WorldWideScience

Sample records for thomas spin precession

  1. On the Bohr radius relationship to spin-orbit interaction, spin magnitude, and Thomas precession

    OpenAIRE

    Lush, David C.

    2007-01-01

    The dynamics of the spin-orbit interaction in atomic hydrogen are studied in a classical electrodynamics-like setting. A Rutherfordian atomic model is used assuming a circular electron orbit, without the quantum principle as imposed arbitrarily in the Bohr model, but with an ad hoc incorporation in the electron of intrinsic spin and associated magnetic dipole moment. Analyzing the motions of the electron spin and orbital angular momenta, it is found that in the presence of Thomas precession, ...

  2. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    International Nuclear Information System (INIS)

    Krivoruchenko, Mikhail I

    2009-01-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  3. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)

    2009-08-31

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  4. Thomas precession for dressed particles

    Science.gov (United States)

    Oblak, Blagoje

    2018-03-01

    We consider a particle dressed with boundary gravitons in three-dimensional Minkowski space. The existence of BMS transformations implies that the particle’s wavefunction picks up a Berry phase when subjected to changes of reference frames that trace a closed path in the asymptotic symmetry group. We evaluate this phase and show that, for BMS superrotations, it provides a gravitational generalization of Thomas precession. In principle, such phases are observable signatures of asymptotic symmetries.

  5. Fermi-Walker transport and Thomas precession

    Science.gov (United States)

    Pastor Lambare, Justo

    2017-07-01

    An exact derivation of the Thomas precession formula is presented based on the Fermi-Walker transport equation. Given that the Thomas precession effect is not a particularly intuitive phenomenon, such that when discovered in 1925 it took by surprise even experts in relativity theory, Einstein included, an alternative perspective can be useful at an intermediate level for physics students. The existing literature linking the Thomas precession to Fermi-Walker transport use geometric algebra as mathematical tool. Here the mathematics is kept within the limits of the usual vector and tensor algebra commonly used in special relativity theory at a level appropriate for advanced undergraduate and beginning graduate students.

  6. Thomas precession: correct and incorrect solutions

    International Nuclear Information System (INIS)

    Malykin, Grigorii B

    2006-01-01

    A wealth of different expressions for the frequency of the Thomas precession (TP) can be found in the literature, with the consequence that this issue has been discussed over a long period of time. It is shown that the correct result was obtained in the works of several authors, which were published more than forty years ago but remained unnoticed against the background of numerous erroneous works. Several TP-related physical paradoxes formulated primarily to disprove the special relativity theory are shown to be fallacious. Different techniques for deriving the correct expression are considered and the reasons for the emergence of the main incorrect expressions for the TP frequency are analyzed. (from the history of physics)

  7. Physical Holonomy, Thomas Precession, and Clifford Algebra

    International Nuclear Information System (INIS)

    Urbantke, H.

    1988-01-01

    After a general discussion of the physical significance of holonomy group transformations, a relation between the transports of Fermi-Walker and Levi-Civita in Special Relativity is pointed out. A well-known example -the Thomas-Wigner angle - is rederived in a completely frame-independent manner using Clifford algebra. 14 refs. (Author)

  8. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  9. Spin Hall effect, Hall effect and spin precession in diffusive normal metals

    OpenAIRE

    Shchelushkin, R. V.; Brataas, Arne

    2005-01-01

    We study transport in normal metals in an external magnetic field. This system exhibits an interplay between a transverse spin imbalance (spin Hall effect) caused by the spin-orbit interaction, a Hall effect via the Lorentz force, and spin precession due to the Zeeman effect. Diffusion equations for spin and charge flow are derived. The spin and charge accumulations are computed numerically in experimentally relevant thin film geometries. The out-of-plane spin Hall potential is suppressed whe...

  10. Lense-Thirring precession around neutron stars with known spin

    Science.gov (United States)

    Van Doesburgh, Marieke; van der Klis, Michiel

    2016-07-01

    Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of

  11. Spin precession in inversion-asymmetric two-dimensional systems

    International Nuclear Information System (INIS)

    Liu, M.-H.; Chang, C.-R.

    2006-01-01

    We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction

  12. Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Kane; Visser, Matt, E-mail: kco61@uclive.ac.nz, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, Wellington (New Zealand)

    2011-07-15

    The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary, which will suit a first course in relativity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher level students. We then give a summary of useful results and suggest further reading in this often obscure field.

  13. Spin-Precession Organic Magnetic Sensor

    Science.gov (United States)

    2012-09-26

    with the voltage and we get a value of ~200 per tesla for the quantity [V -1 (dV/dB)], which roughly translates into a sensitivity of 14 nT/Hz 1/2...Ideally, the response should be similar to the spin- valve measurements—the resistance changes as the magnetization of each of the contacts flips as we...strips. Typical spin- valve measurements employ strip widths of ~10-20 nm. However, the smallest width achievable in our FIB process is 500 nm, and the

  14. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  15. Three-axis atomic magnetometer based on spin precession modulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. C.; Dong, H. F., E-mail: hfdong@buaa.edu.cn; Hu, X. Y.; Chen, L.; Gao, Y. [School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-11-02

    We demonstrate a three-axis atomic magnetometer with one intensity-modulated pump beam and one orthogonal probe beam. The main field component is measured using the resonance of the pumping light, while the transverse field components are measured simultaneously using the optical rotation of the probe beam modulated by the spin precession. It is an all-optical magnetometer without using any modulation field or radio frequency field. Magnetic field sensitivity of 0.8 pT/Hz{sup 1∕2} is achieved under a bias field of 2 μT.

  16. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  17. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    Science.gov (United States)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  18. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  19. Spin precession experiments for light axionic dark matter

    Science.gov (United States)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas

    2018-03-01

    Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.

  20. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  1. Shot noise of charge and spin transport in a junction with a precessing molecular spin

    Science.gov (United States)

    Filipović, Milena; Belzig, Wolfgang

    2018-03-01

    Magnetic molecules and nanomagnets can be used to influence the electronic transport in mesoscopic junction. In a magnetic field, the precessional motion leads to resonances in the dc- and ac-transport properties of a nanocontact, in which the electrons are coupled to the precession. Quantities such as the dc conductance or the ac response provide valuable information, such as the level structure and the coupling parameters. Here, we address the current-noise properties of such contacts. This encompasses the charge current and spin-torque shot noise, which both show a steplike behavior as functions of bias voltage and magnetic field. The charge-current noise shows pronounced dips around the steps, which we trace back to interference effects of electrons in quasienergy levels coupled by the molecular spin precession. We show that some components of the noise of the spin-torque currents are directly related to the Gilbert damping, and hence are experimentally accessible. Our results show that the noise characteristics allow us to investigate in more detail the coherence of spin transport in contacts containing magnetic molecules.

  2. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  3. Electronic spin transport and spin precession in single graphene layers at room temperature.

    Science.gov (United States)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J

    2007-08-02

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.

  4. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  5. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Directory of Open Access Journals (Sweden)

    2016-10-01

    Full Text Available This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016.]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom and an 11-dimensional nonprecessing effective-one-body (EOB model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR. Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016.], and we quote updated component masses of 35_{-3}^{+5} M_{⊙} and 30_{-4}^{+3} M_{⊙} (where errors correspond to 90% symmetric credible intervals. We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  6. Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Wang Xianchao; Xin Zihua; Feng Liya

    2010-01-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.

    Science.gov (United States)

    Miah, M Idrish

    2009-03-13

    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  8. Weak antilocalization and spin precession in quantum wells

    Science.gov (United States)

    Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.

    1996-02-01

    The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.

  9. Spinning gas clouds with precession: a new formulation

    International Nuclear Information System (INIS)

    Gaffet, B

    2010-01-01

    We consider Dyson's model (Dyson F J 1968 J. Math. Mech. 18 91) of an ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum, in the Liouville integrable case where the gas is monatomic (γ = 5/3) and there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I). In the cases of rotation about a fixed axis the separation of variables can be achieved, and the separable variables are linearly related to a set of three variables denoted by ρ, R, W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195; Paper II). We show in the present work that these variables admit a natural generalization to cases of rotation about a movable axis (precessing motion). The present study is restricted to the consideration of the so-called degenerate cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we hope to generalize our results in the future to the non-degenerate ones as well. We also present a new, compact and generally valid formulation of one of the integrals of motion, of the sixth degree in the momenta, denoted by I 6 .

  10. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  11. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    International Nuclear Information System (INIS)

    Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.

    2005-01-01

    Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous

  12. Tilting Styx and Nix but not Uranus with a Spin-Precession-Mean-motion resonance

    Science.gov (United States)

    Quillen, Alice C.; Chen, Yuan-Yuan; Noyelles, Benoît; Loane, Santiago

    2018-02-01

    A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet-planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet's obliquity to near 90° or 180° depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus's high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus's high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.

  13. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  14. Assessing the Detectability of Gravitational Waves from Coalescing Binary Black Holes with Precessing Spin

    Science.gov (United States)

    Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration

    2015-01-01

    The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.

  15. Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S. [Lobachevsky Nizhny Novgorod State University (Russian Federation)

    2015-07-15

    An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effective magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.

  16. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements

    Science.gov (United States)

    Ma, T. P.; Zhang, S. F.; Yang, Y.; Chen, Z. H.; Zhao, H. B.; Wu, Y. Z.

    2015-01-01

    Rotational field dependence of laser-induced magnetization precession in a single-crystal Fe/MgO(001) sample was studied by the time resolved magneto-optical Kerr effect. Polar and longitudinal magnetization components were separated by measuring precession dynamics under opposite fields. When the applied field is weaker than the anisotropy field of an Fe film, the precession amplitude is small for the field direction near the easy axis and becomes larger as the field rotates towards the hard axis, showing a four-fold symmetry in agreement with the in-plane magnetic anisotropy; whereas at higher fields, the amplitude displays a drop near the hard axis. Such precession behavior can be well reproduced using an excitation model with rapidly modified but slowly recovered magnetic anisotropy and considering the elliptical precession trajectory. Our results indicate that the dominant mechanism for triggering Fe spin precession is the anisotropy modulation correlating with the lattice thermalization, rather than the transient anisotropy modulation due to the high electron temperature within 1 ps.

  17. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  18. The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

    Science.gov (United States)

    Garcon, Antoine; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Figueroa, Nataniel L.; Graham, Peter W.; Kimball, Derek F. Jackson; Rajendran, Surjeet; Gil Sendra, Marina; Sushkov, Alexander O.; Trahms, Lutz; Wang, Tao; Wickenbrock, Arne; Wu, Teng; Budker, Dmitry

    2018-01-01

    The cosmic axion spin precession experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the Universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses {m}{{a}}∼ {10}-14–{10}-6 eV. Sub-Hz frequencies are typically difficult to probe with NMR due to the diminishing sensitivity of magnetometers in this region. To circumvent this limitation, we suggest new detection and data processing modalities. We describe a non-resonant frequency-modulation detection scheme, enabling searches from mHz to Hz frequencies ({m}{{a}}∼ {10}-17–{10}-14 eV), extending the detection bandwidth by three decades.

  19. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    Energy Technology Data Exchange (ETDEWEB)

    Depondt, Ph., E-mail: depondt@insp.jussieu.fr [Institut des NanoSciences de Paris, Universite Pierre et Marie Curie, UMR 7588 CNRS, 75252 Paris Cedex 05 (France); Levy, J.-C.S., E-mail: jean-claude.levy@univ-paris-diderot.fr [Materiaux et Phenomenes Quantiques, Universite Denis Diderot, UMR 7162 CNRS, 75013 Paris (France)

    2011-10-31

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  20. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  1. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island

    NARCIS (Netherlands)

    Zaffalon, M; van Wees, BJ

    We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means

  2. Effects of square-wave magnetic fields on synchronization of nonlinear spin precession for sensitivity improvement of MX magnetometers

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2017-11-01

    Optically pumped atomic magnetometers have found widespread application in biomagnetic studies. Most of the studies utilize MX gradiometers as sensitive and simple arrangements. One the sensitivity improvement methods in the MX configurations is detection of magnetic resonance at higher harmonics due to nonlinear precession of spin polarization. To enhance the harmonic components, we have proposed square wave RF magnetic fields with various duty cycles as substitute for sinusoidal fields. Our results revealed that detection of the 5th harmonic of a 10% duty cycle square wave magnetic field, improved the magnetometer sensitivity by a factor of 4.5 respect to the first harmonic which could be a reliable option to generate high sensitivity MX magnetometers in the MCG applications.

  3. Spin-(flavor) precession and short wavelength vacuum oscillation as a solution for the solar neutrino puzzle

    International Nuclear Information System (INIS)

    Mohapatra, P.K.

    1991-01-01

    This paper investigates the possibility of spin-(flavor) precession combined with short wavelength vacuum oscillation as a solution for the solar neutrino puzzle. A large frozen-in magnetic field inside the sun with a neutrino magnetic moment of the order of 10 -10 Bohr magneton can completely depolarize the ν eL resulting in a factor of half of the emitted number. With a short wavelength vacuum oscillation and maximal mixing, the number of ν eL 's reaching the earth is reduced by another factor of half; this explains the Homestake chlorine experiment. The difference between the Homestake and the Kamiokande-II experiments can be attributed to the contribution to the Cherenkov radiation in the latter through the neutral current and electromagnetic interactions of the components which are inert in the former

  4. Simulation of coupled-spin systems in the steady-state free-precession acquisition mode for fast magnetic resonance (MR) spectroscopic imaging

    Czech Academy of Sciences Publication Activity Database

    Starčuk jr., Zenon; Starčuková, Jana; Štrbák, Oliver; Graveron-Demilly, D.

    2009-01-01

    Roč. 20, č. 10 (2009), 104033:1-9 ISSN 0957-0233 Grant - others:EC 6FP(XE) MRTN-CT-2006-035801 Source of funding: R - rámcový projekt EK Keywords : magnetic resonance * fast spectroscopic imaging * steady-state free-precession * coupled-spin system * density matrix simulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.317, year: 2009

  5. An atomic spin precession detection method based on electro-optic modulation in an all-optical K–Rb hybrid atomic magnetometer

    International Nuclear Information System (INIS)

    Hu, Yanhui; Liu, Xuejing; Li, Yang; Yao, Han; Dai, Lingling; Yang, Biyao; Ding, Ming

    2017-01-01

    We present an ultrahigh-sensitivity electro-optic modulator (EOM) detection method for detecting the atomic Larmor precession in an all-optical K–Rb hybrid atomic magnetometer operating in the spin-exchange relaxation-free regime. A magnetic field sensitivity of ∼10 f T Hz −1/2 has been achieved by optimizing the probe laser parameters and the EOM modulation conditions, which is comparable to that with the Faraday modulation method and has a better performance than the balanced polarimetry method in the low frequency range. The EOM detection method in the atomic magnetometer presents several advantages, such as simple structure, no extra magnetic noise, moderate thermal effect, high measurement sensitivity and reliable stability. It is demonstrated to be feasible for the improved compactness and simplicity of atomic magnetic field measurement devices in the future. (paper)

  6. Overview of new Larmor precession techniques

    CERN Document Server

    Rekveldt, M T; Kraan, W H; Grigoriev, S V; Uca, O; Keller, T

    2002-01-01

    Larmor precession has been used in the past in neutron spin-echo and neutron depolarisation. In the last decade, interest has been revived in the inclined front and end faces of the precession regions combined with the neutron-resonance spin-echo (NRSE) technique. Various techniques based on these inclined faces have been developed, such as spin-echo, small-angle neutron scattering (SESANS), off-specular neutron reflectometry using SESANS and high-resolution diffraction using Larmor precession. An overview will be given of the various state-of-the-art techniques. (orig.)

  7. Two methods for nuclear spin determination in collinear laser spectroscopy: classical r.f. magnetic resonance and observation of the Larmor precession

    International Nuclear Information System (INIS)

    Bendali, N.; Duong, H.T.; Saint-Jalm, J.M.; Vialle, J.L.

    1984-01-01

    Measurement of nuclear spin in the collinear laser spectroscopy method has been investigated using a fast sodium atomic beam excited collinearly by a C.W. single mode dye laser beam. The atomic magnetic moments are first aligned by optical pumping process, then they interact with a static magnetic field H 0 . The magnetic alignment of the atomic system just at the exit of the magnetic field is monitored by the laser induced fluorescence. Upon varying the amplitude of H 0 , the fluorescence signal presents a fringed structure. This structure is due to the Larmor precession of the aligned magnetic moments around H 0 , and therefore it is a signature of the spin involved. The modulation patterns corresponding to different relative orientations of H 0 and light polarization direction, are fitted by an analytical formula. In a second step, a classical magnetic resonance experiment with a static magnetic field and a radiofrequency field has been performed. The monocinetic character of our fast atomic beam allowed us to observe, even at high r.f. power, resonances line shapes in agreement with the Majorana formula

  8. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  9. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  10. Precession and nutation of a gyroscope

    International Nuclear Information System (INIS)

    Butikov, Eugene

    2006-01-01

    A simple treatment of the important old problem of the torque-induced rotation of a spinning symmetrical top is suggested. Our discussion is appropriate for teaching introductory mechanics and general physics to undergraduate students and is free from the difficulties of a traditional approach to the problem. The origin of nutation that accompanies forced precession is explained in detail, with an accent on its relationship to the torque-free precession of a symmetrical body. A small simulation program is developed that visualizes the investigated motion and illustrates its principal features. The program facilitates understanding about the counterintuitive behaviour of a gyroscope on a qualitative level

  11. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  12. Impeller in Precessing Motion

    Directory of Open Access Journals (Sweden)

    Yoshiki Yoshida

    2001-01-01

    destabilizing in the region of negative precessing speed ratio (-0.3<Ω/ω<0, at the design flow rate; (2 At reduced flow rate, the destabilizing fluid force moments occurred at small positive precessing speed ratio (0.2<Ω/ω<0.4; (3 From the comparison of direct measured fluid force moments with those estimated from the unsteady pressure measured on the front and back casing walls, it was found that the destabilizing moments in the backward precession are mainly caused by the fluid forces on the front surface of the present impeller, where there is large clearance between the back shroud and casing.

  13. Sabu Thomas

    Indian Academy of Sciences (India)

    Why Does a Rubber Ball Bounce? The Molecular Origins of Rubber Elasticity · V G Geethamma Sabu Thomas · More Details Fulltext PDF. Volume 19 Issue 9 September 2014 pp 821-833 General Article. Vibration and Sound Damping in Polymers · V G Geethamma R Asaletha Nandakumar Kalarikkal Sabu Thomas.

  14. Relativistic shifts of bound negative-muon precession frequencies

    International Nuclear Information System (INIS)

    Brewer, J.H.; Froese, A. M.; Fryer, B.A.; Ghandi, K.

    2005-01-01

    High-field negative-muon spin precession experiments have been performed using a backward-muon beam with substantial transverse spin polarization, facilitating high-precision measurements of the magnetogyric ratio of negative muons bound to nuclei in the ground states of muonic atoms. These results may provide a testing ground for quantum electrodynamics in very strong electromagnetic fields

  15. Precession of the Earth-Moon system

    Energy Technology Data Exchange (ETDEWEB)

    Urbassek, Herbert M [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)], E-mail: urbassek@rhrk.uni-kl.de

    2009-11-15

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics of the spinning top in undergraduate courses.

  16. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  17. Thomas Aquinas

    DEFF Research Database (Denmark)

    Haaning, Aksel

    2011-01-01

    Artiklen præsenterer Thomas Aquinas i højmiddelalderens intellektuelle historie, reviderer den for tiden gældende historiegrafi og præsenterer Aquinas' erotiske mystik fra prologen til Sentenskommentaren (ca.1252) og diskuterer "Aurora consurgens" som et muligt sidste skrift af den berømte...

  18. Weak-field precession of nano-pillar spin-torque oscillators using MgO-based perpendicular magnetic tunnel junction

    Science.gov (United States)

    Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming

    2018-04-01

    This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.

  19. Thomas edison

    CERN Document Server

    Davis, Lynn

    2015-01-01

    One of Thomas Edison's most famous inventions was the phonograph. It was the first machine to record and play sounds. Kids can read this book to find out more about Edison, like how he started a business at age twelve and what he said in his first phonograph recording. Aligned to Common Core Standards and correlated to state standards. Applied to STEM Concepts of Learning Principles. Super Sandcastle is an imprint of Abdo Publishing, a division of ABDO.

  20. Larmor precession reflectometry

    International Nuclear Information System (INIS)

    Lauter, H.J.; Toperverg, B.P.; Lauter-Pasyuk, V.; Petrenko, A.; Aksenov, V.

    2004-01-01

    Larmor precession phase encoding is applied to modulate TOF reflection spectra measured from a polymer multilayer and from an Fe/Cr multilayer. It is proposed that decoding of the spectra can be used to extract the small-angle scattering signal from the polymer film-embedded nanoparticles. The second example is directed to demonstrate one of the plausible realizations of the vector polarization analysis in reflectometry of magnetic systems. This would allow to unambiguously reconstruct the transverse and lateral distribution of the magnetization vectors throughout the multilayered superlattices

  1. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  2. Combined obliquity and precession pacing of late Pleistocene deglaciations.

    Science.gov (United States)

    Huybers, Peter

    2011-12-08

    Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.

  3. Sparse representations of gravitational waves from precessing compact binaries.

    Science.gov (United States)

    Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel

    2014-07-11

    Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.

  4. DO JETS PRECESS... OR EVEN MOVE AT ALL?

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, Chris [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); King, Andrew, E-mail: chris.nixon@jila.colorado.edu [Department of Physics and Astronomy, University of Leicester, University Road, LE1 7RH Leicester (United Kingdom)

    2013-03-01

    Observations of accreting black holes often provoke suggestions that their jets precess. The precession is usually supposed to result from a combination of the Lense-Thirring effect and accretion disk viscosity. We show that this is unlikely for any type of black hole system, as the disk generally has too little angular momentum compared with a spinning hole to cause any significant movement of the jet direction across the sky on short timescales. Uncorrelated accretion events, as in the chaotic accretion picture of active galactic nuclei (AGNs), change AGN jet directions only on timescales {approx}> 10{sup 7} yr. In this picture AGN jet directions are stable on shorter timescales, but uncorrelated with any structure of the host galaxy, as observed. We argue that observations of black hole jets precessing on timescales short compared to the accretion time would be a strong indication that the accretion disk, and not the standard Blandford-Znajek mechanism, is responsible for driving the jet. This would be particularly convincing in a tidal disruption event. We suggest that additional disk physics is needed to explain any jet precession on timescales short compared with the accretion time. Possibilities include the radiation warping instability, or disk tearing.

  5. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  6. From the Kinematics of Precession Motion to Generalized Rabi Cycles

    Directory of Open Access Journals (Sweden)

    Danail S. Brezov

    2018-01-01

    Full Text Available We use both vector-parameter and quaternion techniques to provide a thorough description of several classes of rotations, starting with coaxial angular velocity Ω of varying magnitude. Then, we fix the magnitude and let Ω precess at constant rate about the z-axis, which yields a particular solution to the free Euler dynamical equations in the case of axially symmetric inertial ellipsoid. The latter appears also in the description of spin precessions in NMR and quantum computing. As we show below, this problem has analytic solutions for a much larger class of motions determined by a simple condition relating the polar angle and z-projection of Ω (expressed in cylindrical coordinates, which are both time-dependent in the generic case. Relevant physical examples are also provided.

  7. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  8. Grace S Thomas

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Grace S Thomas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 319-324 Catalysis. Thermal decomposition of Co–Al layered double hydroxide: Identification of precursor to oxide with spinel structure · A V Radha Grace S Thomas P Vishnu ...

  9. jijimon k thomas

    Indian Academy of Sciences (India)

    JIJIMON K THOMAS. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1171-1178. Enhanced infrared transmission characteristics of microwave-sintered Y$_2$O$_3$–MgO nanocomposite · C T MATHEW SAM SOLOMON JACOB KOSHY JIJIMON K THOMAS · More Details Abstract ...

  10. Larmor-precession based neutron scattering instrumentation

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2009-01-01

    The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)

  11. Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid

    Science.gov (United States)

    Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu

    2018-04-01

    We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.

  12. Bistable flows in precessing spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D, E-mail: david.cebron@ujf-grenoble.fr [Université Grenoble Alpes, CNRS, ISTerre, Grenoble (France)

    2015-04-15

    Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739–51). So far however, no analytical result for the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in detail since their discovery by Noir et al (2003 Geophys. J. Int. 154 407–16). In this work we aim at deriving analytical results for the solutions, aiming in particular at first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412–39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, their conditions of existence, and their stability in a systematic manner. We then successfully compare these analytical results with the theory of Busse (1968). Dynamical model equations are finally proposed to investigate the stability of the solutions, which describe the bifurcation of the unstable flow solution. We also report for the first time the possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids. Numerical integrations of the algebraic and differential equations have been efficiently performed with the dedicated script FLIPPER (supplementary material). (paper)

  13. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  14. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  15. Thomas Jefferson's Academical Village

    DEFF Research Database (Denmark)

    Foote, Jonathan; Frohburg, Jan

    2017-01-01

    This is an essay written for the Festschrift of Karl-Heinz Schmitz, Professor at Bauhaus-Universität Weimar. It reflects on some aspects of Thomas Jefferson's design for the University of Virginia in relation to Professor's Schmitz' teachings and interests.......This is an essay written for the Festschrift of Karl-Heinz Schmitz, Professor at Bauhaus-Universität Weimar. It reflects on some aspects of Thomas Jefferson's design for the University of Virginia in relation to Professor's Schmitz' teachings and interests....

  16. Screened precession method for area detectors.

    Science.gov (United States)

    Edwards, S L; Nielsen, C; Xuong, N H

    1988-04-01

    A method is presented in which the features of a Buerger-type mechanical precession camera can be simulated using an electronic area detector and a three-circle automated goniostat. The resulting display as viewed on a video monitor is very much like a conventional precession photograph. The detector is stationary which causes a distortion that is negligible for precession angles less than 10 degrees. The virtue of this new method is that a precession image may be collected very fast and the intensities of the reflections when displayed are already digitized. The usefulness of these features is presented through two familiar tasks: the determination of a new protein crystal space group and the evaluation of a heavy-atom derivative.

  17. Laws of motion and precession for black holes and other bodies

    International Nuclear Information System (INIS)

    Thorne, K.S.; Hartle, J.B.

    1985-01-01

    Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (''isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through post/sup 1.5/-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets

  18. Stochastic Template Bank for Gravitational Wave Searches for Precessing Neutron Star-Black Hole Coalescence Events

    Science.gov (United States)

    Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana

    2017-01-01

    Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.

