WorldWideScience

Sample records for thomson source application

  1. The SPARC-LAB Thomson source

    International Nuclear Information System (INIS)

    Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.

    2016-01-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  2. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  3. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  4. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  5. Special Important Aspects of the Thomson Effect

    Science.gov (United States)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-03-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  6. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From ADECCO, Albuquerque, NM... Adjustment Assistance (TAA) applicable to workers and former workers of West, A Thomson Reuters Business...

  7. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  8. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  9. Acta Dermatovenerologica Alpina, Pannonica et Adriatica accepted for coverage in Thomson Reuters' Emerging Sources Citation Index (ESCI).

    Science.gov (United States)

    Poljak, Mario; Miljković, Jovan; Triglav, Tina

    2016-09-01

    Acta Dermatovenerologica Alpina, Pannonica et Adriatica (Acta Dermatovenerol APA) is the leading journal in dermatology and sexually transmitted infections in the region. Several important steps were taken during the last 25 years to improve the journal's quality, global visibility, and international impact. After a 1-year trial period, Thomson Reuters recently informed the editorial office that they had accepted Acta Dermatovenerol APA for coverage in Thomson Reuters' new index in the Web of Science Core Collection called the Emerging Sources Citation Index (ESCI). The coverage of Acta Dermatovenerol APA begins with the journal content published online in 2016; that is, from volume 25 onwards.

  10. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    Science.gov (United States)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  11. Rothmund - Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Sharma N. L

    2003-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare geno-photodermatosis of children. Poikilodermatous cutaneous changes, growth retardation, juvenile cataract and high incidence of malignancy are its classical features. A Thomson type of Rothmund-Thomson syndrome with characteristic poikiloderma congenitale, growth retardation, absence of juvenile cataract and parental non-consanguinity is described in an 8 year old Indian girl.

  12. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  13. Electron beam production and characterization for the PLEIADES Thomson X-ray source

    International Nuclear Information System (INIS)

    Brown, W.J.; Hartemann, F.V.; Tremaine, A.M.; Springer, P.T.; Le Sage, G.P.; Barty, C.P.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Slaughter, D.R.; Rosenzweig, J.B.; Anderson, S.; Gibson, D.J.

    2002-01-01

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 πmm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 1020 photons/s/mm2/mrad2/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed

  14. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  15. 3. Laser Thomson scattering by plasmas. 3.2. Applications of incoherent Thomson scattering. 3.2.2. Incoherent Thomson scattering systems for JT-60U and JFT-2M

    International Nuclear Information System (INIS)

    Hatae, Takaki; Yoshida, Hidetoshi; Naito, Osamu; Yamauchi, Toshihiko

    2000-01-01

    Development of Thomson scattering diagnostics for the JT-60U and JFT-2M Tokamaks are described. Two Thomson scattering systems have been installed on JT-60U. The first system uses two ruby lasers (10 J, 0.25 Hz) and measures electron temperature (T e ) and density (n e ) profiles of 60 spatial points with high spatial resolution (8 mm). The second system uses a YAG laser (2 J, 30 Hz) and measures time evolution of T e and n e profiles with 15 spatial points. On JFT-2M, a TV Thomson Scattering system (TVTS) has been installed and measures at 81 spatial points with high spatial resolution (8.6 mm). These systems have provided not only profiles of all over the plasma, but successfully measured local structures to study various physics issues; e.g. H-mode edge pedestal, internal transport barrier, local MHD event. (author)

  16. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-08-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From Adecco, Albuquerque, New... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, including On-Site...

  17. 76 FR 45879 - West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From...

    Science.gov (United States)

    2011-08-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,198] West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From Adecco, Including a Teleworker...-W-73,198 is hereby issued as follows: All workers of West, A Thomson Reuters Business, Thomson...

  18. Alpha particle collective Thomson scattering in TFTR

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  19. Preliminary application of maximum likelihood method in HL-2A Thomson scattering system

    International Nuclear Information System (INIS)

    Yao Ke; Huang Yuan; Feng Zhen; Liu Chunhua; Li Enping; Nie Lin

    2010-01-01

    Maximum likelihood method to process the data of HL-2A Thomson scattering system is presented. Using mathematical statistics, this method maximizes the possibility of the likeness between the theoretical data and the observed data, so that we could get more accurate result. It has been proved to be applicable in comparison with that of the ratios method, and some of the drawbacks in ratios method do not exist in this new one. (authors)

  20. Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electrical Network and Newton-Raphson

    Directory of Open Access Journals (Sweden)

    Guzmán Juan

    2015-07-01

    Full Text Available There are a lot of applications of the Thomson ring: levitation of superconductor materials, power interrupters (used as actuator and elimination of electric arcs. Therefore, it is important the numerical modeling of Thomson ring. The aim of this work is to model the stationary levitation of the Thomson ring. This Thomson ring consists of a copper coil with ferromagnetic core and an aluminum ring threaded in the core. The coil is fed by a cosine voltage to ensure that the aluminum ring is in a stationary levitated position. In this situation, the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field. These equations are discretized using the Galerkin method in the Lagrange base space (finite element method, FEM. These equations are solved using the COMSOL software. A methodology is also described (which uses the Newton-Raphson method that obtains the separation between coil and aluminum ring. The numerical solutions of this separation are compared with experimental data. The conclusion is that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high.

  1. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    International Nuclear Information System (INIS)

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-01-01

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result

  2. Ultra-short X-ray sources generated through laser-matter interaction and their applications; Sources de rayonnement X ultrabref generees par interaction laser-matiere et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, A

    2004-04-15

    This work is dedicated to the sources of ultra-short X-rays. The K{sub {alpha}} source, the non-linear Thomson source, the betatron source and the X-{gamma} source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K{sub {alpha}} ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  3. Study of the effects of photoelectron statistics on Thomson scattering data

    International Nuclear Information System (INIS)

    Hart, G.W.; Levinton, F.M.; McNeill, D.H.

    1986-01-01

    A computer code has been developed which simulates a Thomson scattering measurement, from the counting statistics of the input channels through the mathematical analysis of the data. The scattered and background signals in each of the wavelength channels are assumed to obey Poisson statistics, and the spectral data are fitted to a Gaussian curve using a nonlinear least-squares fitting algorithm. This method goes beyond the usual calculation of the signal-to-noise ratio for the hardware and gives a quantitative measure of the effect of the noise on the final measurement. This method is applicable to Thomson scattering measurements in which the signal-to-noise ratio is low due to either low signal or high background. Thomson scattering data from the S-1 spheromak have been compared to this simulation, and they have been found to be in good agreement. This code has proven to be useful in assessing the effects of counting statistics relative to shot-to-shot variability in producing the observed spread in the data. It was also useful for designing improvements for the S-1 Thomson scattering system, and this method would be applicable to any measurement affected by counting statistics

  4. Gated integrator PXI-DAQ system for Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Thomas, Jinto; Kumar, Ajai

    2017-06-15

    Gated Integrator (GI) PXI based data acquisition (DAQ) system has been designed and developed for the ease of acquiring fast Thomson Scattered signals (∼50 ns pulse width). The DAQ system consists of in-house designed and developed GI modules and PXI-1405 chassis with several PXI-DAQ modules. The performance of the developed system has been validated during the SST-1 campaigns. The dynamic range of the GI module depends on the integrating capacitor (C{sub i}) and the modules have been calibrated using 12 pF and 27 pF integrating capacitors. The developed GI module based data acquisition system consists of sixty four channels for simultaneous sampling using eight PXI based digitization modules having eight channels per module. The error estimation and functional tests of this unit are carried out using standard source and also with the fast detectors used for Thomson scattering diagnostics. User friendly Graphical User Interface (GUI) has been developed using LabVIEW on Windows platform to control and acquire the Thomson scattering signal. A robust, easy to operate and maintain with low power consumption, having higher dynamic range with very good sensitivity and cost effective DAQ system is developed and tested for the SST-1 Thomson scattering diagnostics.

  5. THE THOMSON SURFACE. I. REALITY AND MYTH

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2012-01-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90° range of solar exit angles at each given position in the image plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  6. Heldi Thomson

    Index Scriptorium Estoniae

    1997-01-01

    Teaduspreemia autorite kollektiivile arstiteaduse alal töö "Vähktõbi Eestis 1968-1992: haigestumus, levimus, elulemus ja suremus" eest - Mati Rahu (kollektiivi juht), Tiiu Aarelaid, Kaja Gornoi, Heldi Thomson

  7. Ultra-short X-ray sources generated through laser-matter interaction and their applications

    International Nuclear Information System (INIS)

    Rousse, A.

    2004-04-01

    This work is dedicated to the sources of ultra-short X-rays. The K α source, the non-linear Thomson source, the betatron source and the X-γ source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K α ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  8. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    Science.gov (United States)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  9. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  10. The Gibbs-Thomson equation for a spherical coherent precipitate with applications to nucleation

    International Nuclear Information System (INIS)

    Rottman, C.; Voorhees, P.W.; Johnson, W.C.

    1988-01-01

    The conditions for interfacial thermodynamic equilibrium form the basis for the derivation of a number of basic equations in materials science, including the various forms of the Gibbs-Thomson equation. The equilibrium conditions pertaining to a curved interface in a two-phase fluid system are well-known. In contrast, the conditions for thermodynamic equilibrium at a curved interface in nonhydrostatically stressed solids have only recently been examined. These conditions can be much different from those at a fluid interface and, as a result, the Gibbs-Thomson equation appropriate to coherent solids is likely to be considerably different from that for fluids. In this paper, the authors first derive the conditions necessary for thermodynamic equilibrium at the precipitate-matrix interface of a coherent spherical precipitate. The authors' derivation of these equilibrium conditions includes a correction to the equilibrium conditions of Johnson and Alexander for a spherical precipitate in an isotropic matrix. They then use these conditions to derive the dependence of the interfacial precipitate and matrix concentrations on precipitate radius (Gibbs-Thomson equation) for a such a precipitate. In addition, these relationships are then used to calculate the critical radius for the nucleation of a coherent misfitting precipitate

  11. Thomson, his discovery of the electron and the twentieth century science and technology

    International Nuclear Information System (INIS)

    Ahmad, N.

    1997-01-01

    Sir J. J. Thomson was the first to discover a subatomic particle i. e. electron. Due to this discovery he is remembered in the history as T he Atom Smasher . He was a great experimentalists and a devoted physicist. He himself, his son and his seven pupils earned Noble prizes on the basis of their scientific discoveries. The discovery of electron by Sir Thomson in 1897, at Cavendish Laboratory, has rewritten the entire physical science. Although electron has wide spread applications in almost every field, yet its exact nature is not fully known. This article briefly describes the life of Sir Thomson, his achievements and the impact of his discovery of electron on the twentieth century science and technology. (author)

  12. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  13. Stray light reduction for Thomson scattering

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    In order to perform Thomson scattering in a gas discharge tube, the reduction of stray light is very important because of the very small Thomson cross-section. By introducing a sodium absorption cell as a notch filter, we can reduce the measured stray light considerably. Then we have to use a dye

  14. Excess noise in Lidar Thomson scattering methods

    International Nuclear Information System (INIS)

    Smith, R J; Drake, L A P; Lestz, J B

    2012-01-01

    Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.

  15. An Account of ... William Cullen: John Thomson and the Making of a Medical Biography.

    Science.gov (United States)

    Shuttleton, David E

    2014-01-01

    John Thomson's An Account of the Life, Lectures and Writings of William Cullen (1832; 1859) remains a primary source for the career of the most influential academic physician in eighteenth-century Scotland and is also a significant work of medical history. But this multi-authored text, begun around 1810 by the academic surgeon, John Thomson, but only completed in 1859 by Dr David Craigie, has its own complex history. This chapter addresses what this history can reveal about the development of medical biography as a literary genre. It argues that the Account is a hybrid work shaped by a complex array of practical, domestic, intellectual, and professional pressures, as Thomson, in seeking to bolster his own career, was caught between the demands of Cullen's children for a traditional "Life" and his own more theoretical and socio-cultural interests.

  16. Digital filter polychromator for Thomson scattering applications

    Science.gov (United States)

    Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An

    2018-02-01

    Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.

  17. High resolution Thomson scattering system for steady-state linear plasma sources

    Science.gov (United States)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  18. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  19. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  20. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Michelsen, Poul; Hansen, S.K.

    2017-01-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respe...

  1. A Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET

    International Nuclear Information System (INIS)

    Costley, A.E.; Hoekzema, J.A.; Stott, P.E.; Watkins, M.L.

    1988-01-01

    The paper presents the findings of a feasibility investigation into the proposed Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET. A description is given of the motivation for alpha particle diagnostics on JET, followed by a brief survey of possible α-particle diagnostics for JET. The basic principles of the collective Thomson scattering technique are presented, along with its implementation on JET. The expected performance of the system, and other applications of the diagnostic system are also discussed. (U.K.)

  2. Equipment of Thomson scattering measurement on DIVA plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Funahashi, Akimasa; Matoba, Thoru; Sengoku, Seio

    1980-02-01

    Equipment of Thomson scattering measurement using ruby-laser light is explained. DIVA device was shut down in September 1979; it gave numerous fruitful experimental results during its five years operation. We measured the profiles of electron temperature and density with the Thomson scattering equipment, which played an important role in research of the energy confinement and heating characteristics. In Thomson scattering measurements on DIVA, studies and improvements were made for reduction of stray light, increase of measuring points and data processing. The profile of electron temperature and density were thus measured successful. In this report is given an over-all view of the Thomson scattering equipment together with the above improvements. As two representative examples, the measured results of electron temperature profiles on DIVA plasma under divertor operation and low-q discharge respectively are described. (author)

  3. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  4. The Kelvin-Thomson atom

    International Nuclear Information System (INIS)

    Walton, A.J.

    1977-01-01

    The contributions made by Kelvin and later by J.J. Thomson to the 'current-bun' model of the atom are discussed. It is felt that the model is worth retaining as a didactic aid since it serves as a good example around which to hang a discussion of modelling as well as providing good examples of the application of Coulomb's and Gauss's laws. The structure of atoms containing up to six electrons is examined using an analysis based on this model. It is shown that it is possible to have a mechanically stable arrangement of up to six electrons located within a sphere of uniform positive charge. With up to three electrons the arrangement is coplanar with the centre of the sphere. (U.K.)

  5. Incoherent Thomson scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1996-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  6. Design and development of the large helical device TV Thomson scattering

    International Nuclear Information System (INIS)

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-01-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data

  7. Progress in development of the advanced Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hatae, T; Naito, O; Howard, J; Ebizuka, N; Yoshida, H; Nakatsuka, M; Fujita, H; Kajita, S; Narihara, K; Yamada, I; Funaba, H; Hirano, Y; Koguchi, H

    2010-01-01

    We have been studied the advanced Thomson scattering diagnostics from viewpoints of new concepts, laser technology and spectrum analysis. This paper summarizes results of development on technologies for advanced Thomson scattering diagnostics.

  8. Revisão do gênero Cyclopeplus Thomson (Coleoptera, Cerambycidae, Lamiinae, Anisocerini Revision of the genus Cyclopeplus Thomson (Coleoptera, Cerambycidae, Lamiinae, Anisocerini

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Alvarenga Júlio

    2002-12-01

    Full Text Available The genus Cyclopeplus Thomson, 1860 is revised. New synonyms proposed: C. violaceus Lane, 1957 = C. peruvianas Tippmann, 1939 and C. germaini Gounelle, 1906 = C. lacordairei Thomson, 1868. The five species of Cyclopeplus are keyed, redescribed and illustrated.

  9. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  10. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    Science.gov (United States)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  11. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  12. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Carlstrom, T. N. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); LeBlanc, B. P.; Ono, M.; Stratton, B. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  13. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  14. Plasma rotation and ion temperature measurements by collective Thomson scattering at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2015-01-01

    We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma sce...... scenario studied here. This demonstration opens the prospect for direct non-perturbative measurements of the properties of the main ion species in the plasma core with applications in plasma transport and confinement studies.......We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma...

  15. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  16. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    Science.gov (United States)

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  17. Theory of Thomson scattering in inhomogeneous media.

    Science.gov (United States)

    Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G

    2016-04-12

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  18. Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2014-10-01

    A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.

  19. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    International Nuclear Information System (INIS)

    Kalmykov, S Y; Shadwick, B A; Davoine, X; Ghebregziabher, I; Lehe, R; Lifschitz, A F

    2016-01-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ∼10 −5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ∼10 7 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV. (paper)

  20. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  1. Advanced Thomson scattering system for high-flux linear plasma generator

    NARCIS (Netherlands)

    Meiden, van der H.J.; Lof, A.R.; Berg, van den M.A.; Brons, S.; Donné, A.J.H.; Eck, van H.J.N.; Koelman, Peter; Koppers, W.R.; Kruijt, O.G.; Naumenko, N.N.; Oyevaar, T.; Prins, P.R.; Rapp, J.; Scholten, J.; Schram, D.C.; Smeets, P.H.M.; Star, van der G.; Tugarinov, S.N.; Zeijlmans van Emmichoven, P.A.

    2012-01-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating

  2. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando

    2005-01-01

    The EFDA Contract 04-1213 with Risø National Laboratory concerning a detailed integrated design of a Fast Ion Collective Thomson Scattering (CTS) diagnostic for ITER was signed on 31 December 2004. In 2003 the Risø CTS group finished a feasibility study and a conceptual design of an ITER Fast Ion...... Collective Thomson Scattering System (Contract 01.654) [1, 2]. The purpose of the CTS diagnostic is to measure the distribution function of fast ions in the plasma. The feasibility study demonstrated that the only system that can fully meet the ITER measurement requirements for confined fusion alphas is a 60...... the blanket gap, and calculations of diagnosing fuel ion ratio and rotation velocity by CTS....

  3. Thomson scattering in a low-pressure argon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2000-01-01

    The electron density and the electron temperature in a low-pressure argon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 5

  4. Thomson scattering in a low-pressure neon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2001-01-01

    The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10

  5. Synonymic notes on Lepidanthrax osten sacken and redescription of L. tinctus (Thomson (Diptera, Bombyliidae, Anthracinae

    Directory of Open Access Journals (Sweden)

    Carlos José Einicker Lamas

    1996-01-01

    Full Text Available Based on the analysis of types, Lepidanthrax brachialis (Thomson, 1869 and L. quinquepunclatus (Thomson, 1869 are considered junior synonyms of L. tinctus (Thomson, 1869. Notes and illustrations of the type are presented.

  6. DIII-D Thomson Scattering Diagnostic Data Acquisition, Processing and Analysis Software

    International Nuclear Information System (INIS)

    Middaugh, K.R.; Bray, B.D.; Hsieh, C.L.; McHarg, B.B.Jr.; Penaflor, B.G.

    1999-01-01

    One of the diagnostic systems critical to the success of the DIII-D tokamak experiment is the Thomson scattering diagnostic. This diagnostic is unique in that it measures local electron temperature and density: (1) at multiple locations within the tokamak plasma; and (2) at different times throughout the plasma duration. Thomson ''raw'' data are digitized signals of scattered light, measured at different times and locations, from the laser beam paths fired into the plasma. Real-time acquisition of this data is performed by specialized hardware. Once obtained, the raw data are processed into meaningful temperature and density values which can be analyzed for measurement quality. This paper will provide an overview of the entire Thomson scattering diagnostic software and will focus on the data acquisition, processing, and analysis software implementation. The software falls into three general categories: (1) Set-up and Control: Initializes and controls all Thomson hardware and software, synchronizes with other DIII-D computers, and invokes other Thomson software as appropriate. (2) Data Acquisition and Processing: Obtains raw measured data from memory and processes it into temperature and density values. (3) Analysis: Provides a graphical user interface in which to perform analysis and sophisticated plotting of analysis parameters

  7. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  8. Joule-Thomson expansion of Kerr-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Istanbul (Turkey)

    2018-02-15

    In this paper, we study Joule-Thomson expansion for Kerr-AdS black holes in the extended phase space. A Joule-Thomson expansion formula of Kerr-AdS black holes is derived. We investigate both isenthalpic and numerical inversion curves in the T-P plane and demonstrate the cooling-heating regions for Kerr-AdS black holes. We also calculate the ratio between minimum inversion and critical temperatures for Kerr-AdS black holes. (orig.)

  9. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas Beckmann

    2015-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case.

  10. A triple spectrograph system for low stray light Thomson scattering measurements

    NARCIS (Netherlands)

    Sande, van de M.J.; Mullen, van der J.J.A.M.

    2001-01-01

    Thomson scattering is scattering of photons by the electrons in a plasma. From the scattering spectrum, the electron temperature and density (Te, ne) of the plasma can be deduced. In the past decade, the development of high power lasers and sensitive detection devices has made Thomson scattering a

  11. Bobina de Thomson

    Directory of Open Access Journals (Sweden)

    Horacio Munguía Aguilar

    2014-12-01

    Full Text Available Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  12. Prediction of Isoenthalps, Joule–Thomson Coefficients and Joule–Thomson Inversion Curves of Refrigerants by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Figueroa-Gerstenmaier, S.; Lísal, Martin; Nezbeda, Ivo; Smith, W.R.; Trejos, V.M.

    2014-01-01

    Roč. 375, AUG 15 (2014), s. 143-151 ISSN 0378-3812 Grant - others:NSERCC(CA) OGP-1041 Institutional support: RVO:67985858 Keywords : refrigerants * molecular simulation * Joule-Thomson Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.200, year: 2014

  13. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  14. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  15. Collective Thomson scattering data analysis for Wendelstein 7-X

    DEFF Research Database (Denmark)

    Abramovic, I.; Pavone, A.; Svensson, J.

    2017-01-01

    Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated...... into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report...... on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis....

  16. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2004-06-01

    Full Text Available We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.

  17. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    International Nuclear Information System (INIS)

    Jacome, Paulo A.D.; Landim, Mariana C.; Garcia, Amauri; Furtado, Alexandre F.; Ferreira, Ivaldo L.

    2011-01-01

    Highlights: → Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. → Butler's scheme and ThermoCalc are used to compute the thermophysical properties. → Predictive cell/dendrite growth models depend on accurate thermophysical properties. → Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  18. A variational proof of Thomson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  19. Thomson scattering on non-equilibrium low density plasmas : principles, practice and challenges

    NARCIS (Netherlands)

    Carbone, E.A.D.; Nijdam, S.

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters

  20. The Thomson scattering system at DANTE

    International Nuclear Information System (INIS)

    Gadeberg, M.

    1983-08-01

    The construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE is described. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge. (Auth.)

  1. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  2. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jacome, Paulo A.D.; Landim, Mariana C. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Garcia, Amauri, E-mail: amaurig@fem.unicamp.br [Department of Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Furtado, Alexandre F.; Ferreira, Ivaldo L. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil)

    2011-08-20

    Highlights: {yields} Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. {yields} Butler's scheme and ThermoCalc are used to compute the thermophysical properties. {yields} Predictive cell/dendrite growth models depend on accurate thermophysical properties. {yields} Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  3. Rothmund-thomson Syndrome

    Directory of Open Access Journals (Sweden)

    M Z Mani

    1979-01-01

    Full Text Available A case of Rothmund-Thomson syndrome in an 8-year-old Indian male is reported. The patient had bilaterally symmertrical superficial pigmentary deposition of thin nebulae in the lower one-third of the cornea and oonjunctiva. Urinary togmphy rcvmw a dibasic aininoacid with excretion of arginine, lysine;.hmncicystine and glycine. Other features of interest in this patient were onset at the age of 8 days and start of the disease on the hands and feet rather than face. The patient also developed repeated ulcerations on the hands and feet subsequent to minor trauma.

  4. Rothmund-Thomson Syndrome

    DEFF Research Database (Denmark)

    Suter, Aude-Annick; Itin, Peter; Heinimann, Karl

    2016-01-01

    with neutropenia (PN) and Dyskeratosis Congenita (DC), poikiloderma occurs as one of the main symptoms. Here, we report on genotype and phenotype data of a cohort of 44 index patients with RTS or related genodermatoses. METHODS: DNA samples from 43 patients were screened for variants in the 21 exons of the RECQL4...... to assess the patients' cancer risk, to avoid continuous and inconclusive clinical evaluations and to clarify the recurrence risk in the families. Additionally, it shows that the phenotype of more than 50% of the patients with suspected Rothmund-Thomson disease may be due to mutations in other genes raising...

