized and summarized by topic - explosive removal methods, physics of underwater explosions, sea turtle resources, documented impacts to sea turtles, and mitigation of effects. Information was gathered via electronic database searches and literature source review. Bulk explosive charges are the most commonly used technique in EROS. While the physical principles of underwater detonations and the propagation of pressure and acoustic waves are well understood, there are significant gaps in the application of this knowledge. Impacts to sea turtles from explosive removal operations may range from non-injurious effects (e.g. acoustic annoyance; mild tactile detection or physical discomfort) to varying levels of injury (i.e. non-lethal and lethal injuries). Very little information exists regarding the impacts of underwater explosions on sea turtles. Effects of explosions on turtles often must be inferred from documented effects to other vertebrates with lungs or other gas-containing organs, such as mammals and most fishes. However, a cautious approach should be used when determining impacts to sea turtles based on extrapolations from other vertebrates. The discovery of beached sea turtles and bottlenose dolphins following an explosive platform removal event in 1986 prompted the initiation of formal consultation between the U.S. Department of the Interior, Minerals Management Service (MMS) and the National Marine Fisheries Service (NMFS), authorized through the Endangered Species Act Section 7, to determine a mechanism to minimize potential impacts to listed species. The initial consultation resulted in a requirement for oil and gas companies to obtain a permit (through separate consultations on a case-by-case basis) prior to using explosives in Federal waters. Because many offshore

  14. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  15. Spatial Dynamics of Sea Turtle Abundance and Shrimping Intensity in the U.S. Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Carrie J. McDaniel

    2000-07-01

    Full Text Available In order to examine the scientific feasibility of area closures for sea turtle protection, we determined the spatial dynamics of sea turtles for the U.S. Gulf of Mexico by analyzing National Marine Fisheries Service (NMFS aerial survey data in September, October, and November of 1992, 1993, and 1994. Turtle sightings were grouped into depth zones and NMFS fishery statistical zones, and strip transect methods were used to estimate the relative abundance of sea turtles in each subzone. Average shrimping intensity was calculated for each subzone for all months of 1992, 1993, and 1994, as well as for the months and locations of the aerial survey. The spatial overlap of sea turtle abundance and shrimping intensity suggested regions where interactions are likely to occur. Sea turtles were observed at much higher rates along the coast of Florida than in the Western Gulf; the highest density of sea turtles was observed in the Florida Keys region (0.525 turtles/km2. Shrimping intensity was highest in the Western Gulf along the coast of Texas and Louisiana, for both annual and fall estimates. Among alternative management scenarios, area closures in conjunction with continued Turtle Excluder Device (TED requirements would probably best prevent sea turtles from future extinction. By implementing shrimping closures off of South Padre Island, Texas, a potential second nesting population of Kemp's ridleys (Lepidochelys kempi could be protected. Closing waters where shrimping intensity is low and sea turtle abundance is high (e.g., South Florida waters would protect sea turtles without economically impacting a large number of shrimpers.

  16. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  17. A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique among Tetrapods

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Background Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250–65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. Principal Findings A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. Conclusion/Significance The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late

  18. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Directory of Open Access Journals (Sweden)

    Nathalie Bardet

    Full Text Available BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils. The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth and beaked whales (large size and elongated edentulous jaws. This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to

  19. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further

  20. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study.

    Science.gov (United States)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-03-15

    Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic Pacific longline fisheries.

    Science.gov (United States)

    Clukey, Katharine E; Lepczyk, Christopher A; Balazs, George H; Work, Thierry M; Lynch, Jennifer M

    2017-07-15

    Ingestion of marine debris is an established threat to sea turtles. The amount, type, color and location of ingested plastics in the gastrointestinal tracts of 55 sea turtles from Pacific longline fisheries from 2012 to 2016 were quantified, and compared across species, turtle length, body condition, sex, capture location, season and year. Six approaches for quantifying amounts of ingested plastic strongly correlated with one another and included: number of pieces, mass, volume and surface area of plastics, ratio of plastic mass to body mass, and percentage of the mass of gut contents consisting of plastic. All olive ridley (n=37), 90% of green (n=10), 80% of loggerhead (n=5) and 0% of leatherback (n=3) turtles had ingested plastic; green turtles ingested significantly more than olive ridleys. Most debris was in the large intestines. No adverse health impacts (intestinal lesions, blockage, or poor body condition) due directly to plastic ingestion were noted. Copyright © 2017. Published by Elsevier Ltd.

  2. Advancing development of a limit reference point estimator for sea turtles, and evaluating methods for applying local management to highly migratory species

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is developing tools for estimation of limit reference points for marine turtles. These tools are being applied initially to estimate a limit reference point...

  3. Establishing sex ratios of sea turtle foraging populations: validation of a novel testosterone hormone assay technology and sex assessment for five species.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Demographic data are essential for developing sound management and conservation plans for marine turtle populations. Sex ratios, even though they are an essential...

  4. 77 FR 20774 - Endangered and Threatened Species; Proposed Threatened Status for Distinct Population Segments of...

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 223 RIN 0648-XZ58 Endangered and Threatened Species; Proposed Threatened Status for Distinct Population Segments of the Bearded Seal AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  5. Marine leech Ozobranchus margoi parasitizing loggerhead turtle (Caretta caretta in Rio Grande do Sul, Brazil Sanguessugas Ozobranchus margoi parasitando uma tartaruga cabeçuda (Caretta caretta no Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Carla Rosane Rodenbusch

    2012-09-01

    Full Text Available This paper reports the finding of several Ozobranchus margoi (Annelida: Hirudinea parasitizing a loggerhead turtle (Caretta caretta that was found in the municipality of Tavares, state of Rio Grande do Sul, southern Brazil. Since this parasite is considered to be a vector of chelonid herpesvirus 5 (ChHV-5, the leeches collected were tested for the presence of this virus. All the specimens were negative on PCR analysis. Although O. margoi is considered to be a common sea turtle parasite, this is the first official record describing collection of this parasite from a loggerhead turtle in southern Brazil, within the country's subtropical zone. This finding draws attention to the presence of this parasite and to the risk of leech-borne infectious diseases among turtles found along the coast of southern Brazil.Este artigo relata a descoberta de vários exemplares de Ozobranchus margoi (Annelida Hirudínea parasitando uma tartaruga cabeçuda (Caretta caretta encontrada no município de Tavares, Rio Grande do Sul, sul do Brasil. Uma vez que esse parasito é considerado vetor do chelonid herpesvirus 5 (ChHV 5, as sanguessugas foram testadas para a presença deste vírus. Todas as amostras foram negativas pela análise de PCR. Embora o O. margoi seja considerado um parasito comum de tartarugas marinhas, este é o primeiro registro oficial que descreve a coleta deste parasita em uma tartaruga cabeçuda no sul do Brasil, dentro da zona subtropical do país. Este achado chama a atenção para a presença deste parasita e para o risco de sanguessugas transmitirem doenças infecciosas em tartarugas no litoral sul do Brasil.

  6. 78 FR 44915 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... viable turtle eggs and turtles with a carapace length of less than 4 inches to stop the spread of turtle...

  7. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  8. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W.

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  9. Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding

    Directory of Open Access Journals (Sweden)

    Courtney S Endres

    2016-02-01

    Full Text Available Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1 initiate a search strategy; or (2 follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  10. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.

    Science.gov (United States)

    Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  11. NWHI Basking Green Turtle Data (Turtle Sightings from Seal Surveys)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of green turtle sightings in the Northwestern Hawaiian Islands (NWHI) since 1982 at Lisianski Island, and since 1983 for most other...

  12. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    OpenAIRE

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered co...

  13. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  14. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Science.gov (United States)

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  15. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles

    Science.gov (United States)

    Gaos, Alexander R.; Lewison, Rebecca L.; Yañez, Ingrid L.; Wallace, Bryan P.; Liles, Michael J.; Nichols, Wallace J.; Baquero, Andres; Hasbún, Carlos R.; Vasquez, Mauricio; Urteaga, José; Seminoff, Jeffrey A.

    2012-01-01

    Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective. PMID:21880620

  16. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  17. Leatherback Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for leatherback turtle as designated by Federal Register Vol. 44, No. 17711, March 23, 1979, Rules and Regulations....

  18. Hawksbill Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for hawksbill turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations....

  19. Sea Turtle Satellite Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles captured in various fishing gear (pound nets, long haul seines, gill nets) were outfitted with satellite transmitters so that their movements, migratory...

  20. DEVELOPMENT OF ACUPUNCTURE TREATMENT AND CLINICAL RESEARCH OF THREATENED ABORTION

    Institute of Scientific and Technical Information of China (English)

    LI Jing-xia; XIE Gan-gong

    2005-01-01

    In the present paper, the authors review recent development of acupuncture treatment of threatened abortion from 1) clinical application of "Linggui Bafa"(灵龟八法Eight Methods of Intelligent Turtle), 2) body acupoints, and 3) acupuncture combined with Chinese materia medica, and clinical study from 1) effect of acupuncture on the blood flow of uterus, and 2) effect of acupuncture on plasma progesterone level. In addition, acupuncture therapy is also used to help women in gestation and can effectively raise the pregnant rate. "Linggui Bafa" is rather effective in preventing threatened abortion and should be studied further.

  1. Navigational challenges in the oceanic migrations of leatherback sea turtles

    Science.gov (United States)

    Sale, Alessandro; Luschi, Paolo

    2009-01-01

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321

  2. Persistent leatherback turtle migrations present opportunities for conservation.

    Directory of Open Access Journals (Sweden)

    George L Shillinger

    2008-07-01

    Full Text Available Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007 satellite tracking dataset (12,095 cumulative satellite tracking days collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.

  3. Persistent Leatherback Turtle Migrations Present Opportunities for Conservation

    Science.gov (United States)

    Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A

    2008-01-01

    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987

  4. Sea Turtle Research Program Summary Report

    National Research Council Canada - National Science Library

    1997-01-01

    The USACE Sea Turtle Research Program (STRP) was conducted to minimize the risk to sea turtle populations in channels along the southeast Atlantic region of the United States from hopper-dredging activities...

  5. Sea turtle photo-identification database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ability to correctly and consistently identify sea turtles over time was evaluated using digital imagery of the turtles dorsal and side views of their heads and...

  6. Sea turtles sightings in North Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles sightings are reported to the NMFS Beaufort Laboratory sea turtle program by the general public as they are fishing, boating, etc. These sightings...

  7. Active dispersal in loggerhead sea turtles (Caretta caretta) during the 'lost years'.

    Science.gov (United States)

    Briscoe, D K; Parker, D M; Balazs, G H; Kurita, M; Saito, T; Okamoto, H; Rice, M; Polovina, J J; Crowder, L B

    2016-06-15

    Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. © 2016 The Author(s).

  8. Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles

    Directory of Open Access Journals (Sweden)

    Natalie A. Robson

    2017-06-01

    Full Text Available Sea turtles found stranded on beaches are often rehabilitated before being released back into the wild. The location and date of release is largely selected on an informal basis, which may not maximize the chance of survival. As oceanic conditions have a large influence on the movements of neonate sea turtles, this study aimed to identify the best locations and months to release rehabilitated sea turtles that would assist in their transport by ocean currents to the habitat and thermal conditions required for their survival. A particle tracking model, forced by ocean surface velocity fields, was used to simulate the dispersal pathways of millions of passively drifting particles released from different locations in Western Australia. The particles represented rehabilitated, neonate turtles requiring oceanic habitats [green (Chelonia mydas, hawksbill (Eretmochelys imbricata and loggerheads (Caretta caretta] and flatback turtles (Natator depressus which require neritic habitats. The results clearly identified regions and months where ocean currents were more favorable for transport to suitable habitats. Tantabiddi, near Exmouth on the north-west coast, was consistently the best location for release for the oceanic species, with dominant offshore-directed currents and a very narrow continental shelf reducing the time taken for particles to be transported into deep water. In contrast, release locations with more enclosed geography, wide continental shelves, and/or proximity to cooler ocean temperatures were less successful. Our results produced a decision support system for the release of neonate marine turtles in Western Australia and our particle tracking approach has global transferability.

  9. Molecular identification of fungal isolates and hatching success of green turtle (Chelonia mydas) nests.

    Science.gov (United States)

    Candan, Esra Deniz

    2018-02-26

    The aim of this study is to investigate the fungal diversity of green turtle nests and to examine phylogenetic relationships among these isolates. During the nesting season, samples of intra-nest sand and failed eggs were collected from 25% of the surviving nests in Sugözü Beaches, which are amongst the most important nesting beaches for endangered green turtles in the Mediterranean. Twenty-three fungi were identified by molecular techniques. Fungal isolates belonged to genera Aspergillus, Emericella, Rhizopus, Actinomucor and Apophysomyces with two undescribed species. Aspergillus variecolor, Aspergillus quadrilinieatus, Aspergillus tubingensis, Rhizopus oryzae, Actinomucor elegans and Apophysomyces variabilis were firstly detected in all sea turtle nests within this study. Our results demonstrate that 36.4% of the nests had fungal contamination. Also hatching success of the nests contaminated by fungi were significantly lower than the uncontaminated nests (P = 0.029). Also, this may represent a threat to marine turtles and a risk for the health of conservation workers. This study is the first molecular phylogenetic study associated with sea turtle nests in the eastern Mediterranean coast and contributes to the wider body of literature on fungal invasion of sea turtle nests with firstly isolated species. These findings are important for improving potential conservation measures for the nest sites.

  10. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  11. First record of a Caribbean green turtle (Chelonia mydas) grazing on invasive seagrass (Halophila stipulacea)

    NARCIS (Netherlands)

    Becking, L.E.; Bussel, T.; Debrot, A.O.; Christianen, M.

    2014-01-01

    From Bonaire, we here provide the first documented case of the green turtle feeding on the invasive seagrass, Halophila stipulacea, in the Caribbean. The seagrass is rapidly invading existing seagrass meadows and altering key foraging habitat of this endangered marine reptile throughout the eastern

  12. 76 FR 52888 - Western Pacific Pelagic Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle...

    Science.gov (United States)

    2011-08-24

    ... Modifications To Reduce Turtle Interactions AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... Pacific Region (Pelagics FEP), including an environmental assessment, that presents background information on this rule. The Pelagics FEP and Amendment 5 are available from the Council, 1164 Bishop St., Suite...

  13. Modeling neck mobility in fossil turtles

    OpenAIRE

    Werneburg, Ingmar; Hinz, Juliane K.; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G.

    2014-01-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the cent...

  14. Geographic distribution of the tortoises and freshwater turtles of Colombia and their representation in the protected area network

    International Nuclear Information System (INIS)

    Forero Medina, German; Yusti Munoz, Ana Paola; Castano Mora, Olga V

    2014-01-01

    Colombia has a remarkable diversity of tortoises and freshwater turtles. However, a considerable portion of these species is threatened, and for others there is not enough information to make an adequate evaluation of their conservation status. This study is a first approximation to the quantitative evaluation of the geographic distribution of Colombia's non-marine chelonians. Based on records of occurrence for each species, we evaluated the geographic distribution using statistical models (maxent), hydrological basins, and the extent of occurrence and area of occupancy. Based on the presence data and the models, we studied the representation of each species in national natural parks (NNP), which correspond to the most rigorous conservation category of IUCN classification in Colombia, and other types of protected areas such as private reserves. We generated distribution models and estimated the area (km"2) for 25 out of 27 species in the country. This information will be valuable for updating and evaluating the threat categories at the national level. The areas with the highest species richness correspond to the riverine ecosystems of the Amazon and Orinoco River Basins and the Caribbean Region, particularly the Western Caribbean. This region is a top priority not only because of its richness but also because of the presence of endemics and its high level of threat. Only 56 % of the species have confirmed records within national parks. A greater portion could be present in these areas according to the statistical models, but only ten of those species would have more than 10 % of their ranges within a park's boundary. Although the resulting models have certain limitations due to the nature of the data and analyses, they can be a starting point for research on the occurrence of turtles in NNP. Endemic species are poorly represented in protected areas, both in NNP and in other categories. Thus, protected areas that can assure the persistence of their populations are

  15. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  16. Mass poisoning after consumption of a hawksbill turtle, Federated States of Micronesia, 2010

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2015-01-01

    Full Text Available Background: Marine turtles of all species are capable of being toxic. On 17 October 2010, health authorities in the Federated States of Micronesia were notified of the sudden death of three children and the sickening of approximately 20 other people on Murilo Atoll in Chuuk State. The illnesses were suspected to be the result of mass consumption of a hawksbill turtle (Eretmochelys imbricata. An investigation team was assembled to confirm the cause of the outbreak, describe the epidemiology of cases and provide recommendations for control. Methods: We conducted chart reviews, interviewed key informants, collected samples for laboratory analysis, performed environmental investigations and conducted a cohort study. Results: Four children and two adults died in the outbreak and 95 others were sickened; 84% of those who ate the turtle became ill (n = 101. The relative risk for developing illness after consuming the turtle was 11.1 (95% confidence inteval: 4.8–25.9; there was a dose-dependent relationship between amount of turtle meat consumed and risk of illness. Environmental and epidemiological investigations revealed no alternative explanation for the mass illness. Laboratory testing failed to identify a causative agent. Conclusion: We concluded that turtle poisoning (also called chelonitoxism was the cause of the outbreak on Murilo. The range of illness described in this investigation is consistent with previously reported cases of chelonitoxism. This devastating incident highlights the dangers, particularly to children, of consuming turtle meat. Future incidents are certain to occur unless action is taken to alter turtle-eating behaviour in coastal communities throughout the world.

  17. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    Science.gov (United States)

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  18. An Analysis of Sea Turtle Demographics along Maryland Shores, 1990-2015

    Science.gov (United States)

    Rhoades, C.; Driscoll, C.; Weschler, A.; Crawford, M.

    2016-02-01

    The Maryland Department of Natural Resources Marine Mammal and Sea Turtle Stranding Program was established in the fall of 1990, and responded to their first documented sea turtle stranding in the summer of 1991. Over this twenty-five year period, 575 dead strandings of sea turtles have been documented. This research project analyzes all sea turtle case files from the initiation of this program for the following parameters in order to associate stranding trends; species, location (Atlantic Ocean v. Chesapeake Bay), seasonality, length, relative age, condition code, and sex. Further understanding these protected species will assist in conserving their coastal ecosystem and securing these species a sustainable future. Along with the parameters previously discussed, this study will also consider the factors contributing to the animal's death, if determined. These potential causes incorporate natural causes such as disease, and also detail instances of human interaction, including: dredge takes, commercial or recreational fishing interaction, power plant entrainment, propeller and boat strikes. A total of approximately 17% of the dead stranded sea turtles Maryland Department of Natural Resources responded to were found to have some proven aspect of human interaction. Lastly, in order to further investigate for human interaction stomach contents were analyzed for plastics or other forms of marine debris. This project will contribute to MD DNR and NOAA's mission, goals, and objectives by further understanding these protected species in order to conserve their coastal ecosystem and secure these species a sustainable future.

  19. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles

    Science.gov (United States)

    Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.