  19. Morgan, Prof. Thomas Hunt

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1939 Honorary. Morgan, Prof. Thomas Hunt Nobel Laureate (Medicine) - 1933. Date of birth: 25 September 1866. Date of death: 4 December 1945. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th ...

  20. Thomas a edison

    CERN Document Server

    Strand, Jennifer

    2016-01-01

    Creator of the phonograph and electric light bulb, Thomas Edison's inventions are still being used today. Historic photos and easy-to-read text take readers into the athlete's life. Zoom in even deeper with quick stats, a timeline, and bolded glossary terms. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  1. Morgan, Prof. Thomas Hunt

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1939 Honorary. Morgan, Prof. Thomas Hunt Nobel Laureate (Medicine) - 1933. Date of birth: 25 September 1866. Date of death: 4 December 1945. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by ...

  2. Happy Birthday, Thomas Edison!

    Science.gov (United States)

    Dalton, Edward A.

    1997-01-01

    Discusses the work and inventions of Thomas Edison and their use in making teachers and students aware of the importance of electrotechnology in their lives and in their futures. Enables students to learn about science, experimentation, research, the process of invention, and the thrill of discovery. Describes educational resources available from…

  3. J K Thomas

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. J K Thomas. Articles written in Bulletin of Materials Science. Volume 31 Issue 5 October 2008 pp 719-722 Nanomaterials. Synthesis, characterization, sintering and dielectric properties of nanostructured perovskite-type oxide, Ba2GdSbO6 · C Vijayakumar H Padma Kumar Sam ...

  4. Thomas Alva Edison

    Indian Academy of Sciences (India)

    ... of Science Education; Volume 5; Issue 1. Thomas Alva Edison - His Contributions to Lighting and Power Generation. D P Sengupta. General Article Volume 5 Issue 1 January 2000 pp 60-70 ... Author Affiliations. D P Sengupta1. Department of Electrical Engineering, Indian Institute of Science, Bangalore 560 012, India.

  5. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations

    Science.gov (United States)

    Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S.

    2018-02-01

    Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g. angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time-scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well resolved, our isolated discs spread out, causing both the alignment and precession to slow down.

  6. Precession effects on a liquid planetary core

    Science.gov (United States)

    Liu, Min; Li, Li-Gang

    2018-02-01

    Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.

  7. Llewellyn Hilleth Thomas: An appraisal of an under-appreciated polymath

    Science.gov (United States)

    Jackson, John David

    2010-02-01

    Llewellyn Hilleth Thomas was born in 1903 and died in 1992 at the age of 88. His name is known by most for only two things, Thomas precession and the Thomas-Fermi atom. The many other facets of his career - astrophysics, atomic and molecular physics, nonlinear problems, accelerator physics, magnetohydrodynamics, computer design principles and software and hardware - are largely unknown or forgotten. I review his whole career - his early schooling, his time at Cambridge, then Copenhagen in 1925-26, and back to Cambridge, his move to the US as an assistant professor at Ohio State University in 1929, his wartime years at the Ballistic Research Laboratory, Aberdeen Proving Grounds, then in 1946 his new career as a unique resource at IBM's Watson Scientific Computing Laboratory and Columbia University until his first retirement in 1968, and his twilight years at North Carolina State University. Although the Thomas precession and the Thomas-Fermi atom may be the jewels in his crown, his many other accomplishments add to our appreciation of this consummate applied mathematician and physicist. )

  8. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  9. Sir John Meurig Thomas.

    Science.gov (United States)

    Thomas, John Meurig

    2013-10-11

    "My greatest achievement has been to combine being a teacher, a researcher, and a popularizer of science for over 50 years. My worst nightmare is to find myself dumbstruck when I am about to give a lecture …︁" This and more about Sir John Meurig Thomas can be found on page 10938. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Practicing like Thomas Edison.

    Science.gov (United States)

    Baum, Neil; Ornstein, Hal

    2013-01-01

    For many centuries, medicine has practiced in a vacuum, and the healthcare profession has been isolated from other scientific disciplines. Beginning in the 20th century, doctors and scientists have looked to others for ideas, suggestions, innovations, and new technologies. Probably no one in the past hundred years has done so much to change the world than Thomas Edison. This article will discuss eight principles of Edison and how they may apply to our profession and our practices.

  11. Linear scaling between momentum and spin scattering in graphene

    NARCIS (Netherlands)

    Jozsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P. J.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport in graphene carries the potential of a long spin-diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 mu m. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to

  12. Brown dwarfs in retrogradely precessing cataclysmic variables?

    Directory of Open Access Journals (Sweden)

    Martin E.L.

    2011-07-01

    Full Text Available We compare Smoothed Particle Hydrodynamic simulations of retrogradely precessing accretion disks that have a white dwarf primary and a main sequence secondary with observational data and with theory on retrograde precession via tidal torques like those by the Moon and the Sun on the Earth [1, 2]. Assuming the primary does not accrete much of the mass lost from the secondary, we identify the theoretical low mass star/brown dwarf boundary. We find no observational candidates in our study that could qualify as brown dwarfs.

  13. Deviation and precession effects in the field of a weak gravitational wave

    Science.gov (United States)

    Bini, Donato; Geralico, Andrea; Ortolan, Antonello

    2017-05-01

    Deviation and precession effects of a bunch of spinning particles in the field of a weak gravitational plane wave are studied according to the Mathisson-Papapetrou-Dixon (MPD) model. Before the passage of the wave the particles are at rest with an associated spin vector aligned along a given direction with constant magnitude. The interaction with the gravitational wave causes the particles to keep moving on the 2-plane orthogonal to the direction of propagation of the wave, with the transverse spin vector undergoing oscillations around the initial orientation. The transport equations for both the deviation vector and spin vector between two neighboring world lines of such a congruence are then solved by a suitable extension of the MPD model off the spinning particle's world line. In order to obtain measurable physical quantities a "laboratory" is set up by constructing a Fermi coordinate system attached to a reference world line. The exact transformation between TT coordinates and Fermi coordinates is derived too.

  14. Finalismo em Thomas Hobbes

    OpenAIRE

    Oliveira, José Edelberto Araújo de

    2009-01-01

    102f. Para Thomas Hobbes, a Filosofia é um exercício voltado para a obtenção de conhecimento que permita mudar a vida das pessoas. Averiguar os rudimentos das relações do homem com o corpo natural e do homem com o corpo moral significa, nesta medida, para Hobbes, buscar um projeto cientificista confiável, tendo o homem e o Estado como objetos, identificando-se com o espírito galileano do século 17. Tal projeto, a soma das filosofias natural e moral, foca o movimento quantificável dos corpo...

  15. Precession X-ray diffraction chamber

    International Nuclear Information System (INIS)

    Rieder, M.

    1978-01-01

    An X-ray diffraction chamber is described whose design allows the tilting of the goniometric head 90deg along the axis normal to the axis of precession. Images may thus be made in the reverse reflexion region and of reciprocal networks in any arbitrary direction with a single adhesion of the crystal. (H.S.)

  16. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    ... University, Shimla 171 005, India; Government College, Kotshera, Shimla 171 004, India; IGNOU Regional Centre, Khanna 141 401, India; Government College, Karsog Dist., Mandi 171 304, India; Centro de Fisica das Interccoes Fundamentais, Instituto Superior Tecnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal ...

  17. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  18. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Department of Physics, Himachal Pradesh University, Shimla 171 005, India; Government College, Kotshera, Shimla 171 004, India; IGNOU Regional Centre, Khanna 141 401, India; Government College, Karsog Dist., Mandi 171 304, India; Centro de Fisica das Interccoes Fundamentais, Instituto Superior Tecnico, Av.

  19. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    differential rotation of the Sun and the global convection by introducing several adjustable parameters. Some of these computer simulations [1] reproduce the basic characteristics of the solar cycle to a remarkable degree of agreement. The magnetic flux tubes encir- cling the rotational axis of the Sun appear naturally in ...

  20. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Sun, remains a distant dream. Apart from the observed suppression of the solar neutrino flux, the Homestake data hint to an anticorrelation of the solar neutrino flux with the solar magnetic activity. Of course, the Kamiokande and the gallium experiments do not report any statistically significant anticorrelation but the statistics ...

  1. Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

    Science.gov (United States)

    Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.

    2018-03-01

    Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.

  2. IFR channel-guiding of spinning beams

    International Nuclear Information System (INIS)

    O'Brien, K.J.

    1986-06-01

    A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized

  3. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  4. Stepwise Precession of the Resonant Swinging Spring

    Science.gov (United States)

    Holm, Darryl D.; Lynch, Peter

    2002-01-01

    The swinging spring, or elastic pendulum, has a 2:1:1 resonance arising at cubic order in its approximate Lagrangian. The corresponding modulation equations are the well-known three-wave equations that also apply, for example, in laser-matter interaction in a cavity. We use Hamiltonian reduction and pattern evocation techniques to derive a formula that describes the characteristic feature of this system's dynamics, namely, the stepwise precession of its azimuthal angle.

  5. Structure refinement from precession electron diffraction data.

    Science.gov (United States)

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  6. Particle spin tune in a partially excited snake

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.; Courant, E.D.

    1985-01-01

    In this paper, we address the question on the effect of the particle spin when a snake is turned on adiabatically near a depolarization resonance while not accelerating. The spinor equation and its solution are reviewed briefly and the spin transfer matrix method in the presence of a snake are used to evaluate the spin tune and the precession axis

  7. Visualizing spin states using the spin coherent state representation

    Science.gov (United States)

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  8. Thomas Kibble visits CERN

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    Emeritus Professor Sir Thomas W.B. Kibble, from Imperial College London visited LHC for the first time last week and delivered a colloquium on the genesis of electroweak unification and the Brout-Englert-Higgs mechanism.   From left to right: Jim Virdee, Tiziano Camporesi, Tom Kibble and Austin Ball on the visit to CMS. On his way back from Trieste, where he received the Abdus Salam International Centre for Theoretical Physics' Dirac Medal, Tom Kibble stopped by CERN for his first visit to the LHC. Kibble had a standing invitation from Jim Virdee, former CMS spokesperson, who is also a researcher from Imperial College London. Peter Jenni (left) and Tom Kibble tour the ATLAS detector. (Image: Erwan Bertrand) Kibble made the trip to CERN a family outing and brought along 14 relatives,  including his children and grandchildren. He visited the ATLAS detector with Peter Jenni, its former spokesperson, on Friday 10 October. In the afternoon, Kibble delivered a colloquium in the...

  9. Controlling a nuclear spin in a nanodiamond

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2017-09-01

    The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.

  10. Algo sobre a Europa: Thomas More

    OpenAIRE

    Coelho, Rui Pina

    2005-01-01

    Crítica de teatro / Thomas More / William Shakespeare / Anthony Munday / Robert Delamere / Royal Shakespeare Company ABSTRACT - Review of the theatre performance Thomas More, by Anthony Munday, Henry Chettle, Thomas Dekker, Thomas Heywood and William Shakespeare, directed by Robert Delamere, Royal Shakespeare Company (2005).

  11. Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire

    NARCIS (Netherlands)

    Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.

    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields

  12. Long-lived hole spin dynamics in a 2D system at sub-Kelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Anton; Korn, Tobias; Schulz, Robert; Maurer, Andreas; Hirmer, Michael; Schuh, Dieter; Wegscheider, Werner; Schueller, Christian [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)

    2008-07-01

    The spin dynamics of holes in semiconductors have, so far, been less intensely studied than the electron spin dynamics. We performed time-resolved Faraday rotation (TRFR) measurements on a 2D hole system within a 15nm wide, modulation-doped GaAs/AlGaAs quantum well grown on a [001] substrate. In the TRFR measurements, the sample is excited by a circularly-polarized laser pulse tuned to the exciton energy. An in-plane magnetic field up to 10 T is applied, causing a precession of the photocreated carriers. At 4.5 K temperature only the fast electron spin precession is observed, whereas a second, long period precession, superimposed on the electron spin precession, appears and gets more intense as the temperature is lowered from 1.2 K to 0.4 K. We identify this signal as the hole spin precession, which has a low frequency due to the small g-factor of holes along the [001] direction. The hole g-factor is highly anisotropic, which we measured by varying the angle of incidence of the pump beam relative to the sample plane. The appearance of the long-lived hole spin precession only at very low temperatures indicates that the hole spin lifetime is increased by localization. Surprisingly, while the hole spin lifetime increases drastically at lower temperatures, the electron spin lifetime is reduced.

  13. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  14. Venus's southern polar vortex reveals precessing circulation.

    Science.gov (United States)

    Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

    2011-04-29

    Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

  15. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Science.gov (United States)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  16. Precessional Instability in Binary Black Holes with Aligned Spins.

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-02

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  17. Evaluation of a possible upgrade of the IAU 2006 precession

    Science.gov (United States)

    Liu, J.-C.; Capitaine, N.

    2017-01-01

    Context. The International Astronomical Union (IAU) adopted a new precession model at its 2006 General Assembly. After more than ten years since the publication of the so-called IAU 2006 precession, we have noticed progress in solar system ephemerides and geophysical observations, which can be used to refine the precession model. Another progress is the increase by 30% since 2003, of the length of the very long baseline interferometry (VLBI) observations to be compared with the theoretical model. Aims: The aim of this paper is to investigate the possibility of upgrading the IAU 2006 precession model based on new solutions of the Earth-Moon barycenter (EMB) motion, new theoretical contributions to the precession rates, and the revised J2 long-term variation obtained from the satellite laser ranging (SLR). Methods: The new precession expressions for the ecliptic are derived by fitting the new analytical planetary theory VSOP2013 to the numerical ephemerides DE422 or INPOP10a. The solution for the precession of the equator was obtained by integrating the dynamical precession equations with the use of an updated Earth model including the J2 quadratic long-term variation. The new precession expressions (denoted LC solution in this paper) are compared with the IAU 2006 model by using the most accurate VLBI observations up to 2015. Results: For the precession of the ecliptic, the changes in the new solutions with respect to the IAU 2006 are about several tens of microarcseconds in the linear terms of PA and QA. The upgraded precession of the equator is such that the quadratic and cubic terms in the quantity ψA differ significantly from IAU 2006 due to the revised J2 model. The statistics of the VLBI celestial pole offsets (1979-2015) and least squares fits with different empirical models, show that the LC precession is slightly more consistent with the VLBI observations, but the improvement relative to the IAU 2006 model is not definitely convincing at present

  18. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  19. Development of a nuclear precession magnetometer

    International Nuclear Information System (INIS)

    Virgens Alves, J.G. das.

    1983-12-01

    The objective of this thesis was to develop a proton precession magnetometer for geophysical prospecting and base stations. The proton procession magnetometer measures the total magnetic fields intensity. It operates on the basis of nuclear magnetic resonance by determining the processing frequency of protons of a non viscous liquid in the terrestrial magnetic fields. The instrument was tested in field to evaluate signal/noise ratio, supportable gradient and battery consumption. Application test was carried out to take diurnal variation data and, reconnaissance and detail surveys data on an archaeological site in the Marajo Island-Pa. The test results were confronted with two commercial magnetometers-GP-70, McPhar e G-816, Geometric - and, with data from Observatorio Magnetico Ilha de Tatuoca as well. For all cases, the data comparison showed a good performance of the magnetometer tested. (author)

  20. A QSO with precessing jets: 2300 - 189

    International Nuclear Information System (INIS)

    Hunstead, R.W.; Murdoch, H.S.; Phillips, M.M.

    1984-01-01

    The QSO 2300-189 (z = 0.1287) is found to have a faint companion galaxy at the same redshift. The separation is 6.8 arcsec on the sky. A spectrum of the fuzz around the QSO shows absorption features typical of late-type stars, which argues for its occurence in a normal disc or E galaxy. Radio maps obtained with the VLA at 1465 MHz and 4885 MHz show inversion (or S-shaped) symmetry, which is explained as due to the ejection of jets along an axis which is precessing, probably due to the tidal influence of the nearby galaxy. Several kinematic parameters are deduced including an upper limit for the jet velocity. Further support for tidal interaction comes from the detection of extensive region of low-brightness optical emission in the vicinity of the QSO. (author)

  1. Thomas, Prof. Sir John Meurig

    Indian Academy of Sciences (India)

    Thomas, Prof. Sir John Meurig FRS. Date of birth: 15 December 1932. Address: Department of Materials Science and, Metallurgy, New Museums Site, 27, Babbage Road, Cambridge CB3 0FS, U.K.. Contact: Office: (+44-1223) 33 4300. Fax: (+44-1223) 33 4567. Email: jmt2@cam.ac.uk. YouTube; Twitter; Facebook; Blog ...

  2. Thomas, Prof. Sir John Meurig

    Indian Academy of Sciences (India)

    Thomas, Prof. Sir John Meurig FRS. Date of birth: 15 December 1932. Address: Department of Materials Science and, Metallurgy, New Museums Site, 27, Babbage ... Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more.

  3. Simultaneous tracking of spin angle and amplitude beyond classical limits

    Science.gov (United States)

    Colangelo, Giorgio; Ciurana, Ferran Martin; Bianchet, Lorena C.; Sewell, Robert J.; Mitchell, Morgan W.

    2017-03-01

    Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action—the random change in a quantum state due to measurement—necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2—the classical limit for N spins—by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.

  4. Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers

    International Nuclear Information System (INIS)

    Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre

    2011-01-01

    Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.

  5. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    Science.gov (United States)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  6. Unified description of bulk and interface-enhanced spin pumping

    NARCIS (Netherlands)

    Watts, SM; Grollier, J; van der Wal, CH; van Wees, BJ

    2006-01-01

    We describe a mechanism for generating nonequilibrium electron-spin accumulation in semiconductors or metals by rf magnetic field pumping. With a semiclassical model we show that a rotating applied magnetic field (or the precessing magnetization inside a weak ferromagnet) generates a dc spin

  7. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  8. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  9. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  10. New precession expressions, valid for long time intervals

    Science.gov (United States)

    Vondrák, J.; Capitaine, N.; Wallace, P.

    2011-10-01

    Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the

  11. Electronic spin transport and spin precession in single graphene layers at room temperature

    NARCIS (Netherlands)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-01-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic

  12. Perihelion precession, polar ice and global warming

    Science.gov (United States)

    Steel, Duncan

    2013-03-01

    The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.

  13. Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2010-01-01

    It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,

  14. Thomas Vicary, barber-surgeon.

    Science.gov (United States)

    Thomas, Duncan P

    2006-05-01

    An Act of Parliament in 1540 uniting the barbers and surgeons to form the Barber-Surgeons' Company represented an important foundation stone towards better surgery in England. Thomas Vicary, who played a pivotal role in promoting this union, was a leading surgeon in London in the middle of the 16th century. While Vicary made no direct contribution to surgical knowledge, he should be remembered primarily as one who contributed much towards the early organization and teaching of surgery and to the consequent benefits that flowed from this improvement.

  15. Magnonic Charge Pumping via Spin-Orbit Coupling

    Science.gov (United States)

    Ciccarelli, Chiara; Hals, Kjetil; Irvine, Andrew; Novak, Vit; Tserkovnyak, Yaroslav; Kurebayashi, Hidekazu; Brataas, Arne; Ferguson, Andrew

    2015-03-01

    The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin-torque oscillators and spin-transfer torque MRAM. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle or multilayer layouts, is required to convert the spin current into a charge signal. Here, we report the observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via spin-orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin-charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.

  16. Development of spin echo small angle neutron scattering

    International Nuclear Information System (INIS)

    Bouwman, W.G.; Uca, O.; Van Oossanen, M.; Kraan, W.H.; Rekveldt, M.T.

    1999-01-01

    A novel kind of small angle neutron scattering (SANS) instrument is being built, based on the Larmor precession of polarised neutrons in a magnetic field. A spin echo of the polarised neutrons is used to detect the scattering. The basis of this instrument is a symmetric set-up with a spin flipper in the centre, which creates a spin echo, even with a divergent beam. The precession regions on either side of the spin flipper are shaped such to produce a very sensitive relation between the vertical angle of the neutron path and the total precession angle on one side. Any SANS of a sample placed in the instrument changes the symmetry of the neutron path and therefore decreases the echo. This amounts to measuring only the difference of the incoming and outgoing angle. This gives a huge increase in intensity of the signal with respect to conventional SANS in which both incoming and outgoing angle are defined. Magnetised foils, which rotate the neutron spin between being parallel to the magnetic field and perpendicular to the field are used to start or terminate the precession. With a preliminary set-up the first spin echo SANS signal have been measured. A full correlation function in samples over distances from 5 to 1000 nm is expected to be measured in some minutes. (author)

  17. A rapid spin exchange tightly bound alkali metal hybrid optical pumping system

    Science.gov (United States)

    Wang, Xulin; Chen, Yao; Quan, Wei; Fan, Wenfeng; Fang, Jiancheng

    2018-02-01

    We study effects of rapid spin exchange interaction between K and Cs spins in a K–Cs spin exchange hybrid optical pumping system. The behaviour of the atom spins directly pumped by laser light is investigated. The results show that the electron spins of the K atoms are coupled to the electron spins of the Cs atoms through spin exchange interaction. The K and Cs spins are aligned in the optical pumping system. In the experiment, we measured the Larmor precession frequency of the K atoms and found it to be approximately equal to that of the Cs atoms.

  18. Thomas Bernhard (1931-1989

    Directory of Open Access Journals (Sweden)

    Clemens A. Franken K.

    2016-04-01

    Full Text Available Este artículo, basándose en la pentalogía autobiográfica y en casi todos sus relatos y novelas, analiza los cuatro complejos temáticos más relevantes de la obra del hace dos años fallecido escritor y dramaturgo austríaco Thomas Bernhard. Los temas son: l. la muerte, la enfermedad, locura y el suicidio; 2. el rechazo de la naturaleza como un ente hostil al hombre; 3. la soledad, incomprensión e incomunicación que sufre el ser humano; 4. la virulenta crítica a la sociedad austríaca. Al final se refiere también a varios conceptos estético-literarios del autor, más su visión del lenguaje.   This study of the late Austrian playwright and novelist Thomas Bernhard is based on his five autobiographical works and the greater part of his fictional creation. The essay analyzes the four most relevant themes in Bernhard's work. The final part of the study deals with several of the author's aesthetic concepts, as well as with his ideas about language.

  19. Thomas: o primeiro blanchotiano = Thomas: the first Blanchotian

    Directory of Open Access Journals (Sweden)

    Pimentel, Davi Andrade

    2013-01-01

    Full Text Available Este artigo analisa a narrativa Thomas l’obscur, de Maurice Blanchot, a partir da configuração da outra noite blanchotiana, noite que apresenta a falta e a ausência da palavra no que ela tem de mais agressiva, de mais excessiva e de mais absurdamente maravilhosa. Neste artigo, tenho como interlocutor teórico os escritos sobre literatura do próprio autor. O interesse nesse diálogo consiste em apresentar a fusão apaixonada de seus escritos ficcionais e teóricos. Em Maurice Blanchot, não há pontos de isolamento e nem de divergência entre seus dois pólos de escritura, mas sim uma complementação, uma convergência, entre o que denominamos de ficção e de teoria

  20. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components

    Directory of Open Access Journals (Sweden)

    Roger Guilard

    2011-12-01

    Full Text Available X-ray Detected Magnetic Resonance (XDMR is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR. Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence.

  1. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  2. Numerical simulations of bistable flows in precessing spheroidal shells

    Science.gov (United States)

    Vormann, J.; Hansen, U.

    2018-05-01

    Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.

  3. 4963 Kanroku: Asteroid with a possible precession of rotation axis

    Science.gov (United States)

    Sokova, Iraida A.; Marchini, Alessandro; Franco, Lorenzo; Papini, Riccardo; Salvaggio, Fabio; Palmas, Teodora; Sokov, Eugene N.; Garlitz, Joe; Knight, Carl R.; Bretton, Marc

    2018-04-01

    Based on photometric observations of 4963 Kanroku as part of a campaign to measure its light-curve, changes of the light-curve profile have been detected. These changes are of a periodic nature, i.e. the profiles change with a detected period P = 16.4032 h. Based on simulations of the shape of the asteroid and using observational data, we make the assumption that such changes of the light-curve of the asteroid could be caused by the existence of a precession force acting on the axis of rotation of the asteroid. Simulations of the 4963 Kanroku light-curve, taking into account the detected precession, and the parameters for the shape of the asteroid, the modeled light-curves are in good agreement with the light-curves obtained from the observation campaign. Thus, the detected precession force may indicate a possible satellite of the asteroid 4963 Kanroku.

  4. Precessive sand ripples in intense steady shear flows

    Science.gov (United States)

    Restrepo, Juan M.; Moulton, Derek E.; Uys, Hermann

    2011-03-01

    We describe experimental observations of fully developed, large-amplitude bars under the action of a shearing fluid. The experiments were performed in an annular tank filled with water and sheared above by a steady motor source. The same steady shearing flow can produce a variety of different erodible bed manifestations: advective or precessive bars, which refer to bar structures with global regularity and a near-steady precession velocity; interactive bars, the structure of which depends on local rearrangements, which are in turn a response to complex background topography; and dispersive bars, which are created when an initially isolated mound of sand evolves into a train of sand ripples. Of these, the most amenable to analysis are the precessive bars. For precession bars, we find that the skin depth, which is the nondimensionalized mean-field transport rate, grows exponentially as a function of the shear velocity. From this, we arrive at an analytical expression that approximates the precession speed of the bars as a function of shear velocity. We use this to obtain a formula for sediment transport rate. However, in intense flows, the bars can get large engendering boundary layer separation, leading to a different dynamic for bar formation and evolution. Numerical flow calculations over an experimentally obtained set of precessive bars are presented and show that classical parametrizations of mass flux in terms of bottom gradients have shortcomings. Within the range of shear rates considered, a quantity that does not change appreciably in time is the aspect ratio, which is defined as the ratio of the average bar amplitude, with respect to a mean depth, to the average bar length.

  5. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  6. Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems

    Science.gov (United States)

    Gulbrandsen, Sverre A.; Brataas, Arne

    2018-02-01

    We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.

  7. Precession relaxation of viscoelastic oblate rotators

    Science.gov (United States)

    Frouard, Julien; Efroimsky, Michael

    2018-01-01

    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  8. Bounce Precession Fishbones in the National Spherical Tokamak Experiment

    International Nuclear Information System (INIS)

    Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Liu Chen; Roscoe White

    2003-01-01

    Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population

  9. Bounce Precession Fishbones in the National Spherical Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Roscoe White

    2003-06-27

    Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population.

  10. Precession Driven Instabilities and Dynamos in the Early Moon

    Science.gov (United States)

    Cebron, D.; Laguerre, R.; Noir, J.; Vidal, J.; Schaeffer, N.