  5. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  6. Incoherent Thomson scattering as a diagnostic tool

    NARCIS (Netherlands)

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  7. Upgraded divertor Thomson scattering system on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); McLean, A. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  8. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  9. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    International Nuclear Information System (INIS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-01-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed

  10. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  11. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    International Nuclear Information System (INIS)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  12. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  13. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  14. Design of Amplifier Circuit for the HT-7 Tokamak Thomson Scattering System

    International Nuclear Information System (INIS)

    Shi Lingwei; Ling Bili; Zhao Junyu; Yang Li; Zang Qing; Hu Qingsheng; Jia Yanqing

    2008-01-01

    Thomson scattering diagnostic is important for measuring electron temperature and density profiles. To improve the signal-to-noise ratio, a silicon avalanche photodiode (APD) with high quantum efficiency, high sensitivity, and high gain up to 100 was adopted to measure the Thomson scattering spectrum. A preamplifier, which has low noise, high bandwidth, and high sensitivity, was designed with suitable transimpedance. Using AD8367 as the post-amplifier, good performance of the APD readout electronics have been obtained. A discussion is presented on the performance of the amplifier using a laser diode to simulate the Thomson scattering light. The test results indicate that the designed circuit has a high amplifying factor and fast rising edge. So reduction of the integral gate of the CAMAC ADC converter can improve the signal-to-noise ratio. (brief communication and research note)

  15. The ITER Thomson scattering core LIDAR diagnostic

    NARCIS (Netherlands)

    Naylor, G.A.; Scannell, R.; Beurskens, M.; Walsh, M.J.; Pastor, I.; Donné, A.J.H.; Snijders, B.; Biel, W.; Meszaros, B.; Giudicotti, L.; Pasqualotto, R.; Marot, L.

    2012-01-01

    The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be

  16. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  17. LIDAR Thomson scattering for ITER core plasma revisited

    International Nuclear Information System (INIS)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2016-01-01

    The authors have become aware that the development of the hitherto planned time-of-flight Thomson scattering system for the ITER core plasma is not proceeding and that conventional Thomson scattering set-ups are being discussed as an alternative. In this paper, we want to point out the advantages of LIDAR and show how criticized details of the original design can be improved. We present a design of the front optics, which in neutronics terms closely resembles a layout already previously accepted. The presented design does not require Raman scattering calibration for the density measurement. Comparison with the JET Core LIDAR system and simulations at higher temperatures both show that with the new design the specified accuracy can be met with a 1–2 J laser. Current laser and detector technology is reviewed. A strategy for how to proceed is presented

  18. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  19. Thomson scattering on the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    McCool, S.C.

    1982-03-01

    Ruby laser Thomson scattering was performed on the PRETEXT tokamak. A 10 Joule Q-switched laser and a 1 meter 10 channel polychromator were used to diagnose the electron temperature and density profiles in the PRETEXT plasma. These parameters were measured as a function of time and radial position on a shot to shot basis. The density measurement was calibrated by Rayleigh and Raman scattering and by comparison with data from a 4 mm microwave interferometer. Electron densities ranging from 1 x 10 12 cm -3 to 2 x 10 13 cm -3 and temperatures ranging from 3 eV to 400 eV were observed. Detailed measurements were made throughout the 40 ms discharge with particular emphasis on the current rise phase. The Thomson scattering data was used as input to a one dimensional magnetic diffusion code. This code modelled the evolution of the current density and safety factor profiles. The results of this analysis were compared with existing theories of tokamak current penetration. The growth of resitive MHD tearing modes was proposed as a likely explanation for the anomalously rapid current penetration observed in PRETEXT

  20. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  1. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  2. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  3. Miniature Joule-Thomson cryocooling principles and practice

    CERN Document Server

    Maytal, Ben-Zion

    2013-01-01

    This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. • The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types • Theoretical Aspec...

  4. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  5. Control and automation of the Pegasus multi-point Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  6. Feasibility study of direct spectra measurements for Thomson scattered signals for KSTAR fusion-grade plasmas

    Science.gov (United States)

    Park, K.-R.; Kim, K.-h.; Kwak, S.; Svensson, J.; Lee, J.; Ghim, Y.-c.

    2017-11-01

    Feasibility study of direct spectra measurements of Thomson scattered photons for fusion-grade plasmas is performed based on a forward model of the KSTAR Thomson scattering system. Expected spectra in the forward model are calculated based on Selden function including the relativistic polarization correction. Noise in the signal is modeled with photon noise and Gaussian electrical noise. Electron temperature and density are inferred using Bayesian probability theory. Based on bias error, full width at half maximum and entropy of posterior distributions, spectral measurements are found to be feasible. Comparisons between spectrometer-based and polychromator-based Thomson scattering systems are performed with varying quantum efficiency and electrical noise levels.

  7. Thomson Reuters to release Book Citation Index later this year

    Science.gov (United States)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  8. Vacuum component subsystem of TV Thomson scattering system in JFT-2M

    International Nuclear Information System (INIS)

    Shiina, Tomio; Yamauchi, Toshihiko; Fujisawa, Atsushi; Hanawa, Osamu; Dimock, D.; Takahashi, Akira; Inomata, Shinji.

    1991-03-01

    The vacuum component subsystem, which is one of six subsystems in TV Thomson scattering (TVTS) system for the JFT-2M tokamak, is completed under a US-JAPAN cooperative program. This subsystem is composed of top and bottom flanges, side flange, beam dump, viewing dump and so on. These components are fitted in the existing 13-point Thomson scattering system as well as the TVTS optics newly developed by Princeton Plasma Physics Laboratory (PPPL) in USA. New feedback system of laser beam alignment was designed and developed. (author)

  9. Recent advances in Thomson scattering: high repetition rate Thomson scattering diagnostics on large plasma devices

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1982-09-01

    In contrast to conventional ruby laser scattering devices allowing only singly pulse measurements, time evolution of Te and ne can be obtained with multipulse lasers. Within a short time interval ( proportional 1 ms) rapid variations can be investigated by employing a periodically Q-switched ruby laser. Several scattering systems under construction in different laboratories to register the time evolution of Tsub(e) and nsub(e) during the whole plasma discharge will be reported. The set-up operating successfully on the Garching tokamak ASDEX will be described in detail. This scattering system uses a Nd:YAG laser (1 J/pulse, up to 100 pps, pulse duration 30 ns, burst of max. 400 pulses) and silicon avalanche diodes as detectors. Time resolved nsub(e) and Tsub(e) measurements on different types of ASDEX discharges are shown, e.g. the electron density and electron heating during neutral beam injection in a divertor discharge. As an example of relatively fast changes of nsub(e) and Tsub(e), results on pellet injection are presented. Interferometric and ECE measurements are in good agreement with the Thomson results. Stationary ''long pulse discharges'' in ASDEX (10 s) at low densitites (10 12 cm -3 ) were diagnosed with reduced time resolution by averaging over several laser pulses. Measurements of the time evolution of electron temperature and -density profiles were done in a first step with a scanning mirror system. These results enables optimazing out 15 spatial-point Thomson scattering system on ASDEX. (orig./AH)

  10. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  11. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  12. Joseph John Thomson's models of matter and radiation in the early 1890s.

    Science.gov (United States)

    Bordoni, Stefano

    In the late nineteenth century, Joseph John Thomson moved away from Maxwell's specific theoretical models of matter and energy, even though he continued to rely on the general framework of Maxwell's electromagnetic theory. In his 1893 book, he accomplished the conceptual drift towards a discrete model for matter, electricity, and fields. In Thomson's model, energy was linked to tubes of force, in particular to the aether contained in them and surrounding them: the energy was the kinetic energy of aether, of both a rotational and translational kind. Starting from Maxwell's electromagnetic fields, namely stresses propagating through a continuous solid medium, Thomson arrived at a representation of fields as a sea of discrete units carrying energy and momentum. He tried to transform Maxwell's theory into a unified picture in which atomic models of matter stood beside atomic models of fields. In 1904 his interpretation of X-rays was based on the integration between two complementary features of electromagnetic radiation, the continuity and the discreteness, and on some kind of fibrous aether. In recent secondary literature, the problematic conceptual link between J. J. Thomson's theory and contemporary theories on electromagnetic radiation has been underestimated. On the contrary, in the first half of the twentieth century, some physicists inquired into that link, and a widespread debate emerged, misunderstandings included.

  13. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-01-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T e ) gradient and low electron density (n e ). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10

  14. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  15. Psühhofüsioloogilised mängud / Kaivo Thomson

    Index Scriptorium Estoniae

    Thomson, Kaivo, 1956-

    2002-01-01

    Rmt.: Thomson, Kaivo. Psühhofüsioloogilised mängud : teooria & värvitoonide, helikõrguste ja liikumiskiiruste eristamisvõime testimine ning arendamine meetodiga "WinPsycho 2000" (CD-1). Tartu : Atlex, 2001.

  16. Multi-Point Thomson Scattering Diagnostic for the Helicity Injected Torus

    Science.gov (United States)

    Liptac, J. E.; Smith, R. J.; Hoffman, C. S.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.

    1999-11-01

    The multi-point Thomson scattering system on the Helicity Injected Torus--II can determine electron temperature and density at 11 radial positions at a single time during the plasma discharge. The system includes components on loan from both PPPL and from the University of Texas. The collection optics and Littrow spectrometer from Princeton, and the 1 GW laser and multi-anode microchannel plate detector from Texas have been integrated into a compact structure, creating a mobile and reliable diagnostic. The mobility of the system allows alignment to occur in a room adjacent to the experiment, greatly reducing the disturbance to normal machine operation. The four main parts of the Thomson scattering system, namely, the laser, the beam line, the collection optics, and the mobile structure are presented and discussed.

  17. J. J. Thomson and the Discovery of the Electron

    Science.gov (United States)

    Squires, Gordon

    1997-04-01

    Joseph John Thomson (1856-1940) was appointed to the Chair of Experimental Physics in the Cavendish Laboratory at the University of Cambridge at the age of 28 and started research on the conduction of electricity through gases at low pressure. He studied the properties of the rays emanating from the cathode in a gas discharge by deflecting them with electric and magnetic fields, and in 1897 announced that they were negatively charged particles about 2000 times lighter than hydrogen atoms, the lightest particles then known. Further, the mass of the particles was the same, irrespective of the nature of the gas in the discharge tube and the material of the cathode. He concluded that he had found a new particle, a universal constituent of matter. The discovery of the particle, subsequently called the electron, was one of the most significant events in the history of science. The talk will give a brief account of Thomson's career and the experiments leading to the discovery.

  18. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  20. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  1. Rothmund-Thomson syndrome and tolerance of chemoradiotherapy

    International Nuclear Information System (INIS)

    Borg, M.F.; Olver, I.N.; Hill, M.P.

    1998-01-01

    Rothmund-Thomson syndrome (RTS) is a rare disorder with a predisposition for cutaneous and non-cutaneous malignancy. It is speculated that ultraviolet (UV) sensitivity and deficient DNA repair may account for this predisposition and influence the tolerance of chemoradiotherapeutic management. A case is reported of the management of an RTS patient with squamous cell carcinoma of the tongue who demonstrated increased radiosensitivity and tissue intolerance to chemotherapy. Copyright (1998) Blackwell Science Pty Ltd

  2. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    International Nuclear Information System (INIS)

    Farias, G.; Dormido-Canto, S.; Vega, J.; Santos, M.; Pastor, I.; Fingerhuth, S.; Ascencio, J.

    2014-01-01

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process

  3. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  4. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  5. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  6. Preliminary project of s Thomson scattering system for the ETE tokamak; Projeto preliminar de um sistema de espalhamento Thomson para o Tokamak ETE

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Luiz Angelo

    1997-12-31

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light 4 refs., 26 figs.

  7. Thomson scattering diagnostic for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson scattering diagnostic system (TSS) on the microwave tokamak experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900±70 eV and 1--2x10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed be able to detect these electrons, which can have energies up to 10 keV, according to computer simulation

  8. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... that generate peak intensity up to 1022 W/cm2 on a table top [1]. ... and energy, plasma wake fields are generated that accelerate electrons to GeVs ... more detail, it is inevitable to use Thomson parabola spectrometer (TPS).

  9. Design of a Thomson scattering diagnostic system for VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Gi [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Jong Ha [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of); Lee, Jeongwon; An, YoungHwa; Dang, Jeong Jeung; Jo, Jungmin; Lee, HyunYeong; Chung, Kyoung-Jae; Hwang, Y.S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Na, Yong-Su, E-mail: ysna@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-10-15

    Highlights: • A Thomson scattering system for Versatile Experiment Spherical Torus is designed. • The system is designed with care for the plasma with a low target electron density. • APD of low dark current and enhanced sensitivity for near infrared has been chosen. • A collecting optics system will provide a sufficient number of photoelectrons. • A designed polychromator is able to measure the electron temperature of 10–1000 eV. - Abstract: A Thomson scattering diagnostic system is designed for Versatile Experiment Spherical Torus (VEST) to measure the spatial profiles of the electron temperature. The system is carefully designed to collect a sufficient number of photoelectrons and to reduce the noise sources, since relatively low electron densities and temperatures are expected in VEST due to the limited power capacity at present. The target electron temperature and the density are 10–200 eV and 5 × 10{sup 18} m{sup −3}, respectively which are extrapolated from the data of triple Langmuir probes measuring the edge plasma parameters at R = 0.75 m by assuming a parabolic density profile. The collecting optics is designed to have a wide-view angle and low cost by using a commercial photographic lens of low f-number and high transmittance optical fiber bundle. The bandwidths of the interference filters in the polychromator are designed for reliable measurements within the target electron temperature range. As a photo detector which is coupled with the filters, an avalanche photodiode (APD) with a low dark current and an adequate quantum efficiency near the laser wavelength is selected for the high signal-to-noise ratio. The number of photons transferred to the polychromator and the number of photoelectrons in the APD are calculated. At the commissioning phase, an oscilloscope with a high sampling rate will be adopted to check the necessity of the noise reduction by multi-shot signal accumulation.

  10. Thomson scattering measurements in atmospheric plasma jets

    International Nuclear Information System (INIS)

    Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.

    1999-01-01

    Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society

  11. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H. [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Yamada, I. [National Institute Fusion Science, Toki, Gifu 509-5292 (Japan); Park, Jae Sun [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-11-15

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.

  12. Calibration of the ORNL two-dimensional Thomson scattering system

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.; Lazarus, E.A.; Kindsfather, R.R.; Murakami, M.; Stewart, K.A.

    1985-10-01

    A unified presentation of the calibrations needed for accurate calculation of electron temperature and density from Thomson scattering data for the Oak Ridge National Laboratory two-dimensional Thomson scattering system (SCATPAK II) is made. Techniques are described for measuring the range of wavelengths to which each channel is responsive. A statistical method for calibrating the gain of each channel in the system is given, and methods of checking for internal consistency and accuracy are presented. The relationship between the constants describing the relative light collection efficiency of each channel and plasma light-scattering theory is developed, methods for measuring the channel efficiencies and evaluating their accuracy are described, and the effect on these constants of bending fiber optics is discussed. The use of Rayleigh or Raman scattering for absolute efficiency (density) calibration, stray light measurement, and system efficiency evaluation is discussed; the relative merits of Rayleigh vs Raman scattering are presented; and the relationship among the Rayleigh/Raman calibrations, relative channel efficiency constants, and absolute efficiencies is developed

  13. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  14. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  15. J J Thomson and the discovery of the electron

    International Nuclear Information System (INIS)

    Squires, Gordon

    1997-01-01

    This short biography describes the life of J.J. Thomson, head of the Cavendish Laboratory in Cambridge. His early life as well as his contributions to physics, including the discovery of the electron from his research on cathode rays in 1897 are included. The work of other contributors to the understanding of electron properties is also noted briefly. (UK)

  16. Computer data-acquisition and control system for Thomson-scattering measurements

    International Nuclear Information System (INIS)

    Stewart, K.A.; Foskett, R.D.; Kindsfather, R.R.; Lazarus, E.A.; Thomas, C.E.

    1983-03-01

    The Thomson-Scattering Diagnostic System (SCATPAK II) used to measure the electron temperature and density in the Impurity Study Experiment is interfaced to a Perkin-Elmer 8/32 computer that operates under the OS/32 operating system. The calibration, alignment, and operation of this diagnostic are all under computer control. Data acquired from 106 photomultiplier tubes installed on 15 spectrometers are transmitted to the computer by eighteen 12-channel, analog-to-digital integrators along a CAMAC serial highway. With each laser pulse, 212 channels of data are acquired: 106 channels of signal plus background and 106 channels of background only. Extensive use of CAMAC instrumentation enables large amounts of data to be acquired and control processes to be performed in a time-dependent environment. The Thomson-scattering computer system currently operates in three modes: user interaction and control, data acquisition and transmission, and data analysis. This paper discusses the development and implementation of this system as well as data storage and retrieval

  17. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  18. Thomson parabola spectrometry for gold laser generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Andó, L.; Ullschmied, Jiří

    2013-01-01

    Roč. 20, č. 2 (2013), 023106-023106 ISSN 1070-664X R&D Projects: GA MŠk LM2010014 Institutional research plan: CEZ:AV0Z20430508 Keywords : acceleration * ions * Thomson parabola spectrometry * PALS laser * laser targets * gold ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.249, year: 2013 http://pop.aip.org/resource/1/phpaen/v20/i2/p023106_s1

  19. Optical design of the TMX Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Frank, A.M.

    1979-01-01

    The Thomson Scattering Diagnostic on TMX was built to measure the electron temperature in the plug. The design was based on the 2XII system built by Tom Simonen. Substantial improvements were realized over the original design, these include: (1) improved sensitivity, (2) simultaneous multiple position sampling, (3) multiple pulse capability, (4) achromatic imaging, (5) vacuum alignment capability, (6) high reliability, and (7) built in calibration and performance monitoring

  20. TV thomson scattering system on JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Ishige, Yoichi; Dimock, D.

    1995-01-01

    A higher spatial resolution TV Thomson scattering system was constructed on JFT-2M tokamak. This system has been providing complete profiles of Te and ne at a single time during a plasma discharge. New detector system was developed composed of two stages of image intensifier tubes coupled to a CCD. The extinction ratio of image intensifier was improved to 1.4 x 10 7 at least. (author)

  1. Delayed Union of a Jones Fracture in a Patient With Rothmund-Thomson Syndrome: A Case Report and Review of the Literature.

    Science.gov (United States)

    Barisonek, Kirsten L; Protzman, Nicole M; Wobst, Garrett M; Brigido, Stephen A

    2016-01-01

    Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis, characterized by poikiloderma, small stature, juvenile cataracts, sparse hair, skeletal abnormalities, and a predisposition to osteogenic sarcomas and skin cancers. Although numerous skeletal abnormalities have been described in patients with Rothmund-Thomson syndrome, to our knowledge, only 1 study has shown evidence of delayed fracture healing in a patient with Rothmund-Thomson syndrome. We present the case of a 13-year-old female diagnosed with Rothmund-Thomson syndrome who demonstrated delayed union of her fifth metatarsal after a Jones fracture. She was treated conservatively for 6 weeks with non-weightbearing cast immobilization and was then transitioned to a controlled ankle motion walker for an additional 4 weeks. Two months later, however, she continued to experience pain, and, on radiographic examination, the fracture remained unchanged. Therefore, with her guardian's consent, the patient elected to undergo open reduction and internal fixation of the fifth metatarsal fracture. At 8 weeks postoperatively, the patient reported a subsidence of symptoms and had returned to normal activity. With our report, we hope to increase practitioner awareness that delayed bone healing could be a possibility in patients with Rothmund-Thomson syndrome and encourage consideration of routine imaging and supplementation with calcium and vitamin D. Additionally, the present findings suggest that patients with Rothmund-Thomson syndrome could benefit from early surgical intervention, given their poor bone healing capacity and high likelihood of nonunion. Although the association between impaired bone healing and Rothmund-Thomson syndrome is rational, additional studies are needed to determine the prevalence of chronic nonunion in this patient population. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Bibliometric Rankings of Journals Based on the Thomson Reuters Citations Database

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,

  3. Bibliometric Rankings of Journals based on the Thomson Reuters Citations Database

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,

  4. Thomson scattering diagnostic for the Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson-scattering diagnostic system (TSS) on the Microwave Tokamak Experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900 ± 70 eV and 1 to 2 x 10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed by able to detect these electrons, which can have energies up to 10 keV, according to computer simulation. 7 refs., 4 figs

  5. Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2014-01-01

    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a

  6. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    NARCIS (Netherlands)

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  7. Advances in the FTU collective Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it; Bruschi, A.; Grosso, G.; Alessi, E.; De Angeli, M.; Figini, L.; Garavaglia, S.; Granucci, G.; Lontano, M.; Mellera, V.; Minelli, D.; Moro, A.; Muraro, A.; Nardone, A.; Simonetto, A.; Tartari, U. [Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche, Milano (Italy); D’Arcangelo, O.; Castaldo, C.; Centioli, C.; Magagnino, S. [ENEA for EUROfusion, Frascati (Italy); and others

    2016-11-15

    The new collective Thomson scattering diagnostic installed on the Frascati Tokamak Upgrade device started its first operations in 2014. The ongoing experiments investigate the presence of signals synchronous with rotating tearing mode islands, possibly due to parametric decay processes, and phenomena affecting electron cyclotron beam absorption or scattering measurements. The radiometric system, diagnostic layout, and data acquisition system were improved accordingly. The present status and near-term developments of the diagnostic are presented.

  8. Flash of the Cathode Rays: A History of J J Thomson's Electron

    International Nuclear Information System (INIS)

    Rechenberg, Helmut

    1997-01-01

    The author, a senior physicist from Berkeley having some experience in historical accounts, covers well the standard story of J J Thomson's discovery of the electron, one hundred years ago. Starting from the investigations of cathode rays in Germany, France and mainly England, the successful path of J J is covered in some detail using available information (letters, notebooks, diaries, publications), as well as his later work on positive rays and the atomic model. Lesser emphasis is given to the parallel developments connected with the Zeeman effect. However, a synopsis of the story of β-rays, the measurement of the elementary charge and the rise of the Rutherford - Bohr nuclear model of the atom is included. Dahl presents the physical contents from the standard literature in a clear and convincing way. He illustrates the narrative with (well-chosen and well-reproduced) portraits of the people involved and sketches of their original apparatus. Hence the book can be recommended highly to physicists, who will be reminded of one of the most important events in the earlier history of their field. A broader public, including other scientists, and perhaps attentive high school graduates, might also benefit from the book, not to mention professional science historians (who may appreciate the detailed, reliable description of subtle experiments and their tricky interpretation). The author succeeds far less well in providing the general background (in the history of physics and beyond) of the Thomson story. The electron as a fundamental concept existed and was applied long before J Pluecker's discovery of cathodes rays (for example, by A-M Ampere and his successors), and the importance of the work by W Weber, F Neumann and R Clausius (to mention just a few scientists in the 19th century) is mainly suppressed. Dahl's treatment of P Lenard's work around 1900, for which Lenard won the Nobel prize before Thomson, is quite unfair. Further, Chapter 14 on the French N-rays and

  9. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  10. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    International Nuclear Information System (INIS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Carroll, D.C.; Clarke, R.J.; Neely, D.; Scott, G.G.

    2016-01-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z / A , a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  11. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    Science.gov (United States)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  12. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  13. A micromachined Joule–Thomson cryogenic cooler with parallel two-stage expansion

    NARCIS (Netherlands)

    Cao, Haishan; Vanapalli, Srinivas; Holland, Herman J.; Vermeer, Cristian Hendrik; ter Brake, Hermanus J.M.