    2008-01-01

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188

  20. Spatial and temporal habitat-use patterns of wood turtles at the western edge of their distribution

    Science.gov (United States)

    Donald J. Brown; Mark D. Nelson; David J. Rugg; Richard R. Buech; Deahn M. Donner

    2016-01-01

    Wood Turtles (Glyptemys insculpta) are a state threatened species at the western edge of their geographic distribution in Minnesota, United States. There is currently little published information regarding habitat use of western populations to assist with conservation initiatives. The primary purpose of this study was to investigate habitat use of...

  1. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Science.gov (United States)

    Pearson, Steven H; Avery, Harold W; Kilham, Susan S; Velinsky, David J; Spotila, James R

    2013-01-01

    Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans) and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris) at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  2. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Steven H Pearson

    Full Text Available Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  3. Global sea turtle conservation successes.

    Science.gov (United States)

    Mazaris, Antonios D; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C

    2017-09-01

    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story.

  4. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing...; Endangered Species Act Listing Determination for Alewife and Blueback Herring AGENCY: National Marine... (Alosa aestivalis) as threatened under the Endangered Species Act (ESA) throughout all or a significant...

  5. Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel

    International Nuclear Information System (INIS)

    Lam, James C.W.; Tanabe, Shinsuke; Chan, Simon K.F.; Lam, Michael H.W.; Martin, Michael; Lam, Paul K.S.

    2006-01-01

    Concentrations of 22 trace elements were determined in green turtle (Chelonia mydas) eggs collected from Hong Kong. Concentrations of selenium, lead and nickel in these eggs were generally higher than those reported in other studies. The predicted no effect concentrations (PNEC; ng/g wet weight) of Pb (1000), Se (340 and 6000 for the worst-case and best-case scenarios, respectively) and Ni (17) in the green turtle eggs were estimated. Hazard quotients (HQs) estimate that Se (HQs: 0.2-24.5) and Ni (HQs: 4.0-26.4) may pose some risks to the turtles. Our study also found that concentrations of Ag, Se, Zn, Hg and Pb in the shell of the turtle eggs were significantly correlated with levels in the whole egg contents (yolk + albumen). Once the precise relationships of specific elements are established, egg-shell concentrations may be used as a non-lethal, non-invasive, surrogate for predicting whole egg burden of certain contaminants in marine turtles. - Concentrations of selenium and nickel in green turtle eggs from Hong Kong might pose some risks to the turtles

  6. Shared Epizoic Taxa and Differences in Diatom Community Structure Between Green Turtles (Chelonia mydas) from Distant Habitats.

    Science.gov (United States)

    Majewska, Roksana; de Vijver, Bart Van; Nasrolahi, Ali; Ehsanpour, Maryam; Afkhami, Majid; Bolaños, Federico; Iamunno, Franco; Santoro, Mario; De Stefano, Mario

    2017-11-01

    The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.

  7. Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Lam, James C.W. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, Tarumi 3-5-7, Matsuyama 790-8556 (Japan); Chan, Simon K.F. [Agriculture, Fisheries and Conservation Department, Hong Kong SAR Government, Hong Kong, (China); Lam, Michael H.W. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Martin, Michael [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Lam, Paul K.S. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China)]. E-mail: bhpksl@cityu.edu.hk

    2006-12-15

    Concentrations of 22 trace elements were determined in green turtle (Chelonia mydas) eggs collected from Hong Kong. Concentrations of selenium, lead and nickel in these eggs were generally higher than those reported in other studies. The predicted no effect concentrations (PNEC; ng/g wet weight) of Pb (1000), Se (340 and 6000 for the worst-case and best-case scenarios, respectively) and Ni (17) in the green turtle eggs were estimated. Hazard quotients (HQs) estimate that Se (HQs: 0.2-24.5) and Ni (HQs: 4.0-26.4) may pose some risks to the turtles. Our study also found that concentrations of Ag, Se, Zn, Hg and Pb in the shell of the turtle eggs were significantly correlated with levels in the whole egg contents (yolk + albumen). Once the precise relationships of specific elements are established, egg-shell concentrations may be used as a non-lethal, non-invasive, surrogate for predicting whole egg burden of certain contaminants in marine turtles. - Concentrations of selenium and nickel in green turtle eggs from Hong Kong might pose some risks to the turtles.

  8. Demographics of an ornate box turtle population experiencing minimal human-induced disturbances

    Science.gov (United States)

    Converse, S.J.; Iverson, J.B.; Savidge, J.A.

    2005-01-01

    Human-induced disturbances may threaten the viability of many turtle populations, including populations of North American box turtles. Evaluation of the potential impacts of these disturbances can be aided by long-term studies of populations subject to minimal human activity. In such a population of ornate box turtles (Terrapene ornata ornata) in western Nebraska, we examined survival rates and population growth rates from 1981-2000 based on mark-recapture data. The average annual apparent survival rate of adult males was 0.883 (SE = 0.021) and of adult females was 0.932 (SE = 0.014). Minimum winter temperature was the best of five climate variables as a predictor of adult survival. Survival rates were highest in years with low minimum winter temperatures, suggesting that global warming may result in declining survival. We estimated an average adult population growth rate (????) of 1.006 (SE = 0.065), with an estimated temporal process variance (????2) of 0.029 (95% CI = 0.005-0.176). Stochastic simulations suggest that this mean and temporal process variance would result in a 58% probability of a population decrease over a 20-year period. This research provides evidence that, unless unknown density-dependent mechanisms are operating in the adult age class, significant human disturbances, such as commercial harvest or turtle mortality on roads, represent a potential risk to box turtle populations. ?? 2005 by the Ecological Society of America.

  9. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pacific Islands Regional Office — National Marine Fisheries Service -

    Science.gov (United States)

    ? Report Marine Animals State-Wide Hotline 888-256-9840 Report sea turtle, monk seal, dolphin and whales (ESA) Marine Mammal Response and Rescue Protected Resources Outreach and Education Volunteer PRGC Contacts Marine National Monument Program About the Marine National Monument Program Frequently

  11. Methods of Developing User-Friendly Keys to Identify Green Sea Turtles (Chelonia mydas L. from Photographs

    Directory of Open Access Journals (Sweden)

    Jane R. Lloyd

    2012-01-01

    Full Text Available Identifying individual animals is important in understanding their ecology and behaviour, as well as providing estimates of population sizes for conservation efforts. We produce identification keys from photographs of green sea turtles to identify them while foraging in Akumal Bay, Mexico. We create three keys, which (a minimise the length of the key, (b present the most obvious differential characteristics first, and (c remove the strict dichotomy from key b. Keys were capable of identifying >99% of turtles in >2500 photographs during the six-month study period. The keys differed significantly in success rate for students to identify individual turtles, with key (c being the best with >70% success and correctly being followed further than other keys before making a mistake. User-friendly keys are, therefore, a suitable method for the photographic identification of turtles and could be used for other large marine vertebrates in conservation or behavioural studies.

  12. Turtles From an Arkadelphia Formation—Midway Group Lag Deposit (Maastrichtian—Paleocene, Hot Spring County, Arkansas, USA

    Directory of Open Access Journals (Sweden)

    Martin A. Becker

    2016-09-01

    Full Text Available The Arkadelphia Formation—Midway Group (Maastrichtian—Paleocene contact near Malvern, Arkansas preserves a K-Pg boundary assemblage of turtle species consisting of skull, shell, and non-shell postcranial skeletal elements. The Malvern turtles are preserved within a coquina lag deposit that comprises the basalmost Midway Group and also contains an abundance of other reptiles, as well as chondrichthyans, osteichthyans, and invertebrates. This coquina lag deposit records a complex taphonomic history of exhumation and reburial of vertebrate skeletal elements along a dynamic ancestral shoreline in southwestern Arkansas during the late Cretaceous-early Paleocene. Based on stratigraphic occurrence, the Malvern turtle assemblage indicates that these marine reptiles were living at or near the time of the K-Pg mass extinction and represent some of the latest Cretaceous turtles yet recovered from the Gulf Coastal Plain of the United States.

  13. Disappearance of endangered turtles within China's nature reserves.

    Science.gov (United States)

    Gong, Shi-Ping; Shi, Hai-Tao; Jiang, Ai-Wu; Fong, Jonathan J; Gaillard, Daniel; Wang, Ji-Chao

    2017-03-06

    China ranks first among Northern hemisphere countries for species richness, but approximately 43% of its species are threatened [1], with harvesting being the major threat to vertebrates [2]. To protect its biodiversity, China has established about 2,700 nature reserves covering 1.46 million km 2 ( about 15% of China's territory, a percentage higher than the world average [3]). With increasing habitat destruction and harvesting, nature reserves are the final refugia for threatened species. However, many Chinese nature reserves are poorly managed, leaving them vulnerable to poaching and other human encroachment [4]. In this study, we conducted a 12-year (2002-2013) case study on turtles to illustrate the damaging impacts China's nature reserves have on wildlife conservation. We discovered that poaching occurred in all of the 56 reserves surveyed, resulting in dramatically reduced turtle populations. In a majority of the reserves, the reserve staff themselves were involved in poaching. Although nature reserves were created to protect plants and animals, they have become part of the problem due to weak enforcement of rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 78 FR 34347 - Endangered and Threatened Species; Recovery Plan for the North Pacific Right Whale

    Science.gov (United States)

    2013-06-07

    ... and Threatened Species; Recovery Plan for the North Pacific Right Whale AGENCY: National Marine... Recovery Plan (Plan) for the North Pacific right whale (Eubalaena japonica). ADDRESSES: Electronic copies...

  15. The origin of turtles: a paleontological perspective.

    Science.gov (United States)

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles. © 2015 Wiley Periodicals, Inc.

  16. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains daily records of sea turtle inventories by species feeding rates type of food fed sick sea turtles sea turtles that have died log of tanks...

  17. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico

    Science.gov (United States)

    Zavala-Norzagaray, Alan A.; Aguirre, A. Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C. P.; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh+ gene) and 2/17 (11.7%) had the pandemic clone (tdh+ and toxRS/new+). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico. PMID:26161078

  18. Isolation, Characterization, and Antibiotic Resistance of Vibrio spp. in Sea Turtles from Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Alan A. eZavala-Norzagaray

    2015-06-01

    Full Text Available The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL, Baja California Sur, Mexico (Pacific Ocean and the lagoon system of Navachiste (LSN and Marine Area of Influence (MAI, Guasave, Sinaloa (Gulf of California. A total of 34 black turtles (Chelonia mydas agassizii were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%, V. parahaemolyticus in 17/64 (26% and V. cholerae in 6/64 (9%,. However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI. Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4% belonged to the pathogenic strains (tdh+ gene and 2/17 (11.7% had the pandemic clone (tdh+ and toxRS/new+. Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66% the accessory cholera enterotoxin gene (ace was identified but without virulence gene zot, ctxA and ctxB. Of the isolated V. parahaemolyticus, V. cholerae and V. alginolyticus strains, 94.1%, 33.4% and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin, respectively. In conclusion, the presence of several potential (toxigenic human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  19. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico.

    Science.gov (United States)

    Zavala-Norzagaray, Alan A; Aguirre, A Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C P; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh (+) gene) and 2/17 (11.7%) had the pandemic clone (tdh (+) and toxRS/new (+)). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  20. The ontogeny of morphological defenses in Kemp's ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtles.

    Science.gov (United States)

    Salmon, Michael; Higgins, Benjamin; Stewart, Joshua; Wyneken, Jeanette

    2015-08-01

    Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape-limited predators, but changes in body shape function throughout ontogeny-initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead. © 2015 Wiley Periodicals, Inc.

  1. The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines

    Science.gov (United States)

    Jones, Marc E. H.; Werneburg, Ingmar; Curtis, Neil; Penrose, Rod; O’Higgins, Paul; Fagan, Michael J.; Evans, Susan E.

    2012-01-01

    Background Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Methodology/Principal Findings Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. Conclusions/Significance In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex. PMID:23144831

  2. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea and skull shape in Testudines.

    Directory of Open Access Journals (Sweden)

    Marc E H Jones

    Full Text Available Sea turtles (Chelonoidea are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known.Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta and Kemp's ridley (Lepidochelys kempii, for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles.In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.

  3. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines.

    Science.gov (United States)

    Jones, Marc E H; Werneburg, Ingmar; Curtis, Neil; Penrose, Rod; O'Higgins, Paul; Fagan, Michael J; Evans, Susan E

    2012-01-01

    Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.

  4. 77 FR 31835 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC049 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., 2012. Angela Somma, Chief, Endangered Species Division, Office of Protected Resources, National Marine...

  5. 76 FR 49735 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA631 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS.... Therese Conant, Acting Chief, Endangered Species Division, Office of Protected Resources, National Marine...

  6. 77 FR 34349 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-06-11

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and steelhead under the Endangered Species Act (ESA). The HGMPs specify the operations of four... Somma, Chief, Endangered Species Division, Office of Protected Resources, National Marine Fisheries...

  7. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Camila Poli

    2015-09-01

    Full Text Available ABSTRACT Currently, plastics are recognized as a major pollutant of the marine environment, representing a serious threat to ocean wildlife. Here, we examined the occurrence and effects of plastic ingestion by sea turtles found stranded along the coast of Paraíba State, Brazil from August 2009 to July 2010. Ninety-eight digestive tracts were examined, with plastic found in 20 (20.4%. Sixty five percent (n = 13 of turtles with plastic in the digestive tract were green turtles (Chelonia mydas, 25% (n = 5 were hawksbills (Eretmochelys imbricata, and 10% (n = 2 were olive ridley (Lepidochelys olivacea. More plastic was found in the intestine (85% than in other parts of the gastrointestinal tract. We observed complete blockage of the gastrointestinal tract due to the presence of plastic in 13 of the 20 turtles that had ingested plastic. No correlation was found between the curved carapace length (CCL and the number or mass of the plastic ingested items. Significant differences were found between the intake of hard and soft plastic and the ingestion of white/transparent and colored plastic, with soft and white/transparent plastics being more commonly ingested. This study reveals the serious problem of plastic pollution to sea turtles at the area.

  8. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas)

    Science.gov (United States)

    Watson; Granger

    1998-09-01

    Wind tunnel tests were performed to measure the effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). A full-scale turtle model was constructed from an 11.5 kg specimen with a 48 cm carapace length, and a transmitter model was constructed from a Telonics ST-6. The turtle model was tested in a wind tunnel with and without the transmitter, which was mounted on the forward, topmost part of the carapace. Drag, lift and pitch moment were measured for several speeds and flow angles, and the data were scaled for application to the marine environment. At small flow angles representative of straight-line swimming, the transmitter increased drag by 27-30 %, reduced lift by less than 10 % and increased the pitch moment by 11-42 %. On the basis of the drag data at zero angle of attack, it is estimated that the backpack will reduce swimming speed by 11 %, assuming that the turtle produces the same thrust with the unit attached. The drag data are also used to estimate the effect of a transmitter on the swimming energetics of an adult green turtle. Design guidelines are included to minimize the adverse forces and moments caused by the transmitter.

  9. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The

  10. The endoskeletal origin of the turtle carapace

    Science.gov (United States)

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. PMID:23836118

  11. Sea Turtles and Strategies for Language Skills.

    Science.gov (United States)

    Tippins, Deborah; And Others

    1993-01-01

    Describes teaching strategies, including science activities, for challenging students' misconceptions about turtles and helping limited-English-proficiency students enhance their language proficiency. (PR)

  12. Modeling neck mobility in fossil turtles.

    Science.gov (United States)

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  13. Transitional fossils and the origin of turtles

    OpenAIRE

    Lyson, Tyler R.; Bever, Gabe S.; Bhullar, Bhart-Anjan S.; Joyce, Walter G.; Gauthier, Jacques A.

    2010-01-01

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile–bird clade, (ii) the lizard–tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard–tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the ‘parareptile’ Eunotosaurus africanus results in a single overriding morph...

  14. A Mycoplasma species of Emydidae turtles in the northeastern USA.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Niederriter, Holly; Zarate, Brian; Newton, Alisa L; McAloose, Denise

    2015-04-01

    Mycoplasma infections can cause significant morbidity and mortality in captive and wild chelonians. As part of a health assessment of endangered bog turtles (Glyptemys muhlenbergii) in the northeastern US, choanal and cloacal swabs from these and other sympatric species, including spotted turtles (Clemmys guttata), eastern box turtles (Terrapene carolina carolina), wood turtles (Glyptemys insculpta), and common snapping turtles (Chelydra serpentina) from 10 sampling sites in the states (US) of Delaware, New Jersey, and Pennsylvania, were tested by PCR for Mycoplasma. Of 108 turtles tested, 63 (58.3%) were PCR positive for Mycoplasma including 58 of 83 bog turtles (70%), three of three (100%) eastern box turtles, and two of 11 (18%) spotted turtles; all snapping turtles (n = 7) and wood turtles (n = 4) were negative. Sequence analysis of portions of the 16S-23S intergenic spacer region and the 16S ribosomal RNA gene revealed a single, unclassified species of Mycoplasma that has been previously reported in eastern box turtles, ornate box turtles (Terrapene ornata ornata), western pond turtles (Emys marmorata), and red-eared sliders (Trachemys scripta elegans). We document a high incidence of Mycoplasma, in the absence of clinical disease, in wild emydid turtles. These findings, along with wide distribution of the identified Mycoplasma sp. across a broad geographic region, suggest this bacterium is likely a commensal inhabitant of bog turtles, and possibly other species of emydid turtles, in the northeastern US.

  15. Biochemical indices and life traits of loggerhead turtles (Caretta caretta from Cape Verde Islands.

    Directory of Open Access Journals (Sweden)

    Sara Vieira

    Full Text Available The loggerhead turtle (Caretta caretta is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age

  16. Chemical Contaminants Found in the Gastrointestinal Tract of Loggerhead Sea Turtles (Caretta caretta)

    Science.gov (United States)

    Athey, S. N.; Seaton, P. J.; Mead, R. N.

    2016-02-01

    Plastic is becoming increasingly more abundant in the marine environment. Plastic ingestion has been shown to be a source of exposure to a variety of harmful compounds, such as polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates, which are known for their negative physiological effects on the endocrine system as well as their ability to adsorb and leach from plastic into the bodies of marine organisms. The physiological effects of these compounds on loggerhead sea turtles (Caretta caretta) still remain unknown. This study investigated the presence of toxicants on marine plastic samples collected from Bermuda, the Sargasso Sea, and the North Atlantic Ocean. Gas chromatography/triple quadruple mass spectrometry (GC/MS) analysis showed PAHs were present on many plastic debris samples. Plastic additives such as phthalates and (BPA) were also found. ΣPAH concentrations for anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene for 2013 environmental plastic samples averaged 26.7ng/g of plastic. This study also examined the presence of these compounds in fluids from the stomach, small intestine, and large intestine from two adult loggerhead turtles. GC/MS analysis also showed the presence of BPA and phthalates on plastic samples, as well as in two out of the six gastrointestinal fluids samples. Average ΣPAH concentration for GI fluids for the loggerheads in the study was 58.7 ng/mL. This study showed plastic could be a significant source of PAHs in sea turtles and the first to detect PAHs in sea turtle GI fluid. Loggerhead sea turtles are a long living species and could accumulate high concentrations of these endocrine-disrupting chemicals throughout their lifetime.