    2017-12-01

    The Early Moon magnetic fields are probably due to a strong temporary dynamo, which may be due to lunar precession [1]. However, precession driven dynamos remain badly known, with only few studied cases [2,3,4]. Given the uncertainties of the early Moon precession, wider ranges of parameters need to be explored in order to assess if such lunar dynamos are possible. Using the efficient dynamo code XSHELLS, we have thus performed many simulations of precessing spherical shells, varying the parameters in a systematic way. This allows us to characterize the various excited instabilities, and to propose scaling laws. We also obtain that precession driven dynamos seem scarce and weak in our simulations, which makes difficult and uncertain the extrapolation of these dynamos to the Moon. However, our dynamo simulations, as every other in the literature, neglect the topographic torque effect on instabilities in order to use fast spectral codes [5]. By contrast, the topographic torque is dominant for the lunar core. Before exploring this effect numerically, which is a real challenge, we choose to study it theoretically. To do so, we have developed a novel global linear stability analysis of mechanically-driven flows in triaxial ellipsoids, with leading order viscous effects. Internal dissipation is obtained for the first time by extending the Greenspan's theory (1968) of geostrophic and inertial modes. By contrast with pioneering theories [6], we propose a new linear viscous model valid in arbitrary ellipsoid and for any precessing forcing. Then we perform the linear stability analysis by considering ellipsoidal perturbations of unprecedented spatial complexity with a self-consistent model of viscous damping. We show that forced precession-driven basic flows are bistable in triaxial ellipsoids. Then, we present the first stability analysis of precessing-flows in triaxial ellipsoids. [1] Dwyer et al. (2011), Nature, 479, 212-214.[2] Tilgner (2005), Phy. Fluids, 17, 034104

  11. A Relativistic Long-term Precession of the Earth

    Science.gov (United States)

    Tang, K.

    2016-05-01

    A long-term precession represents a secular motion of the ecliptic and th equator in a long time interval. With Vondrák et al. (2011), we assume that precession covers all periods longer than 100 centuries, while the shorter ones are included in the nutation. This thesis deals with the long-term precession in a relativistic framework. Compared with the P03 precession theory which is only valid for several centuries around the epoch J2000.0, the new theory better reflects the realistic long-term behavior of precession. All previous works are not fully consistent with General Relativity. They only consider the dominant relativistic corrections: the first-order post-Newtonian corrections due to the Sun and the geodetic precession. Their standard way to account for the geodetic precession is to solve the purely Newtonian equations of rotational motion and add the geodetic precession as a correction to the solution. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. Recently, Klioner, Gerlach, and Soffel (2010) have constructed a relativistic theory of Earth's rotation. According to the post-Newtonian equations of rotational motion given by Klioner

  12. Dephasing of optically generated electron spins in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2010-01-01

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  13. Dephasing of optically generated electron spins in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2010-09-13

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-{mu}s and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  14. 78 FR 7663 - SLR; 2013 International Rolex Regatta; St. Thomas Harbor; St. Thomas, U.S. Virgin Islands

    Science.gov (United States)

    2013-02-04

    ... 1625-AA08 SLR; 2013 International Rolex Regatta; St. Thomas Harbor; St. Thomas, U.S. Virgin Islands... special local regulations on the waters of St. Thomas Harbor in St. Thomas, U. S. Virgin Islands during... through March 24, 2013, the St. Thomas Yacht Club is sponsoring the 2013 Rolex Regatta, a series of sail...

  15. 78 FR 22778 - Safety Zone; Corp. Event Finale UHC, St. Thomas Harbor; St. Thomas, U.S.V.I.

    Science.gov (United States)

    2013-04-17

    ...-AA00 Safety Zone; Corp. Event Finale UHC, St. Thomas Harbor; St. Thomas, U.S.V.I. AGENCY: Coast Guard... waters of St. Thomas Harbor in St. Thomas, U.S. Virgin Islands during the Corp. Event Finale UHC, a... barge being positioned near the St. Thomas Harbor channel from which fireworks will be lit. The safety...

  16. 78 FR 16780 - Special Local Regulation; 2013 International Rolex Regatta; St. Thomas Harbor; St. Thomas, U.S...

    Science.gov (United States)

    2013-03-19

    ... 1625-AA08 Special Local Regulation; 2013 International Rolex Regatta; St. Thomas Harbor; St. Thomas, U... is establishing special local regulations on the waters of St. Thomas Harbor in St. Thomas, U. S.... Thomas Yacht Club is sponsoring the 2013 Rolex Regatta, a series of sail boat races. The races will be...

  17. 78 FR 23489 - Safety Zone; V.I. Carnival Finale, St. Thomas Harbor; St. Thomas, U.S.V.I.

    Science.gov (United States)

    2013-04-19

    ...-AA00 Safety Zone; V.I. Carnival Finale, St. Thomas Harbor; St. Thomas, U.S.V.I. AGENCY: Coast Guard... waters of St. Thomas Harbor in St. Thomas, U.S. Virgin Islands during the V.I. Carnival Finale, a... being positioned near the St. Thomas Harbor channel from which fireworks will be lit. The safety zone is...

  18. 78 FR 16208 - Safety Zone; V. I. Carnival Finale; St. Thomas Harbor; St. Thomas, U.S. Virgin Islands

    Science.gov (United States)

    2013-03-14

    ... 1625-AA00 Safety Zone; V. I. Carnival Finale; St. Thomas Harbor; St. Thomas, U.S. Virgin Islands AGENCY... establish a safety zone on the waters of St. Thomas Harbor in St. Thomas, U. S. Virgin Islands during the V..., 2013, and will entail a barge being positioned near the St. Thomas Harbor channel from which fireworks...

  19. 78 FR 16211 - Safety Zone, Corp. Event Finale UHC, St. Thomas Harbor; St. Thomas, U.S. Virgin Islands

    Science.gov (United States)

    2013-03-14

    ... 1625-AA00 Safety Zone, Corp. Event Finale UHC, St. Thomas Harbor; St. Thomas, U.S. Virgin Islands... establish a temporary safety zone on the waters of St. Thomas Harbor in St. Thomas, U.S. Virgin Islands... near the St. Thomas Harbor channel from which fireworks will be lit. DATES: Comments and related...

  20. Thomas Bartholin. Domus Anatomica Hafniensis brevissima descripta

    DEFF Research Database (Denmark)

    Bruun, Niels W.; Fink-Jensen, Morten

    In 1662 Thomas Bartholin published A Short Description of the Anatomy House in Copenhagen, which describes the layout of the Anatomy House alongside the first eighteen years of its history.......In 1662 Thomas Bartholin published A Short Description of the Anatomy House in Copenhagen, which describes the layout of the Anatomy House alongside the first eighteen years of its history....

  1. THOMAS AQUINAS'TA MUTLULUK

    Directory of Open Access Journals (Sweden)

    Muammer İSKENDEROĞLU

    2005-06-01

    Full Text Available Thomas Aquinas is one of the greatest thinkers of Christianity. His ethical theory, togetherwith the theories of Augustine and Abelard, constitutes one of the main ethical theories ofMedieval Christianity. Aquinas develops his theory most extensively and systematically inthe Second Part of the Summa Theologica. For Aquinas ethics has two principal topics: first,what is the ultimate goal of human being, and second, how that goal is to be achieved. Theaim of this study is to present Aquinas' understanding of happiness in general. For thisreason it will discuss the following questions: What is the ultimate goal of human being?What constitutes man's happiness? What is happiness? What are the things required forhappiness? Whether happiness can be attained? The article concludes that Aquinas tries toharmonise Aristotelian ethics with Christianity, and in doing so he adds new dimensions tothe Aristotelian ethics.

  2. Drift-Induced Enhancement of Cubic Dresselhaus Spin-Orbit Interaction in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kunihashi, Yoji; Sanada, Haruki; Tanaka, Yusuke; Gotoh, Hideki; Onomitsu, Koji; Nakagawara, Keita; Kohda, Makoto; Nitta, Junsaku; Sogawa, Tetsuomi

    2017-11-01

    We investigated the effect of an in-plane electric field on drifting spins in a GaAs quantum well. Kerr rotation images of the drifting spins revealed that the spin precession wavelength increases with increasing drift velocity regardless of the transport direction. A model developed for drifting spins with a heated electron distribution suggests that the in-plane electric field enhances the effective magnetic field component originating from the cubic Dresselhaus spin-orbit interaction.

  3. Spin interference of neutrons tunneling through magnetic thin films

    International Nuclear Information System (INIS)

    Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.

    1996-01-01

    Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)

  4. Why does a spinning egg rise?

    Science.gov (United States)

    Cross, Rod

    2018-03-01

    Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.

  5. Pulsation and precession of the resonant swinging spring

    Science.gov (United States)

    Lynch, Peter; Houghton, Conor

    2004-03-01

    When the frequencies of the elastic and pendular oscillations of an elastic pendulum or swinging spring are in the ratio 2:1, there is a regular exchange of energy between the two modes of oscillation. We refer to this phenomenon as pulsation. Between the horizontal excursions, or pulses, the spring undergoes a change of azimuth which we call the precession angle. The pulsation and stepwise precession are the characteristic features of the dynamics of the swinging spring. The modulation equations for the small-amplitude resonant motion of the system are the well-known three-wave equations. We use Hamiltonian reduction to determine a complete analytical solution. The amplitudes and phases are expressed in terms of both Weierstrass and Jacobi elliptic functions. The strength of the pulsation may be computed from the invariants of the equations. Several analytical formulas are found for the precession angle. We deduce simplified approximate expressions, in terms of elementary functions, for the pulsation amplitude and precession angle and demonstrate their high accuracy by numerical experiments. Thus, for given initial conditions, we can describe the envelope dynamics without solving the equations. Conversely, given the parameters which determine the envelope, we can specify initial conditions which, to a high level of accuracy, yield this envelope.

  6. Spin-excited oscillations in two-component fermion condensates

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Bertsch, George F.

    2006-01-01

    We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations

  7. Spin heat accumulation induced by tunneling from a ferromagnet.

    Science.gov (United States)

    Vera-Marun, I J; van Wees, B J; Jansen, R

    2014-02-07

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.

  8. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  9. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

    International Nuclear Information System (INIS)

    Foucart, F; Kasen, D; Desai, D; Brege, W; Duez, M D; Hemberger, D A; Scheel, M A; Kidder, L E; Pfeiffer, H P

    2017-01-01

    Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. (paper)

  10. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  11. Thomas Henry Huxley and neuroscience.

    Science.gov (United States)

    Smith, C U

    1999-01-01

    In the latter decades of the nineteenth century Thomas Henry Huxley was at the heart of British Science: President of the British Association for the Advancement of Science (1870), President of the Royal Society (1883-86), Chairman of innumerable committees. His thought in many ways characterises the spirit of the 'high' Victorian age in Britain. He was not only the most eminent academic biologist of his time but also deeply interested in philosophical issues. His re-examination of the evolution of the brain in response to Richard Owen's 'telenomic' views formed the kernel of the notorious debate at the 1860 meeting of the British Association in Oxford. From his early youth until old age he thought long and hard about the mind/body problem. This paper follows the development of his ideas and shows how in debate with many of the leading thinkers of his age, in the X-club and the Metaphysical Society, he struggled to develop a biologically-based account of the relationship between mind and brain. However, at the end, he seems to have recognized that his position was not entirely satisfactory and ultimately famously confessing himself 'agnostic' turned from metaphysics to devote himself to more practical issues. The unresolved problems of mind and brain which perplexed Huxley remain to torment his epigoni.

  12. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  13. Thomas Jefferson National Accelerator Facility

    International Nuclear Information System (INIS)

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  14. Martineau, Harriet. - Mistry, Rohinton. - Peacock, Thomas Love

    OpenAIRE

    Beck, Rudolf

    2002-01-01

    Martineau, Harriet. - Mistry, Rohinton. - Peacock, Thomas Love. - In: Metzler-Lexikon englischsprachiger Autorinnen und Autoren / hrsg. von Eberhard Kreutzer ... - Stuttgart u.a. : Metzler, 2002. - S. 384, 405 f., 452 f.

  15. Professionaalne marketing - edu pant / Thomas Westerberg

    Index Scriptorium Estoniae

    Westerberg, Thomas

    1999-01-01

    Majanduslanguse perioodil tuleb fokusseerida oma plaanid tulevikku, sel perioodil avalduvad turundusjuhtide tõelised ja varjatud professionaalsed oskused. Thomas Westerbergi, Coca-Cola Baltic Beverages Ltd. tegevdirektori ettekanne Majanduskonverentsil "Kuidas olla edukas majanduslanguse perioodil"

  16. Unitarity of scattering and edge spin accumulation in a ballistic and quasiballistic regimes

    Science.gov (United States)

    Khaetskii, Alexander; Sukhorukov, Eugene

    2011-03-01

    We consider a 2D ballistic structure with spin-orbit-related splitting of the electron spectrum. We calculated the edge spin density which appears in the presence of a charge current through the structure. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization. The problem is solved with the use of the method of scattering states. We clarified the important role of the unitarity of scattering for the problem of edge spin accumulation. For Rashba Hamiltonian, which is linear in momentum, and in the case of a straight boundary it leads to exact cancellation of long-wave oscillations of the spin density with a period order of spin precession length. However, this appears to be rather exceptional case. In general, the smooth spin oscillations recover, as it happens, e.g., for the wiggly boundary. For qubic Hamiltonian (2D holes) the unitarity scattering conditions are different, as a result, even in the case of a straight boundary the cancellation of the smooth oscillations in spin density does not occur. Similar problem is considered for the case when the sample size is large compared to the mean free path which in its turn is much larger than the spin precession length. For example, for the cubic Hamiltonian the ``edge'' contribution to the spin density can be larger than the ``bulk'' one which appears as a result of the spin flux from the bulk. This demands the reinterpretation of the experimental results.

  17. Nonequilibrium ensembles. 3. Spin 1/2 paramagnets

    International Nuclear Information System (INIS)

    Sobouti, Y.; Khajeh-Pour, M.R.H.

    1990-07-01

    The thermodynamic state of a paramagnetic substance in which the spin vectors precess coherently is investigated. The state is a time dependent one. The corresponding density matrix and the thermodynamics emerging from it is worked out. A laboratory preparation of such a system is discussed. (author). 3 refs

  18. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  19. The BANANA Project. V. Misaligned and Precessing Stellar Rotation Axes in CV Velorum

    Science.gov (United States)

    Albrecht, Simon; Winn, Joshua N.; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Triaud, Amaury; Queloz, Didier; Snellen, Ignas; Eggleton, Peter

    2014-04-01

    As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of βp = -52° ± 6° and βs = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i sstarf) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i sstarf. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under programme ID 084.C-1008 and under MPIA guaranteed time.

  20. Frequency Modulation of Spin-Transfer Oscillators

    OpenAIRE

    Pufall, M. R.; Rippard, W. H.; Kaka, S.; Silva, T. J.; Russek, S. E.

    2004-01-01

    Spin-polarized dc electric current flowing into a magnetic layer can induce precession of the magnetization at a frequency that depends on current. We show that addition of an ac current to this dc bias current results in a frequency modulated (FM) spectral output, generating sidebands spaced at the modulation frequency. The sideband amplitudes and shift of the center frequency with drive amplitude are in good agreement with a nonlinear FM model that takes into account the nonlinear frequency...

  1. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  2. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  3. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic/superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  4. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  5. Steady flow in a rotating sphere with strong precession

    Science.gov (United States)

    Kida, Shigeo

    2018-04-01

    The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

  6. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  7. Letter from Thomas Moran to Ferdinand Hayden and Paintings by Thomas Moran

    Science.gov (United States)

    Potter, Lee Ann; Eder, Elizabeth K.; Hussey, Michael

    2012-01-01

    Medical doctor and geologist Dr. Ferdinand Vandiveer Hayden selected more than 30 scientists, technical personnel, and artists, including photographer William Henry Jackson and painter Thomas Moran, to join the survey of the Yellowstone region in northwest Wyoming territory. Thomas Moran was an accomplished artist when he joined the survey to…

  8. Pipe failure probability - the Thomas paper revisited

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    2000-01-01

    Almost twenty years ago, in Volume 2 of Reliability Engineering (the predecessor of Reliability Engineering and System Safety), a paper by H. M. Thomas of Rolls Royce and Associates Ltd. presented a generalized approach to the estimation of piping and vessel failure probability. The 'Thomas-approach' used insights from actual failure statistics to calculate the probability of leakage and conditional probability of rupture given leakage. It was intended for practitioners without access to data on the service experience with piping and piping system components. This article revisits the Thomas paper by drawing on insights from development of a new database on piping failures in commercial nuclear power plants worldwide (SKI-PIPE). Partially sponsored by the Swedish Nuclear Power Inspectorate (SKI), the R and D leading up to this note was performed during 1994-1999. Motivated by data requirements of reliability analysis and probabilistic safety assessment (PSA), the new database supports statistical analysis of piping failure data. Against the background of this database development program, the article reviews the applicability of the 'Thomas approach' in applied risk and reliability analysis. It addresses the question whether a new and expanded database on the service experience with piping systems would alter the original piping reliability correlation as suggested by H. M. Thomas

  9. Issues related to YIG spintronics - thin film growth, spin pumping efficiency, and spin current generation

    Science.gov (United States)

    Wu, Mingzhong

    2014-03-01

    If a magnetic field is applied to a magnetic material, the field produces a torque on the magnetization of the material and drives it to precess. This precession is similar to the motion of a spinning top where the gravitational field produces a torque, instead of the magnetic field. It turns out that magnetization precession in yttrium iron garnets (YIG) decays slower than in any other known magnetic materials. This fact gives rise to the recent birth of a new paradigm in the discipline of spintronics - ``spintronics using YIG.'' This talk will touch on several topics related to YIG spintronics. The first part will demonstrate the feasibility of the use of pulsed laser deposition and magnetron sputtering to grow low-damping, nanometer-thick YIG films. The second part will address the efficiency of spin angular momentum transfer across YIG/normal metal interfaces. The last part will report on the use of YIG thin films to produce pure spin currents; Detailed discussions will be provided on the comparison between spin current generations using traveling spin waves and uniform ferromagnetic resonance modes, the field dependence of spin current generation, and spin current enhancement in YIG/Pt structures via the use of a thin Cu spacer. This work was supported in part by U.S. National Science Foundation (No. ECCS-1231598), the U.S. Army Research Office (No. W911NF-12-1-0518, No. W911NF-11-C-0075), and the U.S. National Institute of Standards and Technology (No. 60NANB10D011).

  10. Using THOMAS for Service Oriented Open MAS

    Science.gov (United States)

    Julian, V.; Rebollo, M.; Argente, E.; Botti, V.; Carrascosa, C.; Giret, A.

    Recent technological advances in open systems have imposed new needs on multi-agent systems. Nowadays, open systems require open autonomous scenarios in which heterogeneous entities (agents or services) interact to fulfill the system goals. This impose the need for open architectures and computational models for large-scale open multi-agent systems based on service-oriented approaches. THOMAS is a new architecture specifically addressed for the design of virtual organizations for open systems. In this paper we present a case study that exemplifies the usage of THOMAS for implementing a management system of a travel agency.

  11. ETEAPOT: symplectic orbit/spin tracking code for all-electric storage rings

    OpenAIRE

    Talman, Richard M.; Talman, John D.

    2015-01-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the ...

  12. Analytical study of synchronization in spin-transfer-driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)

    2010-01-01

    An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.

  13. Antiferromagnetism of La2CuO(4-y) studied by muon-spin rotation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Kempton, J. R.; Schone, H. E.

    1987-01-01

    Zero-field spin precession of positive muons has been observed in the antiferromagnetic state of La2CuO(4-y). Sharp onsets of the sublattice magnetization are found at temperatures close to those of the susceptibility maxima of different specimens. The long-lived precession signal indicates a microscopically homogeneous distribution of spin density at each Cu atom below the Neel temperature. A combination of the present results and neutron-scattering studies indicates the ordered moment per Cu atom to be significantly less than 1 mu(B).

  14. Pluto and Charon: A Case of Precession-Orbit Resonance?

    Science.gov (United States)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  15. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  16. Type-I superconductivity and neutron star precession

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2005-01-01

    Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars

  17. Neutron Larmor diffraction with double and single precession arm

    Science.gov (United States)

    van Well, A. A.; Rekveldt, M. T.

    2017-06-01

    A review is given of double and single arm Larmor diffraction. With the former a lattice-spacing resolution down to 10-6 can be obtained. The latter is a good high-resolution alternative if the sample or sample environment disturbs the magnetic field, e.g. ferromagnetic samples or applied magnetic fields. By choosing the tilt angle of the precession fields the optimum resolution can be set at a scattering angle at choice. The resolution for both single-crystal and polycrystalline samples is discussed in depth and is compared with conventional neutron-diffraction techniques.

  18. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  19. Thomas Aquinas on Contingency of Nature

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr

    2008-01-01

    Roč. 5, č. 2 (2008), s. 185-196 ISSN 1214-8407 R&D Projects: GA AV ČR(CZ) IAA900090602 Institutional research plan: CEZ:AV0Z90090514 Keywords : Thomas Aquinas * determinism * contingency Subject RIV: AA - Philosophy ; Religion

  20. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  1. Dylan Thomas's "25 Poems": Paradox as Structure

    Science.gov (United States)

    Bharadwaj, S.

    2014-01-01

    Irony, inclusiveness, and complexity are the chief criteria of value in the twentieth century intellectual poetry. These criteria, however, do not merely indicate qualities of craftsmanship; they reflect a sensibility, a particular way of experiencing reality. What really distinguishes Dylan Thomas is a capacity for self-analysis, a capacity for…

  2. Teaching the "Leviathan": Thomas Hobbes on Education

    Science.gov (United States)

    Bejan, Teresa M.

    2010-01-01

    This paper considers Thomas Hobbes's educational thought both in its historical context and in the context of his political philosophy as a whole. It begins with Hobbes's diagnosis of the English Civil War as the product of the miseducation of the commonwealth and shows that education was a central and consistent concern of his political theory…

  3. Thomas Piketty and the Justice of Education

    Science.gov (United States)

    Bøyum, Steinar

    2016-01-01

    Thomas Piketty's "Capital in the Twenty-First Century" is best known for its documentation of increasing social inequality, but it also has a notable normative aspect. Although Piketty is far less clear on the normative level than on the empirical, his view of justice can be summarised as meritocratic luck egalitarianism. This leads him…

  4. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  5. New Jersey's Thomas Edison and the fluoroscope.

    Science.gov (United States)

    Tselos, G D

    1995-11-01

    Thomas Edison played a major role in the development of early x-ray technology in 1896, notably increasing tube power and reliability and making the fluoroscope a practical instrument. Eventually, Edison would move x-ray technology from the laboratory to the marketplace.

  6. The transculturation of Thomas Mofolo's Chaka

    African Journals Online (AJOL)

    I will discuss Thomas Mofolo's novel contribution to Chaka's mythical status in Francophone African literature and Africanist ideology, mainly by way of the Negritude movement. In my analysis I postulate that the .... The African Francophone writers who read Chaka found inspiration in Mofolo because his concerns, in a pan-.

  7. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  8. LiDAR Relative Reflectivity Surface (2011) for the St. Thomas East End Reserve, St. Thomas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for the St. Thomas East End Reserve...

  9. Spin Relaxation Time in InAlAs/AlGaAs Quantum Dots

    Directory of Open Access Journals (Sweden)

    N. Sellami

    2014-05-01

    Full Text Available We report systematic temperature dependent measurements of spin relaxation time in self-assembled In0.72Al0.28As/Al0.28Ga0.72As quantum dots by continuous-wave photoluminescence. The degree of circular polarization decreases as a function of temperature. The spin relaxation time tS is deduced from the circular polarization degree using a three dimensional pseudo- spin precession model. The spin relaxation time decreases rapidly from few hundred picoseconds at 10 K to few tens picoseconds at 85 K. This large change of the spin relaxation time is explained in terms of acoustic phonon emission mechanism.

  10. Accretion-disc precession in UX Ursae Majoris

    Science.gov (United States)

    de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.

    2016-04-01

    We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.

  11. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  12. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  13. 76 FR 26223 - Petition for Rulemaking Submitted by Thomas Popik

    Science.gov (United States)

    2011-05-06

    ... Rulemaking Submitted by Thomas Popik AGENCY: Nuclear Regulatory Commission. ACTION: Petition for rulemaking... filed with the NRC by Thomas Popik. The petition was docketed by the NRC on March 15, 2011, and has been... received a petition for rulemaking on March 14, 2011 (PRM- 50-96). The petition was submitted by Mr. Thomas...

  14. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  15. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  16. The Precession Index, A Nonlinear Energy Balance Model, And Seversmith Psychroterms

    Science.gov (United States)

    Rubincam, David Parry

    2004-01-01

    An important component of Milankovitch's astronomical theory of climate change is the precession index. The precession index, along with the Earth's tilt and orbital eccentricity, are believed to be the major controlling factors of climate change in the last few million years. The precession index is e sin omega(sub s) where e is the Earth's orbital eccentricity and omega(sub s) measures how close the Sun is to the Earth at midsummer. When omega(sub s) = 90deg the Sun is close to the Earth during northern summer, and at 270deg it is far from the Earth during northern summer. The precession index varies with time, because both the eccentricity e and the parameter omega(sub s) are constantly changing due to disturbances in the Earth's orbit by other planets, and due to the precession of the Earth, The change is largely periodic, with a period of about 23,000 years.

  17. Depolarization of neutron spin echo by magnetic fluid

    International Nuclear Information System (INIS)

    Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.

    2001-01-01

    A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin

  18. Slow modes in spin hydrodynamics of 3He-B

    International Nuclear Information System (INIS)

    Golo, V.L.; Kats, E.I.

    1986-01-01

    We study nonlinear interaction between sound and spin modes with the view of finding a means for detecting second sound pumped in a sample of 3 He-B. We find that the interaction could be tangible for second sound and spin-textual waves which are long wavelength spatial modulations of the WP mode of magnetic ringing. We show that within a thin layer close to the loudspeaker second sound generates the dephasing delta psi of the spin precession. We suggest that the mode of the w-oscillations could be detected with the technique for the propagating magnetic disturbance. Our numerical estimates indicate that in te temperature and pressure region 1 - T/Tsub(c) approximately equal to 0.01 and p=21.7 bar, and the frequency and power of second sound of order 100 Hz and 10 -3 erg/s, the dephasing of the spin precession may amount to 0.1 rad, and result in a swinging of the precession axis w

  19. A computational predictor of human episodic memory based on a theta phase precession network.

    Directory of Open Access Journals (Sweden)

    Naoyuki Sato

    Full Text Available In the rodent hippocampus, a phase precession phenomena of place cell firing with the local field potential (LFP theta is called "theta phase precession" and is considered to contribute to memory formation with spike time dependent plasticity (STDP. On the other hand, in the primate hippocampus, the existence of theta phase precession is unclear. Our computational studies have demonstrated that theta phase precession dynamics could contribute to primate-hippocampal dependent memory formation, such as object-place association memory. In this paper, we evaluate human theta phase precession by using a theory-experiment combined analysis. Human memory recall of object-place associations was analyzed by an individual hippocampal network simulated by theta phase precession dynamics of human eye movement and EEG data during memory encoding. It was found that the computational recall of the resultant network is significantly correlated with human memory recall performance, while other computational predictors without theta phase precession are not significantly correlated with subsequent memory recall. Moreover the correlation is larger than the correlation between human recall and traditional experimental predictors. These results indicate that theta phase precession dynamics are necessary for the better prediction of human recall performance with eye movement and EEG data. In this analysis, theta phase precession dynamics appear useful for the extraction of memory-dependent components from the spatio-temporal pattern of eye movement and EEG data as an associative network. Theta phase precession may be a common neural dynamic between rodents and humans for the formation of environmental memories.