    2016-01-01

    There is an increasing need for localized cooling in integrated circuit/microfluidic chips, where cooling is currently achieved by relatively large and bulky cooling systems. Joule–Thomson (JT) cryocoolers are suitable to address these size limitations because they have no cold moving parts and,

  14. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  15. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  16. Study of a CW, two-dimensional Thomson scattering diagnostic system

    International Nuclear Information System (INIS)

    Hsieh, C.L.; Bray, B.D.; Liu, C.

    2004-01-01

    We describe an approach to Thomson scattering diagnostic that relies upon a high power CW laser cavity and a rf signal detection technique, instead of the more usual pulsed high energy laser. The system has three major elements: an ultra long (∼150 m) laser resonance cavity that includes the plasma region; an array of CW diode lasers of high power and high modulation frequency that pumps and maintains the average cavity energy (∼10 mJ); and a lock-in detection system of narrow frequency bandwidth (∼2 kHz). The resonance cavity consists of a pumping chamber for power input from diode lasers, and many relay chambers (∼30) distributed across the plasma cross section for Thomson measurement. The cavity has a low energy loss (∼2% round trip) and zero output power. It is estimated that signal-to-noise of the system is ∼100 times better than the present pulsed system on DIII-D Tokamak due to the increase in usable laser energy and the improved background signal rejection

  17. Preliminary project of s Thomson scattering system for the ETE tokamak

    International Nuclear Information System (INIS)

    Berni, Luiz Angelo

    1997-01-01

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light

  18. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  19. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    Science.gov (United States)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. 3.5. Apparatus for plasma electron temperature measurement by Thomson scattering

    International Nuclear Information System (INIS)

    Kolacek, K.; Babicky, V.

    1981-01-01

    Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)

  1. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  2. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  3. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  4. Joule-Thomson expansion of the charged AdS black holes

    International Nuclear Information System (INIS)

    Oekcue, Oezguer; Aydiner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  5. Joule-Thomson expansion of the charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Vezneciler, Istanbul (Turkey)

    2017-01-15

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  6. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator

    International Nuclear Information System (INIS)

    Kaushik, S.C.; Manikandan, S.

    2015-01-01

    Highlights: • Exergy analysis in the annular thermoelectric generator (ATEG) system is proposed. • Analytical expressions for the power output, exergy efficiency of an ATEG is derived. • The effects of S r , R L , and θ in P out and exergy efficiency of an ATEG is studied. • The influence of Thomson effect in P out and exergy efficiency of an ATEG is studied. - Abstract: The exoreversible thermodynamic model of an annular thermoelectric generator (ATEG) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum power output and maximum energy, exergy efficiency conditions, and dimensionless irreversibilities in the ATEG are derived. The modified expression for figure of merit of a thermoelectric generator considering the Thomson effect has also been obtained. The results show that the power output, energy and exergy efficiency of the ATEG is lower than the flat plate thermoelectric generator. The effects of annular shape parameter (S r = r 2 /r 1 ), load resistance (R L ), dimensionless temperature ratio (θ = T h /T c ) and the thermal and electrical contact resistances in power output, energy/exergy efficiency of the ATEG have been studied. It has also been proved that because of the influence of Thomson effect, the power output and energy/exergy efficiency of the ATEG is reduced. This study will help in the designing of the actual annular thermoelectric generation systems

  7. Sensitivity of Micromachined Joule-Thomson Cooler to Clogging Due to Moisture

    NARCIS (Netherlands)

    Cao, Haishan; Vanapalli, Srinivas; Holland, Herman J.; Vermeer, Cristian Hendrik; ter Brake, Hermanus J.M.

    2015-01-01

    A major issue in long-term operation of micromachined Joule-Thomson coolers is the clogging of the microchannels and/or the restriction due to the deposition of water molecules present in the working fluid. In this study, we present the performance of a microcooler operated with nitrogen gas with

  8. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    International Nuclear Information System (INIS)

    Cirrone, G A P; Tramontana, A; Candiano, G; Cavallaro, S; Cutroneo, M; Cuttone, G; Pisciotta, P; Romano, F; Schillaci, F; Scuderi, V; Torrisi, L; Carpinelli, M; Martinis, C De; Giove, D; Krása, J; Korn, G; Margarone, D; Prokůpek, J; Velyhan, A; Maggiore, M

    2014-01-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons

  9. Detectors for LIDAR type Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hirsch, K.

    1991-04-01

    A report on the capability of the microchannel plate photomultiplier type (ITT F4128) presently used at the JET LIDAR Thomson Scattering System is given. Detailed investigation on time response, low noise amplification, shutter ratio, gating behaviour, linear mode of operation and saturation pulse recovery carried out during the design phase for LIDAR are presented. New investigation with respect to dc- and gated operation showed no measurable changes in sensitivity of this MCP photomultiplier. Comparing this type of detector with other MCP photomultipliers and with streak cameras some detection schemes for future LIDAR type diagnostic are proposed. (orig.)

  10. Operation of the NSTX Thomson Scattering System

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; Palladino, R.W.

    2002-01-01

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration

  11. Mirror System for Collecting Thomson-Scattered Light in a Tangential Direction

    NARCIS (Netherlands)

    Barth, C. J.; Grobben, B. J. J.; Verhaag, G. C. H. M.

    1994-01-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test

  12. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  13. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  14. Design of the divertor Thomson scattering system on DIII-D

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Foote, J.H.; Nilson, D.G.; Rice, B.W.

    1994-05-01

    Local measurements of n e and T e in the divertor region are necessary for a more complete understanding of divertor physics. We have designed an extension to the existing multipulse Thomson scattering system to measure n e in the range 5 x 10 18 to 5 x 10 20 m -3 and T e 5--500 eV, with 1 cm resolution from 1--21 cm above the floor of the DIII-D vessel, in the region of the X-point for lower single-null diverted plasmas. One of the existing 8, 20 Hz, ND:YAG lasers will be redirected to a separate vertical port, and viewed radially with a specially designed, f/6.8 lens. Fiber optics carry the light to additional polychromators whose interference filters have been optimized for low T e measurements. Other aspect of the system, including the beam path to the vessel, polychromator design, real time data acquisition, laser control, calibration facility, and DIII-D timing and data acquisition interface will be shared with the existing multipulse Thomson system. An in-situ laser alignment monitor will provide alignment information for each laser pulse

  15. Thomson scattering in the EXTRAP-T2 reversed-field pinch

    International Nuclear Information System (INIS)

    Welander, A.

    1996-11-01

    A Thomson scattering system has been installed on the EXTRAP-T2 RFP experiment. The system measures the electron density and temperature in three radial points using three spectral channels. A description of the system, the calibration techniques and examples of data obtained are given. The error bars for the electron temperature measurements are estimated to be < 10% for typical T2-plasmas. 4 refs

  16. Four new species of Nyctonympha Thomson, 1868 (Coleoptera, Cerambycidae, Lamiinae

    Directory of Open Access Journals (Sweden)

    Antonio Santos-Silva

    2017-06-01

    Full Text Available Four new species of Nyctonympha Thomson, 1868 are described: N. antonkozlovi sp. nov. and N. sinjaevi sp. nov. from Colombia, N. birai sp. nov. from Venezuela and N. mariahelenae sp. nov. from Brazil (Rondônia, Bolivia and Peru. Nyctonympha flavipes Aurivillius, 1990 is formally excluded from the Peruvian and Brazilian fauna. A provisional key to species of Nyctonympha is provided.

  17. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen' s University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  18. Quasimonochromatic x-rays generated from nonlinear Thomson backscattering

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin

    2007-01-01

    The nonlinear Thomson backscattering in a circularly polarized Gaussian laser pulse is investigated and spectral characteristics of the emission are discussed. It is indicated that the frequency of the emitted light is up-shifted by the nonlinear doppler effect. By using a properly focused laser beam or putting the electron before the focus, the variety of the nonlinear Doppler shift during the interaction can be minimized and quasimonochromatic x-rays are generated. Taking into account the emission power, the optimum situations for generating quasimonochromatic x-rays are explored

  19. Modeling traveling-wave Thomson scattering using PIConGPU

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)

    2016-07-01

    Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.

  20. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  1. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    International Nuclear Information System (INIS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-01-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  2. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  3. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  4. First high-repetition-rate Thomson scattering for fusion plasmas

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Schramm, G.; Hirsch, K.; Salzmann, H.

    1982-01-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A Nd:YAG laser of 60 pulses per second at 1.06μm was used in ASDEX in combination with silicon avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities as low as 3x10 12 cm -3 . (author)

  5. First 50 pps Thomson scattering diagnostics in a tokamak

    International Nuclear Information System (INIS)

    Roehr, H.; Schramm, G.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1981-12-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A 50 pps Nd:YAG laser at 1.06 μm was used in ASDEX in combination with Si avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities of as low as 2 x 10 12 cm -3 . (orig.)

  6. Examination of a duo-collection optics design for the Korea superconducting tokamak advanced research (KSTAR) Thomson scattering system

    International Nuclear Information System (INIS)

    Oh, Seungtae; Lee, Jong Ha

    2011-01-01

    The comparison of collective optic designs is described for the Thomson scattering system of the Korea superconducting tokamak advanced research (KSTAR) device. The optical systems collecting the light emission induced through the interaction between the plasma electrons and a laser beam are the key components for the Thomson scattering system. In the first conceptual design of the collection optics for the KSTAR Thomson scattering system, a duo-lens system covering individually the core and the edge regions of the KSTAR plasma with two optical lens modules was proposed. In optical designs, the number of optical modules is a great concern in the case of limited system space. Here, the duo-lens system is evaluated through a comparison with a uni-lens system covering the whole region of the plasma with a single optical module. The duo-lens system turned out to have 2.0 times and 4.73 times higher light collections of the plasma core and edge compared with the uni-lens system

  7. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10{sup 13} to 4 × 10{sup 14} cm{sup −3}. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  8. RF sources for recent linear accelerator projects

    International Nuclear Information System (INIS)

    Terrien, J.C.; Faillon, G.; Guidee, P.

    1992-01-01

    We present the state of the art of high power klystrons at Thomson Tubes Electroniques, along with the main technological limitations for peak power and pulse width. Then we describe the work that is under way to upgrade performance and some of the alternative RF sources that have been developed. (Author) 3 refs., 4 figs., 2 tabs

  9. Measurement of magnetically insulated line voltage using a Thomson Parabola Charged Particle Analyser

    International Nuclear Information System (INIS)

    Stanley, T.D.; Stinnett, R.W.

    1981-01-01

    The absence of direct measurements of magnetically insulated line voltage necessitated reliance on inferred voltages based on theoretical calculation and current measurements. This paper presents some of the first direct measurements of magnetically insulated transmission line peak voltages. These measurements were made on the Sandia National Laboratories HydraMITE facility. The peak voltage is measured by observing the energy of negative ions produced at the line cathode and accelerated through the line voltage. The ion energy and the charge-to-mass ratio are measured using the Thomson Parabola mass spectrometry technique. This technique uses parallel E and B fields to deflect the ions. The deflected ions are detected using a microchannel plate coupled to a phosphor screen and photographic film. The Thomson Parabola results are compared to Faraday Cup measurements and to calculated voltages based on current measurements. In addition, the significance of observed positive ions is discussed

  10. Mass- and energy-analysis of fast ion beams in PF-1000 by means of a Thomson spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Czaus, K.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Zebrowski, J.; Karpinski, L.; Paduch, M.; Scholz, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper describes measurements of energy spectra of ions emitted along the z-axis of the PF-1000 facility, which have been for the first time performed by means a miniature Thomson spectrometer during 480-kJ discharges with the deuterium filling. The recorded Thomson parabolas showed that the escaping deuterons have energies in the range of 25-1000 keV, while protons (originated from hydrogen remnants) have the population of about 2 orders smaller and energies within the range of 35-300 keV. This document is composed of a paper followed by a poster. (authors)

  11. Progress on the multipulse Thomson scattering diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Stockdale, R.E.; Carlstrom, T.N.; Hsieh, C.L.; Makariou, C.C.

    1995-01-01

    The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd:YAG 20-Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fulfill varying plasma physics requirements. Custom circuitry for laser control (programmable with 1 μs precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst mode is useful to study a transient plasma event: a series of laser pulses are fired at a rate ≤10 kHz after an external asynchronous event trigger. Burst mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group mode allows a programmed set of lasers to fire simultaneously into the same (65 ns) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented

  12. First results from the Thomson scattering diagnostic on proto-MPEX

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Ray, H.; Shaw, G. [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-11-15

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  13. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  14. A compact multichannel spectrometer for Thomson scattering

    International Nuclear Information System (INIS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-01-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T e e > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (∼2 ns) ICCD camera for detection. A Gen III image intensifier provides ∼45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  15. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  16. EDITORIAL: J J Thomson's Electron

    Science.gov (United States)

    Adams, Steve

    1997-07-01

    Westminster School, London, UK A few weeks ago David Thomson, J J Thomson's grandson, presented a Friday evening discourse at the Royal Institution. In it he traced the development of JJT's life from his early studies at Owen's College in Manchester, on to Trinity College Cambridge, his work under Rayleigh at the Cavendish, and his succession as Professor of Experimental Physics in 1884 (a post he passed on to Rutherford in 1919). These were years of heroic discoveries that shaped 20th century physics. Looking around the lecture theatre at all the bow-ties and dinner jackets, it must have been rather similar on 30 April 1897 when JJT delivered his famous discourse on 'Cathode Rays' in which he cautiously but confidently announced that his own results together with those of other experimenters (Lenard in particular): `....seem to favour the hypothesis that the carriers of the charges are smaller than the atoms of hydrogen.' In this issue articles by Leif Gerward and Christopher Cousins, and by Isobel Falconer explore the historical and philosophical context of that discovery. The sound-bites to history in many A-level courses have JJT as both the hero who single-handedly discovered the electron and the rather naive Victorian scientist who thought the atom was a plum pudding. It is valuable to see how Thomson's work pulled the threads of many experiments together and to realize that he may have been first to the post because of a difference in the philosophical approach to cathode rays in Britain compared to Europe. Experimental data must always be interpreted, and divergent philosophies can lead to quite different conclusions. The electron was, of course, the first subatomic particle to be identified. Christine Sutton's article looks at how 20th century discoveries reveal Nature's mysterious habit of repeating successful patterns---electrons for example have very close relations, the muon and the tau---but why? Perhaps the answer will come from the theoreticians

  17. Rotational Raman scattering using molecular nitrogen gas for calibration of Thomson-scattering apparatus

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro

    1987-01-01

    Anti-Stokes rotational Raman lines in molecular nitrogen gas were used for the calibration of Thomson-scattering apparatus. It was found that molecular nitrogen gas is suitable for a vessel having strong stray light. The polarization ratio was 0.16 using linear-polarized laser light. (author)

  18. High-rep-rate Thomson scattering for LHD

    Science.gov (United States)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  19. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    International Nuclear Information System (INIS)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H.G.

    2005-01-01

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics

  20. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  1. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  2. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  3. Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma

    International Nuclear Information System (INIS)

    Aramaki, M.; Kobayashi, J.; Kono, A.; Stamate, E.; Sugai, H.

    2006-01-01

    A high-efficiency multichannel Thomson scattering measurement system was developed as a tool for studying the electron heating mechanisms in a surface wave plasma. By improving the output power and repetition rate of the Nd:YAG laser, an F-number of spectrograph, and a quantum efficiency of ICCD camera, the overall Thomson signal collection efficiency per unit measurement time has been improved by a factor larger than 40 in comparison with the previous measurement system developed by the authors. The one-dimensional electron velocity distribution functions were measured in the vicinity of the dielectric window of a surface wave plasma

  4. Comparison of fast ion collective Thomson scattering measurements at ASDEX Upgrade with numerical simulations

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Stejner Pedersen, Morten

    2010-01-01

    Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injecti...

  5. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  6. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  7. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    Science.gov (United States)

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  8. New develops in Thomson scattering diagnostics on the L-2 stellarator

    International Nuclear Information System (INIS)

    Blokh, M.A.; Larionova, N.F.

    1989-01-01

    In this paper, a multichannel plasma diagnostic system employing Thomson scattering is modernized for the L-2 stellarator. A specialized polychromator with a large field of view, high contrast, and transmission is used together with a 16-channel photoelectron recorder. The modernized system makes it possible to measure the electron temperature at three points simultaneously in the plasma column cross-section at a local electron density 3.10 12 cm-3

  9. Gibbs-Thomson Law for Singular Step Segments: Thermodynamics Versus Kinetics

    Science.gov (United States)

    Chernov, A. A.

    2003-01-01

    Classical Burton-Cabrera-Frank theory presumes that thermal fluctuations are so fast that at any time density of kinks on a step is comparable with the reciprocal intermolecular distance, so that the step rate is about isotropic within the crystal plane. Such azimuthal isotropy is, however, often not the case: Kink density may be much lower. In particular, it was recently found on the (010) face of orthorhombic lysozyme that interkink distance may exceed 500-600 intermolecular distances. Under such conditions, Gibbs-Thomson law (GTL) may not be applicable: On a straight step segment between two corners, communication between the comers occurs exclusively by kink exchange. Annihilation between kinks of opposite sign generated at the comers results in the grain in step energy entering GTL. If the step segment length l much greater than D/v, where D and v are the kink diffusivity and propagation rate, respectively, the opposite kinks have practically no chance to annihilate and GTL is not applicable. The opposite condition of the GTL applicability, l much less than D/v, is equivalent to the requirement that relative supersaturation Delta(sub mu)/kT much less than alpha/l, where alpha is molecular size. Thus, GTL may be applied to a segment of 10(exp 3)alpha approx. 3 x 10(exp -5)cm approx 0.3 micron only if supersaturation is less than 0.1%, while practically used driving forces for crystallization are much larger. Relationships alternative to the GTL for different, but low, kink density have been discussed. They confirm experimental evidences that the Burton-Cabrera-Frank theory of spiral growth is growth rates twice as low as compared to the observed figures. Also, application of GTL results in unrealistic step energy while suggested kinetic law give reasonable figures.

  10. Design of new Thomson scattering diagnostic system on COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Aftanas, Milan; Böhm, Petr; Weinzettl, Vladimír; Šesták, David; Melich, Radek; Stöckel, Jan; Scannell, R.; Walsh, M.

    2010-01-01

    Roč. 623, č. 2 (2010), s. 656-659 ISSN 0168-9002. [International Conference on Frontiers in Diagnostic Technologies/1st./. Frascati, 25.11.2009-27.11.2009] R&D Projects: GA ČR GA202/09/1467; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * Laser diagnostic * Electron temperature * Electron density Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.142, year: 2010 www.elsevier.com/locate/nima

  11. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L.; Dayeh, Shadi A.; Wu, Tao

    2016-01-01

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  12. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  13. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    Science.gov (United States)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Evaluation of the optical design of laser Thomson scattering diagnostics for high-temperature EAST tokamak and low-temperature MAP-II divertor simulator

    International Nuclear Information System (INIS)

    Kado, Shinichiro; Scotti, Filippo; Xi Xiaoqi; Zhao Junyu

    2009-01-01

    The optical design of the laser Thomson scattering (LTS) system for EAST tokamak is now on-going. Based on the Visible YAG laser TVTS system developed in the MAP-II (material and plasma) steady-state linear divertor/edge plasma simulator at the University of Tokyo, the required specification and the applicability of the VIS-YAG-TVTS system was evaluated in terms of the photon number to be collected by the fiber light-guide to a spectrometer and the reciprocal linear dispersion of the spectrometer. Then, the possible design of the optical system was proposed. (author)

  15. Thomson scattering in magnetic fields. [of white dwarf stars

    Science.gov (United States)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  16. Thomson scattering on COMPASS – commissioning and first data

    Czech Academy of Sciences Publication Activity Database

    Aftanas, Milan; Böhm, Petr; Scannell, R.; Tripsky, M.; Weinzettl, Vladimír; Hron, Martin; Pánek, Radomír; Stöckel, Jan; Walsh, M.; Bílková, Petra

    2012-01-01

    Roč. 7, č. 1 (2012), C01074-C01074 ISSN 1748-0221. [INTERNATIONAL CONFERENCE ON LASER AIDED PLASMA DIAGNOSTICS/15./. Jeju, 13.10.2011-19.10.2011] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * electron temperature * laser diagnostic * Plasma diagnostics - charged-particle spectroscopy * Plasma diagnostics - interferometry * spectroscopy and imaging * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/01/C01074/pdf/1748-0221_7_01_C01074.pdf

  17. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general ...... and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system. © 2010 EURATOM...

  18. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  19. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  20. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    International Nuclear Information System (INIS)

    Morton, L A; Parke, E; Hartog, D J Den

    2013-01-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined

  1. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  2. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<Thomson cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  3. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  4. Operation of ADITYA Thomson scattering system: measurement of temperature and density

    International Nuclear Information System (INIS)

    Thomas, Jinto; Pillai, Vishal; Singh, Neha; Patel, Kiran; Lingeshwari, G.; Hingrajiya, Zalak; Kumar, Ajai

    2015-01-01

    ADITYA Thomson scattering (TS) system is a single point measurement system operated using a 10 J ruby laser and a 1 meter grating spectrometer. Multi-slit optical fibers are arranged at the image plane of the spectrometer so that each fiber slit collects 2 nm band of scattered spectrum. Each slit of the fiber bundle is coupled to high gain Photomultiplier tubes (PMT). Standard white light source is used to calibrate the optical fiber transmission and the laser light itself is used to calibrate the relative gain of the PMT. Rayleigh scattering has been performed for the absolute calibration of the TS system. The temperature of ADITYA plasma has been calculated using the conventional method of estimation (calculated using the slope of logarithmic intensity vs the square of delta lambda). It has been observed that the core temperature of ADITYA Tokamak plasma is in the range of 300 to 600 eV for different plasma shots and the density 2-3 X 10 13 /cc. The time evolution of the plasma discharge has been studied by firing the laser at different times of the discharge assuming the shots are identical. In some of the discharges, the velocity distribution appears to be non Maxwellian. (author)

  5. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  6. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  7. EPICS application source/release control

    International Nuclear Information System (INIS)

    Zieman, B.; Anderson, J.; Kraimer, M.

    1995-01-01

    This manual describes a set of Application Source/Release Control tools (appSR) that can be used to develop software for EPICS based control systems. The Application Source/Release Control System (appSR) has been unbundled from base EPICS and is now available as an EPICS extension. Due to this unbundling, two new directories must be added to a user's path (see section ''Environment'' on page 3 for more information) and a new command getapp must be issued after the getrel command to get a specific version of appSR (see section ''Creating The Initial Application System Area'' on page 7 for more information). It is now required that GNU make version 3.71 or later be used for makes instead of SUN make. Users should now type gmake instead of make

  8. Diagnostic X-ray sources-present and future

    Science.gov (United States)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  9. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  10. Special Application Thermoelectric Micro Isotope Power Sources

    International Nuclear Information System (INIS)

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-01

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources

  11. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-02-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,755] Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From Adecco; Eagan, MN; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of the Trade Act of 1974, as amended (`...

  12. First operations with the new Collective Thomson Scattering diagnostic on the Frascati Tokamak Upgrade device

    DEFF Research Database (Denmark)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.

    2015-01-01

    Anomalous emissions were found over the last few years in spectra of Collective Thomson Scattering (CTS) diagnostics in tokamak devices such as TEXTOR, ASDEX and FTU, in addition to real CTS signals. The signal frequency, down-shifted with respect to the probing one, suggested a possible origin i...

  13. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  14. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    International Nuclear Information System (INIS)

    Herranz, J.; Barth, C. J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-01-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  15. Thomson scattering measurements on the high beta pinch Extrap-T1

    International Nuclear Information System (INIS)

    Karlsson, P.