  17. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.

    Science.gov (United States)

    Kittle, Ronald P; McDermid, Karla J; Muehlstein, Lisa; Balazs, George H

    2018-02-01

    In Hawaii, glyphosate-based herbicides frequently sprayed near shorelines may be affecting non-target marine species. Glyphosate inhibits aromatic amino acid biosynthesis (shikimate pathway), and is toxic to beneficial gut bacteria in cattle and chickens. Effects of glyphosate on gut bacteria in marine herbivorous turtles were assessed in vitro. When cultures of mixed bacterial communities from gastrointestinal tracts of freshly euthanized green turtles (Chelonia mydas), were exposed for 24h to six glyphosate concentrations (plus deionized water control), bacterial density was significantly lower at glyphosate concentrations≥2.2×10 -4 gL -1 (absorbance measured at 600nm wavelength). Using a modified Kirby-Bauer disk diffusion assay, the growth of four bacterial isolates (Pantoea, Proteus, Shigella, and Staphylococcus) was significantly inhibited by glyphosate concentrations≥1.76×10 -3 gL -1 . Reduced growth or lower survival of gut bacteria in green turtles exposed to glyphosate could have adverse effects on turtle digestion and overall health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Monitoring organic and inorganic pollutants in juvenile live sea turtles: results from a study of Chelonia mydas and Eretmochelys imbricata in Cape Verde.

    Science.gov (United States)

    Camacho, María; Boada, Luis D; Orós, Jorge; López, Pedro; Zumbado, Manuel; Almeida-González, Maira; Luzardo, Octavio P

    2014-05-15

    Despite the current environmental concern regarding the risk posed by contamination in marine ecosystems, the concentrations of pollutants in sea turtles have not been thoroughly elucidated. In the current study, we determined the concentrations of 18 organochlorine pesticides (OCPs), 18 polychlorinated biphenyls (PCBs), 16 polycyclic aromatic hydrocarbons (PAHs) and 11 inorganic elements (Cu, Mn, Pb, Zn, Cd, Ni, Cr, As, Al, Hg and Se) for the first time in two sea turtle species (Chelonia mydas and Eretmochelys imbricata). Only five of the 18 analyzed OCPs were detected in both species. The average total OCP concentration was higher in green turtles than in hawksbills (0.33 ng/ml versus 0.20 ng/ml). Higher concentrations of individual congeners and total PCBs were also detected in green turtles than in hawksbills (∑PCBs=0.73ng/ml versus 0.19 ng/ml), and different PCB contamination profiles were observed in these two species. Concerning PAHs, we also observed a different contamination profile and higher levels of contamination in green turtles (∑PAHs=12.06 ng/ml versus 2.95 ng/ml). Di- and tri-cyclic PAHs were predominant in both populations, suggesting a petrogenic origin, rather than urban sources of PAHs. Additionally, all of the samples exhibited detectable levels of the 11 inorganic elements. In this case, we also observed relevant differences between both species. Thus, Zn was the most abundant inorganic element in hawksbills (an essential inorganic element), whereas Ni, a well-known toxicant, was the most abundant inorganic element in green turtles. The presence of contaminants is greater in green turtles relative to hawksbill turtles, suggesting a greater exposure to hazardous chemical contaminants for green turtles. These results provide baseline data for these species that can serve for future monitoring purposes outlined in the EU's Marine Strategy Framework Directive. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Tracing the Co-evolutionary History of the Chelonid Fibropapilloma-associated Herpesvirus and Its Host Sea Turtles

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso

    This thesis describes various aspects of marine turtle (Testudines) evolution and tackles a well-described and controversial disease of these animals, fibropapillomatosis (FP), which is believed to be caused by the Chelonid fibropapilloma-associated herpesvirus (CFPHV). A large dataset of samples...

  20. 76 FR 77465 - Endangered and Threatened Species; Proposed Threatened Status for Distinct Population Segments of...

    Science.gov (United States)

    2011-12-13

    ... Population Segments of the Bearded Seal AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... population segments (DPS) of the bearded seal (Erignathus barbatus) as threatened species under the... posed to this population by the projected habitat changes. Extension of Final Listing Determination The...

  1. 76 FR 35755 - Listing Endangered and Threatened Species: Threatened Status for the Oregon Coast Coho Salmon...

    Science.gov (United States)

    2011-06-20

    ... Oregon Coast Coho Salmon Evolutionarily Significant Unit AGENCY: National Marine Fisheries Service (NMFS... the Oregon Coast (OC) Evolutionarily Significant Unit (ESU) of coho salmon (Oncorhynchus kisutch... coho salmon ESU as threatened under the ESA in 1995 (60 FR 38011; July 25, 1995). Since then, we have...

  2. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period.

    Directory of Open Access Journals (Sweden)

    Kristen M Hart

    Full Text Available Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE, were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2 (50% KDEs, n = 10 and 741.4 km(2 (MCPs, n = 30; these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.

  3. Movements and Habitat-Use of Loggerhead Sea Turtles in the Northern Gulf of Mexico during the Reproductive Period

    Science.gov (United States)

    Hart, Kristen M.; Lamont, Margaret M.; Sartain, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.

    2013-01-01

    Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ∼250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons. PMID:23843971

  4. Analysis of epibiont data in relation with the Debilitated Turtle Syndrome of sea turtles in Chelonia mydas and Lepidochelys olivacea from Concepción coast, Chile

    Directory of Open Access Journals (Sweden)

    Italo Fernández

    2015-11-01

    Full Text Available Epibionts on the surface of the skin and shell of a specimen of Chelonia mydas and three Lepidochelys olivacea found floating on the coast of Concepción, Chile, between June 2010 and December 2012, were analyzed. These epibionts were analyzed during the clinical inspection and the tissue changes related to its settlement, with filamentous algae around, were observed. Subsequently, the epibionts were identified by morphological observation. The knowledge about theses epibionts in Chile is reviewed and the potential occurrence of Debilitated Turtle Syndrome (DTS in these turtles is discussed. The presence of sea turtles in the Chilean coast is considered a casual event, so there is little information on this issue. We propose it is necessary to carry out more studies on the association between turtles and epibionts because their identification, colonizing reptiles’ surface may give relevant information to a better understanding of different diseases, including DTS, that affect these marine reptiles and facilitates the development of strategies intended to recover their populations.

  5. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    Science.gov (United States)

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271 uM) that human cells (LC50=471 uM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  7. Checklist of marine tetrapods (reptiles, seabirds, and mammals) of Turkey

    OpenAIRE

    GÜÇLÜSOY, Harun; KARAUZ, Emine Sühendan; KIRAÇ, Cem Orkun; BİLECENOĞLU, Murat

    2014-01-01

    The occurrence of a total of 61 marine tetrapod species is presented in this paper, including 3 sea turtles, 43 sea birds, and 15 marine mammals. Distribution of each reported species along the Black Sea, Sea of Marmara, Aegean, and Levantine coasts of Turkey is mentioned, associated with key references.

  8. Turtle geometry the Python way

    OpenAIRE

    Battle, S.

    2014-01-01

    An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.

  9. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  10. 78 FR 44878 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... 21 CFR 1240.62 on May 23, 1975 (40 FR 22543), that ban the sale and distribution of viable turtle...

  11. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as turtles...

  12. Observations of sea turtles nesting on Misali islan, Pemba | Pharoah ...

    African Journals Online (AJOL)

    A nest-recording programme has collected data over five years from turtles nesting on Misali Island, off the West coast of Pemba, Tanzania. Five species of sea turtle are known to occur in Zanzibar waters, two of these species nested regularly on the island, with green turtle nests outnumbering hawksbill turtle nests by a ...

  13. First Assessment of the Sex Ratio for an East Pacific Green Sea Turtle Foraging Aggregation: Validation and Application of a Testosterone ELISA.

    Directory of Open Access Journals (Sweden)

    Camryn D Allen

    Full Text Available Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86. Additionally, the model assigned all turtles with their correct sex (if determined at recapture with 100% accuracy. Results indicated a female bias (2.83F:1M among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate

  14. Endangered Green Turtles (Chelonia mydas of the Northern Mariana Islands: Nesting Ecology, Poaching, and Climate Concerns

    Directory of Open Access Journals (Sweden)

    Tammy M. Summers

    2018-01-01

    Full Text Available Marine turtles in the western Pacific remain threatened by anthropogenic impacts, but the region lacks long-term biological data for assessing conservation status and trends. The Central West Pacific (CWP population of green turtles (Chelonia mydas was listed as Endangered by the U.S. in 2016, highlighting a need to fill existing data gaps. This study focuses on the subset of this population nesting in the Commonwealth of the Northern Mariana Islands (CNMI. Using 11 years of nesting data, we (i estimate reproductive demographic parameters, (ii quantify abundance and trends, and (iii estimate the impacts of anthropogenic threats, such as poaching of nesting females and increasing sand temperatures. In 2006–2016, nesting beach surveys, identification tagging, and nest excavations were conducted on Saipan, and rapid assessments of nesting activity were conducted on Tinian and Rota. On Saipan, temperature data-loggers were deployed inside nests and evidence of poaching (adults and eggs was recorded. This study documents year-round nesting with a peak in March–July. Nester abundance for the three islands combined was 11.9 ± 5.7 (mean ± standard deviation females annually, with at least 62.8 ± 35.1 nests observed per year. For 39 tagged individuals, straight carapace length was 95.6 ± 4.5 cm, remigration interval was 4.6 ± 1.3 years, and somatic growth was 0.3 ± 0.2 cm/yr. Reproductive parameter estimates included clutch frequency of 7.0 ± 1.3 nests per female, inter-nesting interval of 11.4 ± 1.0 days, clutch size of 93.5 ± 21.4 eggs, incubation period of 56.7 ± 6.4 days, hatching success of 77.9 ± 27.0%, and emergence success of 69.6 ± 30.3%. Mean nest temperature of 30.9 ± 1.5°C was above the pivotal threshold of 29.0°C for temperature dependent sex determination, suggesting a female bias may already exist. Model results suggest (i hatching success decreases and embryonic death increases when nests experience maximum temperatures

  15. Fast acquisition of a polysaccharide fermenting gut microbiome by juvenile green turtles Chelonia mydas after settlement in coastal habitats.

    Science.gov (United States)

    Campos, Patricia; Guivernau, Miriam; Prenafeta-Boldú, Francesc X; Cardona, Luis

    2018-04-10

    Tetrapods do not express hydrolases for cellulose and hemicellulose assimilation, and hence, the independent acquisition of herbivory required the establishment of new endosymbiotic relationships between tetrapods and microbes. Green turtles (Chelonia mydas) are one of the three groups of marine tetrapods with an herbivorous diet and which acquire it after several years consuming pelagic animals. We characterized the microbiota present in the feces and rectum of 24 young wild and captive green turtles from the coastal waters of Brazil, with curved carapace length ranging from 31.1 to 64.7 cm, to test the hypotheses that (1) the ontogenetic dietary shift after settlement is followed by a gradual change in the composition and diversity of the gut microbiome, (2) differences exist between the composition and diversity of the gut microbiome of green turtles from tropical and subtropical regions, and (3) the consumption of omnivorous diets modifies the gut microbiota of green turtles. A genomic library of 2,186,596 valid bacterial 16S rRNA reads was obtained and these sequences were grouped into 6321 different operational taxonomic units (at 97% sequence homology cutoff). The results indicated that most of the juvenile green turtles less than 45 cm of curved carapace length exhibited a fecal microbiota co-dominated by representatives of the phyla Bacteroidetes and Firmicutes and high levels of Clostridiaceae, Prophyromonas, Ruminococaceae, and Lachnospiraceae within the latter phylum. Furthermore, this was the only microbiota profile found in wild green turtles > 45 cm CCL and in most of the captive green turtles of any size feeding on a macroalgae/fish mixed diet. Nevertheless, microbial diversity increased with turtle size and was higher in turtles from tropical than from subtropical regions. These results indicate that juvenile green turtles from the coastal waters of Brazil had the same general microbiota, regardless of body size and origin, and suggest a fast

  16. Hexavalent Chromium Is Cytotoxic and Genotoxic to Hawksbill Sea Turtle Cells

    Science.gov (United States)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Thompson, W. Douglas; Wise, John Pierce

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7 percent relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36 percent of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3 percent relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29 percent of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. PMID:24952338

  17. Comparing Acoustic Tag Attachments Designed for Mobile Tracking of Hatchling Sea Turtles

    Directory of Open Access Journals (Sweden)

    Aimee L. Hoover

    2017-07-01

    Full Text Available The poorly understood movements of sea turtles during the “lost years” of their early life history have been characterized as a “passive drifter” stage. Biologging technology allows us to study patterns of dispersal, but the small body size of young life stages requires particular consideration that such tagging does not significantly impede animal movements. We tested the effect of instrument attachment methods for mobile acoustic tracking of hatchling sea turtles, including a design that would be suitable for leatherback turtles (Dermochelys coriacea. We obtained 8-week-old hatchery-reared green sea turtles (Chelonia mydas (n = 12 individuals and examined the effect of attaching Vemco V5 acoustic tags. Each animal's swim speed, swimming depth, and stroke frequency were determined under three scenarios: control, direct Velcro® attachment to the carapace, and harness attachment, to determine if there was a significant difference amongst treatments. Turtle swimming speed was significantly slower during the middle period of the trial for the harness attachment compared with the control. No significant change in swim speed was observed when the tag was attached directly with Velcro®, and no significant change in dive depth was observed for either treatment compared to the control. Stroke frequency was significantly greater compared to the control at the end of the trial for the Velcro® attachment only, although there was no corresponding increase in swimming speed. This information can be used to design effective approaches for actively tracking free-ranging hatchling sea turtles to understand dispersal and survival of these vulnerable marine species.

  18. Solomon Islands largest hawksbill turtle rookery shows signs of recovery after 150 years of excessive exploitation.

    Directory of Open Access Journals (Sweden)

    Richard J Hamilton

    Full Text Available The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands' future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet.

  19. North American box turtles: A natural history

    Science.gov (United States)

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  20. Modern turtle origins: the oldest known cryptodire.

    Science.gov (United States)

    Gaffney, E S; Hutchison, J H; Jenkins, F A; Meeker, L J

    1987-07-17

    The discovery of a turtle in the Early Jurassic(185 million years before present) Kayenta Formation of northeastern Arizona provides significant evidence about the origin of modern turtles. This new taxon possesses many of the primitive features expected in the hypothetical common ancestor of pleurodires and cryptodires, the two groups of modern turtles. It is identified as the oldest known cryptodire because of the presence of a distinctive cryptodiran jaw mechanism consisting of a trochlea over the otic chamber that redirects the line of action of the adductor muscle. Aquatic habits appear to have developed very early in turtle evolution. Kayentachelys extends the known record of cryptodires back at least 45 million years and documents a very early stage in the evolution of modern turtles.

  1. Transitional fossils and the origin of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Bhullar, Bhart-Anjan S; Joyce, Walter G; Gauthier, Jacques A

    2010-12-23

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.

  2. Changes of loggerhead turtle (Caretta caretta) dive behavior associated with tropical storm passage during the inter-nesting period.

    Science.gov (United States)

    Wilson, Maria; Tucker, Anton D; Beedholm, Kristian; Mann, David A

    2017-10-01

    To improve conservation strategies for threatened sea turtles, more knowledge on their ecology, behavior, and how they cope with severe and changing weather conditions is needed. Satellite and animal motion datalogging tags were used to study the inter-nesting behavior of two female loggerhead turtles in the Gulf of Mexico, which regularly has hurricanes and tropical storms during nesting season. We contrast the behavioral patterns and swimming energetics of these two turtles, the first tracked in calm weather and the second tracked before, during and after a tropical storm. Turtle 1 was highly active and swam at the surface or submerged 95% of the time during the entire inter-nesting period, with a high estimated specific oxygen consumption rate (0.95 ml min -1  kg -0.83 ). Turtle 2 was inactive for most of the first 9 days of the inter-nesting period, during which she rested at the bottom (80% of the time) with low estimated oxygen consumption (0.62 ml min -1  kg -0.83 ). Midway through the inter-nesting period, turtle 2 encountered a tropical storm and became highly active (swimming 88% of the time during and 95% after the storm). Her oxygen consumption increased significantly to 0.97 ml min -1  kg -0.83 during and 0.98 ml min -1  kg -0.83 after the storm. However, despite the tropical storm, turtle 2 returned to the nesting beach, where she successfully re-nested 75 m from her previous nest. Thus, the tropical storm had a minor effect on this female's individual nesting success, even though the storm caused 90% loss nests at Casey Key. © 2017. Published by The Company of Biologists Ltd.

  3. The Risk of Polychlorinated Biphenyls Facilitating Tumors in Hawaiian Green Sea Turtles (Chelonia mydas

    Directory of Open Access Journals (Sweden)

    Muting Yan

    2018-06-01

    Full Text Available The Hawaiian green turtle (Chelonia mydas is on the list of threatened species protected under the U.S. Endangered Species Act in 1978 in large part due to a severe tumor-forming disease named fibropapillomatosis. Chemical pollution is a prime suspect threatening the survival of C. mydas. In this study, PCBs concentrations were determined in 43 C. mydas plasma samples archived on Tern Island. The total PCBs concentration in male C. mydas (mean 1.10 ng/mL was two times more than that of females (mean 0.43 ng/mL. The relationship between straight carapace length and PCBs concentration in females has also been studied, which was negatively related. To figure out the possible existence of correlations between PCBs and tumor status, we measured the PCBs concentration in turtles with no tumor, moderate or severe tumor affliction. PCBs concentration of two afflicted groups was much higher than the healthy group, suggesting that PCBs may play a role in fibropapillomatosis in Hawaiian green turtle.

  4. Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico

    Science.gov (United States)

    Lamont, Margaret M.; Fujisaki, Ikuko; Stephens, Brail S.; Hackett, Caitlin

    2015-01-01

    Background: For imperiled marine turtles, use of satellite telemetry has proven to be an effective method in determining long distance movements. However, the large size of the tag, relatively high cost and low spatial resolution of this method make it more difficult to examine fine-scale movements of individuals, particularly at foraging grounds where animals are frequently submerged. Acoustic telemetry offers a more suitable method of assessing fine-scale movement patterns with a smaller tag that provides more precise locations. We used acoustic telemetry to define home ranges and describe habitat use of juvenile green turtles at a temperate foraging ground in the northern Gulf of Mexico.

  5. Proceedings fo the Seventeenth Annual Sea Turtle Symposium, 4-8 March 1997, Orlando, Florida, U.S.A.

    OpenAIRE

    Epperly, Sheryan P.; Braun, Joanne

    1998-01-01

    The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, stu...

  6. Recognizing Excellence: Turtles and Technology

    Science.gov (United States)

    Erickson, Susan; Howard, Sue

    2011-01-01

    Participating in the Disney Planet Challenge (DPC) program allowed this author's 22 fourth-grade students an opportunity to be involved in a real-world problem: how to protect a threatened species and become its advocate. Using many different technology tools, the students informed their community about a threatened species--the Blanding's…

  7. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  8. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown

    OpenAIRE

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-01-01

    Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position.Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtle...