  20. Cholera in Thomas Mann's Death in Venice.

    Science.gov (United States)

    Rütten, Thomas

    2009-01-01

    The article sets the cholera motif in Thomas Mann's famous novella Death in Venice against the historical context from which it partially originates. It is shown that this motif, while undoubtedly appropriated to serve Mann's own poetic ends, has a solid grounding in historical and autobiographical fact, thus blurring the boundaries between fact and fiction. The article illustrates the verifiable events of the outbreak of the Venetian cholera epidemic in May 1911, which Mann partly witnessed himself, during a holiday trip to Brioni and Venice, and partly heard and read about. It is established that Thomas Mann's account of the cholera in Venice in his novella is characterised by a rare and almost preternatural insightfulness into an otherwise murky affair that was marked by rumours, speculations and denials.

  1. Thomas Bartholin mellem tro og viden

    OpenAIRE

    Heinrichsen, Emil Niels

    2011-01-01

    The Danish 17th century physician, mathematician, and theologian, Thomas Bartholin, who discovered the lymphatic system in humans, played a central role in the scholarly world of his contemporary time. Through the study of his publications On diseases in the Bible: a medical miscellany and The discovery of the lymphatic system from his comprehensive bibliography, the aim of this project is to investigate his views on medicine and theology, and the possible concordance or dispute between these...

  2. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  3. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, J.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoebeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Bruegmann, B.; Campanelli, M.; Chu, I.W.T.; Clark, M.; de Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Roever, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2016-01-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).

  4. Calibrating the energy of a 50x50 GeV muon collider using spin precession

    International Nuclear Information System (INIS)

    Raja, Rajendran; Tollestrup, Alvin

    1998-01-01

    The neutral Higgs boson is expected to have a mass in the region 90-150 GeV/c 2 in various schemes within the Minimal Supersymmetric extension to the Standard Model. A first generation Muon Collider is uniquely suited to investigate the mass, width and decay modes of the Higgs boson, since the coupling of the Higgs to muons is expected to be strong enough for it to be produced in the s channel mode in the muon collider. Due to the narrow width of the Higgs, it is necessary to measure and control the energy of the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of determining the energy scale of a muon collider ring with circulating muon beams of 50 GeV energy by measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons. This variation is caused by the existence of an average initial polarization of the muon beam and a non-zero value of g-2 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine with this method to a few parts per million using data collected during 1000 turns

  5. Calibrating the energy of a 50x50 GeV muon collider using spin precession

    International Nuclear Information System (INIS)

    Raja, R.; Tollestrup, A.

    1998-01-01

    The neutral Higgs boson is expected to have a mass in the region 90 endash 150thinspGeV /c 2 in various schemes within the minimal supersymmetric extension of the standard model. A first generation muon collider is uniquely suited to investigate the mass, width, and decay modes of the Higgs boson, since the coupling of the Higgs boson to muons is expected to be strong enough for it to be produced in the s channel mode in the muon collider. Because of the narrow width of the Higgs boson, it is necessary to measure and control the energy of the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of determining the energy scale of a muon collider ring with circulating muon beams of 50thinspGeV energy by measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons. This variation is caused by the existence of an average initial polarization of the muon beam and a nonzero value of g-2 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine with this method to a few parts per million using data collected during 1000 turns. copyright 1998 The American Physical Society

  6. Effect of the Grip Angle on Off-Spin Bowling Performance Parameters, Analysed with a Smart Cricket Ball

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2018-02-01

    Full Text Available In the off-spin bowling grip, the ball is clamped between index and middle fingers. Spin bowlers attempt to select a spread angle between these two fingers that achieves comfort and optimises performance. The aim of this paper was to investigate whether the standard grip is superior to narrow and wide grips. The bowling performance parameters were obtained from a smart cricket ball. Smart ball data revealed that the performance parameters varied with grip type. The following parameters were optimum at the standard grip: spin rate, resultant torque, spin torque, peak angular acceleration, and peak power. The following parameters were optimum at standard and wide grips: efficiency. The following parameters were optimum at standard and narrow grips: pitch angle of spin axis. The following parameters were optimum at the wide grip: precession and the precession torque. In general, the data tended to show that the standard grip is most effective for spin bowling. However, more research is needed to confirm this result, because the precession and precession torque were optimum at the wide grip, suggesting that this may have a superior performance over the standard and narrow grips.

  7. Spin dynamics of the positive muon radicals in the presence of rapid electron spin exchange: frequency shift and relaxation

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1991-01-01

    The spin dynamics of the positive muon in a muonium-like radical has been investigated in the case where the unpaired electron of the radical undergoes rapid spin flip collisions. If the spin flip rate λ SF is much faster than the hyperfine frequency of the radical, the behaviour of the muon spin is very similar to that of a positive muon in diamagnetic environments. It has been shown that in a transverse field, the relaxation rate and precession frequency of the apparent diamagnetic muon are related to the time evolution function of the muon spin in muonium. The relaxation rate of such an apparent diamagnetic signal has a characteristic field dependence which is very sensitive to the hyperfine frequency of the radical. The fractional frequency shift with respect to the positive muon precession frequency (ω D -ω μ )/ω μ is shown to be field-dependent, in contrast to the case of Knight shifts in metals. The field dependence of the relaxation and frequency shift will provide a tool to distinguish experimentally the muon in a radical which behaves like a free positive muon from a genuine diamagnetic muon. This work can be applied to a variety of fields involving muonium and hydrogen, such as spin dynamic in the gas phase and the muonium-like (hydrogen-like) states in semiconductors. The case where the muon undergoes both spin flip and charge transfer collisions is also discussed. (author)

  8. Spin-drift transport in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)

    2008-02-07

    We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.

  9. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  10. Independent gate control of injected and detected spin currents in CVD graphene nonlocal spin valves

    Science.gov (United States)

    Anugrah, Yoska; Hu, Jiaxi; Stecklein, Gordon; Crowell, Paul A.; Koester, Steven J.

    2018-01-01

    Graphene is an ideal material for spintronic devices due to its low spin-orbit coupling and high mobility. One of the most important potential applications of graphene spintronics is for use in neuromorphic computing systems, where the tunable spin resistance of graphene can be used to apply analog weighting factors. A key capability needed to achieve spin-based neuromorphic computing systems is to achieve distinct regions of control, where injected and detected spin currents can be tuned independently. Here, we demonstrate the ability to achieve such independent control using a graphene spin valve geometry where the injector and detector regions are modulated by two separate bottom gate electrodes. The spin transport parameters and their dependence on each gate voltage are extracted from Hanle precession measurements. From this analysis, local spin transport parameters and their dependence on the local gate voltage are found, which provide a basis for a spatially-resolved spin resistance network that simulates the device. The data and model are used to calculate the spin currents flowing into, through, and out of the graphene channel. We show that the spin current flowing through the graphene channel can be modulated by 30% using one gate and that the spin current absorbed by the detector can be modulated by 50% using the other gate. This result demonstrates that spin currents can be controlled by locally tuning the spin resistance of graphene. The integration of chemical vapor deposition (CVD) grown graphene with local gates allows for the implementation of large-scale integrated spin-based circuits.

  11. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    Science.gov (United States)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  12. Slow manifold and Hannay angle in the spinning top

    Energy Technology Data Exchange (ETDEWEB)

    Berry, M V [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shukla, P [Department of Physics, Indian Institute of Technology, Kharagpur (India)

    2011-01-15

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at graduate-student level, of the general dynamical concept of the slow manifold. For this case, the slow manifold can be calculated exactly, and expanded as a series of reaction forces (of magnetic type) in powers of slowness, corresponding to a modified precession frequency. The forces correspond to a series for the Hannay angle for the fast motion, describing the location of a point on the top.

  13. Spin-torque switching and control using chirped AC currents

    Science.gov (United States)

    Klughertz, Guillaume; Friedland, Lazar; Hervieux, Paul-Antoine; Manfredi, Giovanni

    2017-10-01

    We propose to use oscillating spin currents with slowly varying frequency (chirp) to manipulate and control the magnetization dynamics in a nanomagnet. By recasting the Landau-Lifshitz-Slonczewski equation in a quantum-like two-level formalism, we show that a chirped spin current polarized in the direction normal to the anisotropy axis can induce a stable precession of the magnetic moment at any angle (up to 90^\\circ ) with respect to the anisotropy axis. The drive current can be modest (10^6~A~cm-2 or lower) provided the chirp rate is sufficiently slow. The induced precession is stable against thermal noise, even for small nano-objects at room temperature. Complete reversal of the magnetization can be achieved by adding a small external magnetic field antiparallel to the easy axis. Alternatively, a combination of chirped ac and dc currents with different polarization directions can also be used to trigger the reversal.

  14. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  15. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  16. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  17. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Guo

    2015-05-01

    Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  18. Pulsar precession: a nod is not as good as a wink

    International Nuclear Information System (INIS)

    Heintzmann, H.

    1986-01-01

    The question of the reality of pulsar precession is reassessed and the relevant precession periods and amplitudes are reestimated. It is argued that the pulsar timing data provide evidence for the viewpoint that pulsars do indeed precess and that they turn off after some 10 4 precessional turns because they align their magnetic fields with their rotation axis due to viscous damping. Chances for an actual detection in the long known pulsars are small but PSR 1510-59 and some more recently dicovered young pulsars are promising candidates. (Author) [pt

  19. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    International Nuclear Information System (INIS)

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-01-01

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio

  20. Spin Transport in a Unitary Fermi Gas

    Science.gov (United States)

    Thywissen, Joseph

    2015-03-01

    We study spin transport in a quantum degenerate Fermi gas of 40K near an s-wave interaction resonance. The starting point of our measurements is a transversely spin-polarized gas, where each atom is in a superposition of the lowest two Zeeman eigenstates. In the presence of an external gradient, a spin texture develops across the cloud, which drives diffusive spin currents. Spin transport is described with two coefficients: D0⊥, the transverse spin diffusivity, and γ, the Leggett-Rice parameter. Diffusion is a dissipative effect that increases the entropy of the gas, eventually creating a mixture of spin states. γ parameterizes the rate at which spin current precesses around the local magnetization. Using a spin-echo sequence, we measure these transport parameters for a range of interaction strengths and temperatures. At unitarity, for a normal-state gas initially at one fifth of the Fermi temperature, we find D0⊥ = 2 . 3 (4) ℏ / m and γ = 1 . 08 (9) , where m is the atomic mass. In the limit of zero temperature, γ and D0⊥ are scale-invariant universal parameters of the unitary Fermi gas. The value of D0⊥ reveals strong scattering and is near its proposed quantum limit, such that the inferred value of the transport lifetime τ⊥ is comparable to ℏ /ɛF . This raises the possibility that incoherent transport may play a role. The nonzero value of γ tells us that spin waves in unitary Fermi gas are dispersive, or in other words, that the gas has a spin stiffness in the long-wavelength limit. Time permitting, we will also discuss a time-resolved measurement of the contact, through which we observe the microscopic transformation of the gas from ideal to strongly correlated.

  1. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  2. Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface

    International Nuclear Information System (INIS)

    Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.

    2015-01-01

    We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures

  3. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  4. Localized Donaldson-Thomas theory of surfaces

    DEFF Research Database (Denmark)

    Gholampour, Amin; Sheshmani, Artan; Yau, Shing-Tung

    2017-01-01

    , in combination with Mochizuki's formulas, we are able to express the localized DT invariants in terms of the invariants of the nested Hilbert schemes defined by the authors in [GSY17a], the Seiberg-Witten invariants of S, and the integrals over the products of Hilbert schemes of points on S. When......  is the canonical bundle of S, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality....

  5. Instantons and Donaldson-Thomas invariants

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, M. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands); Department of Physics, University of Patras, Patras (Greece); Sinkovics, A. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge (United Kingdom); Szabo, R.J. [Department of Mathematics, Heriot-Watt University and Maxwell Institute for Mathematical Sciences, Riccarton, Edinburgh (United Kingdom)

    2008-08-05

    We review some recent progress in understanding the relation between a six dimensional topological Yang-Mills theory and the enumerative geometry of Calabi-Yau threefolds. The gauge theory localizes on generalized instanton solutions and is conjecturally equivalent to Donaldson-Thomas theory. We evaluate the partition function of the U(N) theory in its Coulomb branch on flat space by employing equivariant localization techniques on its noncommutative deformation. Geometrically this corresponds to a higher dimensional generalization of the ADHM formalism. This formalism can be extended to a generic toric Calabi-Yau. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. On the Symbolism of Thomas Mann

    Directory of Open Access Journals (Sweden)

    Vasily M. Tolmatchoff

    2017-09-01

    Full Text Available The essay discusses Thomas Mann’s symbolism and its parameters as well as Mann’s interpretation of the crisis of European spiritual values. Тhe author examines the role of Nietzsche in Mann’s heritage as well as interconnections between Mann and Wilde, Mann and Gide. Buddenbrooks is interpreted as a novel about the end of the German Renaissance; duality of the modern artist is shown on the example of “Tonio Kröger” while the paradoxes of his eroticism are analyzed on the example of “Der Tod in Venedig.”

  7. St. Thomas and the hilemorfic ontology

    Directory of Open Access Journals (Sweden)

    Lawrence Dewan, O.P.

    2009-06-01

    Full Text Available This article presents the relevancy of Aristotle’s hylemorphic ontology.Aristotle himself highlighted the importance and astonishing complexityof the problem of prime matter’s ontological status and he presenting thesolution in his doctrine of hylemorphism. As Saint Thomas Aquinasnoted, it is a crucial issue for philosophy because all four, hilemorfism,logic, physics and metaphysics, stand or fall depending on a correctunderstanding of the ontology of prime matter and of the kind of causalrelationship which exist between prime matter and substantial form ingenerable and corruptible substance.

  8. Pilgrim Souvenir: Ampulla of Thomas Becket

    Directory of Open Access Journals (Sweden)

    Amy Jeffs

    2017-06-01

    Full Text Available This tin ampulla was probably purchased by a pilgrim near the shrine of St Thomas Becket in Canterbury. It is designed to contain holy water and be hung around the neck on a cord. Measuring 100 by 87 millimetres, it is in the form of a narrow, pointed vessel surrounded by an openwork penannular frame and would have been rapidly slush-cast, in one go, in a three-part mould. A date in the first half of the thirteenth century is probable based on the style of the military figures’ armour and the archaeological contexts of stylistically similar ampullae.

  9. Pilgrim Souvenir: Ampulla of Thomas Becket

    OpenAIRE

    Amy Jeffs

    2017-01-01

    This tin ampulla was probably purchased by a pilgrim near the shrine of St Thomas Becket in Canterbury. It is designed to contain holy water and be hung around the neck on a cord. Measuring 100 by 87 millimetres, it is in the form of a narrow, pointed vessel surrounded by an openwork penannular frame and would have been rapidly slush-cast, in one go, in a three-part mould. A date in the first half of the thirteenth century is probable based on the style of the military figures’ armour and the...

  10. Limitations of the Porter-Thomas distribution

    Science.gov (United States)

    Weidenmüller, Hans A.

    2017-12-01

    Data on the distribution of reduced partial neutron widths and on the distribution of total gamma decay widths disagree with the Porter-Thomas distribution (PTD) for reduced partial widths or with predictions of the statistical model. We recall why the disagreement is important: The PTD is a direct consequence of the orthogonal invariance of the Gaussian Orthogonal Ensemble (GOE) of random matrices. The disagreement is reviewed. Two possible causes for violation of orthogonal invariance of the GOE are discussed, and their consequences explored. The disagreement of the distribution of total gamma decay widths with theoretical predictions cannot be blamed on the statistical model.

  11. Thomas Young and the Rosetta Stone.

    Science.gov (United States)

    Robinson, Andrew

    2007-06-01

    Who deciphered the Rosetta Stone and the Egyptian hieroglyphs? The usual answer is Jean-François Champollion, beginning in 1822. But ever since that time, Egyptologists have debated the role of his rival, the polymath Thomas Young, the first person to publish a partially correct translation of the Rosetta Stone. A recent BBC television dramatisation rekindled the controversy by presenting Champollion as a 'lone genius' who succeeded independently of Young. While there is no doubt that Champollion deciphered the hieroglyphic script as a whole, the evidence suggests that Young's early detailed study of the Rosetta Stone created the conceptual framework that made possible Champollion's later breakthrough.

  12. Thomas Edison’s Poetry Machine

    OpenAIRE

    Rubery, Matthew

    2014-01-01

    The tradition of spoken-word recording began with Thomas Edison’s invention of the phonograph. Hence, this article makes the case that 1878 is a more important year to the history of literature than has yet been recognized for its experiments with verse and sound-recording technology. Although the tinfoil phonograph’s first decade has been well documented by media historians, literary critics have singled out 1888 as the noteworthy year since that is when Edison’s improved phonograph made it ...

  13. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  14. Principal Component Surface (2011) for St. Thomas East End Reserve, St. Thomas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.3x0.3 meter principal component analysis (PCA) surface for areas the St. Thomas East End Reserve (STEER) in the U.S. Virgin Islands (USVI)....

  15. Neutron resonance spin echo with longitudinal DC fields

    Science.gov (United States)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  16. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  17. Thomas Linacre at the University of Padua.

    Science.gov (United States)

    Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele

    2010-11-01

    The Bo (meaning 'ox' in the Venetian dialect) is the historic seat of the University of Padua, founded in 1222. A full-length portrait of Thomas Linacre stands in its prestigious Sala dei Quaranta (Hall of the Forty), so called because of the portraits of forty great foreign scholars of the University, painted by Giacomo dal Forno in 1942. Thomas Linacre came to Italy in 1485, following an embassy by Henry VII to the Vatican. Linacre visited Bologna, Florence, Rome, Venice, Vicenza and Padua, where he took his degree in medicine in 1496 with great distinction. During his stay in Italy he met illustrious humanists and physicians, including Poliziano, Hermolaus Barbarus and Aldus Manutius Romanus, and Nicolaus Leonicenus who further stimulated him to the translation of classic works by Hippocrates and Galen. In 1518 Linacre played a pivotal role in the foundation of the Royal College of Physicians in London which, as first President, he organized on the basis of Italian models. With his portrait, the University of Padua celebrates the life and work of an astonishing figure linking the Italian and English medical cultures.

  18. Precession and recession of the rock'n'roller

    International Nuclear Information System (INIS)

    Lynch, Peter; Bustamante, Miguel D

    2009-01-01

    We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I 1 = I 2 3 , is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity Q J and Routh's quantity Q R . When the inertial symmetry I 1 = I 2 is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (Q R , Q J ) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (Q R (t), Q J (t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.

  19. Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession

    CERN Multimedia

    2002-01-01

    Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...

  20. Precession and recession of the rock'n'roller

    Science.gov (United States)

    Lynch, Peter; Bustamante, Miguel D.

    2009-10-01

    We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I1 = I2 < I3, is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity QJ and Routh's quantity QR. When the inertial symmetry I1 = I2 is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (QR, QJ) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (QR(t), QJ(t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.

  1. On the perihelion precession as a Machian effect

    Science.gov (United States)

    Eby, P. B.

    1977-01-01

    A Lagrangian is constructed which gives Newtonian gravity in the lowest-order approximation in an isotropic universe and also predicts the correct advance of the perihelion with the proper choice of a constant governing the ratio of inertial to gravitational mass. The situation considered is that of a test particle orbiting a central body with external mass at rest and distributed isotropically at large distances from the central body. In the theory developed, the perihelion advance is due to a small contribution to the test-particle inertial mass by the central attracting body rather than to a failure of the inverse-square law of attraction. Some interesting Machian features of this theory are that: (1) the local value of the gravitational constant is determined by the mass distribution of the external matter; (2) the orbits are fixed, and the perihelion advances unambiguously with respect to the external-mass distribution; (3) there are no vestiges of absolute space; (4) the perihelion precession arises from the inertial interaction of the test particle with the central mass; (5) the local rest mass is really determined by the mass distribution of the rest of the universe; and (6) a limited form of the equivalence principle is inherent in one of the equations.

  2. Obituary: Thomas Gold, 1920-2004

    Science.gov (United States)

    Dermott, Stanley F.

    2004-12-01

    Thomas "Tommy" Gold died of heart disease at Cayuga Medical Center, Ithaca NY on 22 June 2004 at the age of 84. He will be remembered as one of the most interesting, dynamic and influential scientists of his generation. Tommy's paradigm-changing ideas in astronomy and planetary science, while original and bold, were also highly controversial. With his radical work on the origin of natural gas and petroleum, the controversy is likely to continue. Tommy was born in Vienna, Austria on 22 May 1920, moving with his family to Berlin at age 10 and then, after the rise of Hitler in 1933, to England. His parents were Josephine (nee Martin) and Maximillian Gold, a successful steel magnate. Tommy was educated at Zuoz College in Switzerland where he became an expert skier and developed an athletic prowess that he maintained throughout his life, winning a NASTAR gold medal for skiing at the age of 65. He studied Mechanical Sciences at Trinity College, Cambridge, but much to his disgust his education was interrupted because of internment by the British as a suspected enemy alien. That unfortunate period (I remember him saying to me "Can you believe the stupidity, interring people like me who had fled from Nazi Germany?") had one good outcome: on his first night in camp he met Hermann Bondi who had an important influence on his early development as a scientist. They were both born in Vienna, their parents knew each other, and they were fellow students at Trinity, but this was their first meeting. On release, he went immediately into top-secret radar research for the British Admiralty, working as a team with Bondi and Fred Hoyle in a farm cottage in Dunsfold, Surrey. Tommy's first published research, which was a Nature paper with R.J. Pumphrey in 1947, was not in astronomy but physiology. He applied his engineer's understanding of positive feedback to develop and test a resonance model for how the human ear determines pitch. His conclusion that pitch discrimination occurs

  3. Spin Depolarization due to Beam-Beam Interaction in NLC

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kathleen A

    2001-01-04

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  4. Noisy Spins and the Richardson-Gaudin Model

    Science.gov (United States)

    Rowlands, Daniel A.; Lamacraft, Austen

    2018-03-01

    We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.

  5. Hamiltonian action of spinning particle with gravimagnetic moment

    International Nuclear Information System (INIS)

    Deriglazov, Alexei A; Ramírez, W Guzmán

    2016-01-01

    We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)

  6. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.

    Science.gov (United States)

    Miah, M Idrish

    2009-01-17

    We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.

  7. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.

  8. Electromagnetic deflection of spinning particles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1992-01-01

    It is shown that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a point-like spin-half particle possessing an electric charge and magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. The equations obtained encompass the well-tested Lorentz force and Thomas-Bargmann-Michel-Telegdi spin equations, as well as providing a definite specification of the classical magnetic dipole force, whose exact form has been the subject of recent debate. Radiation reaction - the force and torque on an accelerated particle due to its self-interaction - is neglected at this stage. 18 refs

  9. Rf Depolarizing Resonances In The Presence Of A Full Siberian Snake And Full Snake Spin-flipping

    CERN Document Server

    Blinov, B B

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized beam in high energy scattering asymmetry experiments may greatly reduce systematic errors of spin asymmetry measurements. A spin-flipping technique is being developed by using rf magnets running at a frequency close to the spin precession frequency, thereby creating spin-depolarizing resonances; the spin can then be flipped by ramping the rf magnet's frequency through the resonance. We studied, at the Indiana University Cyclotron Facility Cooler Ring, properties of such rf depolarizing resonances in the presence of a nearly-full Siberian snake and their possible application for spin- flipping. By using an rf-solenoid magnet, we reached a 98.7 ± 1% efficiency of spin-flipping. However, an rf-dipole magnet is more practical at high energies; hence, studies of spin-flipping by an rf-dipole are underway at IUCF.

  10. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence.; Differenzierung osteoporotischer und tumoroeser Wirbelkoerperfrakturen mit einer diffusionsgewichteten Steady-State Free Precession-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A.; Huber, A.; Nikolaou, K.; Staebler, A.; Reiser, M. [Inst. fuer Klinische Radiologie, Ludwigs-Maximilians-Universitaet Muenchen, Muenchen (Germany); Duerr, H.R. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany). Abt. fuer Orthopaedie; Deimling, M. [Siemens Medizinsysteme, Erlangen (Germany)

    2002-01-01

    Purpose: To evaluate the diagnosic accuracy of a diffusion-weigthed, steady-state free precession (SSFP) sequence for the differentiation of acute benign osteoporotic and neoplastic vertebral compression fractures. Methods: 85 patients with 102 vertebral compression fractures were examined with MR imaging using a spine array surface coil (Siemens, Vision, 1.5 Tesla). The following sequences were performed in sagittal orientation: T{sub 1}-weighted spin echo (SE), short-tau inversion recovery (STIR) and a diffusion-weighted SSFP sequence (TR=25 msec, diffusion pulse length {delta}=3 msec). The SSFP images were evaluated qualitatively on a 5-grade scale from strongly hypointense to strongly hyperintense. Quantitative analysis was performed with region of interest measurements (ROI) and calculation of a bone marrow ratio. Results: 60 fractures were due to osteoporosis and 42 fractures were caused by malignancy. 'Hyperintensity' in a vertebral fracture on a SSFP sequence provided a sensitivity of 100% and a specificity of 93%. The positive predictive value was 91%, the negative predictive value was 100%. Quantitative analysis of the bone marrow ratio showed a statistically significant difference between the osteoporosis and the tumor group (p<0.001). The mean value for the osteoporotic fractures was -0.32 (SD 0.33) and +2.07 (SD 1.37) for the tumor group. Conclusion: The SSFP sequence provides a high accuracy in the differentiation of benign osteoporotic and neoplastic vertebral compression fractures. (orig.) [German] Ziel: Ziel war die Ermittlung der diagnostischen Genauigkeit einer diffusionsgestuetzten steady-state free precession(SSFP)-sequenz fuer die Differenzierung von akuten osteoporotischen und tumoroesen Wirbelkoerperfrakturen. Methode: 85 Patienten mit 102 akuten Wirbelkoerperfrakturen wurden prospektiv mit der Magnetresonanztomographie (MRT) untersucht. Angewendet wurden eine T{sub 1}-gewichtete Spin Echo Sequenz, eine Short-tau inversion recovery

  11. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite's orbit. I do not assume any preferential orientation for the body's spin axis k ^ because in many cases of potential interest (exoplanets, neutron stars, black holes) it ...