    1989-11-01

    Electron temperature and density measurement on a high beta discharge in the Extrap-T1 device have been performed with Thomson scattering. It was found that the signal levels were low and the plasma background radiation high. The spread of the measured temperatures and densities was large. A computer code was developed to investigate whether this spread in measured temperatures was due to shot to shot variations or to photon statistics. The code showed that the scattered data could be explained by photon statistics

  16. Edge Thomson scattering diagnostic on COMPASS tokamak: Installation, calibration,operation, improvements

    Czech Academy of Sciences Publication Activity Database

    Böhm, Petr; Aftanas, Milan; Bílková, Petra; Štefániková, Estera; Mikulín, Ondřej; Melich, Radek; Janky, Filip; Havlíček, Josef; Šesták, David; Weinzettl, Vladimír; Stöckel, Jan; Hron, Martin; Pánek, Radomír; Scannell, R.; Frassinetti, L.; Fassina, A.; Naylor, G.; Walsh, M.J.

    2014-01-01

    Roč. 85, č. 11 (2014), 11E431-11E431 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/20./. Atlanta, Georgia, 01.06.2014-05.06.2014] R&D Projects: GA MŠk(CZ) LM2011021; GA ČR(CZ) GA14-35260S Institutional support: RVO:61389021 Keywords : plasma * tokamak * pedestal * Thomson scattering * diagnostic Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.614, year: 2014 http://scitation.aip.org/content/aip/journal/rsi/85/11/10.1063/1.4893995

  17. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    Science.gov (United States)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  18. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    In this report we investigate the feasibility of diagnosing the fast ions in ITER by collective Thomson scattering (CTS), exploring and comparing the diagnostic potentials of CTS systems base on a range of different probe frequencies. In the first section we first recall the requirements for meas...... the diagnostic potentials uncovered in the preceding four sections. A number of more detailed discussions are placed in appendices along with supporting material....... for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...... covers many more details. Here we introduce terms and methods used in the more detailed system evaluations later in the report. In Sections 2 through 5 we consider four different types of CTS systems, which differ by the ranges in which their probe frequencies lie. In Section 6 we summarize and compare...

  19. Edge Thomson scattering on RFX-mod

    International Nuclear Information System (INIS)

    Alfier, A.; Pasqualotto, R.

    2006-01-01

    Electron temperature and density profiles of the RFX-mod experiment are characterized by edge gradients typically steeper than the flatter central region. The main Thomson scattering (TS) diagnostic which measures 84-point profiles along a diameter is mainly devoted to cover the core region. A second TS system has been developed to measure 12-point profiles in the external region 0.8< r/a<1, with a spatial resolution of 1 cm. It uses a single shot ruby laser. Input and collection optics share the same vacuum port and they are mounted on one optical bench, which allows offline aligning the system before connecting it to the vessel. The scattered signal is collected by a row of 12 fibers, while 4 fibers on the sides are used to check the alignment and measure the plasma light. The fibers, arranged in a 4x4 pattern, are fed into a four channel filter spectrometer and the spectrum is detected by a GaAs intensified charge-coupled device camera. The filters are arranged in a zigzag geometry, such that only one detector is needed

  20. Optical design for divertor Thomson scattering system for JT-60SA

    International Nuclear Information System (INIS)

    Kajita, Shin; Enokuchi, Akito; Hatae, Takaki; Itami, Kiyoshi; Hamano, Takashi; Kado, Shinichiro; Ohno, Noriyasu; Takeyama, Norihide

    2014-01-01

    Highlights: •A detailed designing for collection optical system of divertor Thomson scattering system in JT-60SA is conducted. •The assessment of the density and temperature errors of the measurement system is conducted. •It is shown that the measurement could be done with the temperature error of 50% when the density was 10 20 m −3 . •The availability of the laser transmission mirrors for the measurement system is discussed. •Several guidelines to improve the measurement system are discussed. -- Abstract: Optical design for divertor Thomson scattering system in JT-60SA has been conducted. The measurement system will use a Nd:YAG laser at 1064 nm, and scattered photons are collected by a collection optical system. The collection optics consists of primary mirror, secondary mirror, relay optics, and fiber collection optics. The laser transmission mirror and collection optics were designed to be installed in a slender lower port of JT-60SA. The assessment of the measurement errors in temperature was conducted for the designed collection optical system. Because of spatial limitation, the solid angle from the measurement points would be small especially for the measurement points in high field side, and consequently, the temperature errors in the high field side would be considerably large. The effects of several improvements on the error are discussed. Moreover, an assessment for the in-vessel laser transmission metallic mirrors is conducted for the present design

  1. Study of TJ-1 Tokamak plasmas with Thomson scattering and radiation diagnostics

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-06-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of T e and n e obtained in TJ-1 discharges are presented. This data makes possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Z eff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Z eff without non experimental assumptions. (author) 56 figs., 52 refs

  2. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  3. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Moseev, D.

    2011-11-01

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  4. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D.

    2011-11-15

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  5. Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Salewski, Mirko

    2010-01-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions...

  6. Mida kujutab endast IB õppekava? / Toomas Kruusimägi, Anu Parts, Karl Hendrik Thomson ; intervjueerinud Raivo Juurak

    Index Scriptorium Estoniae

    Kruusimägi, Toomas, 1962-

    2010-01-01

    Uuest rahvusvahelisest International Baccalaureate'i (IB) õppekavast ja selle rakendamisest Tallinna Inglise Kolledži 11. klassis alates möödunud aastast räägivad kooli direktor Toomas Kruusimägi, õppedirektor Anu Parts ning õpilane Karl Hendrik Thomson

  7. X-ray Thomson Scattering from Spherically Imploded ICF Ablators

    Science.gov (United States)

    Kritcher, Andrea; Doeppner, Tilo; Landen, Otto; Glenzer, Siegfried

    2010-11-01

    Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113^o and 135^o. for two drive pulse shapes.As an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beamswhen compressed a factor of 4.83x) yielded electron densities of ˜ 1.2±0.23x10^24cm-3, temperatures of ˜13±32 eV, and an ionization state of Be(+2), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 +0.3/-.5 with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).

  8. Validation of the Thomson, Perry and Miller (2007 Collaboration Instrument in the South African context

    Directory of Open Access Journals (Sweden)

    Debbie Roberts

    2017-02-01

    Full Text Available Orientation: Collaboration is deemed important in today’s connected and complex business environment. People’s ability to collaborate with each other in organisations is becoming a business imperative. This study focuses on a valid measurement of collaboration within organisations. Research purpose: Thomson, Perry and Miller (2007 developed a collaboration measurement instrument in the United States. The aim of this study was to validate this instrument for a South African context. Motivation for the study: South African organisations face unique challenges that require optimal use of resources to improve business results. Effective collaboration is considered a powerful strategy to achieve this. Measuring the extent of collaboration can help to identify required changes in business practices. As far as could be established, there is no evidence of collaboration instruments developed and validated in South Africa. Research design, approach and method: Additional items were designed for further development of the Thomson, Perry and Miller (2007 Collaboration Instrument sub-scales, as suggested by the authors. The revised questionnaire consisting of 31 (17 existing, 14 new items was distributed electronically to 4200 employees in two organisations, with 343 valid responses received. Reliability and construct validity were tested, as was convergent validity of the norms factor with the Trust in Teams Scale. Main findings: The results of the study support a four-factor, 29-item model of collaboration when applied to a South African sample. Cronbach’s alpha ranged between 0.85 and 0.95. Confirmatory Factor Analysis fits were at an acceptable level. Convergent validity showed a moderate fit with the data. Practical/managerial implications: South African managers and human resources practitioners can utilise results to foster a collaborative environment. Contribution/value-add: This study builds on the theoretical concept of collaboration as

  9. Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, S.A.; Gluyas, J.G.; Oldenburg, C.M.; Tsang, C.-F.

    2010-05-21

    Mathematical tools are needed to screen out sites where Joule-Thomson cooling is a prohibitive factor for CO{sub 2} geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO{sub 2} injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s{sup -1} (0.1 MT yr{sup -1}) into moderately warm (>40 C) and permeable formations (>10{sup -14} m{sup 2} (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).

  10. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  11. A New Version of an Old Demonstration Experiment Using the Elihu Thomson Jumping Ring Apparatus

    Science.gov (United States)

    Foster, Theodore; Cary, Arthur; Mottmann, John; van Wyngaarden, Willem

    2016-01-01

    The goal of this paper is to make more widely known an eye-catching demonstration experiment in which a hanging conducting can is made to spin when placed near the iron core of an Elihu Thomson "jumping ring" apparatus. An explanation is given based on Faraday's law of induced voltages and the magnetic forces due to the core's fields…

  12. The Thomson scattering system at Wendelstein 7-X

    Science.gov (United States)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  13. K-α X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, Andrea L.; Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H.; Falcone, Roger W.; Ja Lee, Hae; Lee, Richard W.; Morse, Edward C.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  14. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, A.L.; Neumayer, P.; Castor, J.; Doppner, T.; Falcone, R.W.; Landen, O.L.; Lee, H.J.; Lee, R.W.; Morse, E.C.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S.H.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation

  15. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    Science.gov (United States)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  16. 40 CFR 74.16 - Application requirements for combustion sources.

    Science.gov (United States)

    2010-07-01

    ... combustion sources. 74.16 Section 74.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for combustion sources. (a) Opt-in permit application. Each complete opt-in permit application for a combustion source shall contain the following elements in a format prescribed by the Administrator: (1...

  17. An energy confinement study of the MST [Madison Symmetric Torus] reversed field pinch using a Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Den Hartog, D.J.

    1989-11-01

    Thomson scattering measurements of the central electron temperature and density during the plasma current peak have been performed on the MST Reversed Field Pinch (RFP). This Thomson scattering diagnostic was calibrated for absolute electron density measurements. These measurements of T e and n e , when combined with profile assumptions, were used to calculate estimates of energy confinement time (τ E ) and poloidal beta (β θ ). A standard discharge with I p ∼ 400 kA, F ∼ -0.1, and θ ∼ 1.6 typically exhibited T e ∼ 275 eV, n e ∼ 2.0 x 10 13 cm -3 , τ E ≤ 1 ms, and β θ ≤ 8%. The results of a limited plasma current scaling study did not indicate a strong scaling of T e or τ E with I p . The Thomson scattering diagnostic was used in conjunction with a bolometer, VUV radiation monitor, and edge magnetic coils to study the loss of energy from the plasma. Results indicate that thermal transport from stochastic magnetic fields, particle loss, and radiation are important energy loss processes. The experiments done for this study included an F-scan, a paddle limiter insertion series, and an argon doping series. The plasma maintained a constant βτ during these perturbation experiments, suggesting that increases in one energy loss channel are compensated by drops in other channels and increases in input power to the plasma

  18. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  19. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    International Nuclear Information System (INIS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-01-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  20. Analyse numérique des dynamiques d'obstruction dans les refroidisseurs Joule-Thomson micro-usinés

    NARCIS (Netherlands)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J.M.

    2017-01-01

    Micromachined Joule–Thomson (JT) coolers are of interest for cooling small electronic devices. The long-term performance of JT microcoolers is limited by the clogging phenomenon caused by the deposition of water molecules present as impurity in the working fluid. This work investigates the clogging

  1. Developments of saddle field ion sources and their applications

    International Nuclear Information System (INIS)

    Abdelrahman, M.M.; Helal, A.G.

    2009-01-01

    Ion sources should have different performance parameters according to the various applications for which they are used, ranging from ion beam production to high energy ion implanters. There are many kinds of ion sources, which produce different ion beams with different characteristics. This paper deals with the developments and applications of some saddle field ion sources which were designed and constructed in our lab. Theory of operation and types of saddle field ion sources are discussed in details. Some experimental results are given. The saddle field ion sources operate at low gas pressure and require neither magnetic field nor filament. This type of ion sources is used for many different applications as ion beam machining, sputtering, cleaning and profiling for surface analysis etc

  2. Thomson scattering upgrade on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, F., E-mail: fabrice.leroux@cea.f [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Manenc, L.; Moreau, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2010-07-15

    The Thomson scattering diagnostic supplies the electron temperature and density of Tore Supra plasmas from the spectrum analysis of scattered light of a very short laser pulse. A new spectrometer has been realized to improve the signal to noise ratio. In order to obtain an efficient noise reduction, a real time calculation is necessary. The current analogue integration of the signal is inadequate. A fast digitalization must be used with a sampling rate of 1 GSamples/s, a bandwidth of 150 MHz and a 12 bits dynamic range. In a first step, fast analogue data acquisition boards for 4 channels were added in 2009 to the VME acquisition system in place. A MATACQ (Matrix for acquisition) board was chosen for sampling analogue data up to 2 GSamples/s over 4 channels with a large bandwidth of 300 MHz and a 14 bits dynamic range. This solution offers a low cost acquisition system that is not available in any other commercial board with this dynamic range. The first results will be obtained on calibration period with a light emitted diode before the summer 2009. This article will present the new data acquisition system and the coming first results.

  3. Hβ Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    International Nuclear Information System (INIS)

    Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der

    2012-01-01

    In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density

  4. Industrial application of electron sources with plasma emitters

    CERN Document Server

    Belyuk, S I; Rempe, N G

    2001-01-01

    Paper contains a description, operation, design and parameters of electron sources with plasma emitters. One presents examples of application of these sources as part of automated electron-beam welding lines. Paper describes application of such sources for electron-beam deposition of composite powders. Electron-beam deposition is used to rebuild worn out part and to increase strength of new parts of machines and tools. Paper presents some examples of rebuilding part and the advantages gained in this case

  5. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  6. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection...... and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown...

  7. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  8. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  9. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2

  10. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  11. Interference characterisation of a commercial Joule-Thomson cooler to be used in a SQUID-based heart monitor

    NARCIS (Netherlands)

    Bangma, M.R.; Bangma, M.R.; Rijpma, A.P.; de Vries, E.; Reincke, H.A.; Holland, Herman J.; ter Brake, Hermanus J.M.; Rogalla, Horst

    2001-01-01

    At the University of Twente, a foetal heart monitor based on a high-TC SQUID magnetometer system is under development. The purpose of this system is to measure a foetal heart signal in a clinical environment. For cooling a first demonstrator version, a closed-cycle Joule–Thomson cooler from APD

  12. The data acquisition and control system for Thomson Scattering on ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Kindsfather, R.R.; Rasmussen, D.A.

    1989-01-01

    The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval. 3 refs

  13. X-ray Thomson scattering in warm dense matter at low frequencies

    International Nuclear Information System (INIS)

    Murillo, Michael S.

    2010-01-01

    The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the 'plasmon-pole'-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.

  14. Desenvolvimento pós-embrionário de Pattonella intermutans (Thomson (Diptera: Sarcophagidae em diferentes dietas Post-embryonary development of Pattonella intermutans (Thomson, 1869 in different diets

    Directory of Open Access Journals (Sweden)

    Marcio S. Loureiro

    2005-03-01

    Full Text Available A proposta deste estudo foi de avaliar o desenvolvimento pós-embrionário de Pattonella intermutans (Thomson, 1869 em dietas artificiais preparadas com agar-agar. Dieta D1: leite em pó integral + fermento biológico; Dieta D2: leite em pó integral + fermento biológico + caseína; Dieta D3: leite em pó integral + ovo cru; Dieta D4: carne bovina moída (dieta controle. A carne bovina moída foi a dieta mais eficiente (peso larval de 195,63 mg e viabilidade de neolarva a adulto de 86,5%, quando comparada com as dietas artificiais. Os seguintes resultados foram obtidos para o grupo experimental: Dieta D3: 180,15 mg e 63,5%; Dieta D2: 141,07 mg e 61% e na Dieta D1: 147,98 mg e 51,5%.The purpose of this study was to evaluate the post-embryonary development of Pattonella intermutans (Thomson, 1969 in artificial diets composed of agar-agar. Diet D1: whole dried milk + dried brewer's yeast; Diet D2: whole dried milk + dried brewer's yeast+ casein; Diet D3: whole dried milk + whole egg; Diet D4: bovine meal (control diet. The bovine meat was the best diet (larval weight 195.63mg and viability from larvae to adult 86,5%, when compared to all other artificial diets. The following performances were obtained for experimental groups: diet D3: 180.15 mg and 63.5%; diet D2: 141.07 mg and 61% and diet D1: 147.98 mg e 51.5%.

  15. New class of microminiature Joule — Thomson refrigerator and vacuum package

    Science.gov (United States)

    Paugh, Robert L.

    1990-12-01

    Progress is reported on the development of a two-stage, fast cooldown Joule — Thomson refrigerator using nitrogen gas and a nitrogen — hydrocarbon gas mixture as the refrigerants. The refrigerator incorporates a microminiature Venturi pump to reduce the pressure of the exhaust of the main boiler to bring the operating temperature of the cold stage to < 70 K in as little as 10 s. The vacuum package for the refrigerator contains no organic materials and is designed to provide a ten year shelf life. Special glass strengthening techniques are being used to achieve cooler survival of acceleration tests of up to 100 000g.

  16. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  17. Applications and opportunities for radiation sources

    International Nuclear Information System (INIS)

    Round, K.J.

    1984-01-01

    An important spin-off benefit from the nuclear industry has been the ability to produce a wide variety of ionizing radiation sources for industrial, medical and scientific applications. These sources include radionuclides produced by irradiation of target material in reactors and cyclotrons or recovered from spent fuels, and accelerators. The uses of radiation in both medicine and industry can be expected to evolve. Traditional uses such as cancer therapy will mature and in some cases be displaced by new technology. Major new applications, including food processing and waste treatment, are expected to maintain the demand for isotopes such as cobalt 60 and to stimulate the development of economical and reliable accelerator systems. (L.L.) (Tab., 2 figs.)

  18. Alignment of the Thomson scattering diagnostic on NSTX

    International Nuclear Information System (INIS)

    LeBlanc, B P; Diallo, A

    2013-01-01

    The Thomson scattering diagnostic can provide profile measurement of the electron temperature, T e , and density, n e , in plasmas. Proper laser beam path and optics arrangement permits profiles T e (R) and n e (R) measurement along the major radius R. Keeping proper alignment between the laser beam path and the collection optics is necessary for an accurate determination of the electron density. As time progresses the relative position of the collection optics field of view with respect to the laser beam path will invariably shift. This can be kept to a minimum by proper attention to the physical arrangement of the collection and laser-beam delivery optics. A system has been in place to monitor the relative position between laser beam and collection optics. Variation of the alignment can be detected before it begins to affect the quality of the profile data. This paper discusses details of the instrumentation and techniques used to maintain alignment during NSTX multi-month experimental campaigns

  19. Improvement of the bandwidth of the transient digitizers in the LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Kristensen, E.

    1990-06-01

    The main limitation on the spatial resolution of the LIDAR Thomson scattering diagnostic on the JET tokamak is due to the narrow bandwidth of the detection system. The transient digitizers, Tektronik 7912AD, are the main contributors to the narrow bandwidth. It is shown how the digitizers can be modified to improve the response time from approx. 480 to 410 ps. (author)

  20. Data analysis methods in physical oceanography. By Emery, W.J. and Thomson, R.E.

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    . 729-730 September 1999 Book Reviews DATA ANALYSIS METHODS IN PHYSICAL O~EAN~GRAFWY. By Wil- liam J. Emery and Richard E. Thomson. PERGAMON Else&r Sci- ence. 1998. 400 p. U.S. $112 / NLG 177.00. The book Data Analysis Methods in Physical... Oceanography pro- vides a comprehensive and practical compilation of the essential information and analysis techniques required for the advanced processing and interpretation of digital spat&temporal data in physical oceanography, as well as in other...

  1. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Salewski, Mirko; Korsholm, Søren Bang

    2013-01-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane of ...

  2. Timing and triggering of the Thomson scattering diagnostics on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Mikulín, Ondřej; Hron, Martin; Böhm, Petr; Naylor, G.; Bílková, Petra; Janky, Filip; Salášek, J.; Pánek, Radomír

    2014-01-01

    Roč. 89, č. 5 (2014), s. 693-697 ISSN 0920-3796. [The 9th Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research/9./. Hefei, 06.05.2013-10.05.2013] R&D Projects: GA MŠk 7G10072; GA MŠk(CZ) LM2011021; GA ČR GAP205/11/2470 Institutional support: RVO:61389021 Keywords : Tokamak * Timing and triggering * FPGA * Real-time control * Diagnostics control * Thomson scattering Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.152, year: 2014 http://www.sciencedirect.com/science/article/pii/S0920379614002105#

  3. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  4. Smoke filtration in the glass industry. Thomson Videoglass` global approach with closed loop recycling; Fitration des fumees dans l`industrie du verre. L`approche globale avec recyclage en boucle fermee de thomson videoglass

    Energy Technology Data Exchange (ETDEWEB)

    Mocek, L. [Thomson Videoglass, 77 - Bagneaux-sur-Loing (France)

    1996-12-31

    Thomson Videoglass, an ISO 9002 certified manufacturer of glass components for Tv sets in France, has introduced a global closed-loop recycling dust filtration system for glass kilns; electrostatic filters and bag filters (for the lead-containing flat glass kiln) have been selected and collected dusts are recycled in the cone glass kiln. Energy savings, operating conditions, investment and operating costs are discussed together with filter corrosion, clogging-up and service life issues and dust extraction performances

  5. Personnel protection during the operation of Thomson scattering laser system on COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Böhm, Petr; Hron, Martin; Kovar, J.; Sova, J.; Zvolanek, M.; Aftanas, Milan; Bílková, Petra; Pánek, Radomír; Walsh, M.J.

    2011-01-01

    Roč. 86, 6-8 (2011), s. 699-702 ISSN 0920-3796. [Symposium on Fusion Technology, SOFT-26/26th./. Porto, 27.09.2010-01.10.2010] R&D Projects: GA ČR GA202/09/1467; GA ČR GD202/08/H057; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * Thomson scattering * Laser safety * Personnel protection * PLC Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011 http://www.sciencedirect.com/science/article/pii/S0920379611002432

  6. Development of high-spatial resolution TV Thomson scattering system for JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Kozawa, Teruo; Ishige, Youichi.

    1996-01-01

    The JFT-2M TV Thomson scattering system (TVTS) with high spatial resolution was completed in the cooperation of the fusion research and development for the DOE-JAERI collaborative program, and has been operated for 3 years. The system is composed of six subsystems; vacuum components, optics, detector, control and data acquisition, software and laser subsystems. TVTS was totally tested in the JFT-2M tokamak and the electron temperature and density profiles are measured with good reproducibility, and the increase of electron temperature by increasing toroidal magnetic field is also measured with TVTS. (author)

  7. Interference characterisation of a commercial Joule-Thomson cooler to be used in a SQUID-based foetal heart monitor

    NARCIS (Netherlands)

    Bangma, M.R.; Rijpma, A.P.; Vries, de E.; Reincke, H.A.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    2001-01-01

    At the University of Twente, a fetal heart monitor based on a high-TC SQUID magnetometer system is under development. The purpose of this system is to measure a fetal heart signal in a clin. environment. For cooling a first demonstrator version, a closed-cycle Joule-Thomson cooler from APD

  8. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sande, van de M.J.; Vries, de N.; Broks, B.H.P.; Iordanova, E.I.; Gamero, A.; Torres, J.; Sola, A.

    2007-01-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based

  9. Focusing effects in laser-electron Thomson scattering

    Directory of Open Access Journals (Sweden)

    Chris Harvey

    2016-09-01

    Full Text Available We study the effects of laser pulse focusing on the spectral properties of Thomson scattered radiation. Modeling the laser as a paraxial beam we find that, in all but the most extreme cases of focusing, the temporal envelope has a much bigger effect on the spectrum than the focusing itself. For the case of ultrashort pulses, where the paraxial model is no longer valid, we adopt a subcycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focusing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to subwavelength spot sizes produce spectra that are qualitatively similar to those from subcycle pulses due to the shortening of the pulse with focusing. Finally, we study high-intensity fields and find that, in general, the focusing makes negligible difference to the spectra in the regime of radiation reaction.

  10. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  11. Data analysis methods in physical oceanography. By Emery, W.J. and Thomson, R.E.

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    in Physical Oceanography. Page 1 of 1 file://C:\\My Documents\\articles30.htm 2/11/05 William J. Emery and Richard E. Thomson. Pergamon Elsevier Science. 1998. hardbound. 400 pp. ISBN: 0-08-031434-1. Price: US$ 112/NLG 177.00 This book provides a comprehensive... and practical compilation of the essential information and analysis techniques required for the advanced processing and interpretation of digital spatio-temporal data in physical oceanography, as well as in other branches of the geophysical sciences. The book...