  9. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    Science.gov (United States)

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  10. Green turtle (Chelonia mydas genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    Directory of Open Access Journals (Sweden)

    Juliana Costa Jordão

    2015-09-01

    Full Text Available Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs, where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas at the Paranaguá Estuarine Complex (PEC, Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60, and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  11. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  12. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    Science.gov (United States)

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  13. Migrations of green turtles (Chelonia mydas between nesting and foraging grounds across the Coral Sea.

    Directory of Open Access Journals (Sweden)

    Tyffen C Read

    Full Text Available Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97 and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2 even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

  14. Evolutionary origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  15. Sea turtle and artisanal cerco-fixo fishing interactions in Cananéia, south coast of São Paulo

    Directory of Open Access Journals (Sweden)

    Natália Cristina Fidelis Bahia

    2010-01-01

    Full Text Available Sea turtles are reptiles that occur on the Brazilian coast, mainly on nesting and feeding grounds. The consumption of turtle meat and eggs is an ancient habit in many coastal communities around the world. The main dangers that threaten these species are the increase in fishing and the drastic changes in the environment. This study aimed to elucidate the interaction between the artisanal fishermen and the sea turtles in Cananéia, São Paulo state, Brazil. Local fishermen had developed an artisanal trap to fish, the "cerco-fixo", and through interviews and illustrations, as well as by accompanying the fishermen' daily activities, three main aspects were verified: (i the perception of the fishermen about the sea turtles; (ii the identification of species and morphological characteristics of these animals; and (iii a description of the incidental bycatch of sea turtles in these traps. The data indicates that this fishing trap is not harmful to the sea turtles. Location of traps can influence the capture of these animals, particularly those traps placed on rocky shores and other similiar points.

  16. Sea turtle and artisanal cerco-fixo fishing interactions in Cananéia, south coast of São Paulo

    Directory of Open Access Journals (Sweden)

    Natália Cristina Fidelis Bahia

    2010-09-01

    Full Text Available Sea turtles are reptiles that occur on the Brazilian coast, mainly on nesting and feeding grounds. The consumption of turtle meat and eggs is an ancient habit in many coastal communities around the world. The main dangers that threaten these species are the increase in fishing and the drastic changes in the environment. This study aimed to elucidate the interaction between the artisanal fishermen and the sea turtles in Cananéia, São Paulo state, Brazil. Local fishermen had developed an artisanal trap to fish, the “cerco-fixo”, and through interviews and illustrations, as well as by accompanying the fishermen’ daily activities, three main aspects were verified: (i the perception of the fishermen about the sea turtles; (ii the identification of species and morphological characteristics of these animals; and (iii a description of the incidental bycatch of sea turtles in these traps. The data indicates that this fishing trap is not harmful to the sea turtles. Location of traps can influence the capture of these animals, particularly those traps placed on rocky shores and other similiar points.

  17. Marine mammal observations conducted during US National Science Foundation geophysical research cruises in the global oceans from the platforms Maurice Ewing, Marcus G. Langseth, Thomas G. Thompson, and the R/V Knorr from 28 May 2003 to 25 August 2009 (NODC Accession 0083783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All marine mammals and sea turtles that were visually observed during a marine geophysical survey were recorded to: 1) determine whether a mitigation measure needed...

  18. Prediction of supratidal Zones as turtle nesting sites using remote sensing and geographic information system, a case study in Pacitan, Southern Java Sea

    Science.gov (United States)

    Darmawan, A.; Saputra, D. K.; Wiadnya, D. G. R.; Gusmida, A. M.

    2018-04-01

    Turtles, the most threatened coastal-marine fauna, are protected through both national and global regulations. However, many of their nesting sites have been degraded in the past years. Completing natal homing, adult females emerged at night to lay-down eggs in the upper intertidal and supra-tidal zone of sandy beach from where they hatched. This study explained coastal topology of beaches usually used for nesting sites, covering 117 km coastline at Pacitan Regency, Southern Java Sea. The shift in beach morphology through times was figured out based on Landsat 8 and Sentinel 2a satellite imagery and remote sensing (GIS methods). This was combined with in-situ data on current coastline features, slope, and tide variations. Results showed a typical sandy beach, called Taman Ria Beach, a long time identified as nesting site for Lepidochelys olivacea, locally named as Penyu Lekang. Also, there was approximatelly 3.49 ha of supratidal area predicted in Taman Ria Beach according this study

  19. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas.

    Science.gov (United States)

    Flint, Mark; Matthews, Beren J; Limpus, Colin J; Mills, Paul C

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65-97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11-50%)], pre-albumin [two of five, 40% (95% CI 5-85%)], albumin [13 of 22, 59% (95% CI 36-79%)], total albumin [13 of 22, 59% (95% CI 36-79%)], α- [10 of 22, 45% (95% CI 24-68%)], β- [two of 10, 20% (95% CI 3-56%)], γ- [one of 10, 10% (95% CI 0.3-45%)] and β-γ-globulin [one of 12, 8% (95% CI 0.2-38%)] and total globulin [five of 22, 23% (8-45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle.

  20. The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions

    Science.gov (United States)

    Rees, Alan F.; Avens, Larisa; Ballorain, Katia; Bevan, Elizabeth; Broderick, Annette C.; Carthy, Raymond R.; Christianen, Marjolijn J. A.; Duclos, Gwénaël; Heithaus, Michael R.; Johnston, David W.; Mangel, Jeffrey C.; Paladino, Frank V.; Pendoley, Kellie; Reina, Richard D.; Robinson, Nathan J.; Ryan, Robert; Sykora-Bodie, Seth T.; Tilley, Dominic; Varela, Miguel R.; Whitman, Elizabeth R.; Whittock, Paul A.; Wibbels, Thane; Godley, Brendan J.

    2018-01-01

    The use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa.

  1. Evaluation of a Petition Requesting National Marine Fisheries Service (NMFS) to List the Smooth Hammerhead Shark (Sphryna zygaena) as a Threatened or Endangered Species Under the Endangered Species Act (ESA)

    Science.gov (United States)

    Sturm, A. B.

    2016-12-01

    The wildlife conservation organization, Defenders of Wildlife, petitioned NMFS to list the smooth hammerhead shark, Sphryna zygaena, as endangered or threatened throughout its range under the ESA. The petition was critically evaluated to determine if the petitioners presented substantial scientific or commercial information indicating that the smooth hammerhead shark may warrant listing under the ESA. The petition and the cited scientific literature (as well as scientific literature readily available in NMFS files) were evaluated to determine if the smooth hammerhead shark may be threatened or endangered because of any one or a combination of the following five ESA section 4(a)(1) factors: (1) present or threatened destruction, modification, or curtailment of its habitat or range; (2) over utilization for commercial, recreational, scientific, or educational purposes; (3) disease or predation; (4) inadequacy of existing regulatory mechanisms; (5) or other natural or manmade factors affecting its continued existence. The available scientific literature indicates that the smooth hammerhead shark populations have declined in multiple regions. Smooth hammerhead sharks may warrant listing due to ongoing threats of over utilization for commercial purposes by global fisheries that target and retain incidental catch of these species to obtain their high-value fins, possible inadequacies in global regulatory mechanisms to control this level of exploitation, and natural factors (such as inherent biological vulnerabilities) that may be exacerbating these threats. Based on these findings, the smooth hammerhead shark may warrant listing as a threatened or endangered species under the ESA and a status review of the species is currently being conducted.

  2. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  3. Green sea turtle age, growth, population characteristics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Morphology, sex ratio, body condition, disease status, age structure, and growth patterns were characterized for 448 green sea turtles cold stunned in St. Joseph...

  4. Adult loggerhead turtle size, age, stage duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 313 loggerhead sea turtles (Caretta caretta) stranded dead along the Atlantic US coast...

  5. Leatherback sea turtle age and growth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in scleral ossicle bones of 33 leatherback sea turtles stranded dead along the Atlantic and Gulf of Mexico US...

  6. Coendangered hard-ticks: threatened or threatening?

    Directory of Open Access Journals (Sweden)

    Cozma Vasile

    2011-05-01

    Full Text Available Abstract The overwhelming majority of animal conservation projects are focused on vertebrates, despite most of the species on Earth being invertebrates. Estimates state that about half of all named species of invertebrates are parasitic in at least one stage of their development. The dilemma of viewing parasites as biodiversity or pest has been discussed by several authors. However, ticks were omitted. The latest taxonomic synopses of non-fossil Ixodidae consider valid 700 species. Though, how many of them are still extant is almost impossible to tell, as many of them are known only from type specimens in museums and were never collected since their original description. Moreover, many hosts are endangered and as part of conservation efforts of threatened vertebrates, a common practice is the removal of, and treatment for external parasites, with devastating impact on tick populations. There are several known cases when the host became extinct with subsequent coextinction of their ectoparasites. For our synoptic approach we have used the IUCN status of the host in order to evaluate the status of specifically associated hard-ticks. As a result, we propose a number of 63 coendangered and one extinct hard-tick species. On the other side of the coin, the most important issue regarding tick-host associations is vectorial transmission of microbial pathogens (i.e. viruses, bacteria, protozoans. Tick-borne diseases of threatened vertebrates are sometimes fatal to their hosts. Mortality associated with pathogens acquired from ticks has been documented in several cases, mostly after translocations. Are ticks a real threat to their coendangered host and should they be eliminated? Up to date, there are no reliable proofs that ticks listed by us as coendangered are competent vectors for pathogens of endangered animals.

  7. Turtle Hearing Capability Based on ABR Signal assessment

    Directory of Open Access Journals (Sweden)

    Raja Bidin Raja Hassan

    2010-08-01

    Full Text Available Sea turtles have existed for millions of years. International Union for Conservation of Nature (IUCN has reported that the Hawksbill Turtle (Eretmochelys imbricata is classified as critically endangered. Turtle excluder device (TED deployment on shrimpnet fisheries is needed for turtle conservation.TED using sound technique is challenge method in fisheries development.The knowledge on turtle hearing capability is limited. The auditory brainstem response (ABR assessment is method to determine turtle hearing capability. Turtle hearing assessment is basis to design TED. The objective of this paper is to determine turtle hearing cability by analyze its ABR spectral.The subject is Hawksbill turtle with number 2 turtles ie: 3 and 2 years. The measurement was taken at Pusat Pengurusan Penyu (Turtle Management Centre Padang Kemunting Masjid Tanah Melaka Malaysia. The results shows that turtle 3 years have peak power frequencies 50.78, 101.6, 152.3, 304.7, 355.5, 457, and 507.8Hz respectively whereas the spectral amplitude is ranging 0.03-32.44% spectral. Turtle 2 years has peak power at 457Hz in whole stimulus frequencies while the spectral amplitude is ranging 0.01-2.5% spectral.

  8. Endangered species: where leatherback turtles meet fisheries.

    OpenAIRE

    Ferraroli , S.; Georges , J.-Y.; Gaspar , P.; Le Maho , Y.

    2004-01-01

    International audience; The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that the...

  9. Rhinochelys amaberti Moret (1935, a protostegid turtle from the Early Cretaceous of France

    Directory of Open Access Journals (Sweden)

    Isaure Scavezzoni

    2018-04-01

    Full Text Available Modern marine turtles (chelonioids are the remnants of an ancient radiation that roots in the Cretaceous. The oldest members of that radiation are first recorded from the Early Cretaceous and a series of species are known from the Albian-Cenomanian interval, many of which have been allocated to the widespread but poorly defined genus Rhinochelys, possibly concealing the diversity and the evolution of early marine turtles. In order to better understand the radiation of chelonioids, we redescribe the holotype and assess the taxonomy of Rhinochelys amaberti Moret (1935 (UJF-ID.11167 from the Late Albian (Stoliczkaia dispar Zone of the Vallon de la Fauge (Isère, France. We also make preliminary assessments of the phylogenetic relationships of Chelonioidea using two updated datasets that widely sample Cretaceous taxa, especially Rhinochelys. Rhinochelys amaberti is a valid taxon that is supported by eight autapomorphies; an emended diagnosisis proposed. Our phylogenetic analyses suggest that Rhinochelys could be polyphyletic, but constraining it as a monophyletic entity does not produce trees that are significantly less parsimonious. Moreover, support values and stratigraphic congruence indexes are fairly low for the recovered typologies, suggesting that missing data still strongly affect our understanding of the Cretaceous diversification of sea turtles.

  10. Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill

    Science.gov (United States)

    Vander Zanden, Hannah B.; Bolten, Alan B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Reich, Kimberly J.; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Pajuelo, Mariela; Bjorndal, Karen A.

    2016-01-01

    Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.

  11. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)

    Science.gov (United States)

    Langer, Max C.; Sterli, Juliana

    2018-01-01

    Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa–Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous–Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages. PMID:29657780

  12. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and

  13. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    Science.gov (United States)

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles. © 2015 The Author(s).

  14. The developmental biogeography of hawksbill sea turtles in the North Pacific.

    Science.gov (United States)

    Van Houtan, Kyle S; Francke, Devon L; Alessi, Sarah; Jones, T Todd; Martin, Summer L; Kurpita, Lauren; King, Cheryl S; Baird, Robin W

    2016-04-01

    High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0-4 years of age, measuring 8-34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems - entanglement and ingestion of marine debris - and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions.

  15. Trace elements in loggerhead turtles (Caretta caretta) stranded in mainland Portugal: Bioaccumulation and tissue distribution.

    Science.gov (United States)

    Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina

    2017-07-01

    Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Blood gases, biochemistry, and hematology of Galapagos green turtles (Chelonia mydas.

    Directory of Open Access Journals (Sweden)

    Gregory A Lewbart

    Full Text Available The green turtle, Chelonia mydas, is an endangered marine chelonian with a circum-global distribution. Reference blood parameter intervals have been published for some chelonian species, but baseline hematology, biochemical, and blood gas values are lacking from the Galapagos sea turtles. Analyses were done on blood samples drawn from 28 green turtles captured in two foraging locations on San Cristóbal Island (14 from each site. Of these turtles, 20 were immature and of unknown sex; the other eight were males (five mature, three immature. A portable blood analyzer (iSTAT was used to obtain near immediate field results for pH, lactate, pO2, pCO2, HCO3-, Hct, Hb, Na, K, iCa, and Glu. Parameter values affected by temperature were corrected in two ways: (1 with standard formulas; and (2 with auto-corrections made by the iSTAT. The two methods yielded clinically equivalent results. Standard laboratory hematology techniques were employed for the red and white blood cell counts and the hematocrit determination, which was also compared to the hematocrit values generated by the iSTAT. Of all blood analytes, only lactate concentrations were positively correlated with body size. All other values showed no significant difference between the two sample locations nor were they correlated with body size or internal temperature. For hematocrit count, the iSTAT blood analyzer yielded results indistinguishable from those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among Galapagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease.

  17. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Morcillo, Patricia; Guardiola, Francisco A; Espinosa, Cristobal; Esteban, María A; Cuesta, Alberto; Girondot, Marc; Romero, Diego

    2018-02-01

    Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H 2 O 2 may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Caught in the Same Net? Small-Scale Fishermen's Perceptions of Fisheries Interactions with Sea Turtles and Other Protected Species

    Directory of Open Access Journals (Sweden)

    Aliki Panagopoulou

    2017-06-01

    Full Text Available Small-scale fisheries are responsible for high numbers of animals caught as bycatch, such as turtles, cetaceans, and seals. Bycatch and its associated mortality is a major conservation challenge for these species and is considered undesirable by fishermen. To gain insights on the impact of bycatch on small-scale fishermen and put it in context with other financial and environmental challenges they face, we conducted questionnaire-based interviews on fishermen working on Crete, Greece. We investigated fishermen's perceptions of sea turtle and other protected species interactions, and the impacts of such interactions on their profession and livelihoods. Our results indicate a connection between declining fish stocks, related increased fishing effort, and reported increased frequency of interactions between fishermen and sea turtles. Respondents believed that their livelihoods were endangered by industrial fishing and environmental problems, but thought that combined interactions with turtles and other marine megafauna species were a larger problem. Responses suggested that extending compensation to fishermen may be a good conservation intervention. Small-scale fishermen hold a wealth of knowledge about the marine environment and its resources. This may be of help to researchers and policy makers as it could be used to achieve a better managed, sustainable fishery. Including small-scale fishermen in the process of developing regulations will both enhance those regulations and increase compliance with them.

  19. Host-specific phenotypic plasticity of the turtle barnacle Chelonibia testudinaria: a widespread generalist rather than a specialist.

    Directory of Open Access Journals (Sweden)

    Chi Chiu Cheang

    Full Text Available Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4-6(th cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.

  20. The western pond turtle: Habitat and history. Final report

    International Nuclear Information System (INIS)

    Holland, D.C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy

  1. The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease

    NARCIS (Netherlands)

    Beintema, Jacob; Broos, Jaap; Meulenberg, Janneke; Schüller, Cornelis

    1985-01-01

    Snapping turtle (Chelydra serpentina) ribonuclease was isolated from pancreatic tissue. Turtle ribonuclease binds much more weakly to the affinity chromatography matrix used than mammalian ribonucleases. The amino acid sequence was determined from overlapping peptides obtained from three different

  2. Assessment of MEGA BORG impacts on sea turtles

    International Nuclear Information System (INIS)

    Gitschlag, G.

    1993-01-01

    Studies were conducted to assess the impacts of the MEGA BORG oil spill on sea turtles in the path of the oil plume. Aerial surveys were performed to determine the presence of turtles and provide a gross visual assessment of potential impacts. Although extensive efforts were made to capture sea turtles around oil and gas platforms only one loggerhead sea turtle, Caretta caretta, was captured. Neither external visual inspection nor laboratory fecal analysis showed evidence of petroleum contamination

  3. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    OpenAIRE

    Robinson, Nathan J.; Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtl...

  4. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    OpenAIRE

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  5. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    Science.gov (United States)

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  6. Challenges in Evaluating the Severity of Fibropapillomatosis: A Proposal for Objective Index and Score System for Green Sea Turtles (Chelonia mydas) in Brazil.

    Science.gov (United States)

    Rossi, Silmara; Sánchez-Sarmiento, Angélica María; Vanstreels, Ralph Eric Thijl; Dos Santos, Robson Guimarães; Prioste, Fabiola Eloisa Setim; Gattamorta, Marco Aurélio; Grisi-Filho, José Henrique Hildebrand; Matushima, Eliana Reiko

    2016-01-01

    Fibropapillomatosis (FP) is a neoplastic disease that affects marine turtles worldwide, especially green sea turtles (Chelonia mydas). FP tumors can develop on the body surface of marine turtles and also internally in the oral cavity and viscera. Depending on their quantity, size and anatomical distribution, these tumors can interfere with hydrodynamics and the ability to feed, hence scoring systems have been proposed in an attempt to quantify the clinical manifestation of FP. In order to establish a new scoring system adapted to geographic regions, we examined 214 juvenile green sea turtles with FP caught or rescued at Brazilian feeding areas, counted their 7466 tumors and classified them in relation to their size and anatomical distribution. The patterns in quantity, size and distribution of tumors revealed interesting aspects in the clinical manifestation of FP in specimens studied in Brazil, and that FP scoring systems developed for other areas might not perform adequately when applied to sea turtles on the Southwest Atlantic Ocean. We therefore propose a novel method to evaluate the clinical manifestation of FP: fibropapillomatosis index (FPI) that provides the Southwest Atlantic fibropapillomatosis score (FPSSWA). In combination, these indexing and scoring systems allow for a more objective, rapid and detailed evaluation of the severity of FP in green sea turtles. While primarily designed for the clinical manifestation of FP currently witnessed in our dataset, this index and the score system can be adapted for other areas and compare the characteristics of the disease across regions. In conclusion, scoring systems to classify the severity of FP can assist our understanding on the environmental factors that modulate its development and its impacts on the individual and population health of green sea turtles.

