WorldWideScience

Sample records for third-order turbulence closures

  1. Improving Boundary-layer Turbulence and Cloud Processes in CAM with a Higher-order Turbulence Closure Scheme and ASR Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kuan-Man [NASA Langley Research Center, Hampton, VA (United States); Cheng, Anning [NASA Langley Research Center, Hampton, VA (United States); Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-11-24

    The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θl ), total water mixing ratio (qt), and vertical velocity (w) to represent any skewed turbulence circulation. The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and gridmean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments, i.e., the triple moments of θl, qt, and w, are predicted in IPHOC.

  2. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  3. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  4. Application of statistical dynamical turbulence closures to data assimilation

    International Nuclear Information System (INIS)

    O'Kane, Terence J; Frederiksen, Jorgen S

    2010-01-01

    We describe the development of an accurate yet computationally tractable statistical dynamical closure theory for general inhomogeneous turbulent flows, coined the quasi-diagonal direct interaction approximation closure (QDIA), and its application to problems in data assimilation. The QDIA provides prognostic equations for evolving mean fields, covariances and higher-order non-Gaussian terms, all of which are also required in the formulation of data assimilation schemes for nonlinear geophysical flows. The QDIA is a generalization of the class of direct interaction approximation theories, initially developed by Kraichnan (1959 J. Fluid Mech. 5 497) for isotropic turbulence, to fully inhomogeneous flows and has been further generalized to allow for both inhomogeneous and non-Gaussian initial conditions and long integrations. A regularization procedure or empirical vertex renormalization that ensures correct inertial range spectra is also described. The aim of this paper is to provide a coherent mathematical description of the QDIA turbulence closure and closure-based data assimilation scheme we have labeled the statistical dynamical Kalman filter. The mathematical formalism presented has been synthesized from recent works of the authors with some additional material and is presented in sufficient detail that the paper is of a pedagogical nature.

  5. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    Science.gov (United States)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  6. How Difficult is it to Reduce Low-Level Cloud Biases With the Higher-Order Turbulence Closure Approach in Climate Models?

    Science.gov (United States)

    Xu, Kuan-Man

    2015-01-01

    Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC

  7. Some Recent Developments in Turbulence Closure Modeling

    Science.gov (United States)

    Durbin, Paul A.

    2018-01-01

    Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.

  8. Scale separation closure and Alfven wave turbulence

    International Nuclear Information System (INIS)

    Chen, C.Y.; Mahajan, S.M.

    1985-04-01

    Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum

  9. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  10. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    Science.gov (United States)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  11. Analysis of turbulent conical diffuser flow using second moment closures

    International Nuclear Information System (INIS)

    Adane, K.K.; Tachie, M.F.; Ormiston, S.J.

    2004-01-01

    A commercial CFD code, CFX-TASCflow, is used to predict a turbulent conical diffuser flow. The computation was performed using a low-Reynolds number k-ω model, a low-Reynolds number k-ω based non-linear algebraic Reynolds stress model, and a second moment closure with a wall-function. The experimental data of Kassab are used to validate the numerical results. The results show that all the turbulence models reproduce the static pressure coefficient distribution reasonably well. The low Reynolds number k-ω models give better prediction of the friction velocity than the second moment closure. The models also predict the Reynolds shear stress reasonably well but fail to reproduce the correct level of the turbulent kinetic energy. (author)

  12. Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows

    Science.gov (United States)

    Norris, Andrew T.; Hsu, Andrew T.

    1994-01-01

    In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.

  13. Flow and transport simulation of Madeira River using three depth-averaged two-equation turbulence closure models

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2012-03-01

    Full Text Available This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k˜−ε˜,k˜−w˜, and k˜−ω˜ , were used to close the non-simplified quasi-three dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k˜−ω˜ model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.