  12. Thomson scattering on ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Cobble, J.A.

    1985-04-01

    Below 10 12 cm -3 density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10 11 cm -3 . Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10 12 cm -3 and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations

  13. X-Ray Thomson Scattering Without the Chihara Decomposition

    Science.gov (United States)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  14. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  15. Feasability study of using the TFTR Thomson scattering system for q profile measurements

    International Nuclear Information System (INIS)

    Brizard, A.; Grewk, B.; Johnson, D.; LeBlanc, B.

    1986-01-01

    The results of a study made to determine the possibility of using the TFTR 76 channels Thomson scattering system to measure the direction of local magnetic fields in a tokamak plasma are presented. As this is a local measurement, this technique can in principle yield q profiles without the need of any de-convolution. The effect of the TFTR geometrical configuration and its various components on the expected measurement accuracy is discussed. The authors find that the measurement of q values within the inner half of the plasma should be possible, with only minor modification to the present TVTS system

  16. Development of an application simulating radioactive sources; Conception d'une application de simulation de sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)

    2011-05-15

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  17. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  18. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  19. Study of characteristic X-ray source and its applications

    International Nuclear Information System (INIS)

    Li Fuquan

    1994-11-01

    The law of characteristic X-rays emitted by target element under the radiation of isotope source in a range of low energy is discussed. Both the way of improving the rate of γ-X conversion and the method to eliminate the influence of scatter rays are introduced. The influence of the variation of isotopes source, targets and the relative position of source-target to the output of X-rays is also discussed and then the conditions of improving signal-to-noise radio is presented. The X-ray source based on these results can produce different energy X-rays, and so can be broadly used on nuclear instruments and other fields as a low energy source. The thickness gauge, as one of the applications, has succeeded in thickness measuring of the different materials in large range, and it presents a new application field for characteristic X-ray source. (11 figs., 10 tabs.)

  20. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  1. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  2. Technical development and operation of TV thomson scattering system on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Shiina, Tomio; Yamauchi, Toshihiko; Ishige, Yoichi

    1998-10-01

    Six years have passed since the TV Thomson scattering system (TVTS) was completed and the operation was started on the JFT-2M tokamak. TVTS was developed in collaboration with Princeton Plasma Physics Laboratory. Many troubles on the hardware are and the software are were encountered. Improvements of the system were needed in each occasion. Phenomena of troubles were carefully analyzed and they have been solved in operating the system. This paper presents thus obtained know-how necessary for the operation of TVTS as well as methods of operation. (author)

  3. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    Science.gov (United States)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  4. New photon-nucleon dispersion relation for evaluating the Thomson limit using rising total cross sections

    International Nuclear Information System (INIS)

    Dean, N.W.

    1978-01-01

    New data showing that the photon-nucleon total cross section increases with energy for ν > or = 50 GeV invalidate earlier comparisons with dispersion relations. Parametrization of the data are presented and used in a new formulation of the dispersion relations, in which an assumed asymptotic behavior avoids the need for subtraction. With this form the fitted amplitude can be compared directly with the Thomson limit. The experimental uncertainties are shown to have a significant effect upon such a comparison

  5. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  6. Performance analyses of Z-source and quasi Z-source inverter for photovoltaic applications

    Science.gov (United States)

    Himabind, S.; Priya, T. Hari; Manjeera, Ch.

    2018-04-01

    This paper presents the comparative analysis of Z-source and Quasi Z-source converter for renewable energy applications. Due to the dependency of renewable energy sources on external weather conditions the output voltage, current changes accordingly which effects the performance of traditional voltage source and current source inverters connected across it. To overcome the drawbacks of VSI and CSI, Z-source and Quasi Z-source inverter (QZSI) are used, which can perform multiple tasks like ac-to-dc, dc-to-ac, ac-to-ac, dc-to-dc conversion. They can be used for both buck and boost operations, by utilizing the shoot-through zero state. The QZSI is derived from the ZSI topology, with a slight change in the impedance network and it overcomes the drawbacks of ZSI. The QZSI draws a constant current from the source when compared to ZSI. A comparative analysis is performed between Z-source and Quasi Z-source inverter, simulation is performed in MATLAB/Simulink environment.

  7. 154 GHz collective Thomson scattering in LHD

    Science.gov (United States)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  8. Improvements to the MST Thomson Scattering Diagnostic

    Science.gov (United States)

    Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team

    2017-10-01

    Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.

  9. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  10. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    . New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  11. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    Science.gov (United States)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  12. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  13. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R.; Sos, M.

    2016-01-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  14. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stefanikova, E. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm (Sweden); Peterka, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); MFF Charles University, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Bohm, P., E-mail: bohm@ipp.cas.cz; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Sos, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic)

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  15. Te and ne profiles on JFT-2M plasma with the highest spatial resolution TV Thomson scattering system

    International Nuclear Information System (INIS)

    Yamauchi, T.

    1993-01-01

    A high spatial resolution TV Thomson scattering system was constructed on JFT-2M tokamak. This system is similar to those used at PBX-M and TFTR. These systems are providing complete profiles of Te and ne at a single time during a plasma discharge. The characteristics of JFT-2M TVTS are as follows: 1. Measured points are composed of not only 81 points for the scattered light and plasma light, whose time difference is 2 ms, but also 10 points for plasma light measured at the same time with scattered light. 2. Spatial resolution is 0.86 cm, which is higher than any other Thomson scattering system. 3. Sensitivity of detector composed of image intensifier tubes and CCD is as high as that of photomultiplier tube. Te and ne profiles have been measured over one year on JFT-2M. The line-averaged electron density measured was in the region of 5x10 12 cm -3 - 7x10 13 cm -3 and the measured electron temperature was in the region of 50 eV -1.2 keV. (author) 7 refs., 7 figs., 1 tab

  16. A 130 point Nd:YAG Thomson scattering diagnostic on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Scannell, R.; Walsh, M. J.; Dunstan, M. R.; Figueiredo, J.; Naylor, G.; O' Gorman, T.; Shibaev, S. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Gibson, K. J.; Wilson, H. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-10-15

    A Thomson scattering diagnostic designed to measure both edge and core physics has been implemented on MAST. The system uses eight Nd:YAG lasers, each with a repetition rate of 30 Hz. The relative and absolute timing of the lasers may be set arbitrarily to produce fast bursts of measurements to suit the time evolution of the physics being studied. The scattered light is collected at F/6 by a 100 kg six element lens system with an aperture stop of 290 mm. The collected light is then transferred to 130 polychromators by 130 independent fiber bundles. The data acquisition and processing are based on a distributed computer system of dual core processors embedded in 26 chassis. Each chassis is standalone and performs data acquisition and processing for five polychromators. This system allows data to be available quickly after the MAST shot and has potential for real-time operations.

  17. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-01

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  18. Inductively coupled plasma and ion sources: History and state-of-the-art

    International Nuclear Information System (INIS)

    Hopwood, J.

    1994-01-01

    Over 100 years ago Hittorf first generated an electrodeless ''ring'' discharge by electromagnetic induction and began a 40 year controversy as to the true physical origin of such a discharge. Even Tesla advocated that these plasmas were merely the result of large electrostatic potential differences rather than electric fields induced by high frequency currents. Through clever experiments using crude spark gaps and leyden jars, the inductive nature of the discharge was confirmed in the late 1920's by MacKinnon, thus supporting the theories and experiments of Sir J.J. Thomson, perhaps the most staunch advocate of the induction mechanism. Today the authors routinely exploit the intense plasmas which are generated by induction. In this talk, the characteristics of inductively coupled plasma (ICP) and ion sources will be reviewed and future applications of intense plasma sources will be discussed. The inductively coupled plasma is Joule heated at moderate gas pressures, but the electromagnetic field penetration of these dense plasmas is limited by the plasma skin depth, typically a few millimeters to a few centimeters. The induction plasma is thus edge heated, a fact that constrains uniformity over large areas if helical induction coils are used. Flat, spiral coils may be used to improve uniformity by driving the plasma using a planar geometry. Issues of dimensional and frequency scaling will be discussed as they apply to large diameter sources. Ion beams extracted from ICPs are used for many applications including space propulsion, high power neutral beams, and materials processing. Broad ion beam (∼10 cm) current densities in excess of 100 mA-cm 2 at 100 keV are obtained in pulsed mode operation. Recently, however, more consumer-oriented applications of less intense ICPs are emerging

  19. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  20. Development of 63Ni sources for defence related applications

    International Nuclear Information System (INIS)

    Udhayakumar, J.; Pardeshi, G.S.; Gandhi, Shyamala S.; Dash, A.; Venkatesh, Meera

    2004-01-01

    63 Ni is seen as a good substitute for the conventional sources of ionization used in electron capture detectors in Gas Chromatography applications. It has advantages such as source stability, reasonably long shelf life due to its long half-life and viable for safe and easy handling due to low energy beta emission. At the special request from the Defence Establishments in India for supply of 63 Ni beta source on special dimension of a curved inner copper ring area, the new electro-deposition cell was designed and used for routine preparation and supply of such sources. The paper describes the procedure for fabrication of 63 Ni beta sources by electro-deposition method. Activity up to ∼370 MBq (∼10 mCi) was electrodeposited exclusively on inner curved area of ∼4 sq.cm. Copper annular ring, using Boric acid electrolyte bath solution at a temperature range of 50 deg - 60 deg C with a current density of ∼ 6 ma/sq.cm. For this purpose, a new electro depositing cell was specially designed and used. The paper discusses the details regarding source requirement, source preparation parameters, film thickness and its impact on beta output, source quality control aspects and other applications of the sources. The paper also highlights the demand and supply scenario of such electrodeposited sources, in terms of commercial supply sale value, as an import substitute. (author)

  1. H{sub {beta}} Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Huebner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sola, A.; Gamero, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-07-15

    In the present work Stark broadening measurements have been carried out on low electron density (n{sub e} < 5{center_dot}10{sup 19} m{sup -3}) and (relatively) low gas temperature (T{sub g} < 1100 K) argon-hydrogen plasma, under low-intermediate pressure conditions (3 mbar-40 mbar). A line fitting procedure is used to separate the effects of the different broadening mechanisms (e.g. Doppler and instrumental broadening) from the Stark broadening. A Stark broadening theory is extrapolated to lower electron density values, below its theoretical validity regime. Thomson scattering measurements are used to calibrate and validate the procedure. The results show an agreement within 20%, what validates the use of this Stark broadening method under such low density conditions. It is also found that Stark broadened profiles cannot be assumed to be purely Lorentzian. Such an assumption would lead to an underestimation of the electron density. This implies that independent information on the gas temperature is needed to find the correct values of n{sub e}. - Highlights: Black-Right-Pointing-Pointer Stark broadening measurements at low density and temperature conditions Black-Right-Pointing-Pointer Calibration with Thomson scattering Black-Right-Pointing-Pointer Indications of the non-Lorentzian shape of the Stark broadening Black-Right-Pointing-Pointer Impossibility of simultaneous diagnostic of gas temperature and electron density.

  2. Selective application of revised source terms to operating nuclear power plants

    International Nuclear Information System (INIS)

    Moon, Joo Hyun; Song, Jae Hyuk; Lee, Young Wook; Ko, Hyun Seok; Kang, Chang Sun

    2001-01-01

    More than 30 years later since 1962 when TID-14844 was promulgated, there has been big change of the US NRC's regulatory position in using accident source terms for radiological assessment following a design basis accident (DBA). To replace the instantaneous source terms of TID-14844, the time-dependent source terms of NUREG-1465 was published in 1995. In the meantime, the radiological acceptance criteria for reactor site evaluation in 10 CFR Part 100 were also revised. In particular, the concept of total effective dose equivalent has been incorporated in accordance with the radiation protection standards set forth in revised 10 CFR Part 20. Subsequently, the publication of Regulatory Guide 1.183 and the revision of Standard Review Plan 15.0.1 followed in 2000, which provided the licensee of operating nuclear power reactor with the acceptable guidance of applying the revised source term. The guidance allowed the holder of an operating license issued prior to January 10, 1997 to voluntarily revise the accident source terms used in the radiological consequence analyses of DBA. Regarding to its type of application, there suggested full and selective applications, Whether it is full or selective, based upon the scope and nature of associated plant modifications being proposed, the actual application of the revised source terms to an operating plant is expected to give a large impact on its facility design basis. Considering scope and cost of the analyses required for licensing, selective application is seemed to be more appealing to an licensee of the operating plant rather than full application. In this paper, hence, the selective application methodology is reviewed and is actally applied to the assessment of offsite radiological consequence following a LOCA at Ulchin Unit 3 and 4, in order to identify and analyze the potential impacts due to application of revised source terms and to assess the considerations taken in each application prior to its actual

  3. Development of an application simulating radioactive sources

    International Nuclear Information System (INIS)

    Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.

    2011-01-01

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  4. Seed lipases: sources, applications and properties - a review

    Directory of Open Access Journals (Sweden)

    M. Barros

    2010-03-01

    Full Text Available This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.

  5. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  6. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  7. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Schlossberg, D J; Bongard, M W; Fonck, R J; Schoenbeck, N L; Winz, G R

    2013-01-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 10 19 m −3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development

  8. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  9. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  10. Design proposal for a JFT-2M TV Thomson scattering system

    International Nuclear Information System (INIS)

    Dimock, D.; Yamauchi, Toshihiko.

    1988-07-01

    A design for the optics of a TV Thomson scattering system for JFT-2M is presented, which will measure electron temperature and density profiles having up to 82 points, spanning the horizontal mid plane of the machine. A detailed design for the collecting optics is presented since it is critical to the success of the system. It is shown that the Bouwers type catadioptric collection optics can be color corrected allowing the system to be used over a wide wavelength range. The laser requirements are presented and are easily met with commercially available systems. Two sketches of spectrometer designs are presented for two different sizes of detector. The detector gating and readout requirements are presented and can be met in existing detector systems. The importance of developing larger area detectors is emphasized and a possible detector system is presented. (author)

  11. Measurement of high-beta tokamak pressure profiles with multipoint Thomson scattering

    International Nuclear Information System (INIS)

    Levinton, F.M.

    1983-01-01

    A multipoint Thomson-scattering system has been developed to obtain pressure profiles along the major radius of Torus II, a high-beta tokamak. The profiles obtained during the 20 to 25 μs lifetime of the discharge indicates that the plasma has a peak temperature of 80 eV and density of 1.0 x 10 15 cm - 3 . The profiles remain fairly constant during this time until the equilibrium is lost, after which the temperature and density decays to 10 eV and 10 14 cm - 3 very quickly (approx. 1 μs). Experimental results show Torus II has a high-beta ( approx. 10%) equilibrium, with a strong shift of the peak of the pressure profile towards the outside. Numerical results from a 2-D free boundary MHD equilibrium code have obtained equilibria which closely approximate the experimentally measured profiles

  12. Nickel ferrule applicators: a source of nickel exposure in children.

    Science.gov (United States)

    Jacob, Sharon E; Silverberg, Jonathan I; Rizk, Christopher; Silverberg, Nanette

    2015-01-01

    Eye makeup has been investigated for nickel content and found to have no direct association with nickel allergy and cosmetic dermatitis. However, the tools used (e.g., eyelash curlers, hairdressing scissors, hair curlers, and eye shadow and makeup applicators) may be sources. Nickel is ubiquitous and a wide range of sources have been reported, and makeup applicators (ferrules) now join the list. © 2015 Wiley Periodicals, Inc.

  13. A Compact Source of Flash-Corona Discharge for Biomedical Applications

    Science.gov (United States)

    Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    A compact source of low-temperature plasma for biological and medical applications is proposed, which operates at kilohertz frequencies in the regime of flash-corona discharge with an energy of 0.1 mJ/pulse. The plasma source was tested in application to plasma pretreatment of green salad seeds. Plasma-treated seeds exhibited increased (by about 25%) germination speed as compared to that in the untreated control.

  14. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  15. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    Torab, S.I.R.

    2011-01-01

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  16. A spherical model for the transient x-ray source A0620-00

    International Nuclear Information System (INIS)

    Dilworth, C.; Maraschi, L.; Perola, G.C.

    1977-01-01

    The continuum spectrum of the transient X-ray source A0620-00, from infrared to X-ray frequencies, is interpreted as emission from a uniform spherical cloud of hot gas in which the free-free spectrum is modified by Thomson scattering. On this basis, the radius and the density of the cloud, and the distance of the source, are derived. The change of the spectrum with the time indicates a decrease of both radius and density with decreasing luminosity. Considering the production of X-rays to be due to impulsive accretion in a low-mass binary system, these results open the question as to whether the accreting object is a white dwarf rather than a neutron star. (author)

  17. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Kaufman, H.R.

    1982-01-01

    The developments in broad-beam ion source technology described in the companion paper (Part I) have stimulated a rapid expansion in applications to materials processing. These applications are reviewed here, beginning with a summary of sputtering mechanisms. Next, etching applications are described, including microfabrication and reactive ion beam etching. The developing area of surface layer applications is summarized, and related to the existing fields of oxidation and implantation. Next, deposition applications are reviewed, including ion-beam sputter deposition and the emerging technique of ion-assisted vapor deposition. Many of these applications have been stimulated by the development of high current ion sources operating in the energy range of tens of hundreds of eV. It is in this energy range that ion-activated chemical etching is efficient, self-limiting compound layers can be grown, and the physical properties of vapor-deposited films can be modified. In each of these areas, broad ion beam technology provides a link between other large area plasma processes and surface analytical techniques using ion beams

  18. Mechanism design of the Thomson scattering diagnostic system for the TMX east mirror plug

    International Nuclear Information System (INIS)

    Lang, D.D.; Goodman, R.K.; Jenkins, S.L.; Wilkerson, J.A.; Parkinson, J.L.

    1979-01-01

    This Thomson scattering diagnostic system is used to measure the electron temperature and density of the east mirror plug of the Tandem Mirror Experiment (TMX) at Lawrence Livermore Laboratory. The measurements are made by firing a high-power ruby laser pulse through the plasma where the electrons then re-radiate a small fraction of the light. Because of the velocity of the electrons, the wavelength of the re-radiated light is Doppler shifted. The width of the Doppler-shifted wavelength spectrum is a measure of the temperature of the electrons in the plasma, and the total amount of re-radiated light is proportional to the electron density

  19. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  20. Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...

  1. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  2. Enhanced Thomson scattering theory applied to eight experiments

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.

    1985-01-01

    The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks

  3. Rothmund-Thomson Syndrome: A 13-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Guillermo Antonio Guerrero-González

    2014-07-01

    Full Text Available Rothmund-Thomson syndrome (RTS is a rare autosomal recessive disorder presenting with poikiloderma and other clinical features, affecting the bones and eyes and, in type II RTS, presenting an increased risk for malignancy. With about 300 cases reported so far, we present a 13-year follow-up including clinical images, X-rays and genetic analysis. A 13-month-old female started with a facial rash with blisters on her cheeks and limbs at the age of 3 months along with congenital hypoplastic thumbs, frontal bossing and fine hair, eyebrows and eyelashes. The patient was lost to follow-up and returned 12 years later with palmoplantar hyperkeratotic lesions, short stature, disseminated poikiloderma and sparse scalp hair, with absence of eyelashes and eyebrows. Radiographic analysis showed radial ray defect, absence of the thumb and three wrist carpal bones, and reduced bone density. Gene sequencing for the RECQL4 helicase gene revealed a mutation on each allele. RTS is a rare disease, and in this patient we observed the evolution of her skin lesions and other clinical features, which were important for the classification of type II RTS. The next years will provide even more information on this rare disease.

  4. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  5. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2010-07-15

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  6. Radioactivity source terms for underground engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Tewes, H A [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    The constraints on nuclide production are usually very similar in any underground engineering application of nuclear explosives. However, in some applications the end product could be contaminated unless the proper nuclear device is used. This fact can be illustrated from two underground engineering experiments-Gasbuggy and Sloop. In the Gasbuggy experiment, appreciable tritium has been shown to be present in the gas currently being produced. However, in future gas stimulation applications (as distinct from experiments), a minimum production of tritium by the explosive is desirable since product contamination by this nuclide may place severe limitations on the use of the tritiated gas. In Sloop, where production of copper is the goal of the experiment, product contamination would not be caused by tritium but could result from other nuclides: Thus, gas stimulation could require the use of fission explosives while the lower cost per kiloton of thermonuclear explosives could make them attractive for ore-crushing applications. Because of this consideration, radionuclide production calculations must be made for both fission and for thermonuclear explosives in the underground environment. Such activation calculations materials of construction are performed in a manner similar to that described in another paper, but radionuclide production in the environment must be computed using both fission neutron and 14-MeV neutron sources in order to treat the 'source term' problem realistically. In making such computations, parameter studies including the effects of environmental temperature, neutron shielding, and rock types have been carried out. Results indicate the importance of carefully evaluating the radionuclide production for each individual underground engineering application. (author)

  7. Radioactivity source terms for underground engineering application

    International Nuclear Information System (INIS)

    Tewes, H.A.

    1969-01-01

    The constraints on nuclide production are usually very similar in any underground engineering application of nuclear explosives. However, in some applications the end product could be contaminated unless the proper nuclear device is used. This fact can be illustrated from two underground engineering experiments-Gasbuggy and Sloop. In the Gasbuggy experiment, appreciable tritium has been shown to be present in the gas currently being produced. However, in future gas stimulation applications (as distinct from experiments), a minimum production of tritium by the explosive is desirable since product contamination by this nuclide may place severe limitations on the use of the tritiated gas. In Sloop, where production of copper is the goal of the experiment, product contamination would not be caused by tritium but could result from other nuclides: Thus, gas stimulation could require the use of fission explosives while the lower cost per kiloton of thermonuclear explosives could make them attractive for ore-crushing applications. Because of this consideration, radionuclide production calculations must be made for both fission and for thermonuclear explosives in the underground environment. Such activation calculations materials of construction are performed in a manner similar to that described in another paper, but radionuclide production in the environment must be computed using both fission neutron and 14-MeV neutron sources in order to treat the 'source term' problem realistically. In making such computations, parameter studies including the effects of environmental temperature, neutron shielding, and rock types have been carried out. Results indicate the importance of carefully evaluating the radionuclide production for each individual underground engineering application. (author)

  8. Comparison of nanoaerosol sources and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Khasminskaya, Svetlana; Eritt, Markus [Institute for Environmental Physics (IUP), Ruprecht-Karls-University, Heidelberg (Germany); Meinen, Jan; Comouth, Andreas; Leisner, Thomas [Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research, Atmospheric Aerosol Research (IMK-AAF), Karlsruhe (Germany); Institute for Environmental Physics (IUP), Ruprecht-Karls-University, Heidelberg (Germany)

    2010-07-01

    A variety of sources for atmospheric aerosols in the nanometer range (electrospray ionization, microwave plasma reactor, atomizer and soot generator) are presented. Different materials, such as silicon oxides, iron oxides and soot, were tested with helium or air as carrier gas. The aerosol size distribution (SMPS, TEM, TOF, PMS) and the fraction of charged particles (Quartz Crystal Microbalance) are shown. The influence of different source parameters such as carrier gas and pressure and finally the applicability for laboratory experiments with atmospheric relevance and nano-toxicological topics is discussed.