  7. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals of...

  8. Turtle bycatch in the pelagic longline fishery off southern Africa ...

    African Journals Online (AJOL)

    Capture by pelagic longline fisheries has been identified as a key threat to turtle populations. This study is the first assessment of turtle bycatch in the South African pelagic longline fishery for tunas Thunnus spp. and swordfish Xiphias gladius. A total of 181 turtles was caught on observed sets between 1998 and 2005, at a ...

  9. 77 FR 27411 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Science.gov (United States)

    2012-05-10

    ... imbricata) turtles are listed as endangered. The loggerhead (Caretta caretta; Northwest Atlantic distinct... populations of green turtles in Florida and on the Pacific coast of Mexico, which are listed as endangered... regulations (50 CFR 223.206) are followed. The same conservation measures also apply to endangered sea turtles...

  10. Morphological study of the plastron of the African sideneck turtle ...

    African Journals Online (AJOL)

    The morphological analysis of the plastron of the African sideneck turtle (Pelusios castaneus) was carried out using fifty adult turtles comprising twenty female and thirty male turtles picked up at different times from various river banks in Ibadan, Nigeria. The aim of the study was to provide baseline information that could be ...

  11. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    Science.gov (United States)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches

  12. Geometry and self-righting of turtles.

    Science.gov (United States)

    Domokos, Gábor; Várkonyi, Péter L

    2008-01-07

    Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise.

  13. Evolutionary origin of the turtle shell.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    Science.gov (United States)

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  15. Using Expert Elicitation to Estimate the Impacts of Plastic Pollution on Marine Wildlife

    Science.gov (United States)

    Mallos, N. J.; Wilcox, C.; Leonard, G. H.; Rodriquez, A. G.; Hardesty, B. D.

    2016-02-01

    With the rapid increase in global plastics production and the resulting large volume of litter that enters the marine environment, determining the consequences of this debris on marine fauna and ocean health has now become a critical environmental priority, particularly for threatened and endangered species. However, there are limited data about the impacts on debris on marine species from which to draw conclusions about the population consequences of anthropogenic debris. To address this knowledge gap, information was elicited from experts on the ecological threat of entanglement, ingestion and chemical contamination for three major marine taxa: seabirds, sea turtles and marine mammals. The threat assessment focused on the most common types of litter that are found along the world's coastlines, based on data gathered during three decades of international coastal clean-up efforts. Fishing related gear, balloons and plastic bags were estimated to pose the greatest entanglement risk to marine fauna. In contrast, experts identified a broader suite of items of concern for ingestion, with plastic bags and plastic utensils ranked as the greatest threats. Entanglement and ingestion affected a similar range of taxa, although entanglement was slightly worse as it is more likely to be lethal. Contamination was scored the lowest in terms of its impact, affecting a smaller portion of the taxa and being rated as having solely non-lethal impacts. Research designed to better understand and quantify the impacts of chemical contamination on marine fauna at individual, population and species levels should be a priority for conservation biologists. This work points towards a number of opportunities for both policy-based and consumer-driven changes in plastics use that could have demonstrable affects for a range of taxa that are ecologically important and serve as indicators of marine ecosystem health. Based on threat rankings, entanglement and ingestion should be a similar priority

  16. 78 FR 60254 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-10-01

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues permits based on findings... conduct water quality, [[Page 60255

  17. 78 FR 43145 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC767 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice of availability. SUMMARY: This...

  18. 78 FR 34653 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-06-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC717 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice of decision and availability of...

  19. 78 FR 4836 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-01-23

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... steelhead promulgated under the Endangered Species Act (ESA). The plan specifies fishery management...: January 17, 2013. Angela Somma, Chief, Endangered Species Division, Office of Protected Resources...

  20. 78 FR 4834 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC444 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... species. Dated: January 16, 2013. Angela Somma, Chief, Endangered Species Division, Office of Protected...

  1. Strandings of cetaceans and sea turtles in the Alboran Sea and Strait of Gibraltar: a long–time glimpse of the north coast (Spain and the south coast (Morocco

    Directory of Open Access Journals (Sweden)

    Rojo–Nieto, E.

    2011-06-01

    Full Text Available A total of 13 species of cetaceans and three species of marine turtles were found in this study. Data were collected by eight independent and self-regulated stranding networks, providing information about 1,198 marine mammal (10 odontocetii, three mysticetii and one phocidae and 574 sea turtle stranding events between 1991 and 2008. Trends in the strandings were analysed in relation to species composition and abundance, and their geographic and seasonal distribution. The most abundant species recorded were the striped dolphin and the loggerhead turtle. Some of the strandings, such as the humpback whale, harbour porpoise, hooded seal and olive ridley turtle, were considered ‘rare’ because their distribution did not match the pattern of the study. When the north and south coasts in the study area were compared, pilot whales stranded more frequently in the north, while delphinid species stranded more in the south coast, and loggerhead turtles stranded more frequently in the north while leatherback turtles stranded more in south coast.

  2. Do roads reduce painted turtle (Chrysemys picta) populations?

    Science.gov (United States)

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  3. Checklist of sea turtles endohelminth in Neotropical region

    Directory of Open Access Journals (Sweden)

    Werneck M. R.

    2016-09-01

    Full Text Available This paper presents a list of parasites described in sea turtles from the Neotropical region. Through the review of literature the occurrence of 79 taxa of helminthes parasites were observed, mostly consisting of the Phylum Platyhelminthes with 76 species distributed in 14 families and 2 families of the Phylum Nematoda within 3 species. Regarding the parasite records, the most studied host was the green turtle (Chelonia mydas followed by the hawksbill turtle (Eretmochelys imbricata, olive ridley turtle (Lepidochelys olivacea, loggerhead turtle (Caretta caretta and leatherback turtle (Dermochelys coriacea. Overall helminths were reported in 12 countries and in the Caribbean Sea region. This checklist is the largest compilation of data on helminths found in sea turtles in the Neotropical region.

  4. TURTLE 24.0 diffusion depletion code

    International Nuclear Information System (INIS)

    Altomare, S.; Barry, R.F.

    1971-09-01

    TURTLE is a two-group, two-dimensional (x-y, x-z, r-z) neutron diffusion code featuring a direct treatment of the nonlinear effects of xenon, enthalpy, and Doppler. Fuel depletion is allowed. TURTLE was written for the study of azimuthal xenon oscillations, but the code is useful for general analysis. The input is simple, fuel management is handled directly, and a boron criticality search is allowed. Ten thousand space points are allowed (over 20,000 with diagonal symmetry). TURTLE is written in FORTRAN IV and is tailored for the present CDC-6600. The program is core-contained. Provision is made to save data on tape for future reference. (auth)

  5. Endangered species: where leatherback turtles meet fisheries.

    Science.gov (United States)

    Ferraroli, Sandra; Georges, Jean-Yves; Gaspar, Philippe; Le Maho, Yvon

    2004-06-03

    The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that there is no equivalent of these corridors in the North Atlantic Ocean, because the turtles disperse actively over the whole area. But we are able to identify a few 'hot spots' where leatherbacks meet fisheries and where conservation efforts should be focused.

  6. African Journal of Marine Science - Vol 38, No 3 (2016)

    African Journals Online (AJOL)

    Protection of marine birds and turtles at St Brandon's Rock, Indian Ocean, requires conservation of the entire atoll · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SW Evans, N Cole, H Kylin, NS Choong Kwet Yive, V Tatayah, J Merven, H Bouwman, 317-327.

  7. 76 FR 43986 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-07-22

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., in the form of Hatchery and Genetic Management Plans (HGMPs) pursuant to the Endangered Species Act... the ``taking'' of a species listed as endangered or threatened. The term ``take'' is defined under the...

  8. 77 FR 41168 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-07-12

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... available for review pursuant to section 10(c) of the Endangered Species Act (ESA). DATES: Comments and... the ESA. NMFS regulations governing permits for threatened and endangered species are promulgated at...

  9. 75 FR 14133 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-03-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., in the form of Hatchery and Genetic Management Plans (HGMPs) pursuant to the Endangered Species Act... the ``taking'' of a species listed as endangered or threatened. The term ``take'' is defined under the...

  10. 76 FR 57717 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-09-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., importing, and exporting of endangered and threatened species (50 CFR parts 222-226). Permits Permit 15926... will be captured by fyke net, identified to species, enumerated and measured. Dead or moribund fish...

  11. 75 FR 14132 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-03-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Endangered Species Act of 1973, as amended (ESA). The proposed modification is to extend the existing permit... regulations prohibit the ``taking'' of a species listed as endangered or threatened. The term ``take'' is...

  12. Threatened and neglected forests

    International Nuclear Information System (INIS)

    Pellicane, P.J.; Gutkowski, R.M.; Czarnock, J.

    1997-01-01

    Polands once considerable forest resource suffered destruction during World War II and is now a victim of the legacy of past forest practices, the toxic effects of industrial pollution, and the urgent needs of its people today. Polish forest are threatened by a variety of abiotic, biotic and anthropogenic factors. Extremes of climate and declining groundwater tables add to the problem. Pollution is the most serious problem, particularly air pollution. Much of the air pollution in Poland is attributable to mining and burning high-sulfur coal. Besides describing the causes of the forest decline, this article discusses solutions

  13. PROTECTION OF THREATENED WITNESSES

    Directory of Open Access Journals (Sweden)

    Nadia Claudia CANTEMIR-STOICA

    2016-05-01

    Full Text Available First, I wish to make a presentation of historically institution and subsequently parallels between past and current regulators to expose whether the legislature has reached desire - namely ensuring effective protection of witnesses threatened and vulnerable. Also, I decided to analyze the topic from the perspective of the criminal procedural provisions of Law 682/2002 and witness protection, which are republished to expose the conditions and criteria by which to ensure this status. I also want to present besides theoretical and practical ways in which the National Office for Witness Protection gives effective legal provisions. Not least, I will bring criticism of current regulation and not by law ferenda proposals.

  14. Fatal trematodiasis in research turtles.

    Science.gov (United States)

    Johnson, C A; Griffith, J W; Tenorio, P; Hytrek, S; Lang, C M

    1998-08-01

    During a 5-year period, 16 freshwater turtles (Trachemys scripta elegans and Chrysemys picta) that were purchased for research purposes died spontaneously. Clinical signs of disease included lethargy, constant swimming, swimming sideways, hemiplegia, and ulcerative lesions on the carapace. At necropsy, subcutaneous edema, hepatic necrosis, pancreatic necrosis, splenic necrosis, and intestinal parasites were identified. Histologically, trematode eggs were seen within the liver, brain, spleen, kidney, myocardium, lung, pancreas, testes, and bladder, and were associated with granulomatous reactions. The size and distribution of the eggs were consistent with Spirorchis sp. infection, although adults could not be found to confirm the species. Spirorchid flukes are 1 to 2 mm long and inhabit the heart and blood vessels where they produce eggs. Spirorchis parvus are capable of invading various tissues, including pancreas and the central nervous system. The pathogenicity of the flukes seems to be related to widespread deposition of the eggs, which may block small blood vessels within the intestines, causing necrosis and bacteremia. Antemortem diagnosis is made by direct examination of fecal smears for eggs. Postmortem diagnosis is accomplished by examination of tissues for adult parasites and microgranulomas associated with the fluke eggs. The parasite requires a snail intermediate host to complete its life cycle. Intramuscular or oral administration of praziquantel is reported to be an effective treatment.

  15. Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: Transmission from native turtles.

    Science.gov (United States)

    Hidalgo-Vila, J; Díaz-Paniagua, C; Ribas, A; Florencio, M; Pérez-Santigosa, N; Casanova, J C

    2009-06-01

    We report the prevalence and diversity of helminth parasites found in native turtles Mauremys leprosa and Emys orbicularis from three localities in southwestern Spain and we describe the helminth communities of exotic turtles Trachemys scripta elegans coexisting in the wild with both native turtle species. Five nematodes species were identified, of which Serpinema microcephalus was the only species common between two localities, although infection parameters were different between them. This is the first report of cross transmission of S. microcephalus and Falcaustra donanaensis from native to exotic turtles and the first report of genus Physaloptera in turtles of the Palearctic Region. Continuous releasing of exotic pet turtles in wildlife ecosystems increases the risk of parasite introductions and, consequently, potential transmission to native species, and highlights the impending need for regulation of pet turtle trade in Europe.

  16. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    Science.gov (United States)

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  17. Loggerhead turtles (Caretta caretta use vision to forage on gelatinous prey in mid-water.

    Directory of Open Access Journals (Sweden)

    Tomoko Narazaki

    Full Text Available Identifying characteristics of foraging activity is fundamental to understanding an animals' lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study. By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67, showed that turtles swam straight toward prey in 171 events (i.e., turning point absent but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present. Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle's movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location.

  18. Nesting Ecology of Hawksbill Sea Turtles (Eretmochelys imbricata) on Utila, Honduras

    Science.gov (United States)

    Damazo, Lindsey Renee Eggers

    The hawksbill sea turtle (Eretmochelys imbricata) has a circumtropical distribution and plays an important role in maintaining the health of coral reefs. Unfortunately, hawksbill populations have been decimated, and estimated numbers in the Caribbean are less than 10% of populations a century ago. The hawksbill is considered Critically Endangered, and researchers are coordinating worldwide efforts to protect this species. One country where we lack knowledge regarding hawksbills is Honduras. This study aimed to increase our understanding of hawksbill nesting ecology in Caribbean Honduras. Characteristics of hawksbill nesting activity and a nesting beach on the island of Utila were elucidated using satellite telemetry, beach profiling, vegetation surveys, beach monitoring, and nest temperature profiles. We affixed satellite transmitters to two nesting hawksbills, and found the turtles migrated to different countries. One turtle traveled 403 km to a bay in Mexico, and the other traveled 181 km to a Marine Protected Area off Belize. This study presents the first description of hawksbill migration routes from Honduras, facilitating protection efforts for turtles that traverse international waters. To investigate nesting beach and turtle characteristics, we conducted beach monitoring during the 2012 nesting season. Nesting turtle carapace sizes were similar to worldwide values, but hatchlings were heavier. To measure nest temperatures, we placed thermocouple data loggers in four nests and four pseudo-nests. Data suggested metabolic heating may be maintaining nest temperatures above the pivotal temperature. However, large temperature fluctuations corresponding to rainfall from Hurricane Ernesto (as determined using a time series cross-correlation analysis) make it difficult to predict sex ratios, and underscore the impact stochastic events can have on nest temperatures. We created topographic and substrate profiles of the beach, and found it was 475 m long, yet hawksbills

  19. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    Science.gov (United States)

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  20. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present.

    Science.gov (United States)

    Cadena, Edwin A; Schweitzer, Mary H

    2012-09-01

    Here we describe variations in osteocytes derived from each of the three bone layers that comprise the turtle shell. We examine osteocytes in bone from four extant turtle species to form a morphological 'baseline', and then compare these with morphologies of osteocytes preserved in Cenozoic and Mesozoic fossils. Two different morphotypes of osteocytes are recognized: flattened-oblate osteocytes (FO osteocytes), which are particularly abundant in the internal cortex and lamellae of secondary osteons in cancellous bone, and stellate osteocytes (SO osteocytes), principally present in the interstitial lamellae between secondary osteons and external cortex. We show that the morphology of osteocytes in each of the three bone layers is conserved through ontogeny. We also demonstrate that these morphological variations are phylogenetically independent, as well as independent of the bone origin (intramembranous or endochondral). Preservation of microstructures consistent with osteocytes in the morphology in Cenozoic and Mesozoic fossil turtle bones appears to be common, and occurs in diverse diagenetic environments including marine, freshwater, and terrestrial deposits. These data have potential to illuminate aspects of turtle biology and evolution previously unapproachable, such as estimates of genome size of extinct species, differences in metabolic rates among different bones from a single individual, and potential function of osteocytes as capsules for preservation of ancient biomolecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.

    2009-01-01

    Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.

  2. Blanding’s Turtle (Emydoidea blandingii Potential Habitat Mapping Using Aerial Orthophotographic Imagery and Object Based Classification

    Directory of Open Access Journals (Sweden)

    Douglas J. King

    2012-01-01

    Full Text Available Blanding’s turtle (Emydoidea blandingii is a threatened species under Canada’s Species at Risk Act. In southern Québec, field based inventories are ongoing to determine its abundance and potential habitat. The goal of this research was to develop means for mapping of potential habitat based on primary habitat attributes that can be detected with high-resolution remotely sensed imagery. Using existing spring leaf-off 20 cm resolution aerial orthophotos of a portion of Gatineau Park where some Blanding’s turtle observations had been made, habitat attributes were mapped at two scales: (1 whole wetlands; (2 within wetland habitat features of open water, vegetation (used for camouflage and thermoregulation, and logs (used for spring sun-basking. The processing steps involved initial pixel-based classification to eliminate most areas of non-wetland, followed by object-based segmentations and classifications using a customized rule sequence to refine the wetland map and to map the within wetland habitat features. Variables used as inputs to the classifications were derived from the orthophotos and included image brightness, texture, and segmented object shape and area. Independent validation using field data and visual interpretation showed classification accuracy for all habitat attributes to be generally over 90% with a minimum of 81.5% for the producer’s accuracy of logs. The maps for each attribute were combined to produce a habitat suitability map for Blanding’s turtle. Of the 115 existing turtle observations, 92.3% were closest to a wetland of the two highest suitability classes. High-resolution imagery combined with object-based classification and habitat suitability mapping methods such as those presented provide a much more spatially explicit representation of detailed habitat attributes than can be obtained through field work alone. They can complement field efforts to document and track turtle activities and can contribute to

  3. Reactions to threatening health messages.

    Science.gov (United States)

    Ten Hoor, Gill A; Peters, Gjalt-Jorn Y; Kalagi, Janice; de Groot, Lianne; Grootjans, Karlijne; Huschens, Alexander; Köhninger, Constanze; Kölgen, Lizan; Pelssers, Isabelle; Schütt, Toby; Thomas, Sophia; Ruiter, Robert A C; Kok, Gerjo

    2012-11-21

    Threatening health messages that focus on severity are popular, but frequently have no effect or even a counterproductive effect on behavior change. This paradox (i.e. wide application despite low effectiveness) may be partly explained by the intuitive appeal of threatening communication: it may be hard to predict the defensive reactions occurring in response to fear appeals. We examine this hypothesis by using two studies by Brown and colleagues, which provide evidence that threatening health messages in the form of distressing imagery in anti-smoking and anti-alcohol campaigns cause defensive reactions. We simulated both Brown et al. experiments, asking participants to estimate the reactions of the original study subjects to the threatening health information (n = 93). Afterwards, we presented the actual original study outcomes. One week later, we assessed whether this knowledge of the actual study outcomes helped participants to more successfully estimate the effectiveness of the threatening health information (n = 72). Results showed that participants were initially convinced of the effectiveness of threatening health messages and were unable to anticipate the defensive reactions that in fact occurred. Furthermore, these estimates did not improve after participants had been explained the dynamics of threatening communication as well as what the effects of the threatening communication had been in reality. These findings are consistent with the hypothesis that the effectiveness of threatening health messages is intuitively appealing. What is more, providing empirical evidence against the use of threatening health messages has very little effect on this intuitive appeal.