  14. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  15. Magnetohydrodynamic turbulence

    CERN Document Server

    Biskamp, Dieter

    2003-01-01

    This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi

  16. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  17. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  18. Final Report to the U.S. Department of Energy for studies of Evaluation of Turbulence Parameterizations for Cloud-Resolving Models

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David A. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science; Cheng, Anning [Science Systems and Applications, Inc. (SSAI), Lanham, MD (United States); NASA Langley Research Center, Hampton, VA (United States); Ghan, Steve [Science Systems and Applications, Inc. (SSAI), Lanham, MD (United States); NASA Langley Research Center, Hampton, VA (United States); Khairoutdinov, Marat [Science Systems and Applications, Inc. (SSAI), Lanham, MD (United States); NASA Langley Research Center, Hampton, VA (United States); Larson, Vince [Science Systems and Applications, Inc. (SSAI), Lanham, MD (United States); NASA Langley Research Center, Hampton, VA (United States); Moeng, Chin-Hoh [Science Systems and Applications, Inc. (SSAI), Lanham, MD (United States); NASA Langley Research Center, Hampton, VA (United States)

    2015-07-27

    The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θl ), total water mixing ratio (qt ), and vertical velocity (w ) to represent any skewed turbulence circulations .The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and grid-mean liquid water mixing ratio, as well as the buoyancy and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments (those of θl , qt , and w ) are predicted in the IPHOC.

  19. A mapping closure for turbulent scalar mixing using a time-evolving reference field

    Science.gov (United States)

    Girimaji, Sharath S.

    1992-01-01

    A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.

  20. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  1. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  2. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  3. Elliptic blending model : A new near-wall Reynolds-stress turbulence closure

    NARCIS (Netherlands)

    Manceau, R.; Hanjali?, K.

    2001-01-01

    A new approach to modeling the effects of a solid wall in one-point second-moment (Reynolds-stress) turbulence closures is presented. The model is based on the relaxation of an inhomogeneous (near-wall) formulation of the pressure–strain tensor towards the chosen conventional homogeneous

  4. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  5. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  6. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    Science.gov (United States)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-05-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  7. Inertial-range structure of Gross–Pitaevskii turbulence within a spectral closure approximation

    International Nuclear Information System (INIS)

    Yoshida, Kyo; Arimitsu, Toshihico

    2013-01-01

    The inertial-range structure of turbulence obeying the Gross–Pitaevskii equation, the equation of motion for quantum fluids, is analyzed by means of a spectral closure approximation. It is revealed that, for the energy-transfer range, the spectrum of the order parameter field ψ obeys k −2 law for k ≪ k * and k −1 law for k ≫ k * , where k * is the wavenumber where the characteristic timescales associated with linear and nonlinear terms are of the same order. It is also shown that, for the particle-number-transfer range, the spectrum obeys k −1 law for k ≪ k *, n and k −1/3 law for k ≫ k *,n , where k *,n is the wavenumber corresponding to k * in the particle-number-transfer range. (paper)

  8. Development of a three-dimensional local scale atmospheric model with turbulence closure model

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1989-05-01

    Through the study to improve SPEEDI's capability, a three-dimensional numerical atmospheric model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) was developed to apply it to the transport and diffusion evaluation over complex terrains. The detailed description of the atmospheric model was given. This model consists of five prognostic equations; the momentum equations of horizontal components with the so-called Boussinesq and hydrostatic assumptions, the conservation equations of heat, turbulence kinetic energy and turbulence length scale. The coordinate system used is the terrain following z * coordinate system which allows the existence of complex terrain. The minute formula of the turbulence closure calculation, the surface layer process, the ground surface heat budget, and the atmospheric and solar radiation were also presented. The time integration method used in this model is the Alternating Direction Implicit (A.D.I.) method with a vertically and horizontally staggered grid system. The memory storage needed to execute this model with 31 x 31 x 16 grid points, five layers in soil and double precision variables is about 5.3 MBytes. The CPU time is about 2.2 x 10 -5 s per one step per one grid point with a vector processor FACOM VP-100. (author)

  9. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  10. Higher-order turbulence statistics of wave–current flow over a submerged hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Krishnendu; Debnath, Koustuv; Mazumder, Bijoy S, E-mail: debnath_koustuv@yahoo.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-15

    Higher-order turbulence characteristics such as turbulence production, turbulence kinetic energy flux, third order moments and velocity spectra associated with turbulent bursting events due to the influence of a submerged hemisphere under wave–current interactions are presented. The velocity components were measured using three dimensional (3D) 16 MHz micro-acoustic Doppler velocimetry (Micro-ADV). In the wave–current interactions, the contributions of turbulent bursting events such as ejections and sweeps significantly reduce in comparison to the current-only case. The distributions of the mean time intervals of ejection and sweeping events are found to alter due to the superposition of surface waves. Results also depict that the turbulence production in the wake region of the hemisphere reduces remarkably, due to the superposition of surface waves on the current. Further, spectral and co-spectral analysis demonstrates that there is a significant reduction of power spectral peak for both longitudinal and bottom-normal velocities upon superposition of surface waves, which signifies a remarkable change in energy distribution between different frequencies of waves. (paper)