  9. 40 CFR 74.17 - Application requirements for process sources. [Reserved

    Science.gov (United States)

    2010-07-01

    ... requirements for process sources. [Reserved] ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Application requirements for process sources. [Reserved] 74.17 Section 74.17 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  10. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  11. Application of californium-252 neutron sources for analytical chemistry

    International Nuclear Information System (INIS)

    Ishii, Daido

    1976-01-01

    The researches made for the application of Cf-252 neutron sources to analytical chemistry during the period from 1970 to 1974 including partly 1975 are reviewed. The first part is the introduction to the above. The second part deals with general review of symposia, publications and the like. Attention is directed to ERDA publishing the periodical ''Californium-252 Progress'' and to a study group of Cf-252 utilization held by Japanese Radioisotope Association in 1974. The third part deals with its application for radio activation analysis. The automated absolute activation analysis (AAAA) of Savannha River is briefly explained. The joint experiment of Savannha River operation office with New Brunswick laboratory is mentioned. Cf-252 radiation source was used for the non-destructive analysis of elements in river water. East neutrons of Cf-252 were used for the quantitative analysis of lead in paints. Many applications for industrial control processes have been reported. Attention is drawn to the application of Cf-252 neutron sources for the field search of neutral resources. For example, a logging sonde for searching uranium resources was developed. the fourth part deals with the application of the analysis with gamma ray by capturing neutrons. For example, a bore hole sonde and the process control analysis of sulfur in fuel utilized capture gamma ray. The prompt gamma ray by capturing neutrons may be used for the nondestructive analysis of enrivonment. (Iwakiri, K.)

  12. Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of 'virtual sources'

    International Nuclear Information System (INIS)

    Cheng, K-S; Stakhursky, Vadim; Craciunescu, Oana I; Stauffer, Paul; Dewhirst, Mark; Das, Shiva K

    2008-01-01

    The goal of this work is to build the foundation for facilitating real-time magnetic resonance image guided patient treatment for heating systems with a large number of physical sources (e.g. antennas). Achieving this goal requires knowledge of how the temperature distribution will be affected by changing each source individually, which requires time expenditure on the order of the square of the number of sources. To reduce computation time, we propose a model reduction approach that combines a smaller number of predefined source configurations (fewer than the number of actual sources) that are most likely to heat tumor. The source configurations consist of magnitude and phase source excitation values for each actual source and may be computed from a CT scan based plan or a simplified generic model of the corresponding patient anatomy. Each pre-calculated source configuration is considered a 'virtual source'. We assume that the actual best source settings can be represented effectively as weighted combinations of the virtual sources. In the context of optimization, each source configuration is treated equivalently to one physical source. This model reduction approach is tested on a patient upper-leg tumor model (with and without temperature-dependent perfusion), heated using a 140 MHz ten-antenna cylindrical mini-annular phased array. Numerical simulations demonstrate that using only a few pre-defined source configurations can achieve temperature distributions that are comparable to those from full optimizations using all physical sources. The method yields close to optimal temperature distributions when using source configurations determined from a simplified model of the tumor, even when tumor position is erroneously assumed to be ∼2.0 cm away from the actual position as often happens in practical clinical application of pre-treatment planning. The method also appears to be robust under conditions of changing, nonlinear, temperature-dependent perfusion. The

  13. Integrating open-source software applications to build molecular dynamics systems.

    Science.gov (United States)

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  14. Design and testing of a magnetic shield for the Thomson scattering photomultiplier tubes in the stray fields of the ERASMUS tokamak

    International Nuclear Information System (INIS)

    Desoppere, E.; Van Oost, G.

    1983-01-01

    A multiple coaxial shield system has been designed for the photomultiplier tubes of the ERASMUS tokamak Thomson scattering diagnostic. A stray field of 75 x 10 -4 T was reduced to 0.01 x 10 -4 T for a field parallel to the tube axis, and to 0.03 x 10 -4 T for a perpendicular field

  15. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  16. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. Edible films and coatings: Sources, properties and application

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2015-01-01

    Full Text Available In order to extend product shelf life while preserving the quality scientific attention focused to biopolymers research that are base for edible films and coatings production. Another major advantage of this kind of food packaging is their eco-friendly status because biopolymers do not cause environmental problems as packaging materials derived from non-renewable energy sources do. Objective of this work was to review recently studied edible films and coatings - their sources, properties and possible application. As sources for edible biopolymers were highlighted polysaccharides, proteins and lipids. The most characteristic subgroups from each large group of compounds were selected and described regarding possible physical and mechanical protection; migration, permeation, and barrier functions. The most important biopolymers characteristic is possibility to act as active substance carriers and to provide controlled release. In order to achieve active packaging functions emulsifiers, antioxidants and antimicrobial agents can also be incorporated into film-forming solutions in order to protect food products from oxidation and microbial spoilage, resulting in quality improvement and enhanced safety. The specific application where edible films and coatings have potential to replace some traditional polymer packaging are explained. It can be concluded that edible films and coatings must be chosen for food packaging purpose according to specific applications, the types of food products, and the major mechanisms of quality deterioration.

  20. LIDAR Thomson scattering diagnostic on JET (invited)

    International Nuclear Information System (INIS)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3-J pulse energy, 300-ps pulse duration, 0.5-Hz repetition rate) together with a 700-MHz bandwidth detection and registration system yields a spatial resolution of about 12 cm. A spectrometer with six channels in the wavelength range 400--800 nm gives a dynamic range of the temperature measurements of 0.3--20 keV. The stray light problem in the backscatter geometry is overcome by spectral discrimination and gating of the photomultipliers. A ruby filter in the spectral channel containing the laser wavelength allows calibration of the vignetting along the line of sight by means of Raman scattering, enabling the measurement of density profiles. The low level of background signal due to the short integration time for a single spatial point yields low statistical errors (ΔT/sub e/ /T/sub e/ ≅6%, Δn/sub e/ /n/sub e/ ≅4% at T/sub e/ = 6 keV, n/sub e/ = 3 x 10/sup 19/ m/sup -3/ ). Goodness-of-fit tests indicate that the systematic errors are within the same limits. The system is described and examples of measurements are given

  1. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  2. Streak cameras and their applications

    International Nuclear Information System (INIS)

    Bernet, J.M.; Imhoff, C.

    1987-01-01

    Over the last several years, development of various measurement techniques in the nanosecond and pico-second range has led to increased reliance on streak cameras. This paper will present the main electronic and optoelectronic performances of the Thomson-CSF TSN 506 cameras and their associated devices used to build an automatic image acquisition and processing system (NORMA). A brief survey of the diversity and the spread of the use of high speed electronic cinematography will be illustrated by a few typical applications [fr

  3. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  4. 40 CFR 63.100 - Applicability and designation of source.

    Science.gov (United States)

    2010-07-01

    ... Manufacturing Industry § 63.100 Applicability and designation of source. (a) This subpart provides applicability...), or accepted engineering practices. If the total annual HAP emissions for the plant site are annually... system will be replaced; (ii) A barrier fluid system will be installed; (iii) A new barrier fluid will be...

  5. Production of High Harmonic X-Ray Radiation from Non-linear Thomson at LLNL PLEIADES

    CERN Document Server

    Lim, Jae; Betts, Shawn; Crane, John; Doyuran, Adnan; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a “figure-8” motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: $aL=e*EL/m*c*ωL ≥ 1$. With large $aL$ this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals.

  6. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  7. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  8. Multipoint Thomson scattering system for the EXTRAP Z-pinch experiment

    International Nuclear Information System (INIS)

    Karlsson, P.

    1986-03-01

    A Thomson scattering system for simultaneous measurements of the electron temperature and density at three different positions at two different times during a single plasma shot has been developed for the EXTRAP-L1 Z-pinch. The plasma in the present version of EXTRAP-L1 is characterized by densities in the range from 10 21 to 10 22 m -3 , temperatures up to 50 eV and a pinch radius of the order of 1 cm. A spatial resolution down to 3 mm between positions is obtained by imaging the plasma onto an array of quartz optical fibres at the output slit of the spectrometer. Fifteen PM-tubes are used to detect the scattered radiation as well as the background radiation. Due to the relatively dense plasma prevailing in the present version of EXTRAP-L1 the number of scattered photons in large and the photon to electron conversion noise is small. The background radiation is the most important factor limiting the accuracy of the measurements. (author)

  9. Summary of Thomson-scattering data from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Goodman, R.K.

    1982-01-01

    We provide a synthesis of our Thomson-scattering measurements of electron temperature (T/sub e/) and density (n/sub e/) for the Tandem Mirror Experiment (TMX). TMX operated in two modes - high and low T/sub e/. When performing in the high T/sub e/ mode (in general > 100 eV), heating the central-cell ions with neutral beams raised T/sub e/ in the end plug. We achieved a maximum T/sub e/ of 260 eV in the east end plug. Specifically, our experiments demonstrated that in the end plug, the radial T/sub e/ profiles were flat to r = 5 cm; the ratio of potential (phi/sub p/) to T/sub e/ ranged between four and six. In addition, we found that although T/sub e/ in the central cell was generally comparable to that in the plug, it was often not constant along a magnetic field line. Under some conditions a non-Maxwellian electron distribution may have been present

  10. Using recruitment source timing and diagnosticity to enhance applicants' occupation-specific human capital.

    Science.gov (United States)

    Campion, Michael C; Ployhart, Robert E; Campion, Michael A

    2017-05-01

    [Correction Notice: An Erratum for this article was reported in Vol 102(5) of Journal of Applied Psychology (see record 2017-14296-001). In the article, the following headings were inadvertently set at the wrong level: Method, Participants and Procedure, Measures, Occupation specific human capital, Symbolic jobs, Relevant majors, Occupation-specific capital hotspots, Source timing, Source diagnosticity, Results, and Discussion. All versions of this article have been corrected.] This study proposes that reaching applicants through more diagnostic recruitment sources earlier in their educational development (e.g., in high school) can lead them to invest more in their occupation-specific human capital (OSHC), thereby making them higher quality candidates. Using a sample of 78,157 applicants applying for jobs within a desirable professional occupation in the public sector, results indicate that applicants who report hearing about the occupation earlier, and applicants who report hearing about the occupation through more diagnostic sources, have higher levels of OSHC upon application. Additionally, source timing and diagnosticity affect the likelihood of candidates applying for jobs symbolic of the occupation, selecting relevant majors, and attending educational institutions with top programs related to the occupation. These findings suggest a firm's recruiting efforts may influence applicants' OSHC investment strategies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. iPhone Open Application Development Write Native Applications Using the Open Source Tool Chain

    CERN Document Server

    Zdziarski, Jonathan

    2008-01-01

    Developers everywhere are eager to create applications for the iPhone, and many of them prefer the open source, community-developed tool chain to Apple's own toolkit. This new edition of iPhone Open Application Development covers the latest version of the open toolkit -- now updated for Apple's iPhone 2.x software and iPhone 3G -- and explains in clear language how to create applications using Objective-C and the iPhone API.

  12. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  13. Thomson Reuters innovation award research brief: the use of patent analytics in measuring innovation in India.

    Science.gov (United States)

    Stembridge, Bob

    2009-09-01

    There are six different factors that can be used to assess the inventiveness of an organization and to determine how efficiently they apply invention resources to innovate effectively. This research briefing describes the techniques used to measure certain aspects of patenting activity by Small and Medium-sized Enterprises (SMEs) headquartered in India. The techniques are used to identify the most innovative SMEs in India in order to determine the winners of the Innovation Award 2009 from Thomson Reuters, awarded at InfoVision 2009 in Bangalore. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.

  14. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  15. Blind source separation advances in theory, algorithms and applications

    CERN Document Server

    Wang, Wenwu

    2014-01-01

    Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.

  16. Applications of Cold Cathode PIG Ion Source in Lithography

    International Nuclear Information System (INIS)

    Bassal, N.I.

    2012-01-01

    The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time

  17. Fabrication of intense neutron sources for medical applications

    International Nuclear Information System (INIS)

    Boulogne, A.R.; Walker, V.W.

    1975-01-01

    Simulated sources containing 252 Cf equivalents of 0.1 to 1.0 milligrams were prepared. Samarium was used as the simulant in a modified chemical plating technique similar to that used to prepare palladium-californium oxide cermet for industrial applications. The length of the platinum-10 percent iridium doubly encapsulated source with its protective sheath is 0.545 in. (14.1 mm). Outside dia of the source, including its sheath, is 0.109 in. (2.8 mm). Existing ''Brachytrons'' can accommodate this source form. This capsule system will withstand internal gas pressures from helium due to alpha decay and fission gases from a 1 mg 252 Cf source after ten years if the source is subjected to a maximum temperature of 800 0 C, the theoretical temperature of an accidental fire. Under these conditions the safety factor is 3. The capsule system is being tested with tracer amounts of 252 Cf to ensure that it will withstand adverse service conditions as well as tests specified for Special Form Materials. (auth)

  18. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  19. Experimental considerations concerning the velocity measurement of the relativistic electron beam in a gyrotron by means of Thomson scattering

    International Nuclear Information System (INIS)

    Siegrist, M.R.; Soumagne, G.; Tran, M.Q.

    1992-11-01

    The feasibility of Thomson scattering to determine the beam velocity in a gyrotron has been analyzed and preliminary experiments to implement such a system on our 100 GHz quasi-optical gyrotron are reported. Although the project had to be abandoned due to technical problems, the conclusions are that for the 90 o scattering arrangement discussed it should be possible to determine at least one velocity component with an acceptable signal-to-noise ratio. (author) 11 figs., 10 refs

  20. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    Directory of Open Access Journals (Sweden)

    C. Curatolo

    2017-08-01

    Full Text Available We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc. and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a

  1. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  2. Development of a single-shot-imaging thin film for an online Thomson parabola spectrometer

    International Nuclear Information System (INIS)

    Sakaki, H.; Fukuda, Y.; Nishiuchi, M.; Hori, T.; Yogo, A.; Jinno, S.; Kanasaki, M.; Niita, K.

    2013-01-01

    A single-shot-imaging thin scintillator film was developed for an online Thomson parabola (TP) spectrometer and the first analysis of laser accelerated ions, using the online TP spectrometer, was demonstrated at the JAEA-Kansai Advanced Relativistic Engineering Laser System (J-KAREN). An energy spectrum of ∼4.0 MeV protons is obtained using only this imaging film without the need of a microchannel plate that is typically utilized in online ion analyses. A general-purpose Monte Carlo particle and heavy ion-transport code system, which consists of various quantum dynamics models, was used for the prediction of the luminescent properties of the scintillator. The simulation can reasonably predict not only the ion trajectories detected by the spectrometer, but also luminescence properties.

  3. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  4. A study on the accuracy of source position in HDR brachytherapy according to the curvature of universal application transfer tube and applicator type

    International Nuclear Information System (INIS)

    Shin, Hyeon Kyung; Lee, Sang Kyoo; Kim, Joo Ho; Cho, Jeong Hee

    2015-01-01

    The goal of this study was to verify and analyze the source position according to the curvature of the universal applicator and 4 different angle applicators when using RALS(Remote After Loading System). An interval of 1 cm and 15 second dwell times in each source position were applied for plan. To verify the accuracy of source position, we narrowed the distance between MultiSource container and GAFCHROMIC? EBT3 film by 5 cm, 10 cm, 20 cm so that the universal applicator transfer tube had some curvature. Also 4 applicators(Intrauterine tube: 0° , 15°, 30° , Ovoid tube: 65° ) were used in the same condition. The differences between desired and actual source position were measured by using Image J. In case of using 4 different angles of applicator with the straight universal applicator transfer tube, the average error was the lowest for 0°applicator, greatest for 65°applicator. However, All average errors were within ±2 mm recommended in TG-56. When MultiSource container was moved 5 cm, 10 cm, 20 cm towards the EBT3 film, the average errors were beyond ±2 mm. The first dwell position was relatively located in accuracy, while the second and third dwells were displaced by an increasing magnitude with increasing curvature of the transfer tube. Furthermore, with increasing the angle of applicators, the error of all other dwell positioning was increased. The results of this study showed that both the curvature of universal applicator transfer tube and the angle of applicators affect the source dwell position. It is recommended that using straight universal applicator transfer tubes is followed in all cases, in order to avoid deviations in the delivered source dwell position. Also, It is advisable to verify the actual dwell position, using video camera quality control tool prior to all treatments

  5. Ten Canoes and the Ethnographic Photographs of Donald Thomson: ‘Animate Thought’ and ‘the Light of the World’

    Directory of Open Access Journals (Sweden)

    Anne Rutherford

    2011-10-01

    Full Text Available This article explores the genesis of the film Ten Canoes in the photographs taken by anthropologist Donald Thomson, in Arnhem Land, in the 1930s.  Thomson’s images profoundly informed the look and content of the film, and the paper traces this genealogy in order to identify a ‘cultural imaginary’ at work in the film. I argue that a close study of Thomson’s original photographs reveals an approach to photography and to culture that dramatically exceeds the boundaries of the detached anthropological/scientific gaze. Thomson’s vision is a highly tactile one. His images are as much an encounter with the light of the world as they are a document of a time, an environment and a culture; his lens is as much an organ of touch as an instrument of observation. In a remarkable example of what Tim Ingold has called ‘animate thought’, Thomson uses the materiality of photography to make manifest a life-world in which reeds, water and sky are as animate as human figures. Not easily accessible to established criteria for analysing ethnographic images, such as questions of self-reflexivity, Thomson’s polycentric images profoundly challenge the humanist assumptions of many contemporary approaches to reading images. This insight raises new questions about both ethnographic photography and the relationship between the photographs and Ten Canoes.

  6. Ion temperature measurements of H-, D- and He-plasmas in the TCA tokamak by collective Thomson scattering of D2O laser radiation

    International Nuclear Information System (INIS)

    Behn, R.; Dicken, D.; Hackmann, J.; Salito, S.A.; Siegrist, M.R.

    1989-01-01

    Development of collective Thomson scattering as a method to measure the ion temperature of a tokamak plasma has been successful and encouraging results have been obtained during experiments on TCA in H-, D- and He-plasmas. Using a laser source in the far-infrared spectral region allows scattering angles close to 90 o , which results in excellent spatial resolution. The system installed on the TCA tokamak comprises an optically pumped D 2 O laser emitting 0.5 J in a 1.4 μs pulse on its Raman transition at 385μm. A heterodyne receiver with a Schottky barrier diode mixer has been chosen to detect the scattered radiation and analyze its spectral distribution in 12 channels of 80 MHz. Recent improvements of the mixer and 1st IF-amplifier yielded a system NEP of 2.2·10 -19 W/Hz. As a consequence we have obtained results which allow for the first time to evaluate the ion temperature T i in a single laser shot. (author) 3 figs., 1 tab

  7. Production of High Harmonic X-ray Radiation from Non-linear Thomson Scattering at LLNL PLEIADES

    International Nuclear Information System (INIS)

    Lim, J; Doyuran, A; Frigola, P; Travish, G; Rosenzweig, J; Anderson, S; Betts, S; Crane, J; Gibson, D; Hartemann, F; Tremaine, A

    2005-01-01

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a ''figure-8'' motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: a L = eE L /m e cw L (ge) 1. With large a L this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals

  8. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    reported [Bindslev , Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150 kW of 110-GHz gyrotron probing radiation......Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently...... of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations....

  9. Analysis of the coverage of the Data Citation Index – Thomson Reuters: disciplines, document types and repositories

    Directory of Open Access Journals (Sweden)

    Torres-Salinas, Daniel

    2014-03-01

    Full Text Available In the past years, the movement of data sharing has been enjoying great popularity. Within this context, Thomson Reuters launched at the end of 2012 a new product inside the Web of Knowledge family: the Data Citation Index. The aim of this new database is to enable discovery and access, from a single place, to data from a variety of data repositories from different subject areas and from around the world. In short note we present some results from the analysis of the Data Citation Index. Specifically, we address the following issues: discipline coverage, data types present in the database and repositories that were included at the time of the study.En los últimos años, el movimiento conocido como “data sharing”, es decir compartir lo datos de investigación, está cobrando una gran popularidad. Dentro de este contexto Thomson Reuters lanzó a finales de 2012 un nuevo producto dentro de su plataforma Web of Knowledge: el Data Citation Index. El objetivo de esta nueva base de datos es facilitar el acceso desde un único punto a los datos indexados en diferentes repositorios de datos de todo el mundo. En esta nota se presentan los resultados del análisis del Data Citation Index y más concretamente se analiza la cobertura de este producto atendiendo a las disciplinas, las tipologías documentales indexadas y los repositorios que se encuentran disponibles en el momento de la realización del estudio.

  10. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    Science.gov (United States)

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  11. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  12. ARLearn - Open source mobile application platform for learning

    NARCIS (Netherlands)

    Börner, Dirk; Ternier, Stefaan; Klemke, Roland; Schmitz, Birgit; Kalz, Marco; Tabuenca, Bernardo; Specht, Marcus

    2013-01-01

    Börner, D., Ternier, S., Klemke, R., Schmitz, B., Kalz, M., Tabuenca, B., & Specht, M. (2013). ARLearn - Open source mobile application platform for learning. In D. Hernández-Leo et al. (Eds.), Scaling up Learning for Sustained Impact. Proceedings of the 8th European Conference on Technology

  13. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    Science.gov (United States)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  14. A multi-laser system for a fast sampling Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Trost, P.K.; Carlstrom, T.N.; DeBoo, J.C.; Greenfield, C.M.; Hsieh, C.L.; Snider, R.T.

    1990-10-01

    A multi-laser system is being developed for the DIII-D Thomson scattering diagnostic. This system combines the beams from up to eight Nd:YAG lasers onto a common beamline in which the beams are nearly parallel and are all focused into a small, common area within the desired scattering volume. Each laser can be fired at a constant rate (20 Hz per laser) for a high average repetition rate, or together in a ''burst,'' which will give very high sampling rates (10--20 kHz) for short periods. The burst mode will be triggerable by plasma events, which will allow for study of transient phenomena, but will require non-periodic firing of the lasers. Beamline diagnostics include position sensitive detectors for computer controlled feedback alignment of the 35 m beamline, an image position detection system for monitoring the alignment of the collection lens to the scattering volume, and a 1-D reticon camera for divergence monitoring. The effects of the non-periodic firing of the lasers will be monitored with the reticon camera. 3 refs., 5 figs

  15. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-11-15

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  16. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Patel, Kiran; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-01-01

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  17. A review of the genus Potemnemus Thomson, 1864 (Coleoptera: Cerambycidae) with description of a new species from Papua New Guinea.

    Science.gov (United States)

    Wallin, Henrik; Kvamme, Torstein

    2015-11-13

    All preserved type specimens and type series of the genus Potemnemus Thomson, 1864 from museum collections have been examined. The presented taxonomic study is based on examination of morphological characters as well as studies of the genitalia. The genitalia are described for the first time. The type of P. scabrosus Olivier, 1790 is lost, and the original drawing has been designated as a lectotype. The monospecific genus Parapotemnemus Breuning, 1971 nov. syn. is considered to be a junior synonym of Potemnemus Thomson, 1864 based on similarities in both external and male genitalia characters. Potemnemus wheatcrofti (Breuning, 1971) nov. comb. thus becomes a new combination. The holotype of P. wheatcrofti nov. comb. is lost, and a paratype ♂ has been designated as a neotype. Potemnemus nylanderi nov. sp. is described from the eastern parts of Papua New Guinea. The following new synonyms within the genus Potemnemus have been introduced: P. hispidus Gressitt, 1952 nov. syn. is a junior synonym of P. sepicanus Kriesche, 1923, P. detzneri Kriesche, 1923 nov. syn. is a junior synonym of P. trimaculatus Lea, 1918, and P. loriai Breuning, 1956 nov. syn. and P. triturberculatus Breuning, 1942 nov. syn. are both junior synonyms of P. scabrosus (Olivier, 1790). As a result of the present study the following species have been resurrected to species level: Potemnemus trimaculatus Lea, 1918 sp. res., P. wolfi Berchmans, 1925 sp. res., and P. thomsoni Lansberge, 1880 sp. res. The genus Periaptodes Pascoe, 1866 gen. res. has been resurrected as a valid genus based on differences in both external and male genitalia characters, and re-descriptions of the genera Potemnemus and Periaptodes are presented. Consequently, the following species have been transferred back to Periaptodes from Potemnemus: Periaptodes frater (Van de Poll, 1887), P. lictor Pascoe, 1866, P. olivieri (Thomson, 1864), P. potemnemoides Kriesche, 1936. P. testator Pascoe, 1866, P. paratestator Breuning, 1980. P

  18. Short interval measurement of the Thomson scattering system at the pellet injection by using the event triggering system in LHD

    International Nuclear Information System (INIS)

    Yasuhara, R.; Sakamoto, R.; Motojima, G.; Yamada, I.; Hayashi, H.