  12. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  13. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  14. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.

    Science.gov (United States)

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-10-28

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  15. Orthophoto Mosaic (2012) of the St. Thomas East End Reserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 0.3x0.3 meter imagery mosaic of the St. Thomas East End Reserve (STEER), St. Thomas in the U.S. Virgin Islands was created by the National Oceanic and...

  16. Bathymetry (2011) of the St. Thomas East End Reserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution depth surface for the St. Thomas East End Reserve (STEER), St. Thomas in the...

  17. Student Rights, Clarence Thomas, and the Revolutionary Vision of Education

    Science.gov (United States)

    Warnick, Bryan R.; Rowe, Bradley; Kim, Sang Hyun

    2009-01-01

    In his concurring opinion to the 2007 U.S. Supreme Court decision, "Morse v. Frederick," Justice Clarence Thomas argues that the "Tinker" decision, which granted students constitutional rights in public schools, should be overturned on originalist grounds. In this essay, Bryan Warnick, Bradley Rowe, and Sang Hyun Kim make the case that Thomas's…

  18. Thomas Gordon's Communicative Pedagogy in Modern Educational Realities

    Science.gov (United States)

    Leshchenko, Maria; Isaieva, Svitlana

    2014-01-01

    In the article the principles, strategies, methods, techniques of communicative pedagogy of American scientist Thomas Gordon and system components of effective communication training for parents, teachers and administrators are enlightened. It has been determined that the main principle of Thomas Gordon's pedagogy is an interactive way of knowing…

  19. 75 FR 4061 - Favinger, Thomas; Notice of Filing

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6223-000] Favinger, Thomas; Notice of Filing January 19, 2010. Take notice that on January 15, 2010, Mr. Thomas G. Favinger filed an application for authority to hold interlocking positions, pursuant to section 305(b) of the...

  20. 75 FR 68350 - Fischer, Thomas J.; Notice of Filing

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6422-000] Fischer, Thomas J.; Notice of Filing October 29, 2010. Take notice that on October 29, 2010, Thomas J. Fischer filed an Application for Authorization to Hold Interlocking Positions as Director of Wisconsin Electric...

  1. 76 FR 9012 - Favinger, Thomas G.; Notice of Filing

    Science.gov (United States)

    2011-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6223-002] Favinger, Thomas G.; Notice of Filing Take notice that on January 31, 2011 Thomas G. Favinger submitted for filing, an application for authority to hold interlocking positions, pursuant to Section 305(b) of the...

  2. Praost Thomas Vaga 70 / Juhan Simonson ; foto: Juhan Simonson

    Index Scriptorium Estoniae

    Simonson, Juhan, 1933-2012

    2008-01-01

    8. märtsil 70 aastaseks saavast üle 20 aasta kirikuõpetajana New Jerseys ja New Yorgis teeninud praost Thomas Vagast. President Toomas Hendrik Ilves annetas iseseisvuspäeva puhul Thomas Vagale kui eestluse hoidjale Ameerika Ühendriikides ja kirikuelu edendajale Valgetähe IV klassi teenetemärgi

  3. Book Review: Precession, Nutation, and Wobble of the Earth

    Science.gov (United States)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.

    2016-10-01

    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle

  4. FRIEDMAN Thomas, La terre est plate

    OpenAIRE

    Kociemba, Valérie

    2008-01-01

    « L’Église dit que la terre est plate, mais j’ai vu l’ombre sur la lune et j’ai plus foi en l’ombre qu’en l’église. » (Ferdinand Magellan) Bien des siècles plus tard, Thomas Friedman réitère l’affirmation en titre de son dernier ouvrage : La terre est plate, Une brève histoire du xxie siècle. À quelle Église appartient donc ce brillant éditorialiste du « New York Times » ? À l’Église de la toute puissance des nouvelles technologies de l’information, et il n’en fait pas mystère puisqu’il décla...

  5. Thomas K. Jeffers: pioneer of coccidiosis research.

    Science.gov (United States)

    Chapman, H D

    2012-01-01

    Thomas K. Jeffers has made many significant contributions to our understanding of the biology of the parasite Eimeria, the cause of coccidiosis in poultry. His work has had direct practical application for the control of this widespread disease. Topics discussed include Jeffers' pioneering work concerned with genetics of the host response to infection, the nature of biological and immunological intraspecific variation, drug resistance and discovery, field surveys of resistance, and his most recognized achievement-the demonstration that the lifecycle of coccidia may be altered by artificial selection. Parasites so modified are attenuated but retain their immunogenicity, a discovery that has led to the development of live vaccines that are inherently non-pathogenic. This article provides a brief biography and describes the contributions that Jeffers has made to our knowledge of coccidiosis.

  6. Sobre o desejo em Thomas Hobbes

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues Montes D'Oca

    2011-01-01

    Full Text Available O objetivo deste artigo é explicar o papel do desejo na filosofia política do filósofo inglês Thomas Hobbes. Para tanto, o presente estudo propõe-se apresentar: i. a razão por que Hobbes reivindica o desejo à política, i.a tratando da teoria da conservação do movimento, de Galileu Galilei, e i.b da felicidade como um sucesso contínuo na obtenção dos objetos de desejo; e ii. o papel do desejo no estado de natureza, já que este é determinante tanto para ii.a a entrada do homem no estado de guerra quanto ii.b para a saída deste estado.

  7. [Thomas Schwencke and Wolfgang Amadeus Mozart].

    Science.gov (United States)

    Hillen, Harry F P

    2010-01-01

    Thomas Schwencke (1694-1767) was Professor of Anatomy and Surgery and Lecturer in Obstetrics at the Surgical School in The Hague, the Netherlands. In 1743 he published the very first textbook on haematology. Furthermore, he described his observations on the variolation of smallpox, and published the design of a new obstetric instrument. Schwencke was physician of the city of The Hague and also physician at the court of the princes van Nassau-Weilburg. In 1765 Princess Caroline of Nassau-Weilburg invited the young Wolfgang Amadeus Mozart to perform concerts. During his Dutch tour the young Mozart fell seriously ill, probably from typhoid fever. At the request of the court Mozart was seen for a second opinion and thereafter successfully treated by Schwencke. Mozart could continue his concert tour and Schwencke's reputation as Mozart's physician was established.

  8. Q & A with Ed Tech Leaders: Interview with Curtis J. Bonk, Mimi Miyoung Lee, Thomas C. Reeves, & Thomas H. Reynolds

    Science.gov (United States)

    Viner, Mark; Gardner, Ellen; Shaughnessy, Michael F.

    2016-01-01

    Curtis J. Bonk, is Professor of Instructional Systems Technology at Indiana University and President of CourseShare. Mimi Miyoung Lee is Associate Professor in the Department of Curriculum and instruction at the University of Houston. Thomas C. Reeves is Professor Emeritus of Learning, Design, and Technology at the University of Georgia. Thomas H.…

  9. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  10. All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-10-26

    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

  11. Spin-flip induced magnetoresistance in positionally disordered organic solids.

    Science.gov (United States)

    Harmon, N J; Flatté, M E

    2012-05-04

    A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.

  12. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  13. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  14. A new approach for 3D reconstruction from bright field TEM imaging: Beam precession assisted electron tomography

    International Nuclear Information System (INIS)

    Rebled, J.M.; Yedra, Ll.; Estrade, S.; Portillo, J.; Peiro, F.

    2011-01-01

    The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49 o to -61 o at intervals of 2 o and with a precession angle of 0.6 o in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: → Electron beam precession reduces spurious diffraction contrast in bright field mode. → Bend contour related contrast depends on precession angle. → Electron beam precession is combined with bright field electron tomography. → Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.

  15. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  16. Lense-Thirring precession in ULXs as a possible means to constrain the neutron star equation of state

    Science.gov (United States)

    Middleton, M. J.; Fragile, P. C.; Bachetti, M.; Brightman, M.; Jiang, Y.-F.; Ho, W. C. G.; Roberts, T. P.; Ingram, A. R.; Dauser, T.; Pinto, C.; Walton, D. J.; Fuerst, F.; Fabian, A. C.; Gehrels, N.

    2018-03-01

    The presence of neutron stars in at least three ultraluminous X-ray sources is now firmly established and offers an unambiguous view of super-critical accretion. All three systems show long-time-scale periods (60-80 d) in the X-rays and/or optical, two of which are known to be super-orbital in nature. Should the flow be classically super critical, i.e. the Eddington limit is reached locally in the disc (implying surface dipole fields that are sub-magnetar in strength), then the large scale-height flow can precess through the Lense-Thirring effect which could provide an explanation for the observed super-orbital periods. By connecting the details of the Lense-Thirring effect with the observed pulsar spin period, we are able to infer the moment of inertia and therefore equation of state of the neutron star without relying on the inclination of or distance to the system. We apply our technique to the case of NGC 7793 P13 and demonstrate that stronger magnetic fields imply stiffer equations of state. We discuss the caveats and uncertainties, many of which can be addressed through forthcoming radiative magnetohydrodynamic (RMHD) simulations and their connection to observation.

  17. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence

    International Nuclear Information System (INIS)

    Baur, A.; Huber, A.; Nikolaou, K.; Staebler, A.; Reiser, M.; Duerr, H.R.

    2002-01-01

    Purpose: To evaluate the diagnosic accuracy of a diffusion-weigthed, steady-state free precession (SSFP) sequence for the differentiation of acute benign osteoporotic and neoplastic vertebral compression fractures. Methods: 85 patients with 102 vertebral compression fractures were examined with MR imaging using a spine array surface coil (Siemens, Vision, 1.5 Tesla). The following sequences were performed in sagittal orientation: T 1 -weighted spin echo (SE), short-tau inversion recovery (STIR) and a diffusion-weighted SSFP sequence (TR=25 msec, diffusion pulse length δ=3 msec). The SSFP images were evaluated qualitatively on a 5-grade scale from strongly hypointense to strongly hyperintense. Quantitative analysis was performed with region of interest measurements (ROI) and calculation of a bone marrow ratio. Results: 60 fractures were due to osteoporosis and 42 fractures were caused by malignancy. 'Hyperintensity' in a vertebral fracture on a SSFP sequence provided a sensitivity of 100% and a specificity of 93%. The positive predictive value was 91%, the negative predictive value was 100%. Quantitative analysis of the bone marrow ratio showed a statistically significant difference between the osteoporosis and the tumor group (p [de

  18. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  19. EELS signal enhancement by means of beam precession in the TEM

    International Nuclear Information System (INIS)

    Estradé, Sonia; Portillo, Joaquim; Yedra, Lluís; Rebled, José Manuel; Peiró, Francesca

    2012-01-01

    EELS is nowadays a most relevant characterization tool as it provides chemical and electronic information with an extraordinary spatial resolution. When a crystal is viewed in zone axis in the TEM, there is channelling of the electrons along the atom columns, which strongly reduce the EELS signal, so that it is generally advised to work slightly off the zone axis to collect EELS data, which may not always be possible or advantageous. In the present work, we demonstrate the use of precession to compensate for the reduction of EELS signal when in the zone axis. -- Highlights: ► Channelling compromises EELS signal in zone axis. ► Precession can be used to get rid of channelling effects. ► Use of precession to enhance EELS signal in the zone axis is demonstrated.

  20. KONSTRUKSI TEORI PARADIGMA THOMAS S. KUHN

    Directory of Open Access Journals (Sweden)

    Nurkhalis Nurkhalis

    2012-02-01

    Full Text Available Thomas Kuhn memberikan gambaran bahwa kebenaran sains akan ditemukan berkali-kali ataupun berganti-ganti bentuk ilmiahnya walaupun dari satu objek yang sama. Formulasi teori paradigma yang mencetuskan bahwa sebuah kebenaran sains (legatimed truth identik dalam target teleologis yang didasari pada detection dikenal sebagai final cause (end. Kebenaran sains bukan continuous (lanjutan, improvisasi, evolusi atau kumulatif, melainkan terjadi paradigm shift (pergeseran paradigma atau disebut juga dengan revolusi. Paradigma melalui shift moving (pergerakan pergeseran dipahami sama dengan gestalt switch (perpindahan secara keseluruhan atau tidak sama sekali. Di dalam gestalt switch yang diungkapkan adalah verifikasi terjadi sekaligus atau tidak sama sekali (all at once or not at all. Konsep paradigm shifts membuka kesadaran bersama bahwa para pengkaji sains tidak akan mungkin bekerja dalam suatu suasana objektivitas yang mapan. Paradigma men-design kerangka world view (pandangan dunia atau perspective (cara pandang untuk lebih important, legitimate, and reasonable. Hal ini membuat sebuah detection (target teleologis tidak akan terevolusi atau tereleminir karena kemampuan eksperimentalnya mengakomodir counterinstances (ketahanan berkompetisi teori. Paradigma yang bertahan merupakan winnowing (keunggulan baru dari sebuah discovery, supertitian (temuan besar atau novelty (terbaharukan. Paradigma bertahan akan tumbuh menguasai normal science selama belum eksisnya anomaly (ketimpangan. Paradigma baru memiliki kriteria neater (rapi, more suitable (lebih cocok, simpler (sederhana, or more elegant (lebih elegan. Paradigma akan terusbertransformatif dengan paradigma baru karena sistem bekerja paradigma mengalihkan padigma menuju revolusi ilmiah di mana revolusi ilmiah dengan perubahan fundamental akan meresap dalam metode dan pemahaman.

  1. Health Care Ergonomics: Contributions of Thomas Waters.

    Science.gov (United States)

    Poole Wilson, Tiffany; Davis, Kermit G

    2016-08-01

    The aim of this study was to assess the contributions of Thomas Waters's work in the field of health care ergonomics and beyond. Waters's research of safe patient handling with a focus on reducing musculoskeletal disorders (MSDs) in health care workers contributed to current studies and prevention strategies. He worked with several groups to share his research and assist in developing safe patient handling guidelines and curriculum for nursing students and health care workers. The citations of articles that were published by Waters in health care ergonomics were evaluated for quality and themes of conclusions. Quality was assessed using the Mixed Methods Appraisal Tool and centrality to original research rating. Themes were documented by the type of population the citing articles were investigating. In total, 266 articles that referenced the top seven cited articles were evaluated. More than 95% of them were rated either medium or high quality. The important themes of these citing articles were as follows: (a) Safe patient handling is effective in reducing MSDs in health care workers. (b) Shift work has negative impact on nurses. (c) There is no safe way to manually lift a patient. (d) Nurse curriculums should contain safe patient handling. The research of Waters has contributed significantly to the health care ergonomics and beyond. His work, in combination with other pioneers in the field, has generated multiple initiatives, such as a standard safe patient-handling curriculum and safe patient-handling programs. © 2016, Human Factors and Ergonomics Society.

  2. Thomas Wolsey on stage and screen

    Directory of Open Access Journals (Sweden)

    Patrick Hornbeck

    2016-08-01

    Full Text Available Cardinal Thomas Wolsey, lord chancellor of England from 1515 to 1529, has played no small part in the many literary, historical and dramatic retellings of the reign of King Henry VIII. This article presents the first extended analysis of the way in which Wolsey has been represented by playwrights and, later, film and television writers during the years from his death in 1530 through the present. The article demonstrates that by the middle of the 16th century, two competing narratives about Wolsey had become entrenched historiographically, and nearly all subsequent accounts borrow substantially from the narratives of either Edward Hall (1550 or George Cavendish (1554–1558. How successive playwrights and screenwriters balanced the cardinal’s two archetypal personae has often depended, in no small part, on the concerns of their own day. In the 21st century, readings of the cardinal as crafty rather than callous, unlucky rather than unprincipled, have become more common, and with them have come more sympathetic portrayals of a traditional Tudor villain.

  3. Thomas Edison’s Poetry Machine

    Directory of Open Access Journals (Sweden)

    Matthew Rubery

    2014-04-01

    Full Text Available The tradition of spoken-word recording began with Thomas Edison’s invention of the phonograph. Hence, this article makes the case that 1878 is a more important year to the history of literature than has yet been recognized for its experiments with verse and sound-recording technology. Although the tinfoil phonograph’s first decade has been well documented by media historians, literary critics have singled out 1888 as the noteworthy year since that is when Edison’s improved phonograph made it possible to record prominent figures including Alfred Tennyson and Robert Browning. Taking Edison’s original tinfoil phonograph as an alternative starting point reveals how the 1878 phonograph demonstrations, despite technological limitations, undertook acoustic experiments that enabled audiences to discern new forms of meaning, pleasure, and pathos in even the most well-known material. The recordings considered here include ‘Mary Had a Little Lamb’ as well as scripts by Tennyson, Caroline Norton, Edgar Allan Poe, Shakespeare, and others. Such recitals illustrate the extent to which Edison’s talking machine influenced the reception of texts while at the same time giving rise to performances unheard of in previous cultures.

  4. The nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from 82 Sn to 170 Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z 2 /A exceeds about 100

  5. The Nuclear Thomas-Fermi Model

    Science.gov (United States)

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  6. Thomas Trotter's 'Essay on Drunkenness' appraised.

    Science.gov (United States)

    Edwards, Griffith

    2012-09-01

    In 1804 Thomas Trotter, a recently retired Physician to the Fleet, published his 'Essay on Drunkenness'. This was the first ever book-length consideration of the phenomenon of alcohol dependence and its treatment. The aim of this paper is to explore the impact of that treatise on the evolution of relevant ideas over the years that have followed. A factual analysis of the content of the Essay is the starting-point, followed by an examination of sequential published appraisals on the significance, or lack of significance, of this work. To the modern reader, Trotter is likely to be seen as prescient, with his assertion that 'the habit of drunkenness is a disease of the mind', setting the scene for two centuries of debate. The literature, however, seems to suggest that Trotter did not, in fact, achieve much impact either on professional opinion or on the emergent temperance movement. It was Benjamin Rush's 1785 pamphlet on 'Ardent Spirits' which achieved iconic status. Rush and Trotter, although in some ways overlapping in their ideas, differed in other respects. © 2012 The Author. Addiction © 2012 Society for the Study of Addiction.

  7. Thomas Kuhn as a Historian of Science

    Science.gov (United States)

    Brush, Stephen G.

    Thomas S. Kuhn (1922-1996) exerted a strong force on intellectual discourse in the last third of the 20th century, by the publication of a book only 200 pages long. Why did Kuhn's publications in his own primary field, history of science, have so little impact on that field? Was The Structure of Scientific Revolutions so successful in accelerating the trend toward social history of science that his own internalist work seemed outmoded? Kuhn wrote incisive articles on a wide range of topics including Robert Boyle and structural chemistry, energy conservation as an example of simultaneous discovery, the Cagnard engine, and the historiography of science, as well as a book on the Copernican Revolution; they are rarely cited by historians of science. His most important historical contribution in later years was in the history of quantum theory; he led a project to collect and preserve source materials, and published a monograph on the origin of the quantum hypothesis. Why does he receive almost no recognition for his remarkable work on the history of quantum physics? Does everyone still believe (in spite of Kuhn) that Planck introduced a physical quantum discontinuity in 1900?

  8. Thomas Walter Bannerman Kibble (1932 - 2016)

    CERN Multimedia

    2016-01-01

    Tom Kibble, an internationally-renowned theoretical physicist, passed away on Thursday 2 June.   Tom Kibble in the CMS cavern during a visit to CERN in 2014. (Photo: CMS/CERN) Professor Thomas Walter Bannerman Kibble passed away unexpectedly on 2 June at the age of 83. He was senior research investigator at the Blackett Laboratory and Emeritus Professor of Theoretical Physics at Imperial College, London. He made seminal contributions to our current understanding of symmetries and symmetry breaking in the Standard Model of particle physics. He was among those who, in 1964, proposed the mechanism of spontaneous symmetry breaking in gauge theories, together with G. Guralnik and C. Hagen in the autumn of that year, following the papers by R. Brout and F. Englert and by P. Higgs. When this new understanding was incorporated into a model proposed by S. Glashow in 1961, it led to the first formulations of the Standard Model by S. Weinberg and A. Salam. Kibble deepened our under...

  9. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot

    Science.gov (United States)

    Bechtold, Alexander; Rauch, Dominik; Li, Fuxiang; Simmet, Tobias; Ardelt, Per-Lennart; Regler, Armin; Müller, Kai; Sinitsyn, Nikolai A.; Finley, Jonathan J.

    2015-12-01

    The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation: fast dephasing due to static but randomly distributed hyperfine fields (~2 ns) and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (~750 ns).

  10. On the precession of the optical star in the Cyg X-1 system

    International Nuclear Information System (INIS)

    Kopylov, I.M.; Sokolov, V.V.

    1984-01-01

    Some results are analysed of previoUs spectroscopic investigation of the supergiant HDE 226868 (based on six-year observations at the 6-m telescope) with the puspose of searching for possible variations in the spectrum connected with the precession of the rotation axis of the star upper layers. It is noted that spectral type and HeI lambda 4471 line halfwidth show a coordinated behaviour with the phase of the 39-day period in the frame of the precession hypothesis. Nonuniform distribution of CNO anomalies over the star latitude seems to be possible

  11. Ado Vabbe preemia laureaat on Rauno Thomas Moss / Indrek Grigor

    Index Scriptorium Estoniae

    Grigor, Indrek

    2011-01-01

    2010. aasta Ado Vabbe preemia pälvinud Rauno Thomas Mossi loomingust, esinemisest näitustel. R. T. Moss on praegu TÜ semiootika ja maalikunsti osakonna õppejõud ning semiootika osakonna doktorant

  12. St. Thomas and the Divine Origin of Law: Some Notes

    Directory of Open Access Journals (Sweden)

    Lawrence Dewan, O.P.

    2008-12-01

    Full Text Available This article presents a series of notes on the concept of Law and itsrelationship to God in Classical Antiquity, specifically taking into account the viewpoints of Aristotle and Saint Thomas Aquinas.

  13. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  14. Concerning the Baker Solution of the Thomas-Fermi Equation

    International Nuclear Information System (INIS)

    Sabirov, R.Kh.

    1993-01-01

    A simple proof is founded that Baker's expansion is the exact solution of the Thomas-Fermi equation in the region very close to the nucleus. An alternative form of the basis equation of the Thomas-Fermi statistical theory of atom is derived. The recurrence relation for Baker's coefficients is found on the basis of this form. The non-trivial mathematical convergent series were summed up on the basis of our consideration

  15. A generalization of Ross-Thomas' slope theory

    OpenAIRE

    Odaka, Yuji

    2009-01-01

    We give a formula of the Donaldson-Futaki invariants for certain type of semi test configurations, which essentially generalizes Ross-Thomas' slope theory. The positivity (resp. non-negativity) of those "a priori special" Donaldson-Futaki invariants implies K-stability (resp. K-semistability). We show its applicability by proving K-(semi)stability of certain polarized varieties with semi-log-canonical singularities, generalizing some results by Ross-Thomas.

  16. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  17. Thomas Mann: um escritor contra o nazismo Thomas Mann: a writer against nazism

    Directory of Open Access Journals (Sweden)

    Sonia Dayan-Herzbrun

    1997-01-01

    Full Text Available O combate que Thomas Mann travou contra o nazismo a partir de 1922 é exemplar, pois é o de um escritor apaixonado pela liberdade e não o de um militante. Ele privilegia a ficção e o mito como meios de luta contra o fascínio exercido pelo nazismo e afirma a permanência de uma Alemanha cultural, cosmopolita, fonte de uma universalidade estranha a todos os particularismos étnicos. Goethe, com quem ele se identifica e no qual se projeta, é a figura de proa dessa Alemanha.Thomas Mann's attack, from 1922 onwards, against Nazism is exemplar in the sense that it was promoted by a writer committed to the defence of liberty and not by a militant. He underlines fiction and myth as ways of fighting against the charms of Nazism and proclaims the permanence of a cultural, cosmopolitan Germany, a source of a universality which is alien to all kinds of ethnic particularities. Goethe, someone he is identified with, is the prominent figure of this Germany.

  18. Poisson and Porter-Thomas fluctuations in off-yrast rotational transitions

    International Nuclear Information System (INIS)

    Matsuo, M.; Doessing, T.; Herskind, B.; Frauendorf, S.

    1993-01-01

    Fluctuations associated with stretched E2 transitions from high-spin levels in nuclei around 168 Yb are investigated by a cranked shell model extended to include residual two-body interactions. In the cranked mean-field model without residual interactions, it is found that gamma-ray energies behave like random variables and the energy spectra show Poisson fluctuation. With two-body residual interactions included, the discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE-type fluctuations for both energy levels and transition strengths (Porter-Thomas fluctuations). (orig.)

  19. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  20. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  1. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  2. Report of the International Astronomical Union Division I working group on precession and the ecliptic

    Czech Academy of Sciences Publication Activity Database

    Hilton, J. L.; Capitaine, N.; Chapront, J.; Ferrandiz, J.M.; Fienga, A.; Fukushima, T.; Getino, J.; Mathews, P. M.; Simon, J.-C.; Soffel, M.; Vondrák, Jan; Wallace, P.; Williams, J.

    2006-01-01

    Roč. 94, č. 3 (2006), s. 351-367 ISSN 0923-2958 Institutional research plan: CEZ:AV0Z10030501 Keywords : precession and the ecliptic * reference systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.175, year: 2006

  3. Analysis on common faults in G856 AX proton precession magnetometer

    International Nuclear Information System (INIS)

    Zhang Yungui; Zhang Biao; Wang Meili

    1995-01-01

    The authors mainly introduce common faults in G856 AX proton precession magnetometer in operation and their analysis so that the users can eliminate them, avoiding to repair blindly. In the mean time, it is a beneficial reference material for geophysicists and instrument designers

  4. Extracting the orbital axis from gravitational waves of precessing binary systems

    Science.gov (United States)

    Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Shibata, Masaru

    2018-01-01

    We present a new method for extracting the instantaneous orbital axis only from gravitational wave strains of precessing binary systems observed from a particular observer direction. This method enables us to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics and coprecessing waveforms in our method. We test and measure the accuracy of our method using the numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few times 10-3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely technical tools for understanding the complex nature of precessing waveforms but also direct observables.