  11. Direct numerical simulation of natural convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.

    1996-01-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , in the case without mean stratification, periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of one-point statistics is presented: mean velocity and temperature, Reynolds stress components, turbulent heat fluxes and variance of temperature, but also budgets of second moment equations. This database is then used for testing of a second moment closure based on the Launder-Reece-Rodi model on an elliptic relaxation for near wall effects on pressure redistribution. This level of modelling is required by the presence of counter gradient fluxes, which cannot be accounted for eddy viscosity and eddy diffusivity assumptions. Furthermore, an algebraic third order moment closure was found necessary because of counter gradient turbulent transport terms which appear to mainly originate from the mean velocity and temperature gradient terms usually neglected in conventional transport models, such as the standard Daly-Harlow or Hanjalic-Launder models. (authors)

  12. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    Science.gov (United States)

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  13. Extreme learning machine for reduced order modeling of turbulent geophysical flows

    Science.gov (United States)

    San, Omer; Maulik, Romit

    2018-04-01

    We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.

  14. Advances in engineering turbulence modeling. [computational fluid dynamics

    Science.gov (United States)

    Shih, T.-H.

    1992-01-01

    Some new developments in two equation models and second order closure models are presented. In this paper, modified two equation models are proposed to remove shortcomings such as computing flows over complex geometries and the ad hoc treatment near the separation and reattachment points. The calculations using various two equation models are compared with direct numerical solutions of channel flows and flat plate boundary layers. Development of second order closure models will also be discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All existing models poorly predict the normal stresses near the wall and fail to predict the three dimensional effect of mean flow on the turbulence. The newly developed second order near-wall turbulence model to be described in this paper is capable of capturing the near-wall behavior of turbulence as well as the effect of three dimension mean flow on the turbulence.

  15. Numerical analysis of turbulent flow and heat transfer in a square sectioned U-bend duct by elliptic-blending second moment closure

    International Nuclear Information System (INIS)

    Shin, Jong Keun; Choi, Young Don; An, Jeong Soo

    2007-01-01

    A second moment turbulence closure using the elliptic-blending equation is introduced to analyze the turbulence and heat transfer in a square sectioned U-bend duct flow. The turbulent heat flux model based on the elliptic concept satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also, the traditional GGDH heat flux model is compared with the present elliptic concept-based heat flux model. The turbulent heat flux models are closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. The predicted results show their reasonable agreement with experimental data for a square sectioned U-bend duct flow field adopted in the present study

  16. Prediction of stably stratified homogeneous shear flows with second-order turbulence models

    International Nuclear Information System (INIS)

    Pereira, J C F; Rocha, J M P

    2010-01-01

    The present study investigated the role of pressure-correlation second-order turbulence modelling schemes on the predicted behaviour of stably stratified homogeneous vertical-sheared turbulence. The pressure-correlation terms were modelled with a nonlinear formulation (Craft 1991), which was compared with a linear pressure-strain model and the 'isotropization of production' model for the pressure-scalar correlation. Two additional modelling issues were investigated: the influence of the buoyancy term in the kinetic energy dissipation rate equation and the time scale in the thermal production term in the scalar variance dissipation equation. The predicted effects of increasing the Richardson number on turbulence characteristics were compared against a comprehensive set of direct numerical simulation databases. The linear models provide a broadly satisfactory description of the major effects of the Richardson number on stratified shear flow. The buoyancy term in the dissipation equation of the turbulent kinetic energy generates excessively low levels of dissipation. For moderate and large Richardson numbers, the term yields unrealistic linear oscillations in the shear and buoyancy production terms, and therefore should be dropped in this flow (or at least their coefficient c ε3 should be substantially reduced from its standard value). The mechanical dissipation time scale provides marginal improvements in comparison to the scalar time scale in the production. The observed inaccuracy of the linear model in predicting the magnitude of the effects on the velocity anisotropy was demonstrated to be attributed mainly to the defective behaviour of the pressure-correlation model, especially for stronger stratification. The turbulence closure embodying a nonlinear formulation for the pressure-correlations and specific versions of the dissipation equations failed to predict the tendency of the flow to anisotropy with increasing stratification. By isolating the effects of the