  4. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  5. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  6. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean.

    Science.gov (United States)

    da Silva, Cinthia Carneiro; Klein, Roberta Daniele; Barcarolli, Indianara Fernanda; Bianchini, Adalto

    2016-01-01

    Environmental contaminants have been suggested as a possible cause of fibropapillomatosis (FP) in green sea turtles. In turn, a reduced concentration of serum cholesterol has been indicated as a reliable biomarker of malignancy in vertebrates, including marine turtles. In the present study, metal (Ag, Cd, Cu, Fe, Ni, Pb and Zn) concentrations, oxidative stress parameters [antioxidant capacity against peroxyl radicals (ACAP), protein carbonyls (PC), lipid peroxidation (LPO), frequency of micronucleated cells (FMC)], water content, cholesterol concentration and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity were analyzed in the blood/serum of juvenile (29.3-59.5cm) female green sea turtles (Chelonia mydas) with FP (n=14) and without FP (n=13) sampled at Ubatuba coast (São Paulo State, southeastern Brazil). Green sea turtles were grouped and analyzed according to the severity of tumors. Individuals heavily afflicted with FP showed significantly higher blood Cu, Pb and Fe concentrations, blood LPO levels, as well as significantly lower serum cholesterol concentrations and HMGR activity than turtles without FP. Significant and positive correlations were observed between HMGR activity and cholesterol concentrations, as well as LPO levels and Fe and Pb concentrations. In turn, Cu and Pb concentrations were significantly and negatively correlated with HMGR activity and cholesterol concentration. Furthermore, Cu, Fe and Pb were positively correlated with each other. Therefore, the reduced concentration of serum cholesterol observed in green sea turtles heavily afflicted with FP is related to a Cu- and Pb-induced inhibition of HMGR activity paralleled by a higher LPO rate induced by increased Fe and Pb concentrations. As oxidative stress is implicated in the pathogenesis of viral infections, our findings support the idea that metal contamination, especially by Cu, Fe and Pb, may be implicated in the etiology of FP in green sea turtles through oxidative stress

  7. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico

    International Nuclear Information System (INIS)

    Ley-Quinonez, C.; Zavala-Norzagaray, A.A.; Espinosa-Carreon, T.L.; Peckham, H.; Marquez-Herrera, C.; Campos-Villegas, L.; Aguirre, A.A.

    2011-01-01

    Highlights: → We report baseline levels of selected heavy metals in blood of Pacific loggerhead turtles. → Blood was used to measure in a relatively non-invasive way baseline values of heavy metals. → Zn and Cd were found in high concentrations compared to levels reported in other parts of the world. → Cu concentrations in blood are high as they relate to concentrations in muscle. → No correlations were found between of heavy metals and metalloids analyzed and the size of the turtles. - Abstract: Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto Lopez Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g -1 ), followed by Selenium (10.92 μg g -1 ). The mean concentration of toxic metal Cadmium was 6.12 μg g -1 and 1.01 μg g -1 respectively. Mean concentrations of metals followed this pattern: Zn > Se > Ni > Cu > Mn > Cd > Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.

  8. Subsistence hunting for turtles in Northwestern Ecuador

    International Nuclear Information System (INIS)

    Carr, John L; Almendariz, Ana; Simmons, John E; Nielsen, Mark T

    2014-01-01

    We describe the subsistence exploitation of an entire turtle fauna in Esmerald's Province, Ecuador. We collected first hand accounts and witnessed a number of capture techniques used by rural afroecuadorian and chachi inhabitants of the Cayapas Santiago River basin. The diversity of techniques indicated a practical knowledge of the ecology of the species. Chelydra acutirostris, Kinosternon leucostomum, Rhinoclemmys annulata, Melanosterna, and R. nasuta were captured and eaten. Poziando involved cleaning pools in a stream bed during the relatively dry season by removing live plants, organic detritus, and then seining with baskets; we observed R. melanosterna and K. leucostomum captured in this way. Pitfall traps baited with fruit were used to catch R. melanosterna during forays on land. Basket traps (Canasto tortuguero) with a wooden slat funnel across the opening are floated with balsa lashed to the sides. Banana or Xanthosoma leaf bait in the basket traps caught R. melanosterna, R. nasuta, and K. leucostomum. Marshy areas were probed for R. melanosterna and K. leucostomum. Direct capture by hand was also common. Turtles were relished as food items; all turtles captured were consumed, usually in soup or stew. Use of turtles for food in the region was pervasive, perhaps because fish and game populations were depleted.

  9. Millennium-old farm breeding of Chinese softshell turtles (Pelodiscus spp.) results in massive erosion of biodiversity.

    Science.gov (United States)

    Gong, Shiping; Vamberger, Melita; Auer, Markus; Praschag, Peter; Fritz, Uwe

    2018-05-04

    risk of genetic pollution of native stock. In the face of the large-scale breeding of Pelodiscus, we claim that the long-term survival of distinct genetic lineages and species can only be assured when an upscale market segment for pure-bred softshell turtles is established, making the breeding of pure lineages lucrative for turtle farms. Our findings underline that the diversity of Pelodiscus is currently underestimated and threatened by anthropogenic admixture. We recommend mass screening of genetic and morphological variation of Chinese softshell turtles as a first step to understand and preserve their diversity.

  10. Millennium-old farm breeding of Chinese softshell turtles ( Pelodiscus spp.) results in massive erosion of biodiversity

    Science.gov (United States)

    Gong, Shiping; Vamberger, Melita; Auer, Markus; Praschag, Peter; Fritz, Uwe

    2018-06-01

    of genetic pollution of native stock. In the face of the large-scale breeding of Pelodiscus, we claim that the long-term survival of distinct genetic lineages and species can only be assured when an upscale market segment for pure-bred softshell turtles is established, making the breeding of pure lineages lucrative for turtle farms. Our findings underline that the diversity of Pelodiscus is currently underestimated and threatened by anthropogenic admixture. We recommend mass screening of genetic and morphological variation of Chinese softshell turtles as a first step to understand and preserve their diversity.

  11. 77 FR 21084 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-04-09

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... under the Endangered Species Act (ESA). The proposed research program is intended to increase knowledge.... Lisa Manning, Acting Chief, Endangered Species Division, Office of Protected Resources, National Marine...

  12. 75 FR 50746 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-08-17

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... is intended to increase knowledge of species listed under the Endangered Species Act (ESA) and to..., Chief, Endangered Species Division, Office of Protected Resources, National Marine Fisheries Service...

  13. Impact of marine debris on Antarctic fur seals Arctocephalus gazella at Cape Shirreff: diet dependent ingestion and entanglement

    NARCIS (Netherlands)

    Bravo Rebolledo, Elisa; Franeker, van J.A.

    2015-01-01

    For several decades it has been known that plastics in the marine environment can harm marine organisms, most visibly birds, turtles and mammals (Shomura and Yoshida, 1985). These animals can become entangled in this synthetic debris and can ingest macro- and micro-plastics. Recently, increased

  14. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    Science.gov (United States)

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  15. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  16. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    Science.gov (United States)

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  17. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.

    Science.gov (United States)

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-12-06

    Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.

  18. Reactions to threatening health messages

    Directory of Open Access Journals (Sweden)

    ten Hoor Gill A

    2012-11-01

    Full Text Available Abstract Background Threatening health messages that focus on severity are popular, but frequently have no effect or even a counterproductive effect on behavior change. This paradox (i.e. wide application despite low effectiveness may be partly explained by the intuitive appeal of threatening communication: it may be hard to predict the defensive reactions occurring in response to fear appeals. We examine this hypothesis by using two studies by Brown and colleagues, which provide evidence that threatening health messages in the form of distressing imagery in anti-smoking and anti-alcohol campaigns cause defensive reactions. Methods We simulated both Brown et al. experiments, asking participants to estimate the reactions of the original study subjects to the threatening health information (n = 93. Afterwards, we presented the actual original study outcomes. One week later, we assessed whether this knowledge of the actual study outcomes helped participants to more successfully estimate the effectiveness of the threatening health information (n = 72. Results Results showed that participants were initially convinced of the effectiveness of threatening health messages and were unable to anticipate the defensive reactions that in fact occurred. Furthermore, these estimates did not improve after participants had been explained the dynamics of threatening communication as well as what the effects of the threatening communication had been in reality. Conclusions These findings are consistent with the hypothesis that the effectiveness of threatening health messages is intuitively appealing. What is more, providing empirical evidence against the use of threatening health messages has very little effect on this intuitive appeal.

  19. In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas).

    Science.gov (United States)

    Work, Thierry M; Dagenais, Julie; Weatherby, Tina M; Balazs, George H; Ackermann, Mathias

    2017-09-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture. IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of

  20. Do roads reduce painted turtle (Chrysemys picta populations?

    Directory of Open Access Journals (Sweden)

    Alexandra Dorland

    Full Text Available Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites and 10 as far as possible from any major roads (No Road sites. There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  1. Ocular fibropapillomas of green turtles (Chelonia mydas).

    Science.gov (United States)

    Brooks, D E; Ginn, P E; Miller, T R; Bramson, L; Jacobson, E R

    1994-05-01

    Histologic evaluation of four eyes from three stranded juvenile green turtles (Chelonia mydas) from Florida, USA revealed ocular fibropapillomas composed of an overlying hyperplastic epithelium, various amounts of a thickened, well vascularized, collagenous stroma, and a moderate-to-dense population of reactive fibroblasts. The histologic morphology of the ocular fibropapillomas varied depending on whether the eyelid, conjunctiva, limbus, or cornea was the primary site of tumor origin. Fibropapillomas arising from the limbus, conjunctiva, or eyelid tended to be polyploid or pedunculated with a high degree of arborization. They often filled the conjunctival fornices and extended externally to be ulcerated on the distal aspects. Corneal fibropapillomas were more sessile and multinodular with less arborization. Some corneal tumors consisted primarily of a broad fibrovascular stroma and mild epithelial hyperplasia, whereas others had a markedly hyperplastic epithelium supported by stalks of fibrovascular stromal tissue. In green turtles ocular fibropapillomas may be locally invasive and associated with severe blindness and systemic debilitation.

  2. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  3. Snapping turtles, a biological screen for PCB's

    Energy Technology Data Exchange (ETDEWEB)

    Olafsson, P.G.; Bryan, A.M.; Bush, B.; Stone, W.

    1983-01-01

    Snapping turtles are capable of storing extremely high concentration of organochlorine compounds in their fat without any apparent detrimental effect. This tolerance, to high bioconcentration, permits a wide gradation between the extremes in pollution levels and facilitates the detection of extremely toxic substances present in trace amounts. Consequently snapping turtles provide an excellent biological screen for these compounds.

  4. 50 CFR 660.720 - Interim protection for sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707...

  5. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  6. First records in Guinea Bissau of Adamawa Turtle Dove Streptopelia ...

    African Journals Online (AJOL)

    There are no confirmed records of the Adamawa Turtle Dove Streptopelia hypopyrrha in north-eastern Guinea Bissau and there is very little information available on the biology of the species. Eight individuals of the Adamawa Turtle Dove were identified from the game bags of sport hunters in north-eastern Guinea Bissau, ...

  7. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    Directory of Open Access Journals (Sweden)

    Nathan J Robinson

    Full Text Available The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  8. Removal of nonnative slider turtles (Trachemys scripta) and effects on native Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, Yavapai County, Arizona

    Science.gov (United States)

    Drost, Charles A.; Lovich, Jeffrey E.; Madrak, Sheila V.; Monatesti, A.J.

    2011-01-01

    The National Park Service (NPS) estimates that 234 national parks contain nonnative, invasive animal species that are of management concern (National Park Service, 2004). Understanding and controlling invasive species is thus an important priority within the NPS (National Park Service, 1996). The slider turtle (Trachemys scripta) is one such invasive species. Native to the Southeastern United States (Ernst and Lovich, 2009), as well as Mexico, Central America, and portions of South America (Ernst and Barbour, 1989), the slider turtle has become established throughout the continental United States and in other locations around the world (Burke and others, 2000). Slider turtle introductions have been suspected to be a threat to native turtles (Holland 1994; da Silva and Blasco, 1995), however, there has not been serious study of their effects until recently. Cadi and Joly (2003) found that slider turtles outcompeted European pond turtles (Emys orbicularis) for preferred basking sites under controlled experimental conditions, demonstrating for the first time direct competition for resources between a native and an exotic turtle species. Similarly, Spinks and others (2003) suggested that competition for basking sites between slider turtles and Pacific pond turtles (Actinemys marmorata) was partly responsible for the decline of Pacific pond turtles observed at their study site in California. They concluded that the impact of introduced slider turtles was 'almost certainly negative' for the western pond turtle. In the most recent critical study to assess the effects of introduced slider turtles on native turtles, Cadi and Joly (2004) demonstrated that European pond turtles that were kept under experimentally controlled conditions with slider turtles lost body weight and exhibited higher rates of mortality than in control groups of turtles comprised of the same species, demonstrating potential population-level effects on native species. Slider turtles are not native to

  9. Reactions to threatening health messages

    OpenAIRE

    ten Hoor, Gill A; Peters, Gjalt-Jorn Y; Kalagi, Janice; de Groot, Lianne; Grootjans, Karlijne; Huschens, Alexander; K?hninger, Constanze; K?lgen, Lizan; Pelssers, Isabelle; Sch?tt, Toby; Thomas, Sophia; Ruiter, Robert AC; Kok, Gerjo

    2012-01-01

    Abstract Background Threatening health messages that focus on severity are popular, but frequently have no effect or even a counterproductive effect on behavior change. This paradox (i.e. wide application despite low effectiveness) may be partly explained by the intuitive appeal of threatening communication: it may be hard to predict the defensive reactions occurring in response to fear appeals. We examine this hypothesis by using two studies by Brown and colleagues, which provide evidence th...

  10. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  11. Three Novel Herpesviruses of Endangered Clemmys and Glyptemys Turtles

    Science.gov (United States)

    Ossiboff, Robert J.; Raphael, Bonnie L.; Ammazzalorso, Alyssa D.; Seimon, Tracie A.; Newton, Alisa L.; Chang, Tylis Y.; Zarate, Brian; Whitlock, Alison L.; McAloose, Denise

    2015-01-01

    The rich diversity of the world’s reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts. PMID

  12. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Directory of Open Access Journals (Sweden)

    Robert J Ossiboff

    Full Text Available The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii as well sympatric endangered wood (G. insculpta and endangered spotted (Clemmys guttata turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204 and smaller numbers of positive wood (5 and spotted (1 turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  13. 77 FR 59582 - Endangered and Threatened Wildlife; 90-Day Finding on Petitions To List the Northeastern Pacific...

    Science.gov (United States)

    2012-09-28

    ... Threatened or Endangered Under the Endangered Species Act AGENCY: National Marine Fisheries Service (NMFS... carcharias) as a threatened or endangered distinct population segment (DPS) under the Endangered Species Act... under the U.S. Endangered Species Act'' because NatureServe assessments ``have different criteria...

  14. 77 FR 25687 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition to List Speckled Hind as...

    Science.gov (United States)

    2012-05-01

    ... Hind as Threatened or Endangered Under the Endangered Species Act AGENCY: National Marine Fisheries... speckled hind (Epinephelus drummondhayi) as threatened or endangered under the Endangered Species Act (ESA... under the U.S. Endangered Species Act'' because NatureServe assessments ``have different criteria...

  15. 76 FR 7820 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition to List the Texas Pipefish as...

    Science.gov (United States)

    2011-02-11

    ... Pipefish as Threatened or Endangered Under the Endangered Species Act AGENCY: National Marine Fisheries... Texas pipefish (Syngnathus affinis) as threatened or endangered under the Endangered Species Act (ESA... NatureServe for listing under the U.S. Endangered Species Act'' because NatureServe assessments ``have...

  16. 78 FR 6299 - Endangered and Threatened Wildlife; 90-Day Finding on Two Petitions To List White Marlin as...

    Science.gov (United States)

    2013-01-30

    ... Marlin as Threatened or Endangered Under the Endangered Species Act AGENCY: National Marine Fisheries... white marlin (Kajikia albidus) as threatened or endangered under the Endangered Species Act (ESA). We... do ``not constitute a recommendation by NatureServe for listing under the U.S. Endangered Species Act...

  17. 78 FR 10601 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition to List 44 Species of Corals as...

    Science.gov (United States)

    2013-02-14

    ... Species of Corals as Threatened or Endangered Under the Endangered Species Act AGENCY: National Marine... list 44 species of corals off Alaska as threatened or endangered under the Endangered Species Act (ESA... Coral Species under the Endangered Species Act'' but it provides information regarding 44 taxa. We are...

  18. Hierarchical, quantitative biogeographic provinces for all North American turtles and their contribution to the biogeography of turtles and the continent

    Science.gov (United States)

    Ennen, Joshua R.; Matamoros, Wilfredo A.; Agha, Mickey; Lovich, Jeffrey E.; Sweat, Sarah C.; Hoagstrom, Christopher W.

    2017-01-01

    Our study represents the first attempt to describe biogeographic provinces for North American (México, United States, and Canada) turtles. We analyzed three nested data sets separately: (1) all turtles, (2) freshwater turtles, and (3) aquatic turtles. We georeferenced North American turtle distributions, then we created presence–absence matrices for each of the three data sets. We used watershed unit as biogeographic units. We conducted an unweighted pair-group method with arithmetic mean clustering analysis on each Jaccard index distance matrix from our watershed species matrices to delineate biogeographic provinces. Provinces were then tested for significant differences in species compositions in a global model with the use of a one-way analysis of similarity. We conducted a best subset of environmental variables with maximum (rank) correlation with community dissimilarities that determined the best model of abiotic variables explaining province delineation (i.e., climate, topography, and stream channel). To identify which species contributed the most to province delineations, we conducted an indicator species analysis and a similarity-percentage analysis. There were 16 all-turtle provinces, 15 freshwater provinces, and 13 aquatic provinces. Species compositions delineating the provinces were explained by abiotic variables, including mean annual precipitation, mean precipitation seasonality, and diversity of streams. Province delineations correspond closely with geographical boundaries, many of which have Pleistocene origins. For example, rivers with a history of carrying glacial runoff (e.g., Arkansas, Mississippi) sometimes dissect upland provinces, especially for aquatic and semiaquatic turtles. Compared with freshwater fishes, turtles show greater sensitivity to decreased temperature with restriction of most taxa south of the last permafrost maximum. Turtles also exhibit higher sensitivity to climatic, geomorphic, and tectonic instability, with richness

  19. Invasion of the turtles? : exotic turtles in the Netherland: a risk assessment

    NARCIS (Netherlands)

    Bugter, R.J.F.; Ottburg, F.G.W.A.; Roessink, I.; Jansman, H.A.H.; Grift, van der E.A.; Griffioen, A.J.