    2013-01-01

    We have demonstrated Thomson scattering measurements of a short interval less than 1 ms by using the event triggering system with a multi-laser configuration. We have tried to measure this system at the pellet injection and obtained electron temperature and density profiles before and just after the pellet injection. Obtained profiles were dramatically changed after pellet injection with shot-by-shot measurements. This measurement technique will contribute understanding the physics of the pellet deposition. (author)

  19. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters

    Science.gov (United States)

    Arias, E.; Florez, E.; Pérez-Torres, J. F.

    2017-06-01

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.

  20. Virtual Reality Based Accurate Radioactive Source Representation and Dosimetry for Training Applications

    International Nuclear Information System (INIS)

    Molto-Caracena, T.; Vendrell Vidal, E.; Goncalves, J.G.M.; Peerani, P.; )

    2015-01-01

    Virtual Reality (VR) technologies have much potential for training applications. Success relies on the capacity to provide a real-time immersive effect to a trainee. For a training application to be an effective/meaningful tool, 3D realistic scenarios are not enough. Indeed, it is paramount having sufficiently accurate models of the behaviour of the instruments to be used by a trainee. This will enable the required level of user's interactivity. Specifically, when dealing with simulation of radioactive sources, a VR model based application must compute the dose rate with equivalent accuracy and in about the same time as a real instrument. A conflicting requirement is the need to provide a smooth visual rendering enabling spatial interactivity and interaction. This paper presents a VR based prototype which accurately computes the dose rate of radioactive and nuclear sources that can be selected from a wide library. Dose measurements reflect local conditions, i.e., presence of (a) shielding materials with any shape and type and (b) sources with any shape and dimension. Due to a novel way of representing radiation sources, the system is fast enough to grant the necessary user interactivity. The paper discusses the application of this new method and its advantages in terms of time setting, cost and logistics. (author)

  1. SU-E-T-459: Impact of Source Position and Traveling Time On HDR Skin Surface Applicator Dosimetry

    International Nuclear Information System (INIS)

    Jeong, J; Barker, C; Zaider, M; Cohen, G

    2015-01-01

    Purpose: Observed dosimetric discrepancy between measured and treatment planning system (TPS) predicted values, during applicator commissioning, were traced to source position uncertainty in the applicator. We quantify the dosimetric impact of this geometric uncertainty, and of the source traveling time inside the applicator, and propose corrections for clinical use. Methods: We measured the dose profiles from the Varian Leipzig-style (horizontal) HDR skin applicator, using EBT3 film, photon diode, and optically stimulated luminescence dosimeter (OSLD) and three different GammaMed HDR afterloders. The dose profiles and depth dose of each aperture were measured at several depths (up to about 10 mm, depending on the dosimeter). The measured dose profiles were compared with Acuros calculated profiles in BrachyVision TPS. For the impact of the source position, EBT3 film measurements were performed with applicator, facing-down and facing-up orientations. The dose with and without source traveling was measured with diode detector using HDR timer and electrometer timer, respectively. Results: Depth doses measured using the three dosimeters were in good agreement, but were consistently higher than the Acuros dose calculations. Measurements with the applicator facing-up were significantly lower than those in the facing-down position with maximum difference of about 18% at the surface, due to source sag inside the applicator. Based on the inverse-square law, the effective source sag was evaluated to be about 0.5 mm from the planned position. The additional dose from the source traveling was about 2.8% for 30 seconds with 10 Ci source, decreasing with increased dwelling time and decreased source activity. Conclusion: Due to the short source-to-surface distance of the applicator, the small source sag inside the applicator has significant dosimetric impact, which should be considered before the clinical use of the applicator. Investigation of the effect for other applicators

  2. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marqués, J-L

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma. (fast track communication)

  3. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  4. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...... in CTS spectra have been suggested as the basis for a new fuel ion ratio diagnostic which would be well suited for reactor environments and capable of providing spatially resolved measurements in the plasma core. Such measurements were demonstrated in recent experiments in the TEXTOR tokamak. Here we...... conduct a sensitivity study to investigate the potential measurement accuracy of a CTS fuel ion ratio diagnostic on ITER. The study identifies regions of parameter space in which CTS can be expected to provide useful information on plasma composition, and we find that a CTS fuel ion ratio diagnostic could...

  5. Chevron beam dump for ITER edge Thomson scattering system

    International Nuclear Information System (INIS)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-01-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated

  6. Chevron beam dump for ITER edge Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Vayakis, G. [ITER Organization, 13115 St Paul Lez Durance Cedex (France)

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  7. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  8. The genus Rosalba Thomson, 1864 (Coleoptera, Cerambycidae, Lamiinae, Apomecynini).

    Science.gov (United States)

    Santos-Silva, Antonio; Galileo, Maria Helena M; Joly, Luis J; Tavakilian, GÉrard L

    2018-02-26

    Nineteen new species are described: Rosalba wappesi, from Bolivia; R. giesberti, from Bolivia; R. skillmani, from Bolivia; R. lingafelteri, from Bolivia; R. senecauxi, from French Guiana; R. dalensi, from French Guiana; R. giuglarisi, from French Guiana; R. nearnsi, from French Guiana; R. cerdai, from French Guiana; R. gaianii, from Venezuela; R. pittieri, from Venezuela; R. clinei, from Bolivia and Brazil; R. morrisi, from Costa Rica and Panama; R. schneppi, from Panama; R. birai, from Colombia; R. stenodesma, from Venezuela and French Guiana; R. similis, from Peru and Ecuador; R. bezarki, from Ecuador; and R.seraisorum, from Ecuador and Brazil (Amazonas). The following new synonymies are established: Aletretia dissimilis Belon, 1903 = A. fimbriata Belon, 1903; Aletretia consobrina Melzer, 1934, Rosalba gounellei Galileo Martins, 2013 and Rosalba vanini Galileo Martins, 2013 = Aletretia inscripta Bates, 1866; Aletretia mediofasciata Breuning, 1943 = Aletretia bucki Melzer, 1934; Aletretia peraffinis Breuning, 1940 = Aletretia approximata Melzer, 1934. The following species are redescribed: Rosalba strandiella (Breuning, 1940); and Rosalba rufescens (Breuning, 1940). The following new records are reported: Rosalba strandiella for Bolivia; R. strandi (Breuning, 1943) from the Brazilian states of São Paulo, Paraná and Santa Catarina; R. inscripta from Peru and the Brazilian state of Acre; R. smaragdina (Breuning, 1940) from the Brazilian state of Minas Gerais; R. obliqua (Thomson, 1868) from Brazil; and Rosalba fimbriata (Belon, 1903) from Ecuador.

  9. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications.

    Science.gov (United States)

    Kaur, Surinder; Dhillon, Gurpreet Singh

    2014-05-01

    Among the biopolymers, chitin and its derivative chitosan (CTS) have been receiving increasing attention. Both are composed of randomly distributed β-(1-4)-linked d-glucosamine and N-acetyl glucosamine units. On commercial scale, CTS is mainly obtained from the crustacean shells. The chemical methods employed for extraction of CTS from crustacean shells are laden with many disadvantages. Waste fungal biomass represents a potential biological source of CTS, in fact with superior physico-chemical properties, such as high degree of deacetylation, low molecular weight, devoid of protein contamination and high bioactivity. Researchers around the globe are attempting to commercialize CTS production and extraction from fungal sources. Fungi are promising and environmentally benign source of CTS and they have the potential to completely replace crustacean-derived CTS. Waste fungal biomass resulting from various pharmaceutical and biotechnological industries is grown on inexpensive agro-industrial wastes and its by-products are a rich and inexpensive source of CTS. CTS is emerging as an important natural polymer having broad range of applications in different fields. In this context, the present review discusses the potential sources of CTS and their advantages and disadvantages. This review also deals with potential applications of CTS in different fields. Finally, the various attributes of CTS sought in different applications are discussed.

  10. The source of solar energy, ca. 1840-1910: From meteoric hypothesis to radioactive speculations

    Science.gov (United States)

    Kragh, Helge

    2016-12-01

    Why does the Sun shine? Today we know the answer to the question and we also know that earlier answers were quite wrong. The problem of the source of solar energy became an important part of physics and astronomy only with the emergence of the law of energy conservation in the 1840s. The first theory of solar heat based on the new law, due to J.R. Mayer, assumed the heat to be the result of meteors or asteroids falling into the Sun. A different and more successful version of gravitation-to-heat energy conversion was proposed by H. Helmholtz in 1854 and further developed by W. Thomson. For more than forty years the once so celebrated Helmholtz-Thomson contraction theory was accepted as the standard theory of solar heat despite its prediction of an age of the Sun of only 20 million years. In between the gradual demise of this theory and the radically different one based on nuclear processes there was a period in which radioactivity was considered a possible alternative to gravitational contraction. The essay discusses various pre-nuclear ideas of solar energy production, including the broader relevance of the question as it was conceived in the Victorian era.

  11. Environmentally friendly power sources for aerospace applications

    Science.gov (United States)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO 2 emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR&TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NO x, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power management

  12. Environmentally friendly power sources for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Lapena-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Orti, Fortunato [Boeing Research and Technology Europe Ltd., Environmental Technologies, C/ Canada Real de las Merinas 1-3, Building 4, 4th floor, Madrid 28042 (Spain); Dudfield, Christopher; Orsillo, Alessandro [Intelligent Energy Ltd., The Innovation Centre, Epinal Way, Loughborough LE11 3EH (United Kingdom)

    2008-07-01

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO{sub 2} emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR and TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NOx, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power

  13. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    Science.gov (United States)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  14. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    Science.gov (United States)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  15. Application of ionizing radiation sources to medicine. Civil-legal aspect

    International Nuclear Information System (INIS)

    Golikov, V.Ya.; Zel'din, A.L.

    1990-01-01

    Civil-legal aspect of using ionizing radiation sources (IRS) in medicine was investigated. It is shown that IRS are sources of great danger. Application of medical procedures with the use of IRS requires the ofligatory agreement of a patient or his legal representatives. Concealment of doses, received by patients, prohibition of issuing dose cards complicate dose load accounting and are considered as unlawful. Legal evaluation of IRS harmfulness is difficult, because delayed radiation effects are manifested after long periods of time. Application of IRS procedures is lawful when other methods of diagnosis and therapy can't be applied. The use of methods and equipment, which don't result to minimal radiation doses, should be considered as unlawful. Standards, regulating the order of IRS procedures, should be revised

  16. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  17. Experimental determination of EEDF and He{sub 2}{sup *} Rydberg-state density by Thomson scattering in a ns-pulsed atmospheric micro-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)

    2016-07-01

    An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.

  18. Tunable white light source for medical applications

    Science.gov (United States)

    Blaszczak, Urszula J.; Gryko, Lukasz; Zajac, Andrzej

    2017-08-01

    Development of light-emitting diodes has brought new possibilities in many applications, especially in terms of flexible adjustment of light spectra. This feature is very useful in construction of many devices, for example for medical diagnosis and treatment. It was proved, that in some cases LEDs can easily replace lasers during therapy of cancer without reduction of efficiency of this process. On the other hand during diagnosis process LED-based constructions can provide unique ability to adjust the color temperature of the output light while maintaining high color rendering. It allows for optimum surface contrast and enhanced tissue differentiation at the operator site. In the paper we describe the construction of the tunable LED-based source designed for application in endoscopy. It was optimized from the point of view of the color rendition for 5 different correlated color temperatures (illuminant A, D55, D65, 3500K and 4500K) with the restriction of very high (>90) values of general and specific color rendering indexes (according to Ra method). The source is composed of 13 light-emitting diodes from visible region mounted on the common radiator and controlled by dedicated system. Spectra of the components are mixed and the spectra of output light is analyzed. On the basis of obtained spectra colorimetric parameters are calculated and compared with the results of theoretical analysis.

  19. Molecular phylogeny of equine herpesvirus 1 isolates from onager, zebra and Thomson's gazelle.

    Science.gov (United States)

    Ghanem, Y M; Fukushi, H; Ibrahim, E S M; Ohya, K; Yamaguchi, T; Kennedy, M

    2008-01-01

    Viruses related to equine herpesvirus type 1 (EHV-1) were isolated from an aborted fetus of an onager (Equus hemionus) in 1984, an aborted fetus of Grevy's zebra (Equus grevyi) in 1984 and a Thomson's gazelle (Gazella thomsoni) with nonsuppurative encephalitis in 1996, all in the USA. The mother of the onager fetus and the gazelle were kept near plains zebras (Equus burchelli). In phylogenetic trees based on the nucleotide sequences of the genes for glycoproteins B (gB), I (gI), and E (gE), and teguments including ORF8 (UL51), ORF15 (UL45), and ORF68 (US2), the onager, Grevy's zebra and gazelle isolates formed a genetic group that was different from several horse EHV-1 isolates. Within this group, the onager and gazelle isolates were closely related, while the Grevy's zebra isolate was distantly related to these two isolates. The epizootiological origin of the viruses is discussed.

  20. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  1. Broadband light source for fiber-optic measurement system in spaceborne applications

    Science.gov (United States)

    Rößner, Max R.; Müller, Mathias S.; Buck, Thorbjörn C.; Koch, Alexander W.

    2012-01-01

    Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized.

  2. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    Science.gov (United States)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  3. Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P J; Paterson, M C [Atomic Energy of Canada Ltd., Chalk River, Ontario. Radiation Biology Branch

    1982-01-01

    Rothmund Thomson syndrome (RTS) is an oculocutaneous and cancer-prone disorder in which enhanced carcinogen sensitivity, mediated through abnormal DNA metabolism, may be an associated factor. Cultured fibroblasts from 4 RTS patients have been examined for their colony-forming abilities and DNA repair capacities following ..gamma..-irradiation. 2 of the 4 RTS strains showed enhanced sensitivity following hypoxic ..gamma..-irradiation, and 1 of these 2 strains also showed enhanced sensitivity under oxic conditions. Defective DNA repair was implicated in the above abnormal responses to ..gamma..-radiation since both strains displayed reduced levels of repair synthesis and slow removal of radiogenic DNA lesions (assayed by their sensitivity to strand-incising activities present in protein extracts of Micrococcus luteus cells). A hypothesis is presented to rationalize the origin and heterogeneity of these laboratory phenotypes of RTS.

  4. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  5. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  6. SU-F-BRA-09: New Efficient Method for Xoft Axxent Electronic Brachytherapy Source Calibration by Pre-Characterizing Surface Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Pai, S [iCAD Inc., Los Gatos, CA (United States)

    2015-06-15

    Purpose: The objective is to improve the efficiency and efficacy of Xoft™ Axxent™ electronic brachytherapy (EBT) calibration of the source & surface applicator using AAPM TG-61 formalism. Methods: Current method of Xoft EBT source calibration involves determination of absolute dose rate of the source in each of the four conical surface applicators using in-air chamber measurements & TG61 formalism. We propose a simplified TG-61 calibration methodology involving initial characterization of surface cone applicators. This is accomplished by calibrating dose rates for all 4 surface applicator sets (for 10 sources) which establishes the “applicator output ratios” with respect to the selected reference applicator (20 mm applicator). After the initial time, Xoft™ Axxent™ source TG61 Calibration is carried out only in the reference applicator. Using the established applicator output ratios, dose rates for other applicators will be calculated. Results: 200 sources & 8 surface applicator sets were calibrated cumulatively using a Standard Imaging A20 ion-chamber in accordance with manufacturer-recommended protocols. Dose rates of 10, 20, 35 & 50mm applicators were normalized to the reference (20mm) applicator. The data in Figure 1 indicates that the normalized dose rate variation for each applicator for all 200 sources is better than ±3%. The average output ratios are 1.11, 1.02 and 0.49 for the 10 mm,35 mm and 50 mm applicators, respectively, which are in good agreement with the manufacturer’s published output ratios of 1.13, 1.02 and 0.49. Conclusion: Our measurements successfully demonstrate the accuracy of a new calibration method using a single surface applicator for Xoft EBT sources and deriving the dose rates of other applicators. The accuracy of the calibration is improved as this method minimizes the source position variation inside the applicator during individual source calibrations. The new method significantly reduces the calibration time to less

  7. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  8. Analysis and Performance of the Thomson Scattering Diagnostics on HT-7 Tokamak Based on I-EMCCD

    International Nuclear Information System (INIS)

    Shao Chunqiang; Zhao Junyu; Zang Qing; Han Xiaofeng; Xi Xiaoqi; Yang Jianhua; Chen Hui; Hu Ailan

    2014-01-01

    A visible light imaging Thomson scattering (VIS-TVTS) diagnostic system has been developed for the measurement of plasma electron temperature on the HT-7 tokamak. The system contains a Nd:YAG laser (λ = 532 nm, repetition rate 10 Hz, total pulse duration ≍ 10 ns, pulse energy > 1.0 J), a grating spectrometer, an image intensifier (I.I.) lens coupled with an electron multiplying CCD (EMCCD) and a data acquisition and analysis system. In this paper, the measurement capability of the system is analyzed. In addition to the performance of the system, the capability of measuring plasma electron temperature has been proved. The profile of electron temperature is presented with a spatial resolution of about 0.96 cm (seven points) near the center of the plasma

  9. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H., E-mail: tojo.hiroshi@qst.go.jp; Hiratsuka, J.; Yatsuka, E.; Hatae, T.; Itami, K. [National Institutes for Quantum and Radiological Science and Technology, 801-1 Mukoyama, Naka 311-0193 (Japan); Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ejiri, A.; Togashi, H.; Takase, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2016-09-15

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T{sub e}) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T{sub e} and intensity of the signals. How accurate the values are depends on the electron temperature (T{sub e}) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T{sub e} and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T{sub e} in a wide T{sub e} range spanning over two orders of magnitude (0.01–1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T{sub e} measurements are valid under harsh radiation conditions. This method to obtain T{sub e} can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  10. Steady-state thermodynamic simulation and structural design of the dephlegmator used in mixed-refrigerant Joule-Thomson refrigerators

    International Nuclear Information System (INIS)

    Li, Mei; Gong, Maoqiong; Guo, Hao; Sun, Zhaohu; Wu, Jianfeng

    2016-01-01

    Highlights: • Good agreements and the feasibility of the MESH model were found. • Fine applicability and low energy consumption of the dephlegmator were addressed. • A clear and comprehensive three-dimensional dephlegmator model was shown. - Abstract: Dephlegmators can be used to reduce the energy consumption and simplify the layout of the mixed-refrigerant Joule–Thomson (MRJT) cycle. Heat-exchange characteristics and refrigeration design are currently based on highly simplified assumptions. Synthesis methods to efficiently solve all design issues of dephlegmators in MRJT cycle are insufficient. No suitable separation module is available for the simultaneous heat and mass transfer processes in Aspen Plus because the module should be programmed and incorporated into Aspen Plus as a user-defined unit. In this paper, a systematic steady-state method was proposed for the detailed design of dephlegmators for gas mixture separation, considering the simulation and heat exchanger design simultaneously. The material balance, vapor–liquid equilibrium, mole fraction summation and heat balance (MESH) model was programmed in FORTRAN language. Good agreements and the feasibility of the MESH model were found. Deviations between the simulation results and patent data were all within 5%. The errors in the predicted temperatures of vapor and liquid products were less than 2% and 10%, respectively. Fine applicability and low energy consumption of the dephlegmator were addressed. The mole fraction of n-butane in the liquid phase had high recovery ratio of 90%. The dephlegmator decreased more than 30% of energy consumption compared with the traditional distillation tower under similar separation effects. In the structural design process, the dephlegmator was divided into certain segments by baffle plates on the basis of segmented calculation. The heat transfer coefficient, heat transfer area, pressure drop, and structural parameters of the dephlegmator were evaluated. A clear

  11. Novel applications of locally sourced montmorillonite (MMT) clay as ...

    African Journals Online (AJOL)

    This work explores the application of a locally sourced raw material, montmorillonite (MMT) clay, as a disintegrant in the formulation of an analgesic pharmaceutical product - paracetamol. The raw MMT was refined and treated with 0.IM NaCl to yield sodium montmorillonite (NaMMT) and the powder properties established in ...

  12. Multi-mode optical fibers for simultaneous 13-position measurements Thomson scattering apparatus in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro; Matoba, Tohru; Ogura, Yoshiaki.

    1987-11-01

    The characteristics of fiber bundles for Thomson scattering optics are studied, whose fibers are made of multi-mode optical fibers. The variety of output patterns were observed by weighting on the fiber as well as by bending it after passing a He-Ne laser through a fiber bundle. This variety influenced the matching loss considerably. Then, the effect of former is larger than the latter, which is caused by the micro bending. And also, the spread of pulse width by weighting is connected with the spread of output pattern. The spread of pulse width was about 3ns at the most in a 2.3 m length of fiber bundle. (author)

  13. Citation analysis of publications of NASU mechanicians in the database of the Thomson Reuters Institute for Scientific Information

    Science.gov (United States)

    Guz, A. N.; Rushchitsky, J. J.

    2009-07-01

    The paper performs a citation analysis of publications of mechanicians of the National Academy of Sciences of Ukraine (NASU) based on information tools developed by the Thomson Reuters Institute for Scientific Information. Two groups of mechanicians are considered: representatives of the S. P. Timoshenko Institute of Mechanics of the NASU (NASU members, heads of departments) and members (academicians) of the NASU Division of Mechanics. Three elements of the Citation Report (Results Found, Citation Index (Sum of the Times Cited), h-index) are presented for each scientist. This paper may be considered as a follow-up on the papers [6-11] published by Prikladnaya Mekhanika ( International Applied Mechanics) in 2005-2009

  14. Fine-Grained Energy Modeling for the Source Code of a Mobile Application

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    The goal of an energy model for source code is to lay a foundation for the application of energy-aware programming techniques. State of the art solutions are based on source-line energy information. In this paper, we present an approach to constructing a fine-grained energy model which is able...

  15. Peltier's and Thomson's coefficients of thermoelectric phenomena in the observable formulation

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Javier [Departamento de Fisica de la Tierra y Termodinamica, Universitat de Valencia, E-46100 Burjassot (Valencia) (Spain)

    2009-04-15

    Four transport coefficients characterize the thermoelectric properties of materials. Three of them are widely measured and studied. But the number of references on the Peltier coefficient are very limited. This unequal result is a consequence of the Onsager reciprocal relation (ORR). A review on the preciseness and accuracy of Peltier coefficient measurements has been developed in this paper. Thus we can appreciate a low level in the experimental confirmation for the ORR. In order to describe the thermoelectric processes in an advantageous way, the observable formulation has been used. This is characterized by the electric potential measured at the probe terminals and for the heat flux which the conductor laterally dissipates. The energy balance provides the basic relationships among the observables and the Peltier and Thomson coefficients. A new way for measuring the Peltier coefficient has been suggested.

  16. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  17. Development of WEB Applications of The Component – Open Source

    Directory of Open Access Journals (Sweden)

    Arturo Sergio Medina Castillo

    2013-06-01

    Full Text Available Nowadays software development not starting from scratch, however already has a set of tools provided by frameworks, which enables faster application development, relevant and indispensable factor for supporting continuous improvement processes seeking higher levels of competitiveness in this global society.In all respects the development of Web applications, whether open source or proprietary, is developing rapidly, by providing service levels of communication, interoperability, access to internal and external customers that allows management support different business processes.

  18. Generation of high brightness x-ray source and its medical applications

    International Nuclear Information System (INIS)

    Fujii, Sadao; Muro, Mikio; Oku, Yasunari; Daido, Hiroyuki; Takahashi, Kenjiro

    2001-01-01

    Laser produced plasmas are one of the most feasible sources to be used for industrial applications, especially medical applications: Angiography, Protein crystallography, X-ray microscopy and XAFS. In the present paper, laser requirements are clarified for the medical and life science fields and then we estimate both the photon energy spectra and the number of photons based on Monte-Carlo simulation. (author)

  19. Development of the methodology for application of revised source term to operating nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Kang, M.S.; Kang, P.; Kang, C.S.; Moon, J.H.