  5. Spectrally selective imaging with wideband balanced steady-state free precession MRI.

    Science.gov (United States)

    Çukur, Tolga

    2016-03-01

    Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. The proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by π radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. Comparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities. © 2015 Wiley Periodicals, Inc.

  6. Free precession of neutron stars: some plain truths, cautionary remarks, and assorted speculations

    International Nuclear Information System (INIS)

    Pines, D.; Shaham, J.

    1974-01-01

    A brief summary is presented of present understanding of free precession in neutron stars. Attention is called to some truths concerning such wobble motion and then one describes some current efforts to devise mechanisms for exciting neutron star wobble with particular attention to the Crab and Vela pulsars and to Her X-1. (U.S.)

  7. Obituary: Thomas Robert Metcalf, 1961-2007

    Science.gov (United States)

    Leka, K. D.

    2007-12-01

    The astronomy community lost a good friend when Tom Metcalf was killed in a skiing accident on Saturday, 7 July 2007, in the mountains near Boulder, Colorado. Tom was widely known for prolific work on solar magnetic fields, hard-X-ray imaging of solar flares, and spectral line diagnostics. He was often characterized as "one of the nicest guys in science." Born October 5, 1961 in Cheverly, Maryland, to Fred and Marilyn, Thomas R. Metcalf joined his sister, Karen, two years his elder, in a close family that loved sailing, inquisitiveness, and the natural world. Sibling rivalry (usually a Tonka truck intruding on Barbie's sub-table "castle") melted when Tom and Karen collaborated on elaborately engineered room-sized blanket-forts. Tom confidently signed up at age of three to crew for his family's sailboat; when the family moved to California in 1966, as Tom's father took a Professor of Mathematics position at the University of California Riverside, Tom's love for sailing was well-established. Week-long cruises or short trips in the harbor were all fun; when school friends came aboard, it was even better--if "only slightly too crowded" from the adults' points of view. Tom's introduction to astronomy began one cold, very clear, December night in the early 1970s, on a family camping trip to Death Valley. The "Sidewalk Astronomers of San Francisco" had lined the sidewalk near the visitors' center with all sorts of telescopes for public viewing. Soon after, Tom and his boyhood friend Jim O'Linger were building their own scopes, attending "Amateur Telescope Makers" conferences, and Tom was setting up his scope on a sidewalk for public viewing. In 1986, Tom set up his telescope on the bluffs above Dana Point Harbor, and gave numerous strangers a stunning view of Halley's Comet. His interest in physics and mathematics became evident during Tom's last years in high school (Poly High in Riverside), and as a senior he qualified to take freshman Physics at the University of

  8. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  9. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    Science.gov (United States)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  10. Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor

    Science.gov (United States)

    Arrachea, Liliana; von Oppen, Felix

    2015-11-01

    The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.

  11. Reprint of : Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor

    Science.gov (United States)

    Arrachea, Liliana; von Oppen, Felix

    2016-08-01

    The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.

  12. Museum security and the Thomas Crown Affair.

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, E. C. (Nuclear Engineering Division)

    2010-01-01

    Over the years, I've daydreamed about stealing a Vermeer, a Picasso, or Rembrandt. It tickles me, as much as watching the reboot of The Thomas Crown Affair. Why is it, do you suppose, so much fun to think about stealing a world renowned piece off the wall of a major metropolitan museum? Is it the romantic thoughts of getting away with it, walking past infrared detectors, and pressure sensors ala Indiana Jones with the sack of sand to remove the idol without triggering the security system? Is it the idea of snatching items with such fantastic prices, where the romance of possessing an item of such value is less intoxicating than selling it to a private collector for it to never be seen again? I suspect others share my daydreams as they watch theater or hear of a brazen daylight heist at museums around the world, or from private collections. Though when reality sets in, the mind of the security professional kicks in. How could one do it, why would one do it, what should you do once it's done? The main issue a thief confronts when acquiring unique goods is how to process or fence them. They become very difficult to sell because they are one-of-a-kind, easy to identify, and could lead to the people involved with the theft. The whole issue of museum security takes up an ironic twist when one considers the secretive British street artist 'Banksy'. Banksy has made a name for himself by brazenly putting up interesting pieces of art in broad daylight (though many critics don't consider his work to be art) on building walls, rooftops, or even museums. I bring him up for a interesting take on what may become a trend in museum security. In March of 2005, Banksy snuck a piece of his called 'Vandalized Oil Painting' into the Brooklyn Museum's Great Historical Painting Wing, plus 3 other pieces into major museums in New York. Within several days, 2 paintings had been torn down, but 2 stayed up much longer. In his home country of the UK, a

  13. Supermassive black hole spin-flip during the inspiral

    International Nuclear Information System (INIS)

    Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  14. Spin-orbit torques and charge pumping in crystalline magnets

    Science.gov (United States)

    Ciccarelli, Chiara

    In magnetic crystals with an inversion asymmetric unit cell a non-zero global spin-polarization is generated by an electrical current, which acts with a torque on the magnetisation exciting magnetic dynamics. This relativistic non-equilibrium spin phenomenon also has a reciprocal effect in which the excitation of magnons results in the pumping of a charge current. The possibility to manipulate/read magnetism with electrical currents is highly relevant for magnetic memories and other spintronic devices. I will start by reviewing our recent research on spin-orbit torques (SOTs) in crystalline magnets, in particular our very recent measurements of the crystalline SOT at room temperature in half-Heusler NiMnSb thin films. With this experiment we are able to fully characterise magnitude and symmetry of the SOTs. I will then talk about the first demonstration of magnonic charge pumping in crystal magnet GaMnAs. In this effect, which is the reciprocal effect of SOTs, the precessing ferromagnet pumps a charge current. Differently from spin pumping, which is commonly used to electrically detect magnetization dynamics, in charge pumping magnons are converted within the ferromagnet into high-frequency currents via the relativistic spin-orbit interaction, without the need of a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle.

  15. Long distance spin communication in chemical vapour deposited graphene

    Science.gov (United States)

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-04-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ~6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.

  16. rf Wien filter in an electric dipole moment storage ring: The ``partially frozen spin'' effect

    Science.gov (United States)

    Morse, William M.; Orlov, Yuri F.; Semertzidis, Yannis K.

    2013-11-01

    An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment (EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.

  17. Magnetic design of a spin-echo small-angle neutron-scattering instrument

    CERN Document Server

    Uca, O; Rekveldt, M T

    2003-01-01

    In a spin-echo small-angle neutron scattering instrument dipole magnets and guide field coils are used. The homogeneity of the fields should be sufficient to have linear labeling of the height with precession. Furthermore, the instrument must have a homogenous line integral over the beam cross-section. It is shown that line integral inhomogeneities are directly connected to field components perpendicular to the main field. The design parameters of these magnetic units of the setup are calculated.

  18. Spin Superfluidity and Magnone BEC in He-3

    Science.gov (United States)

    Bunkov, Yury

    2011-03-01

    The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).

  19. What can we learn about the dynamics of transported spins by measuring shot noise in spin–orbit-coupled nanostructures?

    International Nuclear Information System (INIS)

    Nikolić, Branislav K; Dragomirova, Ralitsa L

    2009-01-01

    We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin–orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge

  20. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Science.gov (United States)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  1. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    Science.gov (United States)

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  3. Guest Foreword from Michael Thomas CMG QC

    Directory of Open Access Journals (Sweden)

    Michael Thomas

    2012-04-01

    precedents and thought in a unique legal market in which ideas drawn from Islamic law, civil law and common law can intermingle and blend. It is not surprising therefore to see that this new publication will be dedicated to the subject of international law, both public and private. Its laudable aim is to promote legal discourse around the world, and to promote a wider international understanding of contemporary legal issues for the common benefit. As an open access, bilingual journal, addressing topics concerning any jurisdiction, I hope it will reach a wide audience, and fulfil its aim of promoting understanding between different cultures. I am sure that the journal will not only benefit Qatar’s legal community by advancing academic and practice-based legal discussion. I am also confident that it will stimulate thought in the global legal community at large. May I wish it every success and a long life. Michael Thomas CMG QC

  4. Obituary: Thomas Michael Donahue, 1921-2004

    Science.gov (United States)

    Gombosi, Tamás I.

    2004-12-01

    Thomas M. Donahue, one of the nation's leading space and planetary scientists and a pioneer of space exploration, died Saturday October 16, 2004, from complications following heart surgery. The Edward H. White II Distinguished University Professor of Planetary Science at the University of Michigan, Tom shaped space exploration through his scientific achievements and policy positions. His work started with the first use of sounding rockets following World War II and continued for almost 60 years. Tom was born in Healdton, Oklahoma on May 23, 1921 to Robert Emmet and Mary (Lyndon) Donahue. His father was a plumber in the oil fields when Tom was born (Healdton OK was an oil town) and worked as a plumber in Kansas City for a time. Tom grew up in Kansas City, graduating in 1942 from Rockhurst College in that city with degrees in classics and physics. His graduate work in physics at Johns Hopkins University was interrupted by service in the Army Signal Corps. He obtained his PhD degree in atomic physics from Hopkins in the fall of 1947. After three years as a post-doctoral research associate and assistant professor at Hopkins, Tom joined the University of Pittsburgh Physics Department in 1951. At Pittsburgh he organized an atomic physics and atmospheric science program that led to experimental and theoretical studies of the upper atmosphere of the Earth and other solar system planets with instruments flown on sounding rockets and spacecraft. He became Professor of Physics in 1959 and eventually Director of the Laboratory for Atmospheric and Space Sciences and the Space Research Coordination Center at the University. In 1960 he spent a sabbatical year on a Guggenheim Fellowship at the Service d'Aeronomie in Paris, which began collaborations with French colleagues that flourished for more than 40 years. In 1974 he became the Chairman of the Atmospheric and Oceanic Science Department, University of Michigan, a position he held until 1981. In 1986, he was named the Henry

  5. California: 'the Stem Cell State'. Interview with Jonathan Thomas.

    Science.gov (United States)

    Thomas, Jonathan

    2011-11-01

    We talked to Jonathan Thomas, newly elected Chairman of the California Institute for Regenerative Medicine (CIRM), a few weeks into a role he describes as "the opportunity of the lifetime" to find out what he sees as the key goals for the CIRM and why patient advocates are so critical to the future of the Institute. Jonathan Thomas was elected as Chairman of the California Institute for Regenerative Medicine (CIRM) in June 2011, succeeding the Founder and former Chairman, Bob Klein. Thomas has had a successful career in finance and law and is a Co-Founding Partner at Saybrook Capital, an investment banking and private equity firm. His commitment to patient advocacy and keen interest in biological sciences, developed as a Biology Major at Yale, led him to stand for Chairman.

  6. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  7. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  8. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Deur, A.

    2008-02-01

    This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon

  9. PREFACE: SPIN2010 - Preface for Conference Proceedings

    Science.gov (United States)

    Ströher, Hans; Rathmann, Frank

    2011-03-01

    facilities at FZJ, and many made the most of the opportunity. We gratefully acknowledge the financial support from Brookhaven National Laboratory (BNL, USA), Forschungszentrum Jülich (FZJ), the International Union of Pure And Applied Physics (IUPAP), Thomas Jefferson Laboratory (JLab, USA), Helmholtz Institute Mainz (HIM, Germany) and the Virtual Institute on Spin and Strong QCD (VI-QCD) of the Helmholtz Association (HGF). We would also like to thank the local people from IKP and other institutions of FZJ for their contributions and help - without them we would not have been able to organize this great meeting. The current proceedings comprise written contributions of many of the presentations during SPIN2010; however, due to the recent incident in Japan, a number of our colleagues from there were unfortunately not able to deliver their write-ups in due time. This volume was edited by Ralf Gebel, Christoph Hanhart, Andro Kacharava, Andreas Lehrach, Bernd Lorentz, Nikolai N Nikolaev, Andreas Nogga, Frank Rathmann, and Hans Ströher. The next symposium - SPIN2012 - will be held at the Joint Institute for Nuclear Research (JINR) in Dubna (Russia) in 2012. We are looking forward to meeting you there. Important conference-related links: SPIN2010 Web-site: https://www.congressa.de/SPIN2010/ Article in CERN Courier: http://cerncourier.com/cws/article/cern/45451 Spin Physics Committee: http://www.spin-community.org Jülich, April 2011 - Hans Ströher, Frank Rathmann (Chairs SPIN2010) Conference photograph

  10. Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics.

    Science.gov (United States)

    Lupton, John M; McCamey, Dane R; Boehme, Christoph

    2010-10-04

    Organic semiconductors offer expansive grounds to explore fundamental questions of spin physics in condensed matter systems. With the emergence of organic spintronics and renewed interest in magnetoresistive effects, which exploit the electron spin degree of freedom to encode and transmit information, there is much need to illuminate the underlying properties of spins in molecular electronic materials. For example, one may wish to identify over what length of time a spin maintains its orientation with respect to an external reference field. In addition, it is crucial to understand how adjacent spins arising, for example, in electrostatically coupled charge-carrier pairs, interact with each other. A periodic perturbation of the field may cause the spins to precess or oscillate, akin to a spinning top experiencing a torque. The quantum mechanical characteristic of the spin is then defined as the coherence time, the time over which an oscillating spin, or spin pair, maintains a fixed phase with respect to the driving field. Electron spins in organic semiconductors provide a remarkable route to performing "hands-on" quantum mechanics since permutation symmetries are controlled directly. Herein, we review some of the recent advances in organic spintronics and organic magnetoresistance, and offer an introductory description of the concept of pulsed, electrically detected magnetic resonance as a technique to manipulate and thus characterize the fundamental properties of electron spins. Spin-dependent dissociation and recombination allow the observation of coherent spin motion in a working device, such as an organic light-emitting diode. Remarkably, it is possible to distinguish between electron and hole spin resonances. The ubiquitous presence of hydrogen nuclei gives rise to strong hyperfine interactions, which appear to provide the basis for many of the magnetoresistive effects observed in these materials. Since hyperfine coupling causes quantum spin beating in electron

  11. Obituary: Thomas Julian Ahrens (1936-2010)

    Science.gov (United States)

    Jeanloz, Raymond; Asimow, Paul

    2011-12-01

    Thomas J. Ahrens, a leader in the use of shock waves to study planetary interiors and impact phenomena, died at his home in Pasadena, California on November 24, 2010, at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, formally emeritus since 2005 but professionally active to the end. Tom was a pioneer in experimental and numerical studies of the effects of hypervelocity impact, arguably the most important geophysical process in the formation, growth and - in many cases - surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science and other disciplines. Previously, high-pressure shock experiments were primarily conducted in national laboratories, where they were initially associated with development of nuclear weapons. The shock wave laboratory at Caltech was noted for key measurements addressing major questions in planetary geophysics. Equation-of-state studies on silicate melts showed that magma deep in Earth's mantle could be denser than the coexisting crystals, implying downward transport of melts (and associated heat) rather than the upward eruption of lavas observed in volcanic regions at Earth's surface. Shock-melting experiments on iron at pressures of Earth's core provide a crucial constraint on the temperature at the center of our planet. And studies of hydrous, carbonate and sulphate minerals under shock compression document how climate-altering molecules can be released by major impacts, such as the K/T event associated with the most recent mass extinction of biota in Earth history. In addition, Tom was a leader in numerical simulation of cratering, bringing the most recent laboratory measurements into the modeling of planetary impacts. Tom's training was in geophysics and applied experimental physics, as

  12. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  13. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data.

    Science.gov (United States)

    Palatinus, Lukáš; Corrêa, Cinthia Antunes; Steciuk, Gwladys; Jacob, Damien; Roussel, Pascal; Boullay, Philippe; Klementová, Mariana; Gemmi, Mauro; Kopeček, Jaromír; Domeneghetti, M Chiara; Cámara, Fernando; Petříček, Václav

    2015-12-01

    The recently published method for the structure refinement from three-dimensional precession electron diffraction data using dynamical diffraction theory [Palatinus et al. (2015). Acta Cryst. A71, 235-244] has been applied to a set of experimental data sets from five different samples - Ni2Si, PrVO3, kaolinite, orthopyroxene and mayenite. The data were measured on different instruments and with variable precession angles. For each sample a reliable reference structure was available. A large series of tests revealed that the method provides structure models with an average error in atomic positions typically between 0.01 and 0.02 Å. The obtained structure models are significantly more accurate than models obtained by refinement using kinematical approximation for the calculation of model intensities. The method also allows a reliable determination of site occupancies and determination of absolute structure. Based on the extensive tests, an optimal set of the parameters for the method is proposed.

  14. Momentum and spin dynamics of Dirac particles at effective dimensional reduction

    Science.gov (United States)

    Silenko, Alexander J.; Teryaev, Oleg V.

    2012-11-01

    We consider the dynamics of Dirac particles moving in the curved spaces of variable dimension interpolating smoothly between 3- and 2-dimensional spaces and considered as a toy model for 2-dimensional structures in solid state physics. Performing the Foldy-Wouthuysen (FW) transformation of Dirac equation and passing to the classical limit, we derive the equations of motion of momentum and spin. The spin precesses with the variable angular velocity and may "flick" appearing in the remnant 2-dimensional space twice during the period.

  15. Evolutionary algorithms to optimize low-thrust trajectory design in spacecraft orbital precession mission

    OpenAIRE

    Shirazi A.; Ceberio J.; Lozano J.A.

    2017-01-01

    In space environment, perturbations make the spacecraft lose its predefined orbit in space. One of these undesirable changes is the in-plane rotation of space orbit, denominated as orbital precession. To overcome this problem, one option is to correct the orbit direction by employing low-thrust trajectories. However, in addition to the orbital perturbation acting on the spacecraft, a number of parameters related to the spacecraft and its propulsion system must be optimized. This article lays ...

  16. Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession

    Science.gov (United States)

    Escapa, A.; Getino, J.; Ferrándiz, J. M.; Baenas, T.

    2017-08-01

    The adoption of International Astronomical Union (IAU) 2006 precession model, IAU 2006 precession, requires IAU 2000A nutation to be adjusted to ensure compatibility between both theories. This consists of adding small terms to some nutation amplitudes relevant at the microarcsecond level. Those contributions were derived in previously published articles and are incorporated into current astronomical standards. They are due to the estimation process of nutation amplitudes by Very Long Baseline Interferometry (VLBI) and to the changes induced by the J2 rate present in the precession theory. We focus on the second kind of those adjustments, and develop a simple model of the Earth nutation capable of determining all the changes arising in the theoretical construction of the nutation series in a dynamical consistent way. This entails the consideration of three main classes of effects: the J2 rate, the orbital coefficients rate, and the variations induced by the update of some IAU 2006 precession quantities. With this aim, we construct a first order model for the nutations of the angular momentum axis of the non-rigid Earth. Our treatment is based on a Hamiltonian formalism and leads to analytical formulae for the nutation amplitudes in the form of in-phase, out-of-phase, and mixed secular terms. They allow numerical evaluation of the contributions of the former effects. We conclude that the accepted corrections associated with the J2 rate must be supplemented with new, hitherto unconsidered terms of the same order of magnitude, and that these should be incorporated into present standards.

  17. Thomas Henry Huxley et la Bible Thomas Henry Huxley and the Bible

    Directory of Open Access Journals (Sweden)

    Christophe Duvey

    2009-10-01

    Full Text Available Thomas Henry Huxley devoted several essays to the study of the Bible. This interest can only be accounted for if his ideas on history, religion as well as epistemology are examined. According to him, a struggle between free thought and supernaturalism was culminating during the Victorian era, hence the need for a “New Reformation” which was heir to the ideals of freedom defended by the humanists of the Renaissance. This movement opposed the principles of the supporters of what he called “ecclesiasticism”. The advocates of the “New Reformation” could rely on the progress of modern science, and agnosticism, which Huxley identified with scientific method, became its epistemological foundation. As a result, Huxley thought that the authority of physical science was in conflict with the infallibility of the Scriptures and with the theological arguments which rested on it, and this notably led him to the conclusion that the biblical narrative of the Flood was unhistorical. The naturalisation of the Scriptures seems then logically to follow his philosophical views based on the limits of human knowledge.It appears that it was the question of authority which underlay Huxley’s interest in the Bible. He thought that the authority of the Scriptures must be replaced by that of science.

  18. Utilizing the precessing orbit of TRMM to produce hourly corrections of geostationary infrared imager data with the VIRS sensor

    Science.gov (United States)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-08-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  19. Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor

    Science.gov (United States)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-01-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  20. A curious ringlet that shares Prometheus' orbit but precesses like the F ring

    Science.gov (United States)

    Hedman, M. M.; Carter, B. J.

    2017-01-01

    Images obtained by the Cassini spacecraft of the region just beyond Saturn's main rings reveal a previously unreported narrow and dusty ringlet that has dynamical connections with both Saturn's small satellite Prometheus and the F ring. The radial position of this ringlet is observed to vary with time and longitude, indicating that it is eccentric with an eccentricity of 0.0012 and that its mean orbital radius varies between 139,300 km and 139,400 km. These mean radii are consistent with material trapped in a co-orbital 1:1 resonance with Prometheus. However, the apsidal precession rate of this ringlet is not that expected for material close to Prometheus' orbit (2.76°/day). Instead, the ringlet appears to be precessing at the same rate as the F ring (2.70°/day). This ringlet therefore appears to consist of material co-rotating with Prometheus whose apsidal precession rates have been modified by interactions with F-ring material. This ringlet may therefore provide new insights into how rings can maintain organized eccentric structures over a range of semi-major axes.

  1. Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System

    Science.gov (United States)

    Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray

    2018-01-01

    Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.

  2. Three-Dimensional Precession Feature Extraction of Ballistic Targets Based on Narrowband Radar Network

    Directory of Open Access Journals (Sweden)

    Zhao Shuang

    2017-02-01

    Full Text Available Micro-motion is a crucial feature used in ballistic target recognition. To address the problem that single-view observations cannot extract true micro-motion parameters, we propose a novel algorithm based on the narrowband radar network to extract three-dimensional precession features. First, we construct a precession model of the cone-shaped target, and as a precondition, we consider the invisible problem of scattering centers. We then analyze in detail the micro-Doppler modulation trait caused by the precession. Then, we match each scattering center in different perspectives based on the ratio of the top scattering center’s micro-Doppler frequency modulation coefficient and extract the 3D coning vector of the target by establishing associated multi-aspect equation systems. In addition, we estimate feature parameters by utilizing the correlation of the micro-Doppler frequency modulation coefficient of the three scattering centers combined with the frequency compensation method. We then calculate the coordinates of the conical point in each moment and reconstruct the 3D spatial portion. Finally, we provide simulation results to validate the proposed algorithm.

  3. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  4. A SEARCH FOR NEUTRON STAR PRECESSION AND INTERSTELLAR MAGNETIC FIELD VARIATIONS VIA MULTIEPOCH PULSAR POLARIMETRY

    International Nuclear Information System (INIS)

    Weisberg, J. M.; Everett, J. E.; Morgan, J. J.; Brisbin, D. G.; Cordes, J. M.

    2010-01-01

    In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle are usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3σ level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of ∼(200-1300) days and amplitudes of ∼(1-12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar and relate these to limits on precession and interstellar magnetic field variations.

  5. The Concurrentism of Thomas Aquinas: Divine Causation and Human Freedom

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr

    2013-01-01

    Roč. 41, č. 3 (2013), s. 617-634 ISSN 0048-3893 R&D Projects: GA ČR(CZ) GAP401/11/0371 Institutional support: RVO:67985955 Keywords : divine causation * free will * concurrentism * Thomas Aquinas Subject RIV: AA - Philosophy ; Religion

  6. Pioneers in South African Anaesthesia: Thomas Voss and the ...

    African Journals Online (AJOL)

    Pioneers in South African Anaesthesia: Thomas Voss and the “Elephant Tube”. R Hofmeyr, PC Gordon. Abstract. South Afr J Anaesth Analg 2013;19(5):239-241. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.1080/22201173.2013.

  7. Thomas Paine's "Common Sense": A Study in Polarity.

    Science.gov (United States)

    Blair, Carole

    Thomas Paine's "Common Sense," published in 1776, was a significant rhetorical event, having a polarizing effect on a situation marked by confusion and conflicting loyalties, in which prevailing views favored reconciliation of the American colonies with England. Paine's rhetoric intensified the conflict, forcing a cognitive restructuring…

  8. Fasihi ya Kiswahili na rushwa Tanzania: Thomas A. R. Kamugisha ...

    African Journals Online (AJOL)

    Makala hii inajaribu kuelezea mchango wa fasihi ya Kiswahili katika kuijadili rushwa. Kwa kurejea kwenye Riwaya ya Thomas A.R. Kamugisha Kitu Kidogo tu! makala hii inasawilisha miongo takribani mitatu ya dhana ya “kitu kidogo” na athari zake kwa jamii ya Tanzania. Kwa kuijadili riwaya ya Kitu Kidogo tu! makala hii ...

  9. Demography and life history of Thomas Langurs (Presbytis thomasi)

    NARCIS (Netherlands)

    Wich, S.A.; Steenbeek, R.; Sterck, E.H.M.; Korstjens, A.H.; Willems, E.P.; Schaik, C.P. van

    2007-01-01

    Life history data from wild primate populations are necessary to explain variation in primate social systems and explain differences between primates and other mammals. Here we report life history data from a 12.5-year study on wild Thomas langurs. Mean age at first reproduction was 5.4 years and

  10. Thomas Hunt Morgan and the Rise of Genetics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 11. Thomas Hunt Morgan and the Rise of Genetics. Amitabh Joshi. Article-in-a-Box Volume 8 ... Author Affiliations. Amitabh Joshi1. Animal Behaviour Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064. India.

  11. Some aspects of fisheries ecology in Thomas dam, Kano Nigeria ...

    African Journals Online (AJOL)

    The diversity, length-weight relationship and condition factor of fish species of Thomas Dam, Dambatta Kano were studied fortnightly between November, 2016 and February, 2017. Fish species were collected using line nets, cast nets, hooks and traps; weighted to the nearest gram and standard length measured to the ...

  12. The medical history of Thomas Jefferson (1743-1826).

    Science.gov (United States)

    Schneeberg, Norman G

    2008-05-01

    Thomas Jefferson, the third President of the USA, was often the victim of a panoply of disorders including episodic headaches, dysentery, rheumatism, multiple bone fractures, malaria, possibly tuberculosis, dental problems, diabetes and urinary tract obstruction. Intermittently he experienced anxiety, depression and insomnia; he was an anxious, striving perfectionist, a compulsively controlled man.

  13. Retrospective: "Futki" and Some Other Elephants | Thomas | Uganda ...

    African Journals Online (AJOL)

    Retrospective: "Futki" and Some Other Elephants. HB Thomas. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/uj.v48i1.23010 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  14. Insights into translation and the original text: Thomas Mofolo's Chaka

    African Journals Online (AJOL)

    This paper aims to explore the strategies applied during the translation of chosen passages from the original Sesotho text of Chaka by Thomas Mofolo into English. Insights expressed here originate from participation in the translation workshops during the conference on “Translating Mofolo”. Different stages of the ...