    2011-01-01

    The authors of this report assessed the risk of exotic turtles becoming invasive in the Netherlands. Main components of the risk are the large scale of introduction of discarded pets to Dutch nature and possible suitability of species to survive and reproduce successfully under present or future

  20. MARINE LEECH ANTICOAGULANT DIVERSITY AND EVOLUTION.

    Science.gov (United States)

    Tessler, Michael; Marancik, David; Champagne, Donald; Dove, Alistair; Camus, Alvin; Siddall, Mark E; Kvist, Sebastian

    2018-03-16

    Leeches (Annelida: Hirudinea) possess powerful salivary anticoagulants and, accordingly, are frequently employed in modern, authoritative medicine. Members of the almost exclusively marine family Piscicolidae account for 20% of leech species diversity, and feed on host groups (e.g., sharks) not encountered by their freshwater and terrestrial counterparts. Moreover, some species of Ozobranchidae feed on endangered marine turtles and have been implicated as potential vectors for the tumor-associated turtle herpesvirus. In spite of their ecological importance and unique host associations, there is a distinct paucity of data regarding the salivary transcriptomes of either of these families. Using next generation sequencing, we profiled transcribed, putative anticoagulants and other salivary bioactive compounds that have previously been linked to bloodfeeding from 7 piscicolid species (3 elasmobranch-feeders; 4 non-cartilaginous fish-feeders) and 1 ozobranchid species (2 samples). In total, 149 putative anticoagulants and bioactive loci were discovered in varying constellations throughout the different samples. The putative anticoagulants showed a broad spectrum of described antagonistic pathways, such as inhibition of factor Xa and platelet aggregation, that likely have similar bioactive roles in marine fish and turtles. A transcript with homology to ohanin, originally isolated from king cobras, was found in Cystobranchus vividus but is otherwise unknown from leeches. Estimation of selection pressures for the putative anticoagulants recovered evidence for both positive and purifying selection along several isolated branches in the gene trees and positive selection was also estimated for a few select codons in a variety of marine species. Similarly, phylogenetic analyses of the amino acid sequences for several anticoagulants indicated divergent evolution.

  1. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  2. Effectiveness of Chain Link Turtle Fence and Culverts in Reducing Turtle Mortality and Providing Connectivity along U.S. Hwy 83, Valentine National Wildlife Refuge, Nebraska, USA

    Science.gov (United States)

    2017-12-01

    We evaluated the effectiveness of existing turtle fences through collecting and analyzing turtle mortality data along U.S. Hwy 83, in and around Valentine National Wildlife Refuge, Nebraska, USA. We also investigated the level of connectivity for tur...

  3. Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida.

    Directory of Open Access Journals (Sweden)

    Jacob A Lasala

    Full Text Available Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time and up to 20 hatchlings from their nests (n = 989 using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.

  4. Migratory corridors of adult female Kemp’s ridley turtles in the Gulf of Mexico

    Science.gov (United States)

    Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Pena, Jaime; Gamez, Daniel Gomez; Gonzales Diaz Miron, Raul de Jesus; Burchfield, Patrick M.; Martinez, Hector J.; Ortiz, Jaime

    2016-01-01

    For many marine species, locations of migratory pathways are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to define the migratory corridor used by Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. The turtles were tagged after nesting at Padre Island National Seashore, Texas, USA from 1997 to 2014 (PAIS; n = 80); Rancho Nuevo, Tamaulipas, Mexico from 2010 to 2011 (RN; n = 14); Tecolutla, Veracruz, Mexico from 2012 to 2013 (VC; n = 13); and Gulf Shores, Alabama, USA during 2012 (GS; n = 1). The migratory corridor lies in nearshore Gulf of Mexico waters in the USA and Mexico with mean water depth of 26 m and a mean distance of 20 km from the nearest mainland coast. Migration from the nesting beach is a short phenomenon that occurs from late-May through August, with a peak in June. There was spatial similarity of post-nesting migratory pathways for different turtles over a 16 year period. Thus, our results indicate that these nearshore Gulf waters represent a critical migratory habitat for this species. However, there is a gap in our understanding of the migratory pathways used by this and other species to return from foraging grounds to nesting beaches. Therefore, our results highlight the need for tracking reproductive individuals from foraging grounds to nesting beaches. Continued tracking of adult females from PAIS, RN, and VC nesting beaches will allow further study of environmental and bathymetric components of migratory habitat and threats occurring within our defined corridor. Furthermore, the existence of this migratory corridor in nearshore waters of both the USA and Mexico demonstrates that international cooperation is necessary to protect essential migratory habitat for this imperiled species.

  5. A turtle-like swimming robot using a smart soft composite (SSC) structure

    International Nuclear Information System (INIS)

    Kim, Hyung-Jung; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2013-01-01

    This paper describes the development of a biomimetic swimming robot based on the locomotion of a marine turtle. To realize the smooth, soft flapping motions of this type of turtle, a novel actuator was also developed, using a smart soft composite (SSC) structure that can generate bending and twisting motions in a simple, lightweight structure. The SSC structure is a composite consisting of an active component to generate the actuation force, a passive component to determine the twisting angle of the structure, and a matrix to combine the components. The motion of such a structure can be designed by specifying the angle between a filament of the scaffold structure and a shape-memory alloy (SMA) wire. The bending and twisting motion of the SSC structure is explained in terms of classical laminate theory, and cross-ply and angled-ply structures were fabricated to evaluate its motion. Finally, the turtle-like motion of a swimming robot was realized by employing a specially designed SSC structure. To mimic the posterior positive twisting angle of a turtle’s flipper during the upstroke, the SMA wire on the upper side was offset, and a positive ply-angled scaffold was used. Likewise, for the anterior negative twisting angle of the flipper during the downstroke, an offset SMA wire on the lower side and a positive ply-angled scaffold were also required. The fabricated flipper’s length is 64.3 mm and it realizes 55 mm bending and 24° twisting. The resulting robot achieved a swimming speed of 22.5 mm s −1 . (paper)

  6. Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea.

    Science.gov (United States)

    Foti, M; Giacopello, C; Bottari, Teresa; Fisichella, V; Rinaldo, D; Mammina, C

    2009-09-01

    Previous studies on fish and marine mammals support the hypothesis that marine species harbor antibiotic resistance and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to assess the resistance to antimicrobial agents of Gram negative strains isolated from loggerhead sea turtles (Carettacaretta). Oral and cloacal swabs from 19 live-stranded loggerhead sea turtles, with hooks fixed into the gut, were analyzed. The antimicrobial resistance of the isolates to 31 antibiotics was assessed using the disk-diffusion method. Conventional biochemical tests identified Citrobacter spp., Proteus spp., Enterobacter spp., Escherichia spp., Providencia spp., Morganella spp., Pantoea spp., Pseudomonas spp. and Shewanella spp. Highest prevalences of resistance was detected to carbenicillin (100%), cephalothin (92.6%), oxytetracycline (81.3%) and amoxicillin (77.8%). The isolates showing resistance to the widest range of antibiotics were identified as Citrobacterfreundii, Proteusvulgaris, Providenciarettgeri and Pseudomonasaeruginosa. In this study, antibiotic resistant bacteria reflect marine contamination by polluted effluents and C.caretta is considered a bioindicator which can be used as a monitor for pollution.

  7. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico.

    Science.gov (United States)

    Ley-Quiñónez, C; Zavala-Norzagaray, A A; Espinosa-Carreón, T L; Peckham, H; Marquez-Herrera, C; Campos-Villegas, L; Aguirre, A A

    2011-09-01

    Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g⁻¹), followed by Selenium (10.92 μg g⁻¹). The mean concentration of toxic metal Cadmium was 6.12 μg g⁻¹ and 1.01μg g⁻¹ respectively. Mean concentrations of metals followed this pattern: Zn>Se>Ni>Cu>Mn>Cd>Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads

    NARCIS (Netherlands)

    Christianen, M.J.A.; Govers, L.L.; Bouma, T.J.; Kiswara, W.; Roelofs, J.G.M.; Lamers, L.P.M.; Van Katwijk, M.

    2012-01-01

    1.Populations of marine megaherbivores including green turtle (Chelonia mydas) have declined dramatically at a global scale as a result of overharvesting and habitat loss. This decline can be expected to also affect the tolerance of seagrass systems to coastal eutrophication. Until now, however,

  9. Western Indian Ocean Journal of Marine Science - Vol 4, No 2 (2005)

    African Journals Online (AJOL)

    Notes on the status and incidental capture of marine turtles by the subsistence fishing communities of South West Madagascar · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. R C Walker, E Roberts, 219-226. http://dx.doi.org/10.4314/wiojms.v4i2.28491 ...

  10. Replication and persistence of VHSV IVb in freshwater turtles.

    Science.gov (United States)

    Goodwin, Andrew E; Merry, Gwenn E

    2011-05-09

    With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.

  11. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    Science.gov (United States)

    Scheyer, Torsten M.

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  12. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea: video evidence from animal-borne cameras.

    Directory of Open Access Journals (Sweden)

    Susan G Heaslip

    Full Text Available The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate correlate with the daytime foraging behavior of leatherbacks (n = 19 in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h, and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata was the dominant prey (83-100%, but moon jellyfish (Aurelia aurita were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models. Handling time increased with prey size regardless of prey species (p = 0.0001. Estimates of energy intake averaged 66,018 kJ • d(-1 but were as high as 167,797 kJ • d(-1 corresponding to turtles consuming an average of 330 kg wet mass • d(-1 (up to 840 kg • d(-1 or approximately 261 (up to 664 jellyfish • d(-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1 equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  13. Critical Beach Habitat for Hawaiian Green Sea Turtle Endangered Before Mid-Century

    Science.gov (United States)

    Burstein, J. T.; Fletcher, C. H., III; Dominique Tavares, K.

    2017-12-01

    Many Hawaiian beaches provide critical habitat for the Hawaiian Green Sea Turtle (Chelonia Mydas). However, sea level rise drives beaches and dunes to migrate landward where they may encounter roads and other types of developed lands. Where developed lands are threatened by coastal erosion, defined as a distance of 20 ft (6.1 m) by state rules, property owners are eligible to apply for an emergency permit. These have historically led to coastal armoring. Seawalls and revetments on chronically receding shorelines cause permanent beach loss by restricting sand supply to the beach in front of the sea wall, as well as to beaches adjacent to the restrictive structure (flanking). This study focuses on four primary beach habitats along the North Shore of Oahu, Hawai'i: Waimea, Haleiwa, Kawailoa, and Mokuleia. We utilize GIS techniques to apply spatial analysis of nesting and basking locations collected from the National Oceanic Atmospheric Administration (NOAA). We then estimate the number of homes and the length of shoreline threatened by coastal armoring for 0 m, 0.17 m, 0.32 m, 0.60 m, and 0.98 m of sea-level rise. We demonstrate that 0.17 m of sea level rise impacts 31% of all beach front homes, and 4.6 km of shoreline, or 21% of the total shoreline. An increase to 0.32 m of sea level rise impacts 42% of all beach front homes, and 5.8 km of shoreline, or 31% of the total shoreline. The upper bound of the most recent sea level rise projection by the International Panel on Climate Change (IPCC RCP 8.5) affirms that 0.17 m of sea level rise may be reached by 2030, and 0.32 m by 2050. This sea level projection is a "worst-case" under IPCC-AR5, however, Sweet et al. (2017) depicts this as an "Intermediate" scenario on the basis of faster than expected mass loss by Greenland and Antarctica ice sheets, and rapid heat uptake and thermal expansion by the world's oceans. We conclude that the impacts of sea level rise and reactive coastal armoring currently endanger critical

  14. Antimycobacterial Metabolites from Marine Invertebrates.

    Science.gov (United States)

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Coinfection with a novel fibropapilloma-associated herpesvirus and a novel Spirorchis sp. in an eastern box turtle (Terrapene carolina) in Florida.

    Science.gov (United States)

    Yonkers, Sara B; Schneider, Renata; Reavill, Drury R; Archer, Linda L; Childress, April L; Wellehan, James F X

    2015-07-01

    Herpesviruses are important pathogens of chelonians, and include Chelonid herpesvirus 5, which is associated with fibropapillomatosis in sea turtles. Spirorchid trematodes are blood flukes that reside within the cardiovascular system of marine turtles and may be associated with severe disease. An eastern box turtle (Terrapene carolina) at the South Florida Wildlife Care Center (Fort Lauderdale, Florida) was presented to the facility with papillomatous growths behind both rear legs. Surgical removal resulted in remission for 8 months; however, lesions recurred, prompting a second surgery and acyclovir therapy. Surgical biopsies revealed subacute superficial inflammation associated with the supporting stroma of the cutaneous papillomas and granulomas within the superficial dermis containing fragmented and collapsed brown trematode eggs surrounded by multinucleated giant cells and epithelioid macrophages. Pan-herpesviral and pan-trematode consensus polymerase chain reaction and sequencing were run on tissue samples. Comparative sequence analysis revealed a novel alphaherpesvirus and a novel trematode in the genus Spirorchis. The animal became anorexic and was euthanized due to poor quality of life. While we do not yet have a complete understanding of the effects of herpesvirus and trematode infections in eastern box turtles, the findings thus presented provide initial insights into the disease relationships among these chelonians. © 2015 The Author(s).

  16. Predaceous ants, beach replenishment, and nest placement by sea turtles.

    Science.gov (United States)

    Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie

    2007-10-01

    Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.

  17. Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles

    NARCIS (Netherlands)

    Sterli, J.

    2010-01-01

    The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic

  18. Cutaneous fibroma in a captive common snapping turtle (Chelydra serpentina).

    Science.gov (United States)

    Gonzales-Viera, O; Bauer, G; Bauer, A; Aguiar, L S; Brito, L T; Catão-Dias, J L

    2012-11-01

    An adult female common snapping turtle (Chelydra serpentina) had a mass on the plantar surface of the right forelimb that was removed surgically. Microscopical examination revealed many spindle cells with mild anisocytosis and anisokaryosis and a surrounding collagenous stroma. There were no mitoses. Immunohistochemistry showed that the spindle cells expressed vimentin, but not desmin. A diagnosis of cutaneous fibroma was made. Tumours are reported uncommonly in chelonian species. Cutaneous fibroma has been diagnosed in an alligator snapping turtle (Macrochelys temminckii), but not previously in a common snapping turtle. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. 50 CFR 222.103 - Federal/state cooperation in the conservation of endangered and threatened species.

    Science.gov (United States)

    2010-10-01

    ... Federal regulations for grant administration and cost accounting principles. (3)(i) The payment of the... conservation of endangered and threatened species. 222.103 Section 222.103 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE...

  20. Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas).

    Science.gov (United States)

    Braz, J K F S; Freitas, M L; Magalhães, M S; Oliveira, M F; Costa, M S M O; Resende, N S; Clebis, N K; Silva, N B; Moura, C E B

    2016-08-01

    This study describes the implications of cardiac ventricular microscopy in Chelonia mydas relating to its ability to dive. For this work, 11 specimens of the marine turtle species C. mydas found dead on the coast of Rio Grande do Norte (Northeast Brazil) were used. After necropsy, fragments of the cardiac ventricular wall were fixed in 10% buffered formaldehyde solution for 24 h and then subjected to routine processing for light and scanning electron microscopy (SEM). The ventricle in this species is formed by the epicardium, myocardium and endocardium. The subepicardial layer consists of highly vascularised connective tissue that emits septa to reinforce the myocardium surface. There is an abundant and diffuse subepicardial nerve plexus shown by immunostaining technique. The thickness of the spongy myocardium and the nature of its trabeculae varied between the heart chambers. The endocardium shows no characteristic elements of the heart conduction system. The valves have a hyaline cartilage skeleton, coated by dense irregular connective tissues characterised by elastic fibres. These findings in the green turtle ventricular microscopy are related to hypoxia resistance during diving. © 2015 Blackwell Verlag GmbH.

  1. Terminal Restriction Fragment Length Polymorphism for the Identification of Spirorchiid Ova in Tissues from the Green Sea Turtle, Chelonia mydas.

    Directory of Open Access Journals (Sweden)

    Phoebe A Chapman

    Full Text Available Blood flukes are among the most common disease causing pathogens infecting vertebrates, including humans and some of the world's most globally endangered fauna. Spirorchiid blood flukes are parasites of marine turtles, and are associated with pathology, strandings and mortalities worldwide. Their ova embolize in tissues and incite significant inflammatory responses, however attempts to draw correlations between species and lesions are frustrated by difficulties in identifying ova beyond the genus level. In this study, a newly developed terminal restriction fragment length polymorphism (T-RFLP method was validated as a tool for differentiating between mixed spirorchiid ova in turtle tissue. Initially, a multiplex PCR was used to differentiate between the five genera of spirorchiid flukes. Following this, PCR was performed using genus/genera-specific fluorescently tagged primer pairs and PCR products digested analysis using restriction endonucleases. Using capillary electrophoresis, this T-RFLP method could differentiate between twelve species and genotypes of spirorchiid flukes in turtles. It was applied to 151 tissue samples and successfully identified the spirorchiid species present. It was found to be more sensitive than visual diagnosis, detecting infections in 28 of 32 tissues that were negative on histology. Spirorchiids were present in 96.7% of tissues tested, with Neospirorchis genotype 2 being the most prevalent, present in 93% of samples. Mixed infections were common, being present in 60.7% of samples tested. The method described here is, to our knowledge, the first use of the T-RFLP technique on host tissues or in an animal ecology context, and describes a significant advancement in the clinical capacity to diagnose a common cause of illness in our environment. It is proven as a sensitive, specific and cost-efficient means of identifying spirorchiid flukes and ova in turtles, with the potential to contribute valuable information to

  2. In-vitro replication of Chelonid herpesvirus 5 in organotypic skin cultures from Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Weatherby, Tina; Ackermann, Mathias; Balazs, George H.

    2017-01-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.

  3. Inter-nesting movements and habitat-use of adult female Kemp's ridley turtles in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Donna J Shaver

    Full Text Available Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60; Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11; and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11. These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.

  4. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization

    OpenAIRE

    Provencher, Jennifer F.; Bond, Alexander L.; Avery-gomm, Stephanie; Borrelle, Stephanie B.; Bravo Rebolledo, Elisa L.; Hammer, Sjúrður; Kühn, Suse; Lavers, Jennifer L.; Mallory, Mark L.; Trevail, Alice; Franeker, van, Jan A.