    2004-01-01

    Considering the current trend in applying the revised source term proposed by NUREG-1465 to the nuclear power plants in the U.S., it is expected that the revised source term will be applied to the Korean operating nuclear power plants in the near future, even though the exact time can not be estimated. To meet the future technical demands, it is necessary to prepare the technical system including the related regulatory requirements in advance. In this research, therefore, it is intended to develop the methodology to apply the revised source term to operating nuclear power plants in Korea. Several principles were established to develop the application methodologies. First, it is not necessary to modify the existing regulations about source term (i.e., any back-fitting to operating nuclear plants is not necessary). Second, if the pertinent margin of safety is guaranteed, the revised source term suggested by NUREG-1465 may be useful to full application. Finally, a part of revised source term could be selected to application based on the technical feasibility. As the results of this research, several methodologies to apply the revised source term to the Korean operating nuclear power plants have been developed, which include: 1) the selective (or limited) application to use only some of all the characteristics of the revised source term, such as release timing of fission products and chemical form of radio-iodine and 2) the full application to use all the characteristics of the revised source term. The developed methodologies are actually applied to Ulchin 9 and 4 units and their application feasibilities are reviewed. The results of this research are used as either a manual in establishing the plan and the procedure for applying the revised source term to the domestic nuclear plant from the utility's viewpoint; or a technical basis of revising the related regulations from the regulatory body's viewpoint. The application of revised source term to operating nuclear

  20. 78 FR 59394 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule...

    Science.gov (United States)

    2013-09-26

    ... other things, (i) price comparisons among multiple sources, (ii) a review of corporate actions and news... Bloomberg, Markit and Thomson Reuters, which can be accessed by Authorized Participants and other investors... Bloomberg, Markit and Thomson Reuters, which can be accessed by Authorized Participants and other investors...

  1. Recent status on cobalt-60 gamma ray radiation sources production and its application in China

    International Nuclear Information System (INIS)

    Cao Zhijian; Song Yunjiang; Zhang Chunhua; Li Maoling

    1993-01-01

    This paper describes the status of Co-60 γ ray radiation sources and their application in China. At present, the production capacity of Co-60 γ ray radiation sources in China is about 11.1 PBq (0.3 MCi) per year. 5 years later, it is increased to 37 PBq (1 MCi) per year. The radioactivity of each source is 370 TBq - 740 TBq (1000-2000 Ci). There are over 150 Co-60 γ ray radiation facilities with total design capacity of over 370 PBq (10 MCi) and practical capacity of about 92.5 PBq (2.5 MCi) in operation. The number of Co-60 γ ray radiation facilities with practical capacity of over 3.7 PBq (0.1 MCi) is 14. The main applications of the Co-60 γ ray sources are radiation crosslinking, radiation sterilization of disposable medical supplies and food irradiation. The prospects for Co-60 γ ray radiation source application in China are good. (author)

  2. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  3. Marine cyanobacteria as sources of new biotechnological applications

    Directory of Open Access Journals (Sweden)

    Vitor Vasconcelos

    2014-06-01

    Bioactive compounds from cyanobacteria may also have allelopathic activity with potential use to control algal blooms or as antifouling in the marine environment (Leão et al., 2012, Antunes et al., 2013. We have isolated and characterized for the first time allelopathic compounds named Portoamides that act synergistically to prevent the growth of some microalgae (Leão et al., 2010. Cyanobacteria extracts can also prevent the development of some invertebrates such as sea urchins and mussels (Martins et al., 2007 and so they can be candidates to develop antifouling agents that are environmentally friendly. The potential of cyanobacteria as source of new bioactive compounds is enormous, with the advantage of being applicable in many different areas of biotechnology, with many industrial applications.

  4. "Intelligence and Civilisation": A Ludwig Mond Lecture Delivered at the University of Manchester on 23rd October 1936 by Godfrey H. Thomson. A Reprinting with Background and Commentary

    Science.gov (United States)

    Deary, Ian J.; Lawn, Martin; Brett, Caroline E.; Bartholomew, David J.

    2009-01-01

    Here we reprint, and provide background and a commentary on, a recently-rediscovered lecture by Godfrey H. Thomson entitled, "Intelligence and civilisation." It was delivered at the University of Manchester, UK, on 23rd October, 1936, printed in 1937 in the short-lived "Journal of the University of Manchester" and as a pamphlet…

  5. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  6. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    International Nuclear Information System (INIS)

    Vries, N de; Zhu, X; Kieft, E R; Mullen, J van der

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine n e and T e from the measured spectrum. The maximum electron density and electron temperature obtained in the centre of the discharge varied in a time period of 5 ms between 1 x 10 21 m -3 e 21 m -3 and 6500 K e < 7100 K. In order to test the non-intrusive character of TS, we have derived a general expression for the heating of the electrons. By applying this to our mercury lamp and laser settings, we have confirmed the non-intrusiveness of our method. This is supported by the experimental findings. Furthermore, because the TS results were obtained directly, thus, without the local thermodynamic equilibrium (LTE) assumptions, they enabled us to follow the deviations from LTE as a function of time. Contrary to the generally made assumption that HID lamps are in LTE, we have found deviations from both the thermal and chemical equilibrium inside the high pressure mercury lamp at different phases of the applied current

  7. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    International Nuclear Information System (INIS)

    Alejo, A.; Kar, S.; Ahmed, H.; Doria, D.; Borghesi, M.; Tebartz, A.; Ding, J.; Neumann, N.; Astbury, S.; Carroll, D. C.; Scott, G. G.; Higginson, A.; McKenna, P.; Wagner, F.; Roth, M.

    2016-01-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  8. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Tebartz, A.; Ding, J.; Neumann, N. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Astbury, S.; Carroll, D. C.; Scott, G. G. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Higginson, A.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Wagner, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany)

    2016-08-15

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  9. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Science.gov (United States)

    Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  10. Production, Distribution, and Applications of Californium-252 Neutron Sources

    International Nuclear Information System (INIS)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-01-01

    The radioisotope 252 Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10 11 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252 Cf to commercial reencapsulators domestically and internationally. Sealed 252 Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252 Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations

  11. Radioisotopes for heat-source applications

    International Nuclear Information System (INIS)

    Hoisington, J.E.

    1982-01-01

    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, ( 90 Sr, 147 Pm, 238 Pu) 90 Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake 90 Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). 90 Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the 90 Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of 90 Sr and 0.15 MW of 147 Pm. SRP could supply an additional 0.15 MW from the production and recovery of 238 Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The 90 Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP 90 Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford 90 Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. 147 Pm and 238 Pu are considerably more expensive heat source materials. 147 Pm recovery costs at SRP are estimated to be $450/watt. As with 90 Sr, the Hanford 147 Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) 238 Pu at SRP from excess 231 Np would cost about $1160/watt, while recovery of low assay (27%) 238 Pu from the waste stream is estimated at $1850/watt

  12. Study of a filter spectrometer in the framework of a new method for measuring the temperature of thermonuclear plasmas by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Lasalle, J.

    1975-06-01

    A new method which greatly simplifies the number of measurements necessary for obtaining the temperature in thermonuclear plasmas, using the relativistic effects of Thomson scattering is presented. A few orders of magnitude are computed for probing the feasibility of such temperature measurements. The data used correspond to magnitudes relating to T.F.R. The characteristics of a filter equipped spectrometer are then defined in view of a double function: separation of the lambda>lambda laser and lambda [fr

  13. Development of a web application for water resources based on open source software

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.

    2014-01-01

    This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.

  14. Open Source Platform Application to Groundwater Characterization and Monitoring

    Science.gov (United States)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  15. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    Science.gov (United States)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  16. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  17. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  18. Quasi-Z-Source Half-Bridge DC-DC Converter for Photovoltaic Applications

    OpenAIRE

    Vinnikov, D; Chub, A; Husev, O; Zaķis, J

    2015-01-01

    This paper presents a novel quasi-Z-source halfbridge galvanically isolated DC-DC converter intended for the photovoltaic applications. The topology could be envisioned as an alternative to the boost half-bridge DC-DC converter but the benefit of its symmetric structure reduces the threat of transformer saturation due to the dc flux. The proposed converter features the continuous input current and could be used either with one or two input voltage sources.

  19. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  20. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  1. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  2. A simple scheme for injection and extraction in compact rings

    International Nuclear Information System (INIS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.

    2014-01-01

    There has been great interest in building compact synchrotrons for various applications, for example, inverse Compton scattering X-ray sources. However, the beam injection and extraction in compact rings require careful design for the lack of space. In this paper, we propose a simple combined injection-extraction scheme exploiting the fringe field of existing dipole magnets instead of additional septum magnets. This scheme is illustrated by using the 4.8 m ring proposed for Tsinghua Thomson scattering X-ray source as an example. Particle tracking is applied to demonstrate the validity of this scheme

  3. The importance of governmental control of radioactive sources used in industrial applications

    International Nuclear Information System (INIS)

    Anna Firpo Fuerth, Q.F.; Beatriz Souto Ameigenda, Q.F.

    1998-01-01

    Industrial applications of radioactive sources require good management practices dealing with control and registration. In the following case, a special event occurred between two routine inspections: trading. Then a new human factor came into scene: workers with no specific training and knowledge related to radioactive sources. The up going situation triggered emergency procedures. Finally, there were no negative consequences. (author)

  4. Characterization of DBD plasma source for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchenbecker, M; Vioel, W [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany); Bibinov, N; Awakowicz, P [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetstr. 150, 44780 Bochum (Germany); Kaemlimg, A; Wandke, D, E-mail: m.kuchenbecker@web.d, E-mail: Nikita.Bibinov@rub.d, E-mail: awakowicz@aept-ruhr-uni-bochum.d, E-mail: vioel@hawk-hhg.d [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany)

    2009-02-21

    The dielectric barrier discharge (DBD) plasma source for biomedical application is characterized using optical emission spectroscopy, plasma-chemical simulation and voltage-current measurements. This plasma source possesses only one electrode covered by ceramic. Human body or some other object with enough high electric capacitance or connected to ground can serve as the opposite electrode. DBD consists of a number of microdischarge channels distributed in the gas gap between the electrodes and on the surface of the dielectric. To characterize the plasma conditions in the DBD source, an aluminium plate is used as an opposite electrode. Electric parameters, the diameter of microdischarge channel and plasma parameters (electron distribution function and electron density) are determined. The gas temperature is measured in the microdischarge channel and calculated in afterglow phase. The heating of the opposite electrode is studied using probe measurement. The gas and plasma parameters in the microdischarge channel are studied at varied distances between electrodes. According to an energy balance study, the input microdischarge electric energy dissipates mainly in heating of electrodes (about 90%) and partially (about 10%) in the production of chemical active species (atoms and metastable molecules).

  5. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  6. A review of the applications to solids of the laser ion source in mass spectrometry

    International Nuclear Information System (INIS)

    Conzemius, R.J.; Capellen, J.M.

    1980-01-01

    The review is intended to provide a panoramic view of the broadening applications of the laser ion source in mass spectrometry. In these applications a laser beam has been used to excite a solid specimen to the ionized state or to the vaporized state in the ion source of a mass spectrometer. The review is divided into two main sections: Analytical features and applications. The analytical features section has been subdivided into five areas: Detection sensitivity, ionisation efficiency, collection efficiency, quantification, and crater-depth analysis. Applications have been separated into ten different areas: Biological, carbon, fossil fuels, gaseous impurities, geological, inorganics, isotopic analysis, metals, organics and polymers. (EBE)

  7. Effects of thermal plasma on self-absorbed synchrotron sources in active galactic nuclei

    International Nuclear Information System (INIS)

    De Kool, M.; Begelman, M.C.

    1989-01-01

    The observable effects of a thermal background plasma in a self-absorbed synchrotron source are reviewed, in the context of a model for the central engine of an active galactic nucleus (AGN). Considering the effects of free-free absorption and emission, Thomson and Compton scattering, and spatial stratification, it is found that the observations set an upper limit on the thermal electron scattering optical depth in the central synchrotron-emitting region of an AGN. The upper limit, tau(max) about 1, results mainly from the apparent absence of induced Compton scattering and inverse thermal Comptonization effects. The low value of tau(max) poses some problems for nonthermal models of the AGN continuum that can be partly resolved by assuming a thin disk or layer-like geometry for the source, with (h/R) less than about 0.01. A likely site for the synchrotron-producing region seems to be the surface of an accretion disk or torus. 20 refs

  8. Comparative studies of the laser Thomson scattering and Langmuir probe methods for measurements of negative ion density in a glow discharge plasma

    International Nuclear Information System (INIS)

    Noguchi, M; Hirao, T; Shindo, M; Sakurauchi, K; Yamagata, Y; Uchino, K; Kawai, Y; Muraoka, K

    2003-01-01

    The newly developed method of the negative ion density measurement in a plasma by laser Thomson scattering (LTS) was checked by comparing the obtained results against an independent technique, namely the Langmuir probe method. Both measurements were performed at the same position of the same inductively coupled plasma. The results agree quite well with each other and this has given confidence in the LTS method of negative ion density measurement. At the same time, both methods are complementary to each other, because the Langmuir probe measurement requires knowledge of the positive ion mass number

  9. The TAC Radiation Source for Bremsstrahlung Application

    International Nuclear Information System (INIS)

    Demir, N.

    2008-01-01

    The TAC is a project for the first Turkish radiation source and currently design study is produced with funding from the DPT (State Planning Unity). Two main part of the project will be IR-FEL and Bremsstrahlung facility. Each LINAC will provide max. electron energy of 20 MeV. The Bremsstrahlung facility at TAC will consist two of the LINAC module and will be obtained 35 MeV photon energy. This would provide a chance to investigate nuclear structure at this energy range and also some application of photonuclear physics. In this work the main parameter and plans for those of facility will be detailed

  10. Analytic sensing for multi-layer spherical models with application to EEG source imaging

    OpenAIRE

    Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri

    2013-01-01

    Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...

  11. Evaluation of the uniformity of wide circular reference source and application of correction factors

    International Nuclear Information System (INIS)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A.

    2017-01-01

    In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)

  12. The contribution of different information sources for adverse effects data.

    Science.gov (United States)

    Golder, Su; Loke, Yoon K

    2012-04-01

    The aim of this study is to determine the relative value and contribution of searching different sources to identify adverse effects data. The process of updating a systematic review and meta-analysis of thiazolidinedione-related fractures in patients with type 2 diabetes mellitus was used as a case study. For each source searched, a record was made for each relevant reference included in the review noting whether it was retrieved with the search strategy used and whether it was available but not retrieved. The sensitivity, precision, and number needed to read from searching each source and from different combinations of sources were also calculated. There were 58 relevant references which presented sufficient numerical data to be included in a meta-analysis of fractures and bone mineral density. The highest number of relevant references were retrieved from Science Citation Index (SCI) (35), followed by BIOSIS Previews (27) and EMBASE (24). The precision of the searches varied from 0.88% (Scirus) to 41.67% (CENTRAL). With the search strategies used, the minimum combination of sources required to retrieve all the relevant references was; the GlaxoSmithKline (GSK) website, Science Citation Index (SCI), EMBASE, BIOSIS Previews, British Library Direct, Medscape DrugInfo, handsearching and reference checking, AHFS First, and Thomson Reuters Integrity or Conference Papers Index (CPI). In order to identify all the relevant references for this case study a number of different sources needed to be searched. The minimum combination of sources required to identify all the relevant references did not include MEDLINE.

  13. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  14. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    International Nuclear Information System (INIS)

    Papell, S.S.; Nyland, T.W.; Saiyed, N.H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band. 3 refs

  15. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  16. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  17. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  18. A workstation based spectrometry application for ECR ion source [Paper No.: G5

    International Nuclear Information System (INIS)

    Suresh Babu, R.M.; . PS Div.)

    1993-01-01

    A program for an Electron Cyclotron Resonance (ECR) Ion Source beam diagnostics application in a X-Windows/Motif based workstation environment is discussed. The application program controls the hardware and acquires data via a front end computer across a local area network. The data is subsequently processed for displaying on the workstation console. The timing for data acquisition and control is determined by the particle source timing. The user interface has been implemented using the Motif widget set and the actions have been implemented through call back routines. The equipment interface is through a set of database driven calls across the network. (author). 7 refs., 1 fig

  19. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  20. Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER

    International Nuclear Information System (INIS)

    Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi

    2006-06-01

    A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)

  1. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    International Nuclear Information System (INIS)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15 0 . Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, and produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity

  2. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  3. Experimental Physics and Industrial Control System (EPICS): Application source/release control for EPICS R3.11.6

    International Nuclear Information System (INIS)

    Zieman, B.; Kraimer, M.

    1994-01-01

    This manual describes a set of tools that can be used to develop software for EPICS based control systems. It provides the following features: Multiple applications; the entire system is composed of an arbitrary number of applications: Source/Release Control; all files created or modified by the applications developers can be put under sccs (a UNIX Source/Release control utility): Multiple Developers; it allows a number of applications developers to work separately during the development phase but combine their applications for system testing and for a production system; Makefiles: makefiles are provided to automatically rebuild various application components. For C and state notation programs, Imagefiles are provided

  4. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Science.gov (United States)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  5. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    Science.gov (United States)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  6. Range of applications of modern superconducting synchrotron radiation sources using the source planned at Karlsruhe (KSSQ) as an example

    International Nuclear Information System (INIS)

    Moser, H.O.

    1989-06-01

    The performance of the Karlsruhe synchrotron radiation source which was designed originally for X-ray deep-etch lithography comes close to that of first and second generation synchrotron radiation sources. The range of applications spanned by KSSQ is therefore quite similar to that of those machines. The present report displays a first collection of topics from the fields of surface analysis, solid state and materials research, and biology which could be investigated using KSSQ by interested groups coming from KfK and its surroundings. (orig.) [de

  7. Applications of Open Source GMAW-Based Metal 3-D Printing

    Directory of Open Access Journals (Sweden)

    Yuenyong Nilsiam

    2018-03-01

    Full Text Available The metal 3-D printing market is currently dominated by high-end applications, which make it inaccessible for small and medium enterprises, fab labs, and individual makers who are interested in the ability to prototype and additively manufacture final products in metal. Recent progress led to low-cost open-source metal 3-D printers using a gas metal arc welding (GMAW-based print head. This reduced the cost of metal 3-D printers into the range of desktop prosumer polymer 3-D printers. Consequent research established good material properties of metal 3-D printed parts with readily-available weld filler wire, reusable substrates, thermal and stress properties, toolpath planning, bead-width control, mechanical properties, and support for overhangs. These previous works showed that GMAW-based metal 3-D printing has a good adhesion between layers and is not porous inside the printed parts, but they did not proceed far enough to demonstrate applications. In this study, the utility of the GMAW approach to 3-D printing is investigated using a low-cost open-source metal 3-D printer and a converted Computer Numerical Control router machine to make useful parts over a range of applications including: fixing an existing part by adding a 3-D metal feature, creating a product using the substrate as part of the component, 3-D printing in high resolution of useful objects, near net objects, and making an integrated product using a combination of steel and polymer 3-D printing. The results show that GMAW-based 3-D printing is capable of distributed manufacturing of useful products for a wide variety of applications for sustainable development.

  8. Control and acquisition for MAST Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Shibaev, S.; Naylor, G.; Scannell, R.; McArdle, G.; O'Gorman, T.; Walsh, M.J.

    2010-01-01

    The MAST (mega-amp spherical tokamak) Thomson scattering (TS) diagnostics have been radically upgraded and expanded. Eight 30 Hz 1.6 J Nd:YAG lasers have been combined to produce a sampling rate of 240 Hz. The scattered signals are acquired by two spectrometer systems: core and edge. The core system has been built anew: collection optics, polychromators, digitizers, and control computers. It allows measurement of electron temperature and density at 130 spatial points with ∼10 mm resolution across the plasma. The Nd:YAG scattered light signals are registered in 650 channels as polychromator outputs; each channel is registered on two ADCs: at 1 GHz rate in a short interval around each laser pulse and at 100 kHz for background data. The fast ADCs are combined in 26 data acquisition units. Each unit is assembled in a 6 U PXI chassis with embedded controller and six 4-channel 1 GHz ADC cards. Some chassis contain a 96-channel slow ADC card with Ethernet control. The Ruby TS has been rebuilt with a new spectrometer and CCD camera to provide higher spatial resolution - 512 points; the laser has been modified to add double pulse capability. A new control and acquisition system has been developed; it has modular design allowing flexibility and seamless expansion. The system supports event-triggered and real-time operation (will be added in a later stage). A smart trigger device has been developed for TS timing and synchronisation. It provides complex pulse sequences for laser firing with resynchronisation on a number of digital and analogue inputs including plasma events. This device also triggers TS acquisition. The system is integrated by a TS master process running on the dedicated computer; it is represented as a standard MAST data acquisition unit. The Ruby TS is also implemented as a standard MAST unit linked with the Nd:YAG TS by MAST system services.

  9. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  10. A description of a wide beam saddle field ion source used for nuclear target applications

    International Nuclear Information System (INIS)

    Greene, J.P.; Schiel, S.L.; Thomas, G.E.

    1997-01-01

    A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed

  11. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-30

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations, and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of

  12. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  13. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  14. Spatiotemporal Land Use Change Analysis Using Open-source GIS and Web Based Application

    Directory of Open Access Journals (Sweden)

    Wan Yusryzal Wan Ibrahim

    2015-05-01

    Full Text Available Spatiotemporal changes are very important information to reveal the characteristics of the urbanization process. Sharing the information is beneficial for public awareness which then improves their participation in adaptive management for spatial planning process. Open-source software and web application are freely available tools that can be the best medium used by any individual or agencies to share this important information. The objective of the paper is to discuss on the spatiotemporal land use change in Iskandar Malaysia by using open-source GIS (Quantum GIS and publish them through web application (Mash-up. Land use in 1994 to 2011 were developed and analyzed to show the landscape change of the region. Subsequently, web application was setup to distribute the findings of the study. The result show there is significant changes of land use in the study area especially on the decline of agricultural and natural land which were converted to urban land uses. Residential and industrial areas largely replaced the agriculture and natural areas particularly along the coastal zone of the region. This information is published through interactive GIS web in order to share it with the public and stakeholders. There are some limitations of web application but still not hindering the advantages of using it. The integration of open-source GIS and web application is very helpful in sharing planning information particularly in the study area that experiences rapid land use and land cover change. Basic information from this study is vital for conducting further study such as projecting future land use change and other related studies in the area.

  15. Policy analysis and recommendations for the open source application development portal (OSADP).

    Science.gov (United States)

    2012-06-01

    This white paper addresses the policy and institutional issues that are associated with the development of an open source applications development portal (OSADP), part of a larger research effort being conducted under the ITS Programs Dynamic Mobi...

  16. Guide for the preparation of applications for licenses for the use of sealed sources in portable gauging devices

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of this regulatory guide is to provide assistance to applicants and licensees in preparing applications for new licenses, license amendments, and license renewals for the use of sealed sources in portable gauging devices. An example of a portable gauging device is a moisture-density gauge that contains a gamma-emitting sealed source, cesium-137, and a sealed neutron source, americium-242-beryllium

  17. Workshop on scientific applications of short wavelength coherent light sources

    International Nuclear Information System (INIS)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  18. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  19. Application of large radiation sources in Asia and the Pacific - a review

    International Nuclear Information System (INIS)

    Iya, V.K.

    1977-01-01

    The current status of the applications of large radiation sources on industrial scale in the countries of Asia and the Pacific Region has been reviewed. The present R and D programmes and the major centres engaged in these programmes are described. So far as commercialization is considered, radiation processing industry is now well established in Japan, Australia, India and Israel. The major industrial uses of large radiation sources have been for : (1) sterilization of medical products, (2) food preservation, (3) cross-linking of polyethylene and (4) production of composite materials from polymer and wood or bamboo or bagasse. A table is given which indicates the current status of clearance of irradiated food in the countries under consideration. Finally, technological requirements in these countries for development and application of radiation processing are spelled out and discussed. (M.G.B.)

  20. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)