  15. Thomas Hopley and Mid-Victorian Attitudes to Corporal Punishment

    Science.gov (United States)

    Middleton, Jacob

    2005-01-01

    This paper discusses the trial of Thomas Hopley, accused of killing his pupil Reginald Cancellor in 1860 during an act of corporal punishment. The case provoked immediate sensational interest and became an important defining point in how corporal punishment is treated in British law. Established by this trial was the test that any corporal…

  16. Biographical sketch: Thomas W. Huntington, MD (1849-1929).

    Science.gov (United States)

    Brand, Richard A

    2012-10-01

    This biographical sketch on Thomas Huntington corresponds to the historic text, The classic: case of bone transference. use of a segment of fibula to supply a defect in the tibia (1905), available at DOI 10.1007/s11999-012-2496-z .

  17. Thomas Aquinas on the Beatitudes : Edition of the Basel Manuscript

    NARCIS (Netherlands)

    ten Klooster, Anton

    2017-01-01

    There is a renewed interest in Thomas Aquinas’ interpretation of the beatitudes. An important source for the study of the beatitudes is Aquinas’ commentary on the gospel of Matthew. However, the available editions of this commentary present a text that ignores the oldest manuscript, and has

  18. Waren Judas en Thomas gnostici? Het evangelie naar Johannes ...

    African Journals Online (AJOL)

    and Philip are also more conspicuous characters in the Gospel of John than in the Synoptics. This challenges scholars to read these sections in relation to Gnosticism. The article aims at reading the scenes dealing with Jude and Thomas in John's gospel with a Gnostic framework in mind. These texts gain more profile than ...

  19. Full depth bituminous recycling of I-70, Thomas County, Kansas

    Science.gov (United States)

    2004-01-01

    In 1990, 13 full depth asphalt pavement test sections were built on a portion of I-70 in Thomas County, Kansas. Various combinations of hot mix and cold recycle mixes with different additives were used to build the test sections. Two of the test sect...

  20. Reflective Teaching and Practice: Interview with Thomas Farrell

    Science.gov (United States)

    Pang, Alvin

    2017-01-01

    Thomas Farrell is widely known for his views and publications on the topic of Reflective Practice, which is key to the professional development of teachers in 21st century classrooms. He is Professor of Applied Linguistics at Brock University, Canada. Farrell has been a language teacher and teacher educator since 1978 and has worked in Korea,…

  1. Thomas B. Greenfield: A Challenging Perspective of Organizations

    Science.gov (United States)

    Bailey, Scott

    2010-01-01

    Organizations are not real; people are. Any science or theory of organizations must consider how the organization impinges, in a very real and tangible way, on the lives of its members. This article traces the development of one such theoretical branch of organizational science through the pioneering work of Thomas B. Greenfield. The author uses…

  2. Potential motion for Thomas-Fermi non-topological solitons

    International Nuclear Information System (INIS)

    Bahcall, S.

    1992-04-01

    In the Thomas-Fermi approximation to theories of coupled fermions and scalars, the equations for spherically-symmetric non-topological solitons have the form of potential motion. This gives a straightforward method for proving the existence of non-topological solitons in a given theory and for finding the constant-density, saturating solutions

  3. Ethical Implications of Thomas Reid's Philosophy of Rhetoric.

    Science.gov (United States)

    Skopec, Eric Wm.

    Eighteenth century Scottish philosopher Thomas Reid's emphasis on first principles of knowledge is fundamental to his ethics of rhetoric. Reid found the reduction of mental activities to material phenomena by Hobbes and others to be particularly odious and destructive of common sense. Turning to the analysis of human nature, he developed a radical…

  4. The Sovereign as Educator: Thomas Hobbes's National Curriculum.

    Science.gov (United States)

    Parry, Geraint

    1998-01-01

    Focuses on Thomas Hobbes, an English political philosopher who argued that the solution to civil disorders lay in a sovereign authority backed with force. Argues that education should be seen at the center of Hobbes's project of rescuing society from the disorders threatening civilization throughout 17th-century Europe. (CMK)

  5. Religious Conscience and Civic Conscience in Thomas Hobbes's Civic Philosophy.

    Science.gov (United States)

    Pepperell, Keith C.

    1989-01-01

    This article discusses Thomas Hobbes' concept of conscience, the historical context in which the concept was formulated, and Hobbes' conclusion that civil law takes precedence over religious conscience. Hobbes' views are related to the debate between Pratte and Losito over the interaction between religious and civic conscience. (IAH)

  6. Teaching with Purpose: An Interview with Thomas E. Ludwig

    Science.gov (United States)

    Ludwig, Timothy D.; Ludwig, David J.

    2010-01-01

    Thomas E. Ludwig is the John Dirk Werkman Professor of Psychology at Hope College, where he joined the faculty in 1977 after receiving his PhD in development and aging from Washington University in St. Louis. His research focuses on developmental issues in cognitive neuropsychology. He is also the author or coauthor of more than a dozen sets of…

  7. Scientific Aspects of Two Theological Questions in Thomas Aquinas.

    Science.gov (United States)

    Lattis, James M.

    1984-01-01

    An examination of how St. Thomas Aquinas makes use of science in his theological works provides an understanding of the relations of medieval science and the Christian theology of the Middle Ages. Two issues are examined: the problem of the nature and existence of God and the question of the eternity of the world. (RM)

  8. Matrix models and stochastic growth in Donaldson-Thomas theory

    International Nuclear Information System (INIS)

    Szabo, Richard J.; Tierz, Miguel

    2012-01-01

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  9. The Invention Factory: Thomas Edison's Laboratories. Teaching with Historic Places.

    Science.gov (United States)

    Bolger, Benjamin

    This lesson explores the group of buildings in West Orange, New Jersey, built in 1887, that formed the core of Thomas Edison's research and development complex. They consisted of chemistry, physics, and metallurgy laboratories; machine shop; pattern shop; research library; and rooms for experiments. The lesson explains that the prototypes (ideas…

  10. Thomas Aquinas: On Law, Tyranny and Resistance | Swartz | Acta ...

    African Journals Online (AJOL)

    Thomas Aquinas's notion on law, tyranny and resistance served as a limitation on governmental powers. When those who bear the law command things which exceed the competence of such authority, the subject is free to obey or disobey. The function of the law culminates in two maxims: quantum ad vim coactivam legis ...

  11. Are we close to putting the anomalous perihelion precessions from Verlinde's emergent gravity to the test?

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell' Istruzione, Universita e della Ricerca (M.I.U.R.)-Istruzione, Bari, BA (Italy)

    2017-03-15

    In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ∼ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A* are, instead, not viable because of the excessive smallness of the predicted precessions for them. (orig.)

  12. 75 FR 52023 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service... of the Thomas Burke Memorial Washington State Museum (Burke Museum), University of Washington...

  13. 75 FR 36672 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2010-06-28

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service... of the Thomas Burke Memorial Washington State Museum (Burke Museum), University of Washington...

  14. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  15. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  16. Acoustically induced spin transport in (110)GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Odilon D.D. Jr.

    2008-09-29

    In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)

  17. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  18. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  19. Thomas van Aquino en de Thomas van Utrecht. Kritische kanttekeningen bij de Utrechtse lezing van de Summa Theologiae

    NARCIS (Netherlands)

    Aertsen, J.A.

    1994-01-01

    In the last decade a group of scholars at the Catholic University of Utrecht developed an approach of its own to Aquinas's Summa theologiae, which is named “the Utrecht hypothesis”. In section I this hypothesis is summarized in eight propositions. Its main elements are twofold. (A) Thomas does not

  20. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    Science.gov (United States)

    Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.

    2017-07-01

    The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that

  1. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    Directory of Open Access Journals (Sweden)

    Florian Dettwiler

    2017-07-01

    Full Text Available The Rashba and Dresselhaus spin-orbit (SO interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α=β, the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH, i.e., a helical spin-density wave excitation with constant pitch P=2π/Q, Q=4mα/ℏ^{2}, has already been experimentally realized at this singular point α=β, enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage V_{T} and back gate voltage V_{B} to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α=β; i.e., we are able to vary both α and β controllably and continuously with V_{T} and V_{B}, while keeping them locked at equal strengths. This makes possible a new concept: “stretchable PSHs,” i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α=β, thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be

  2. About the velocity operator for spinning particles in quantum mechanics

    International Nuclear Information System (INIS)

    Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.

    1995-12-01

    Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs

  3. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  4. 78 FR 65511 - Death of Thomas S. Foley Former Speaker of the House of Representatives

    Science.gov (United States)

    2013-10-31

    ... Thomas S. Foley Former Speaker of the House of Representatives #0; #0; #0; Presidential Documents #0; #0... Thomas S. Foley Former Speaker of the House of Representatives By the President of the United States of America A Proclamation As a mark of respect for the memory of Thomas S. Foley, former Speaker of the House...

  5. 76 FR 20032 - Thomas E. Mitchell, M.D.; Dismissal of Proceeding

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 10-7] Thomas E. Mitchell, M.D... Control, Drug Enforcement Administration, issued an Order to Show Cause to Thomas E. Mitchell, M.D....100(b) and 0.104, I hereby order that the Order to Show Cause issued to Thomas E. Mitchell, M.D., be...

  6. 78 FR 59956 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2013-09-30

    ....R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of..., Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington State Museum, University of..., Arie Handel, and H. Thomas Cain and donated to the Burke Museum in 1937 (Burke Accn. 2983, 2984). In...

  7. 77 FR 51564 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington... of human remains under the control of the Thomas Burke Memorial Washington State Museum (Burke Museum...

  8. 76 FR 28806 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF THE INTERIOR National Park Service [2253-665] Notice of Inventory Completion: Thomas... Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington State Museum (Burke... and associated funerary objects in the control of the Thomas Burke Memorial Washington State Museum...

  9. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie.... Thomas, V.I. of the United States and approaches thereto, including all waters under its jurisdiction, as...

  10. 77 FR 59649 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2012-09-28

    ... Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington... human remains were removed by Thomas Greaves and donated to the Burke Museum in 1962 (Burke Accn. 1963...

  11. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; St. Thomas, U.S....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas...

  12. Effects of rolling friction on a spinning coin or disk

    Science.gov (United States)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  13. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.

    Science.gov (United States)

    Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B

    2009-10-02

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

  14. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  15. Radiation damping in ferromagnetic resonance induced by a conducting spin sink

    Science.gov (United States)

    Qaid, Mohammad M.; Richter, Tim; Müller, Alexander; Hauser, Christoph; Ballani, Camillo; Schmidt, Georg

    2017-11-01

    We have investigated the damping in the ferromagnetic resonance (FMR) of yttrium iron garnet (YIG) caused by spin pumping into adjacent conducting materials, namely, Pt and the conducting polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). By a systematic study which also includes multilayers in which the conducting layer is separated from YIG by an insulator, we can show that a considerable part of the damping can be attributed to the so-called radiation damping which originates from the interaction of the magnetic fields caused by the precessing magnetization with the conducting layer. Especially, when PEDOT:PSS is used as a spin sink, the observed damping must be attributed completely to radiation damping, and no contribution from spin pumping can be identified. These results demonstrate that the Gilbert damping as a measure of spin pumping can only be used when careful control experiments accompany the investigation.

  16. Spin-dependent shot noise in semiconductor and graphene nanostructures

    Science.gov (United States)

    Dragomirova, Ralitsa L.

    Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions. The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling

  17. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  18. JUSTICIA Y PROPIEDAD SEGÚN THOMAS REID

    Directory of Open Access Journals (Sweden)

    José Hernández Prado

    2013-11-01

    Full Text Available This article puts forward that according to Scottish philosopher, Thomas Reid (1710-1796, justice must be understood as a moral virtue of a natural kind among human beings, or as a matter of species regarding them; not as an artificial or a conventional virtue, which is a product of human collectivities or a matter of sociability in human beings. However, the article proposes as well that in his reflections on justice, Thomas Reid held an arguable notion of property, as the ownership of riches basically distributable or apportionable, but not as one of the goods that are mainly produced or generated, as his contemporaries David Hume and Adam Smith stated it.

  19. Thomas Spence on Women’s Rights: A Vindication

    OpenAIRE

    Duthille, Rémy

    2016-01-01

    Thomas Spence défendait les droits politiques et économiques des femmes. Il était l’un des très rares pamphlétaires de son époque à demander le vote des femmes. Certains historiens ont cependant décelé chez lui une vision patriarcale, voire rétrograde. Contre ces interprétations anachroniques, cet article s’emploie à dégager l’évolution de la position de Thomas Spence, de plus en plus favorable à l’égalité entre les sexes, tout en soulignant que Spence n’envisageait pas de confier aux femmes ...

  20. Thomas Hirschhorn, l’art et l’espace public.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cherel

    2007-04-01

    Full Text Available Ce catalogue relate la manière dont l’artiste Thomas Hirschhorn est intervenu dans le quartier du Landy à Aubervilliers pour réaliser un projet de sculpture dans l’espace public. Entre avril et juin 2004 s’est ouvert, rue Albinet sous l’impulsion conjuguée de Thomas Hirschhorn et des laboratoires d’Aubervilliers, un musée inhabituel, dont la vocation fut de « faire exister l’art au-delà des espaces qui lui sont consacrés ». Ce musée prit d’autant plus de poids pour ...

  1. Thomas Docherty. Culture and a New Experience of Democracy

    Directory of Open Access Journals (Sweden)

    Erik S. RORABACK

    2006-10-01

    Full Text Available Thomas Docherty’s freshly printed volume from Stanford University Press, Aesthetic Democracy, is requisite reading for all those thinking beings out there interested in the question of the inter-relation and even inter-articulation between culture and experience for a possible new encounter with the political that would inch toward a truer form of democracy for our current postmodern social spheres and spaces. Professor of English and Comparative Literature in the University of Warwick, long ...

  2. Losing Thomas & Ella: A Father's Story (A Research Comic).

    Science.gov (United States)

    Weaver-Hightower, Marcus B

    2017-09-01

    "Losing Thomas & Ella" presents a research comic about one father's perinatal loss of twins. The comic recounts Paul's experience of the hospital and the babies' deaths, and it details the complex grieving process afterward, including themes of anger, distance, relationship stress, self-blame, religious challenges, and resignation. A methodological appendix explains the process of constructing the comic and provides a rationale for the use of comics-based research for illness, death, and grief among practitioners, policy makers, and the bereaved.

  3. Thomas Hill Green. Od epistemologii do filozofii politycznej

    OpenAIRE

    Grygieńć, Janusz

    2009-01-01

    The philosophy of Thomas Hill Green, as well as that of most of the British idealists, remains almost completely unknown to the Polish Reader. This is the main reason for which the Author of this book has chosen to present the broad spectrum of its issues and possible interpretations. Despite the fact that Green lived for less than 46 years, philosophical conceptions which his lectures (published posthumously as Lectures on the Principles of Political Obligation and Prolegomena to Ethics) con...

  4. Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation

    Energy Technology Data Exchange (ETDEWEB)

    Parand, K. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: k_parand@sbu.ac.ir; Shahini, M. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: m.shahini@mail.sbu.ac.ir

    2009-01-05

    In this Letter we propose a pseudospectral method for solving Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on rational Chebyshev pseudospectral method. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.

  5. A generalization of the Ross-Thomas slope theory

    OpenAIRE

    Odaka, Yuji

    2013-01-01

    We give a formula for the Donaldson--Futaki invariants of certain type of semi test configurations, which essentially generalizes the Ross--Thomas slope theory [28]. The positivity (resp. non-negativity) of those ``a priori special'' Donaldson--Futaki invariants implies K-stability (resp. K-semistability). As an application, we prove the K-(semi)stability of certain polarized varieties with semi-log-canonical singularities, which generalizes some results of [28].

  6. Thomas S. Schelling: game theory and indirect communication

    OpenAIRE

    Estrada, Fernando

    2010-01-01

    In their recent work Thomas S. Schelling (2007, 2010), reiterating original arguments about game theory and its applications to social sciences. In particular, game theory helps to explore situations in which agents make decisions interdependent (strategic communication). Schelling's originality is to extend economic theory to social sciences. When a player can anticipate the options and influence the decisions of others. The strategy, indirect communication plays a crucial role. To illustrat...

  7. Thomas Alva Edison (170th Anniversary of His Birth)

    OpenAIRE

    V. P. Samokhin; E A. Tikhomirovа

    2017-01-01

    A brief overview of the major technical achievements of Thomas Edison, an outstanding American inventor, author of more than 1,000 US patents and several thousand patents in other countries, honorary academician of the USSR. Presents biographical information and details of the formation of Edison, his work as a telegrapher, organizing the world's first industrial research laboratory for the continuous development of technological innovations, as well as some interesting facts about his life a...

  8. Safety Performance Improvement for Nuclear Power Plants Utilizing THOMAS

    International Nuclear Information System (INIS)

    Kim, Won June; Ryu, Jung Uk; Suh, Kune Y.

    2005-01-01

    THOMAS (Thermal Hydraulics Online Monitoring Advisory System) is equipped with a couple of salient features compared with existing monitoring systems. The first has to do with the three-dimensional (3D) visualization technique to support the nuclear power plant (NPP) operators and personnel using the virtual reality (VR) technology. VR depicts an environment simulated by a computer. Most of the VR environments primarily include visual experiences, displayed either on a monitor or though special stereoscopic goggles. Users can often interactively manipulate a VR environment, either through standard input devices like a keyboard, or through specially designed devices like a cybergloves. Additional devices were not applied the in THOMAS. The visualized model file is brought to the VR space from the computer-aided design (CAD) tool. In the VR space, using mapping, the component color is changed with linked value of the safety variables. Operators thus can easily recognize the plant condition. This is related with the human factor engineering. The second is the function of decision making using the influence diagram logic. The influence diagram logic is based on the total probability and Bayesian theory. The accident modeling is rooted in the emergency operating procedure (EOP). The final goal of this system is, in the accident situation, to present a success path to the operator for the recovery of the NPP system. At the current developing level, the database signals THOMAS. In other words, a spectrum of system analysis codes provides the safety parameter values to the database, which are subsequently supplied to THOMAS through the network

  9. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  10. Response of the North-African summer monsoon to precession and obliquity forcing in EC-Earth

    Science.gov (United States)

    Bosmans, Joyce; Drijfhout, Sybren; Tuenter, Erik; Lourens, Lucas; Hilgen, Frederik

    2013-04-01

    We have used a high-resolution coupled climate model, EC-Earth, to investigate the response of the North-African summer monsoon to separate precession and obliquity forcing. Four experiments were performed: minimum and maximum precession, both with fixed minimum obliquity, and maximum and minimum obliquity, both with a circular orbit in order to exclude precession. We compare our results to previous model results (Tuenter et al. 2003, The response of the African summer monsoon to remote and local forcing due to precession and obliquity, Global and Planetary Change 36: 219-235), in which the same experimental set-up was used for an intermediate complexity model. In our EC-Earth experiments, strongly increased summer insolation during a precession minimum compared to a precession maximum results in more intense and more northward heat lows over the Sahara, drawing in stronger south-westerly winds. A stronger South Atlantic high pressure area further enhances the meridional pressure gradient across the equator. Precipitation over the tropical Atlantic is decreased and more moisture is transported landwards from both the northern and southern tropical Atlantic. The African Easterly Jet and Inter Tropical Convergence Zone are located further north, in agreement with the strengthening and northward extension of monsoonal precipitation. Obliquity-induced summer insolation changes over the tropics are very small, but nonetheless they result in notable changes in precipitation and monsoonal circulation over North-Africa. During high obliquity monsoonal precipitation is slightly increased and extends further north, in relation to stronger and more northward heat lows over the Sahara. The precipitation increase originates mostly from the tropical Atlantic. Our results provide an explanation for the precession and obliquity signals preserved in the sedimentary record of North-Africa, but the mechanisms are very different than suggested in a previous model study (Tuenter et al

  11. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Correa, Cinthia Antunes; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, Mariana; Gemmi, M.; Kopeček, Jaromír; Domeneghetti, C.; Cámara, F.; Petříček, Václav

    2015-01-01

    Roč. 71, č. 6 (2015), 740-751 ISSN 2052-5206 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-25747S; GA MŠk LO1409 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Keywords : XRD * structure refinement * precession electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.892, year: 2015

  12. Spin Asymmetries on Nucleon Experiment at Jefferson Lab

    International Nuclear Information System (INIS)

    The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

  13. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    Directory of Open Access Journals (Sweden)

    Tobias Heindel

    2017-12-01

    Full Text Available The dark exciton state in semiconductor quantum dots (QDs constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01 ns corresponding to a fine-structure splitting of (5.0 ± 0.7 μeV between its eigenstates ↑⇑±↓⇓. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  14. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    Science.gov (United States)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  15. Spin and Valley Physics in Two Dimensional Systems: Graphene and Superconducting Transition Metal Dichalcogenides

    Science.gov (United States)

    Sosenko, Evan Boyd

    Recent focus on two dimensional materials and spin-coupled phenomena holds future potential for fast, efficient, flexible, and transparent devices. The fundamental operation of a spintronic device depends on the injection, transmission, and detection of spins in a conducting channel. Long spin lifetimes during transit are critical for realizing this technology. An attractive platform for this purpose is graphene, which has high mobilities and low spin-orbit coupling. Unfortunately, measured spin lifetimes are orders of magnitude smaller than theoretically expected. A source of spin loss is the resistance mismatch between the ferromagnetic electrodes and graphene. While this has been studied numerically, here we provide a closed form expression for Hanle spin precession which is the standard method of measuring spin lifetimes. This allows for a detailed characterization of the nonlocal spin valve device. Strong spin-orbit interaction has the potential to engender unconventional superconducting states. A cousin to graphene, two dimensional transition metal dichalcogenides entwine interaction, spin-orbit coupling, and topology. The noninteracting electronic states have multiple valleys in the energy dispersion and are topologically nontrivial. We report on the possible superconducting states of hole-doped systems, and analyze to what extent the correlated phase inherits the topological aspects of the parent crystal. We find that local attractive interactions or proximal coupling to s-wave superconductors lead to a pairing which is an equal mixture of a spin singlet and the m = 0 spin triplet. Its topology allows quasiparticle excitations of net nonzero Berry curvature via pair-breaking by circularly polarized light. The valley contrasting optical response, where oppositely circularly polarized light couples to different valleys, is present even in the superconducting state, though with smaller magnitude.

  16. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  17. Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation

    Directory of Open Access Journals (Sweden)

    K. Nishibayashi

    2013-03-01

    Full Text Available We have investigated thermal effects on the dynamics of laser-induced precession of magnetization in ferrimagnetic GdFe thin films under low-excitation conditions (6-60 μJ/cm2. An increase in quasi-equilibrium temperature by laser heating causes a shift in precession frequency, which is explained analytically by the alteration of the magnetic anisotropy field by 2.2 [Oe] at a pulse fluence of 1 μJ/cm2. We have also demonstrated coherent control of the precession amplitude using a sequence of two laser pulses, each with a fluence of 18 μJ/cm2, and point out the importance of low-power excitation for precise control of the dynamic states.

  18. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    effort (Thomas Roser is the spokesperson). Waldo Mackay, the Project Manager for spin, leads a weekly accelerator meeting on spin issues on Wednesdays. Finally, Phenix, STAR, and the pp2pp Collaboration have regular collaboration meetings including spin, and spin working groups.

  19. High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations

    Science.gov (United States)

    Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.

    2011-05-01

    We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.

  20. Internal Field of Homogeneously Magnetized Toroid Sensor for Proton Free Precession Magnetometer

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Merayo, José M.G.; Brauer, Peter

    2005-01-01

    The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis of the to......The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis...... of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.......08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 InT....

  1. Monitoring electrochemical reactions in situ using steady-state free precession {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others

    2014-11-19

    Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)

  2. Evidence for Precession due to Supercritical Accretion in Ultraluminous X-Ray Sources

    Science.gov (United States)

    Weng, Shan-Shan; Feng, Hua

    2018-02-01

    Most ultraluminous X-ray sources (ULXs) are thought to be supercritical accreting compact objects, where massive outflows are inevitable. Using the long-term monitoring data with the Swift X-ray Telescope, we identified a common feature in bright, hard ULXs: they display a quasi-periodic modulation in their hard X-ray band but not in their soft band. As a result, some sources show a bimodal distribution on the hardness intensity map. We argue that these model-independent results can be well interpreted in a picture that involves supercritical accretion with precession, where the hard X-ray emission from the central funnel is more or less beamed, while the soft X-rays may arise from the photosphere of the massive outflow and be nearly isotropic. It implies that precession may be ubiquitous in supercritical systems, such as the Galactic microquasar SS 433. How the hard X-rays are modulated can be used to constrain the angular distribution of the hard X-ray emission and the geometry of the accretion flow. We also find that two ULX pulsars (NGC 5907 ULX-1 and NGC 7793 P13) show similar behaviors but no bimodal distribution, which may imply that they have a different beaming shape or mechanism.

  3. Constraints on Non-Standard Gravitomagnetism by the Anomalous Perihelion Precession of the Planets

    Directory of Open Access Journals (Sweden)

    Luis Acedo

    2014-09-01

    Full Text Available In 2008, a team of astronomers reported an anomalous retrograde precession of the perihelion of Saturn amounting to \\(\\Delta \\dot{\\omega}_{\\mathrm{SATURN}}=-0.006(2\\ arcsec per century (arcsec cy\\(^{-1}\\. This unexplained precession was obtained after taking into account all classical and relativistic effects in the context of the highly refined EPM2008 ephemerides. More recent analyzes have not confirmed this effect, but they have found similar discrepancies in other planets. Our objective in this paper is to discuss a non-standard model involving transversal gravitomagnetism generated by the Sun as a possible source of these potential anomalies, to be confirmed by further data analyses. In order to compute the Lense–Thirring perturbations induced by the suggested interaction, we should consider the orientation of the Sun's rotational axis in Carrington elements and the inclination of the planetary orbits with respect to the ecliptic plane. We find that an extra component of the gravitomagnetic field not predicted by General Relativity could explain the reported anomalies without conflicting with the Gravity Probe B experiment and the orbits of the geodynamics satellites.

  4. Transport theory for femtosecond laser-induced spin-transfer torques

    Science.gov (United States)

    Baláž, Pavel; Žonda, Martin; Carva, Karel; Maldonado, Pablo; Oppeneer, Peter M.

    2018-03-01

    Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables the treatment of noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau–Lifshitz–Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.