    2017-01-01

    Plastic pollution has become one of the largest environmental challenges we currently face. The United\\ud Nations Environment Program (UNEP) has listed it as a critical problem, comparable to climate change,\\ud demonstrating both the scale and degree of the environmental problem. Mortalities due to entanglement\\ud in plastic fishing nets and bags have been reported for marine mammals, turtles and seabirds, and to date\\ud over 690 marine species have been reported to ingest plastics. The body ...

  5. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Science.gov (United States)

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  6. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Directory of Open Access Journals (Sweden)

    Xiao-hong Chen

    Full Text Available Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  7. Impacts of plastic ingestion on post-hatchling loggerhead turtles off South Africa.

    Science.gov (United States)

    Ryan, Peter G; Cole, Georgina; Spiby, Kevin; Nel, Ronel; Osborne, Alexis; Perold, Vonica

    2016-06-15

    Twenty-four of 40 (60%) loggerhead turtle Caretta caretta post-hatchlings (carapaceTurtles selected for white (38%) and blue (19%) items, but translucent items (23%) were under-represented compared to beach mesodebris. Ingested loads did not decrease up to 52days in captivity, indicating long retention times. Plastic killed 11 turtles by blocking their digestive tracts or bladders, and contributed to the deaths of five other turtles. Our results indicate that the amount and diversity of plastic ingested by post-hatchling loggerhead turtles off South Africa have increased over the last four decades, and now kill some turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Vertebral Formula of the African Sideneck Turtle ( Pelusios ...

    African Journals Online (AJOL)

    Pelusios castaneus), was carried out with the view of deriving its vertebral formula which could be useful in the comparative systematic anatomy of sea and freshwater turtles as well as in paleontological and archaeological investigations. A total ...

  9. Summary of bacteria found in captive sea turtles 2002-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains a summary of bacteria which have been isolated in sea turtles dead and alive at the NOAA Galveston Laboratory and is based on reports received...

  10. Monthly morphometric data on captive loggerhead sea turtles 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains monthly measurements taken on captive reared sea turtles. Measurements include: straight carapace length nuchal notch to carapace tip, straight...

  11. Gulf of Mexico Kemps ridley sea turtle age and growth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 333 Kemps ridley sea turtles stranded dead along the Gulf of Mexico US coast (hatchling to...

  12. Western Pond Turtle Observations - Region 1 [ds313

    Data.gov (United States)

    California Natural Resource Agency — This dataset was developed in an effort to compile Western Pond Turtle (Clemmys marmorata) observations in CDFG Region 1. Steve Burton (CDFG Staff Environmental...

  13. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages.

    Directory of Open Access Journals (Sweden)

    Shelly C Wu

    Full Text Available Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.. Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups-the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas than on northern turtles (where mean abundance/state was > 10%. L. cf. mutica was the most abundant species (40% on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts.

  14. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages

    Science.gov (United States)

    Wu, Shelly C.; Bergey, Elizabeth A.

    2017-01-01

    Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts. PMID:28192469

  15. Project Seahorse evolves into major marine protector | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-10-29

    Oct 29, 2012 ... Project Seahorse evolves into major marine protector ... local people, have greatly improved the prospects of survival for threatened species. ... “We tackle issues on any political level or geographical scale, according to what ...

  16. Saving turtles: Talisman, Elf and BHP make room for reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.

    1999-05-03

    Cooperation between Australia`s BHP Petroleum, Canada`s Talisman Energy and France`s El Aquitaine to help the Trinidadian government and conservation groups to save the nesting grounds of the Carribean sea turtle is described. The nesting ground is located near one of the projects the three companies are working on. The giant turtle, also called the leatherback, can weigh as much as a tonne and have a 2.4 metre flipper span, have their nesting places on Trinidad`s northeastern shore. The three companies are working in 36 metres of water opposite two of the turtles` last nesting places. Had the companies proceeded as planned, the project could have destroyed their nesting place. Instead, the companies put up $90,000 for a three-month research project to monitor the movement of the turtles with satellite telemetry. In order to assess the turtles` hearing, tiny wires were inserted in the the turtles` brain to measure brain wave patterns - a method similar to that used on human neo-natals. When it was discovered that the turtles did not adapt well to captivity, they were fitted with earphones and transmitter during 10-minute period when they were in the quiescent state of egg-laying. The companies proceeded with a seismic program that used cables on the sea floor. Rather than use a large and noisy survey vessel to lay long streamers on a wide area, they laid shorter strips on a grid with smaller, quieter boats. That was sufficient for the turtles to continue normal activity as females arrived on the beach in the usual numbers to nest and to lay eggs. The documentation provided to the Trinidadian government was well received and plans are afoot to use it as a benchmark in assessing future exploratory applications within Trinidadian jurisdiction.

  17. Abundance of juvenile eastern box turtles in manages forest stands

    Science.gov (United States)

    Z. Felix; Y. Wang; H. Czech; C. Schweitzer

    2008-01-01

    Between 2002 and 2005, we used drift fences and artificial pools to sample juvenile eastern box turtles (Terrapene carolina) in northeastern Alabama in forest stands experimentally treated to retain various amounts of overstory trees—clear-cuts and those with 25%–50% and 75%–100% of trees retained.We captured juvenile turtles only in clear-cut and 25%–50% retention...

  18. Demographic evidence of illegal harvesting of an endangered asian turtle.

    Science.gov (United States)

    Sung, Yik-Hei; Karraker, Nancy E; Hau, Billy C H

    2013-12-01

    Harvesting pressure on Asian freshwater turtles is severe, and dramatic population declines of these turtles are being driven by unsustainable collection for food markets, pet trade, and traditional Chinese medicine. Populations of big-headed turtle (Platysternon megacephalum) have declined substantially across its distribution, particularly in China, because of overcollection. To understand the effects of chronic harvesting pressure on big-headed turtle populations, we examined the effects of illegal harvesting on the demography of populations in Hong Kong, where some populations still exist. We used mark-recapture methods to compare demographic characteristics between sites with harvesting histories and one site in a fully protected area. Sites with a history of illegal turtle harvesting were characterized by the absence of large adults and skewed ratios of juveniles to adults, which may have negative implications for the long-term viability of populations. These sites also had lower densities of adults and smaller adult body sizes than the protected site. Given that populations throughout most of the species' range are heavily harvested and individuals are increasingly difficult to find in mainland China, the illegal collection of turtles from populations in Hong Kong may increase over time. Long-term monitoring of populations is essential to track effects of illegal collection, and increased patrolling is needed to help control illegal harvesting of populations, particularly in national parks. Because few, if any, other completely protected populations remain in the region, our data on an unharvested population of big-headed turtles serve as an important reference for assessing the negative consequences of harvesting on populations of stream turtles. Evidencia Demográfica de la Captura Ilegal de una Tortuga Asiática en Peligro. © 2013 Society for Conservation Biology.

  19. Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas

    Science.gov (United States)

    Munoz, F.A.; Estrada-Parra, S.; Romero-Rojas, A.; Work, Thierry M.; Gonzalez-Ballesteros, E.; Estrada-Garcia, I.

    2009-01-01

    To understand the role of the immune system with respect to disease in reptiles, there is the need to develop tools to assess the host's immune response. An important tool is the development of molecular markers to identify immune cells, and these are limited for reptiles. We developed a technique for the cryopreservation of peripheral blood mononuclear cells and showed that a commercially available anti-CD3 epsilon chain antibody detects a subpopulation of CD3 positive peripheral blood lymphocytes in the marine turtle Chelonia mydas. In the thymus and in skin inoculated with phytohemagglutinin, the same antibody showed the classical staining pattern observed in mammals and birds. For Western blot, the anti-CD3 antibodies identified a 17.6 kDa band in membrane proteins of peripheral blood mononuclear cell compatible in weight to previously described CD3 molecules. This is the first demostration of CD3+ cells in reptiles using specific antibodies.

  20. Threatened corals provide underexplored microbial habitats.

    Directory of Open Access Journals (Sweden)

    Shinichi Sunagawa

    2010-03-01

    Full Text Available Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these "rare" organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7-49.1% were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under

  1. Emerging from the rib: resolving the turtle controversies.

    Science.gov (United States)

    Rice, Ritva; Riccio, Paul; Gilbert, Scott F; Cebra-Thomas, Judith

    2015-05-01

    Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes. © 2015 Wiley Periodicals, Inc.

  2. Origin of the unique ventilatory apparatus of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Schachner, Emma R; Botha-Brink, Jennifer; Scheyer, Torsten M; Lambertz, Markus; Bever, G S; Rubidge, Bruce S; de Queiroz, Kevin

    2014-11-07

    The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.

  3. 75 FR 29323 - Notice of Public Hearings of the Draft Environmental Impact Statement for Basing the U.S. Marine...

    Science.gov (United States)

    2010-05-25

    ... existing Marine Corps command and organizational structure. This action would also ensure that the Marine... West would affect habitat for a species (flat- tailed horned lizard) proposed for listing as threatened...

  4. Survey on the presence of non-dioxine-like PCBs (NDL-PCBs) in loggerhead turtles (Caretta caretta) stranded in south Mediterranean coasts (Sicily, Southern Italy).

    Science.gov (United States)

    Cammilleri, Gaetano; Calvaruso, Enza; Pantano, Licia; Cascio, Giovanni Lo; Randisi, Barbara; Macaluso, Andrea; Vazzana, Mirella; Caracappa, Giulia; Giangrosso, Giuseppe; Vella, Antonio; Ferrantelli, Vincenzo

    2017-11-01

    A total of 71 loggerhead turtles (Caretta caretta) stranded along the coasts of Sicily (Southern Italy) were examined for non-dioxine like polychlorinated biphenyl (NDL-PCB) levels in muscle and adipose tissue by a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) method. The results revealed 6 high-indicator congener (∑ 6 PCB IND ) levels in 45% of the loggerhead turtles examined, with mean values of 980.39 ± 2508.39 ng/g wet weight in adipose tissue and 102.53 ± 238.58 ng/g wet weight in muscle tissue. The hexachloro and heptachloro PCB congeners were the most abundant in both the sample types. The highest NDL-PCB levels were reached in an adipose tissue sample of a loggerhead turtle of 80 kg stranded along the coasts of Termini Imerese (14 183.85 ng/g wet wt). No significant correlation was found between modified Fulton's K values of the loggerhead turtles and PCB contents (S = 47 151, p > 0.05). Furthermore, no significant differences were found between sexes (W = 365, p >  0.05). The PCB levels found in the present study were much higher than those found in the literature. The present study is the first report on the existence of NDL-PCBs in loggerhead turtles stranded in Sicilian coasts confirming C. caretta as a valuable indicator of contaminant exposure in the marine environment because of their specific biological and ecological characteristics. Environ Toxicol Chem 2017;36:2997-3002. © 2017 SETAC. © 2017 SETAC.

  5. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

    Science.gov (United States)

    Moore, Charles James

    2008-10-01

    Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified

  6. Estimation of survival rates and abundance of green turtles along the U.S. West Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine abundance and survival rates of the east Pacific green turtles in the northern most foraging grounds, the turtle research groups at SWFSC have been...

  7. 77 FR 60637 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Science.gov (United States)

    2012-10-04

    ..., effect on the loggerhead sea turtle population. This meets the regulatory definition of an action that is...: Hawaii's sea turtles and monk seals are important for tourism, because people enjoy diving and swimming...

  8. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Kuraku, Shigehiro; Kuratani, Shigeru

    2005-03-15

    Turtles have the most unusual body plan of the amniotes, with a dorsal shell consisting of modified ribs. Because this morphological change in the ribs can be described as an axial-level specific alteration, the evolution of the turtle carapace should depend on changes in the Hox code. To identify turtle-specific changes in developmental patterns, we cloned several Hox genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, examined their expression patterns during embryogenesis, and compared them with those of chicken and mouse embryos. We detected possibly turtle-specific derived traits in Hoxc-6 expression, which is restricted to the paraxial part of the embryo; in the expression of Hoxa-5 and Hoxb-5, the transcripts of which were detected only at the cervical level; and in Hoxc-8 and Hoxa-7 expression, which is shifted anteriorly relative to that of the other two amniote groups. From the known functions of the Hox orthologs in model animals, these P. sinensis-specific changes apparently correlate with specializations in the turtle-specific body plan. Copyright 2005 Wiley-Liss, Inc.

  9. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    Science.gov (United States)

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hazards in hanging gardens: A report on failures of recognition by green turtles and their conservation implications.

    Science.gov (United States)

    de Carvalho-Souza, Gustavo Freire; de A Miranda, Daniele; Pataro, Luciano

    2016-04-15

    Marine species are experiencing unprecedented global impacts due to anthropogenic debris. Many recent studies have pointed out the hazards associated with marine litter ingestion, especially plastic debris - the most abundant and ubiquitous items in coastal and oceanic environments worldwide. In this study we provide the first in situ evidence of consumption of non-discarded synthetic rope fragments by green turtles. We explored the environmental risks to this endangered species associated with the grazing and consumption of anthropogenic debris in zones of human activity. Efforts to combat debris ingestion and reduce anthropogenic debris discharged into the world's oceans should be a priority for decision-makers and will need to involve multiple-approaches and the adoption of more environmentally friendly products and practices by the international community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 76 FR 31556 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2011-06-01

    ... Atlantic bluefin tuna (Thunnus thynnus) as threatened or endangered under the Endangered Species Act (ESA... Species Act Listing Determination for Atlantic Bluefin Tuna AGENCY: National Marine Fisheries Service... endangered species within the foreseeable future throughout all or a significant portion of its range.'' The...

  12. 76 FR 5338 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA183 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. [[Page 5339

  13. 78 FR 77659 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-12-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XD040 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. [[Page 77660...

  14. 78 FR 43858 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-07-22

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... number of predicted adults increase, the number of fish escaping to the spawning grounds will also... fish; and (3) application of a sliding scale approach to determine appropriate ESA take limits on...

  15. 76 FR 2664 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS...) and 14092 (applicant: California Department of Fish and Game). In that notice, the permit application... American green sturgeon associated with conducting surveys measuring fish response to initial and...

  16. 78 FR 28805 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-05-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., NMFS received an application, including an HGMP, from the Idaho Department of Fish and Game, a section... the Snake River basin, rear juveniles, and release eggs, juveniles, and adult fish into upper Salmon...

  17. 76 FR 5339 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA182 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... are issued in accordance with and are subject to the ESA and NMFS regulations governing listed fish...

  18. 78 FR 59005 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-09-25

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... with Section 10(a)(1)(A) of the ESA of 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish.... Applications Received Permit 1415 The U.S. Fish and Wildlife Services' (USFWS) Red Bluff Fish and Wildlife...

  19. 78 FR 28806 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-05-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Resources (CDWR), Permit 17428 to the United States Fish and Wildlife Service (USFWS), and Permit 17777 to... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in...

  20. 78 FR 79674 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-12-31

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... the ESA (16 U.S.C. 1531 et seq.) and regulations governing listed fish and wildlife permits (50 CFR.... Fish and Wildlife Service (USFWS) submitted an application and supporting documents to NMFS for a...

  1. 78 FR 31518 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC690 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Department of Fish and Wildlife (ODFW), Washington Department of Fish and Wildlife (WDFW), and U.S. Bureau of...

  2. 75 FR 2106 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in... steelhead not to exceed 2 percent of the total number of fish captured for each life stage and species...

  3. 77 FR 2037 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-01-13

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA928 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... advises the public that a direct take permit has been issued to the Washington Department of Fish and...

  4. 76 FR 6401 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-02-04

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA110 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and the Washington Department of Fish and Wildlife submitted to NMFS, pursuant to the protective...

  5. 78 FR 32378 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-05-30

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... application was provided by the Washington Department of Fish and Wildlife (WDFW) and the Public Utility... Department of Fish and Wildlife submitted an application for an ESA permit to operate the Nason Creek spring...

  6. 78 FR 74116 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-12-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... plans and request for comment. SUMMARY: Notice is hereby given that the Oregon Department of Fish and... River and Columbia River basins by providing hatchery fish to support fishing opportunities while...

  7. 76 FR 2663 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and steelhead, and natural juvenile green sturgeon while carrying out a study measuring fish response... species, taking of length measurements), tissue sampling, release of moribund fish or fish carcasses back...

  8. 77 FR 3743 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-01-25

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... with section 10(a)(1)(A) of the ESA of 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish... listed fish but a small number may die as an unintended result of the research activities. The objectives...

  9. 76 FR 8713 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-02-15

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... (16 U.S.C. 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR parts 222-226... handling of fish is already covered under the Incidental Take Statement associated with the Biological...

  10. 78 FR 7755 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-02-04

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS...)(A) of the ESA of 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish and wildlife.... In situations where the SWFSC are unable to rely on collaborators to capture fish through rotary...

  11. 76 FR 43985 - Endangered and Threatened Species; Recovery Plan for the Sei Whale

    Science.gov (United States)

    2011-07-22

    ... and Threatened Species; Recovery Plan for the Sei Whale AGENCY: National Marine Fisheries Service... review of the draft Recovery Plan (Plan) for the sei whale (Balaenoptera borealis). NMFS is soliciting... recovery plans for each listed species unless such a plan would not promote its recovery. The sei whale has...

  12. 75 FR 16738 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-04-02

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... River fall Chinook salmon under the Endangered Species Act (ESA). The FMEP specifies the future... fish, sturgeon, carp, and other species.'' The FMEP describes the management of recreational fisheries...

  13. 75 FR 14134 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-03-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... modifications, as required by the Endangered Species Act of 1973 (16 U.S.C. 1531 1543) (ESA), is based on a... trap and beach seine, anesthesize and sample fish for species identification, tags, marks and fin clips...

  14. 77 FR 27186 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-05-09

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Endangered Species Act (ESA) and to help guide management and conservation efforts. The applications may be... salmon, and LCR steelhead. The purpose of this research is to determine fish species presence and...

  15. 76 FR 27016 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-05-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... increase knowledge of species listed under the Endangered Species Act (ESA) and help guide management and... during the species' upstream migration. Captured fish would be transported in a tanker truck and released...

  16. 77 FR 75611 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-12-21

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... promulgated under the Endangered Species Act (ESA). The plans specify the propagation of five species of... 10, 2000). Dated: December 17, 2012. Angela Somma, Chief, Endangered Species Division, Office of...

  17. 76 FR 51352 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-08-18

    ... Department of Fish and Wildlife (WDFW), for a direct take permit pursuant to the Endangered Species Act of... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Section 9 of the ESA and Federal regulations prohibit the ``taking'' of a species listed as endangered or...

  18. 76 FR 78242 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA866 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Endangered Species Act (ESA) and to help guide management and conservation efforts. The application may be...

  19. 75 FR 78226 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-12-15

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... permits and permit modifications, as required by the Endangered Species Act of 1973 (16 U.S.C. 1531-1543... electrofisher and dipnet; sample fish for species identification, tags, marks and finclips, lengths and weights...

  20. 75 FR 82212 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-12-29

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Chinook salmon under Limit 6 of the Endangered Species Act (ESA) 4(d) Rule for salmon and steelhead, a.... Dated: December 22, 2010. Susan Pultz, Acting Chief, Endangered Species Division, Office of Protected...