  5. Transport theory for femtosecond laser-induced spin-transfer torques.

    Science.gov (United States)

    Baláž, Pavel; Žonda, Martin; Carva, Karel; Maldonado, Pablo; Oppeneer, Peter M

    2018-03-21

    Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables the treatment of noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau-Lifshitz-Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.

  6. Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

    Science.gov (United States)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas

    2017-12-01

    We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

  7. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  8. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers

    Science.gov (United States)

    van't Erve, O. M. J.; Friedman, A. L.; Li, C. H.; Robinson, J. T.; Connell, J.; Lauhon, L. J.; Jonker, B. T.

    2015-06-01

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  9. Recent Progress on the Description of Relativistic Spin: Vector Model of Spinning Particle and Rotating Body with Gravimagnetic Moment in General Relativity

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2017-01-01

    Full Text Available We review the recent results on development of vector models of spin and apply them to study the influence of spin-field interaction on the trajectory and precession of a spinning particle in external gravitational and electromagnetic fields. The formalism is developed starting from the Lagrangian variational problem, which implies both equations of motion and constraints which should be presented in a model of spinning particle. We present a detailed analysis of the resulting theory and show that it has reasonable properties on both classical and quantum level. We describe a number of applications and show how the vector model clarifies some issues presented in theoretical description of a relativistic spin: (A one-particle relativistic quantum mechanics with positive energies and its relation with the Dirac equation and with relativistic Zitterbewegung; (B spin-induced noncommutativity and the problem of covariant formalism; (C three-dimensional acceleration consistent with coordinate-independence of the speed of light in general relativity and rainbow geometry seen by spinning particle; (D paradoxical behavior of the Mathisson-Papapetrou-Tulczyjew-Dixon equations of a rotating body in ultrarelativistic limit, and equations with improved behavior.

  10. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  11. The Precession Technique in Electron Diffraction and Its Application to Structure Determination of Nano-Size Precipitates in Alloys

    Science.gov (United States)

    Gjønnes, J.; Hansen, V.; Kverneland, A.

    2004-02-01

    Crystal structure of nano-scale precipitates in age-hardening aluminum alloys is a challenge to crystallography. The utility of selected area electron diffraction intensities from embedded precipitates is limited by double scattering via matrix reflections. This effect can be signally reduced by the precession technique, which we have used to collect extensive intensity data from the semicoherent, metastable [eta][prime prime or minute]-precipitate in the Al-Zn-Mg alloy system. A structure model in the space group P-62c is proposed from high-resolution microscopy and electron diffraction intensities. The advantages of using the precession technique for quantitative electron diffraction is discussed.

  12. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  13. SOME ASPECTS OF CONTEMPORARY ATHEISM AND ST. THOMAS AQUINA

    Directory of Open Access Journals (Sweden)

    CH. MOREROD

    2010-10-01

    Full Text Available Atheism has become fashionable in the recent years. It has diff erent forms, but in many cases starts from the presupposition that the only rational approach is the one of natural sciences. Believers have the duty to provide some answers to the atheists, also at the philosophical level. St. Thomas Aquinas off ers several arguments that can be explained in contemporary terms: the Universe needs a fi rst cause, which acts also through created causes; our desire for the infi nite is a sign of God; the order of the Universe suggests and organizer

  14. Las revoluciones de Thomas Kuhn, una mirada discontinuista

    OpenAIRE

    Melogno, Pablo

    2015-01-01

    Resumen Se discuten algunas divergencias entre La revolución copernicana (1957) y La estructura de las revoluciones científicas (1962), de Thomas Kuhn. Se muestra que presentan una consideración diferente de los factores extracientíficos, que tienen en la primera un peso explicativo mayor. Se propone que en 1957 Kuhn maneja una historiografía casuística, centrada en la revolución copernicana, y en 1962 una historiografía estructural, centrada en los rasgos invariantes de las revoluciones cien...

  15. Local Lorentz transformations and Thomas effect in general relativity

    Science.gov (United States)

    Silenko, Alexander J.

    2016-06-01

    The tetrad method is used for an introduction of local Lorentz frames and a detailed analysis of local Lorentz transformations. A formulation of equations of motion in local Lorentz frames is based on the Pomeransky-Khriplovich gravitoelectromagnetic fields. These fields are calculated in the most important special cases and their local Lorentz transformations are determined. The local Lorentz transformations and the Pomeransky-Khriplovich gravitoelectromagnetic fields are applied for a rigorous derivation of a general equation for the Thomas effect in Riemannian spacetimes and for a consideration of Einstein's equivalence principle and the Mathisson force.

  16. Thomas L.Friedman, „Lexus ir alyvmedis“, recenzija

    OpenAIRE

    Karpavičiūtė, Ieva

    2006-01-01

    Vienas dažniausiai cituojamų globalizacijos optimistų, hiperglobalistų - New York Times užsienio reikalų skilties apžvalgininkas Thomas L. Friedman, stengiasi savitai pažvelgti į globalizacijos procesus, išskirti pagrindines tendencijas, pažvelgti į jų teigiamas bei neigiamas pasekmes. T.L. Friedman dar 1999 metais išleistoje knygoje “Lexus ir alyvmedis” analizuoja globalėjimą, teigia technologinį determinizmą ir akcentuoja JAV vaidmens globalizacijos procesuose unikalumą bei svarbą. Knyga „L...

  17. Status of Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    International Nuclear Information System (INIS)

    H.A. Grunder

    1997-01-01

    When first beam was delivered on target in July 1994, the Continuous Electron Beam Accelerator Facility (CEBAF), in Newport News, Virginia realized the return on years of planning and work to create a laboratory devoted to exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. Dedicated this year as the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the completion of construction and beginning of its experimental program has culminated a process that began more than a decade ago with the convening of the Bromley Panel to look at research possibilities for such an electron accelerator

  18. Thomas James Walker (1835-1916): Surgeon and general practitioner.

    Science.gov (United States)

    Thomas, Martyn

    2018-02-01

    Thomas James Walker was a surgeon and general practitioner who worked in the city of Peterborough at a time when there were changes and innovations in the practice of medicine. After training in medicine and surgery at Edinburgh University, he qualified in London in 1857. He was a pioneer of laryngoscopy. He played an important role in introducing antiseptic surgery to the Peterborough Infirmary and was instrumental in the development of the operating theatre which opened in 1894. He was a philanthropist and collector of Roman and Saxon artefacts. In 1915, he was recognized as an outstanding member of the Peterborough community when he was offered the Freedom of the City.

  19. Nom comú i nom propi segons Thomas Hobbes

    Directory of Open Access Journals (Sweden)

    Josep Moran i Ocerinjauregui

    2014-01-01

    Full Text Available Thomas Hobbes (1588-1679 tracta el llenguatge humà, i més concretament els noms, des d’un punt de vista filosòfic. Per a Hobbes, els noms són designadors de conceptes: els noms propis designen una sola cosa mentre que els noms comuns en designen diverses. Aquestes idees van ser objecte de reflexió filosòfica i van tenir gran influència en altres filòsofs, com John Stuart Mill.

  20. Logical consistence and operating base in Thomas Hobbes. [Spanish

    Directory of Open Access Journals (Sweden)

    Rusbel Martínez Rodríguez

    2006-01-01

    Full Text Available The aim of this paper is to specify the operative elements included in the Thomas Hobbes philosophy substratum. I defend the idea that the logic in the Hobbes philosophy system depends on this substratum. In this paper I use the idea of «operative and thematic concepts» development by Eugen Fink. These concepts are used to show how all of the Hobbes philosophy system has explicit and implicit concepts. Another aim is to concede the importance of understanding the Hobbes philosophy as holistic.

  1. Porter-Thomas distribution in unstable many-body systems

    International Nuclear Information System (INIS)

    Volya, Alexander

    2011-01-01

    We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.

  2. Shell model test of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  3. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  4. Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.

    Science.gov (United States)

    Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua

    2017-07-13

    The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.

  5. Reexamination of shell model tests of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1983-01-01

    Recent shell model calculations have yielded width amplitude distributions which have apparently not agreed with the Porter-Thomas distribution. This result conflicts with the present experimental evidence. A reanalysis of these calculations suggests that, although correct, they do not imply that the Porter-Thomas distribution will fail to describe the width distributions observed experimentally. The conditions for validity of the Porter-Thomas distribution are discussed

  6. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  7. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  8. Electronic properties of quasi one-dimensional quantum wire models under equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions in the presence of an in-plane magnetic field

    International Nuclear Information System (INIS)

    Papp, E.; Micu, C.; Racolta, D.

    2013-01-01

    In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis

  9. Vigencia de algunas de las ideas mercantilistas de Thomas Mun

    Directory of Open Access Journals (Sweden)

    Emmanuel Borgucci

    2011-01-01

    Full Text Available Generalmente cuando se aborda el mercantilismo se hace referencia a la acumulación de oro y plata, una balanza de pagos favorable o a la política económica de Jean Colbert. Pero poco se ha hablado del papel y condiciones necesarias del comerciante como agente que hizo posible que los primeros Estados-Nación se convirtieran en las futuras potencias económicas del mundo occidental. Thomas Mun fue uno de aquellos escritores mercantilistas que destacó el papel del comerciante en el auge del sistema mercantilista. El estudio de sus ideas permite concluir que sus recomendaciones acerca de lo que debería ser un comerciante de éxito siguen vigentes hoy en día. La razón de tal afirmación estriba en que sus recomendaciones eran adecuadas en un marco en que se estaba presentando una transformación significativa del sistema de organización comercial con la presencia de la Joint-Stock Company. Independientemente de que muchas de las funciones que Thomas Mun le atribuía al comerciante hoy en día son especializadas, su dominio sigue siendo la clave del éxito de una política comercial que emprenda cualquier nación.

  10. FEMALE SURVIVORS IN THOMAS HARDY‘S THE WITHERED ARM

    Directory of Open Access Journals (Sweden)

    Yulistiyanti Yulistiyanti

    2017-12-01

    Full Text Available This article discusses women position in society that Thomas Hardy portrays in his short story entitled The Withered Arm. This short story tells about two female character have closerelationship to the same man. The man comes from upper class. The first woman from lower class has a son of his, but they do not live together. Then, the second one is his new young wife. This short story takes rural area, Dorset as the setting of place where the society has intimate relationships and setting of time is in Victorian era. It applied feminism theory that focuses on male and female positions in society. Beauvoir (1949 considered that the male in French and Western societies defines what it means to be human and what it means to be female. The female becomes subordinate to the male. It applies qualitative analysis method. The text is analyzed relating to the female characters‘ position in society. Their positions make them get discrimination which society created. Thomas Hardy‘s short story will be analyzed on discrimination to female characters. The data shows that the two female characters are oppressed on their conditions. Although they do not get physical harassment, the oppression comes from social injustice that women do not get equal benefit and opportunities. Both of them survive to obtain what they need. These characters use their ways as the survivors because of unfair condition.

  11. Told by a myth: Thomas Mann’s Felix Krull

    Directory of Open Access Journals (Sweden)

    Montiel, Luis

    2013-12-01

    Full Text Available This article proposes an approach to the novel Bekenntnisse des Hochstaplers Felix Krull by Thomas Mann from the point of view of the imaginal psychology of James Hillman. From this perspective the novel seems to illustrate the most innovative thesis of that psychology, which is especially relevant for having been written prior to the formulation of Hillman’s theories. The unplanned correspondence between both ways of thinking furnishes a valuable argument that supports the new conception of human psyche introduced by Carl Gustav Jung and developed in this way by James Hillman.El presente artículo propone una lectura de la novela de Thomas Mann desde la óptica de la psicología imaginal de James Hillman. En esta perspectiva la novela parece ofrecer una ilustración de las tesis más innovadoras de dicha psicología, lo que resulta especialmente relevante por haber sido escrita con antelación a la formulación de las teorías del pensador estadounidense. La impremeditada correspondencia entre ambos pensamientos suministra un argumento digno de tenerse en cuenta a favor de la innovadora concepción de la psique humana inaugurada por Carl Gustav Jung y desarrollada en esta línea por James Hillman.

  12. Instantons, quivers and noncommutative Donaldson-Thomas theory

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele, E-mail: cirafici@math.ist.utl.pt [Centro de Analise Matematica, Geometria e Sistemas Dinamicos, Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Sinkovics, Annamaria, E-mail: A.Sinkovics@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Szabo, Richard J., E-mail: R.J.Szabo@ma.hw.ac.uk [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom)

    2011-12-11

    We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.

  13. O Estado cristão em Thomas Hobbes

    Directory of Open Access Journals (Sweden)

    Daniel Artur Emidio Branco

    2016-12-01

    Full Text Available O presente artigo tem como finalidade a investigação do pensamento do filósofo inglês Thomas Hobbes (1588-1679, mais precisamente a relação entre Igreja e Estado, valendo-se de suas obras, em especial Leviatã (1651. Com o título O Estado Eclesiástico em Thomas Hobbes, o artigo busca mostrar como as conclusões de Hobbes acerca do papel da Igreja no Estado são relevantes para o século XXI. A concepção de Evangelho de Cristo como um reino de outro mundo, a natureza privada da fé, o pontificado do soberano como aquele que se posiciona está entre Deus e os homens, a união entre Lei Mosaica e Lei Natural e a união entre Igreja e Estado são os delimitadores do grande tema, que busca levar o leitor contemporâneo ao conhecimento das conclusões de Hobbes e, assim, considerar a aplicação das mesmas a sua geração.

  14. Thomas Willis: the faculties and his two cognitive frameworks.

    Science.gov (United States)

    McNabb, Jody

    2014-11-01

    Thomas Willis' 1664 study The anatomy of the brain is widely regarded as one of the first clinical studies of the brain. In Theanatomy, Thomas Willis explicitly connected the cognitive faculties and the nerves. Willis' later, 1672 work, The two discourses concerning the soul of brutes, severely undermined the materialism of Willis' first study: he affirmed dualism and cognitive immateriality; changed the anatomical locations of cognition; and reasserted a division between the rational and sensitive souls. His exact motive to return to orthodoxy is unclear, but contemporary scholarship of Willis has compounded the confusion with by relying predominantly on The soul of brutes instead of The anatomy. We trace Willis' career and examine his methodological practices, which help explain the historical practices and pressures. A closer examination of Willis' Anatomy of the brain reveals a much more materialistic account of the brain, the faculties, and nervous system. In this article, we present our own analysis of Willis' concept of rationality in the Anatomy and explain its importance for nervous physiology and understanding the analytic techniques for first defining faculty localizations. We then explain the role of the imagination and the immortal soul in the rearticulated anatomical concepts from The soulof brutes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Philosophical Creationism: Thomas Aquinas’ Metaphysics of Creatio ex Nihilo

    Directory of Open Access Journals (Sweden)

    Andrzej Maryniarczyk

    2016-03-01

    Full Text Available All philosophers, beginning with the pre-Socratics, through Plato and Aristotle, and up to Thomas Aquinas, accepted as a certain that the world as a whole existed eternally. The foundation for the eternity of the world was the indestructible and eternal primal building material of the world, a material that existed in the form of primordial material elements (the Ionians, in the form of ideas (Plato, or in the form of matter, eternal motion, and the first heavens (Aristotle. The article outlines the main structure of the philosophical theory of creation ex nihilo developed by St. Thomas Aquinas and indebted to his metaphysical thought. It shows the wisdom-based and ratiocinative foundation of the rational cognition of reality—reality that comes from the personal creative act of God. It concludes that the perception that the beings called to existence by the personal act of God the Creator are intelligible is the ultimate rational justification for the fact that our human cognition, love, and spiritual creativity are rational.

  16. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    NARCIS (Netherlands)

    Bosmans, J.H.C.; Drijfhout, S.S.; Tuenter, E.; Hilgen, F.J.; Lourens, L.J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing

  17. Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study

    Czech Academy of Sciences Publication Activity Database

    Plášil, J.; Palatinus, L.; Rohlíček, J.; Houdková, L.; Klementová, Mariana; Goliáš, V.; Škácha, P.

    2014-01-01

    Roč. 99, 2-3 (2014), s. 276-282 ISSN 0003-004X Institutional support: RVO:61388980 Keywords : Widenmannite * uranyl bicarbonate * crystal structure * precession electron diffraction * synchrotron powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.964, year: 2014

  18. Myocardial tagging with steady state free precession techniques and semi-automatic postprocessing--impact on diagnostic value

    DEFF Research Database (Denmark)

    Johnson, Thorsten R C; Bayrhof, Nicole; Huber, Armin

    2007-01-01

    Our aim was to determine the diagnostic value of myocardial tagging sequences with regard to the evaluable share of the cardiac cycle. Thirty-three patients were examined at 1.5 T using tagging sequences with gradient-echo (GRE) readout, 18 patients at 1.5 T with steady-state free precession (SSF...

  19. Spinning Black Hole Pairs: Dynamics and Gravitational Waves

    Science.gov (United States)

    Grossman, Rebecca

    Black hole binaries will be an important source of gravitational radiation for both ground-based and future space-based gravitational wave detectors. The study of such systems will offer a unique opportunity to test the dynamical predictions of general relativity when gravity is very strong. To date, most investigations of black hole binary dynamics have focused attention on restricted scenarios in which the black holes do not spin (and thus are confined to move in a plane) and/or in which they stay on quasi-circular orbits. However, spinning black hole pairs in eccentric orbits are now understood to be astrophysically equally important. These spinning binaries exhibit a range of complicated dynamical behaviors, even in the absence of radiation reaction. Their conservative dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. Although the motion seems to defy simple decoding, we are able to quantitatively define and describe the fully three-dimensional motion of arbitrary mass-ratio binaries with at least one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by constructing an instantaneous orbital plane and showing that the motion captured in that plane obeys elegant topological rules. In this thesis, we apply the above prescription to two formal systems used to model black hole binaries. The first is defined by the conservative 3PN Hamiltonian plus spin-orbit coupling and is particularly suitable to comparable-mass binaries. The second is defined by geodesics of the Kerr metric and is used exclusively for extreme mass-ratio binaries. In both systems, we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rational numbers, we are able to show that all of the

  20. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  1. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor.

    Science.gov (United States)

    Matsunaga, Ryusuke; Tsuji, Naoto; Fujita, Hiroyuki; Sugioka, Arata; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Aoki, Hideo; Shimano, Ryo

    2014-09-05

    Superconductors host collective modes that can be manipulated with light. We show that a strong terahertz light field can induce oscillations of the superconducting order parameter in NbN with twice the frequency of the terahertz field. The result can be captured as a collective precession of Anderson's pseudospins in ac driving fields. A resonance between the field and the Higgs amplitude mode of the superconductor then results in large terahertz third-harmonic generation. The method we present here paves a way toward nonlinear quantum optics in superconductors with driving the pseudospins collectively and can be potentially extended to exotic superconductors for shedding light on the character of order parameters and their coupling to other degrees of freedom. Copyright © 2014, American Association for the Advancement of Science.

  2. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  3. A comment on the calculation of periastron precession in general relativity

    Science.gov (United States)

    Crawford, James

    2013-04-01

    Periastron precession is one of the three classical tests of General Relativity, and as such its calculation appears in virtually all text books on the subject. In almost all of these texts the calculation proceeds perturbatively from the Kepler solution to the Newtonian formulation. This calculation is rather cumbersome, typically taking a few pages of text to complete. In fact, the calculation can be completed in one line if the Kepler solution is not taken as the starting point. As far as I have been able to determine, this procedure has explicitly appeared in only one text, published in 2010. In this talk I review the perturbative procedure and compare it to the alternative. This material should be of interest to anyone who teaches a course in general relativity.

  4. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    Science.gov (United States)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  5. Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method

    Science.gov (United States)

    Kudak, V. I.; Epishev, V. P.; Perig, V. M.; Neybauer, I. F.

    2017-07-01

    We present the results of photometric observations of the TOPEX/Poseidon satellite performed during 2008-2016. The satellite become space debris after a failure in January, 2006, in a low Earth orbit. In the Laboratory of Space Research of Uzhhorod National University 73 light curves of the spacecraft were obtained. Standardization of photometric light curves is briefly explained. We have calculated the color indices of reflecting surfaces and the spin rate change. The general tendency of the latter is described by an exponential decay function. The satellite spin periods based on 126 light curves (including 53 light curves from the MMT-9 project operating since 2014) were taken into account. In 2016 the period of its own rotation reached its minimum of 10.6 s. A method to derive the direction of the spin axis of an artificial satellite and the angles of the light scattered by its surface has been developed in the Laboratory of Space Research of Uzhhorod National University. We briefly describe the "Orientation" program used for these purposes. The orientation of the TOPEX/Poseidon satellite in mid-2016 is given. The angle of precession β = 45°-50° and period of precession P pr = 141.5 s have been defined. The reasons for the identified nature of the satellite's own rotation have been found. They amount to the perturbation caused by a deviation of the Earth gravity field from a central-symmetric shape and the presence of moving parts on the satellite.

  6. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  7. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Kindervater, J. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218 (United States); Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2016-11-21

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  8. Thomas Hobbes: la resistencia política al Leviatán || Thomas Hobbes: Political Resistance To Leviathan

    Directory of Open Access Journals (Sweden)

    Diego Alejandro Fernández Peychaux

    2013-12-01

    Full Text Available RESUMEN En el presente artículo se presentan cuatro claves de lectura de la obra de Thomas Hobbes desde las que fundamentar una noción de resistencia. Este aporte busca, en otras palabras, crear las condiciones de posibilidad de un debate filosófico ofuscado por el mito recurrente sobre el supuesto monstruo de Malmesbury. Una vez hecho esto, se propone delinear las bases de un enfoque metodológico que parta de dicha noción de resistencia. De ese modo, se fundamentaría el primer paso hacia una apropiación ?o expropiación? contemporánea de la matriz hobbesiana de la relación obediencia-seguridad   ABSTRACT This article presents four key of readings about Thomas Hobbes's work, from which it supports a particular notion of resistance. In others words, this contribution searches to create the conditions of posibility for a philosophical debate obfuscated by the recurrent myth about the monster of Malmesbury. Once done that, I offer setting the bases of a metodological aproach which stars from this notion of resistance. Thus, I would back the first step towards a contemporary appropriation ?or expropriation? of the obedience-security relationship within the Hobbesian matrix.  

  9. First record of Histiotus laephotis Thomas (Chiroptera, Vespertilionidae from Brazil Primeiro registro de Histiotus laephotis Thomas (Chiroptera, Vespertilionidae no Brasil

    Directory of Open Access Journals (Sweden)

    João M. D. Miranda

    2007-12-01

    Full Text Available The first record of Histiotus laephotis Thomas, 1916 from Brazil is reported here. An adult male was caught with a mist net in a barn located within an Araucaria pine forest in the municipality of Passos Maia, State of Santa Catarina, Southern Brazil (26º46'48"S and 52º03'34"W. This record extends the distribution of this species in South America. Morphological and taxonomic notes of this species are described as well.O primeiro registro de Histiotus laephotis Thomas, 1916 o Brasil é aqui reportado. Um macho adulto foi coletado com rede de neblina (em abrigo artificial nos domínios da Floresta com Araucária, no Município de Passos Maia, Estado de Santa Catarina, Sul do Brasil (26º46'48"S e 52º03'34"W. Este registro amplia a distribuição da própria espécie na América do Sul. Aspectos morfológicos e taxonômicos desta espécie são também descritos.

  10. Thomas Hobbes: la resistencia política al Leviatán || Thomas Hobbes: Political Resistance To Leviathan

    Directory of Open Access Journals (Sweden)

    Diego Alejandro Fernández Peychaux

    2013-12-01

    Full Text Available RESUMEN En el presente artículo se presentan cuatro claves de lectura de la obra de Thomas Hobbes desde las que fundamentar una noción de resistencia. Este aporte busca, en otras palabras, crear las condiciones de posibilidad de un debate filosófico ofuscado por el mito recurrente sobre el supuesto monstruo de Malmesbury. Una vez hecho esto, se propone delinear las bases de un enfoque metodológico que parta de dicha noción de resistencia. De ese modo, se fundamentaría el primer paso hacia una apropiación ?o expropiación? contemporánea de la matriz hobbesiana de la relación obediencia-seguridad   ABSTRACT This article presents four key of readings about Thomas Hobbes's work, from which it supports a particular notion of resistance. In others words, this contribution searches to create the conditions of posibility for a philosophical debate obfuscated by the recurrent myth about the monster of Malmesbury. Once done that, I offer setting the bases of a metodological aproach which stars from this notion of resistance. Thus, I would back the first step towards a contemporary appropriation ?or expropriation? of the obedience-security relationship within the Hobbesian matrix.

  11. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  12. Thomas Mofolo: the man, the writer and his contexts | Gill | Tydskrif ...

    African Journals Online (AJOL)

    Thomas Mofolo: the man, the writer and his contexts. Stephen Gill. Abstract. A substantial corpus of research has been published on Thomas Mofolo since the 1930s. Earlier portraits of Mofolo as a person leave much room for further amplification and improvement. The present research seeks to greatly enhance our ...

  13. Contributions to the knowledge of Banasa Stål (Hemiptera, Heteroptera, Pentatomidae: Banasa chaca Thomas

    Directory of Open Access Journals (Sweden)

    Thereza de Almeida Garbelotto

    2011-09-01

    Full Text Available Contributions to the knowledge of Banasa Stål (Hemiptera, Heteroptera, Pentatomidae: Banasa chaca Thomas. The male of Banasa chaca Thomas is described with emphasis on external and internal genitalia and the female internal genitalia is described. Banasa chaca is newly recorded from Buenos Aires Province (Argentina.

  14. 76 FR 58033 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF THE INTERIOR National Park Service [2253-665] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington State Museum (Burke...

  15. 75 FR 78335 - Culturally Significant Objects Imported for Exhibition Determinations: “Thomas Lawrence: Regency...

    Science.gov (United States)

    2010-12-15

    ... DEPARTMENT OF STATE [Public Notice 7268] Culturally Significant Objects Imported for Exhibition Determinations: ``Thomas Lawrence: Regency Power and Brilliance'' SUMMARY: Notice is hereby given of the... determine that the objects to be included in the exhibition ``Thomas Lawrence: Regency Power and Brilliance...

  16. 78 FR 45958 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2013-07-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-13406; PPWOCRADN0-PCU00RP14.R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke...

  17. 77 FR 46117 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2012-08-02

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-10823; 2200-1100-665] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington...

  18. 75 FR 5105 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2010-02-01

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service... and associated funerary objects in the possession of the Thomas Burke Memorial Washington State Museum...

  19. 78 FR 11675 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2013-02-19

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-12080;2200-1100-665] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke Memorial Washington...

  20. 78 FR 50443 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Science.gov (United States)

    2013-08-19

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-13482; PPWOCRADN0-PCU00RP14.R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Thomas Burke...