  17. Advancements in engineering turbulence modeling

    Science.gov (United States)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  18. Modelling turbulence around and inside porous media based on the second moment closure

    International Nuclear Information System (INIS)

    Kuwata, Yusuke; Suga, Kazuhiko

    2013-01-01

    Highlights: • A novel turbulence model for flows in porous media is proposed. • Three stress tensors emerging in double averaging N–S are individually modelled. • The most advanced second moment closure is applied for the macro-scale stress. • A one equation and the Smagorinsky models are applied to the other stresses. • Promising results are obtained in test flows around and inside porous media. -- Abstract: To predict turbulence in porous media, a new approach is discussed. By double (both volume and Reynolds) averaging Navier–Stokes equations, there appear three unknown covariant terms in the momentum equation. They are namely the dispersive covariance, the macro-scale and the micro-scale Reynolds stresses, in the present study. For the macro-scale Reynolds stress, the TCL (two-component-limit) second moment closure is applied whereas the eddy viscosity models are applied to the other covariant terms: the Smagorinsky model and the one-equation eddy viscosity model, respectively for the dispersive covariance and the micro-scale Reynolds stress. The presently proposed model is evaluated in square rib array flows and porous wall channel flows with reasonable accuracy though further development is required

  19. Third-order differential ladder operators and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Mateo, J; Negro, J

    2008-01-01

    Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting third-order differential ladder operators are studied. Each Hamiltonian has associated three-step Darboux (pseudo)-cycles and Painleve IV equations as a closure condition. The whole hierarchy is generated applying some operations on the cycles. These operations are investigated in the frame of supersymmetric quantum mechanics and mainly involve algebraic manipulations. A consistent geometric representation for the hierarchy and cycles is built that also helps in understanding the operations. Three kinds of hierarchies are distinguished and a realization based on the harmonic oscillator Hamiltonian is supplied, giving an interpretation for the spectral properties of the Hamiltonians of each hierarchy

  20. An Optimal Parametrization of Turbulent Scales

    Science.gov (United States)

    Thalabard, S.

    2015-12-01

    To numerically capture the large-scale dynamics of atmospheric flows, geophysicists need to rely on reasonable parametrizations of the energy transfers to and from the non-resolved small scale eddies, mediated through turbulence. The task is notoriously not trivial, and is typically solved by ingenious but ad-hoc elaborations on the concept of eddy viscosities. The difficulty is tied into the intrinsic Non-Gaussianity of turbulence, a feature that may explain why standard Quasi-Normal cumulant discard statistical closure strategies can fail dramatically, an example being the development of negative energy spectra in Millionshtchikov's 1941 Quasi-Normal (QN) theory. While Orszag's 1977 Eddy Damped Quasi Normal Markovian closure (EDQNM) provides an ingenious patch to the issue, the reason why the QN theory fails so badly is not so clear. Are closures necessarily either trivial or ad-hoc, when proxies for true ensemble averages are taken to be Gaussian ? The purpose of the talk is to answer negatively, using the lights of a new ``optimal closure framework'' recently exposed by [Turkington,2013]. For turbulence problems, the optimal closure allows a consistent use of a Gaussian Ansatz (and corresponding vanishing third cumulant) that also retains an intrinsic damping. The key to this apparent paradox lies in a clear distinction between the true ensemble averages and their proxies, most easily grasped provided one uses the Liouville equation as a starting point, rather than the cumulant hierarchy. Schematically said, closure is achieved by minimizing a lack-of-fit residual, which retains the intrinsic features of the true dynamics. The optimal closure is not restricted to the Gaussian modeling. Yet, for the sake of clarity, I will discuss the optimal closure on a problem where it can be entirely implemented, and compared to DNS : the relaxation of an arbitrarily far from equilibrium energy shell towards the Gibbs equilibrium for truncated Euler dynamics. Predictive

  1. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    Science.gov (United States)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  2. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    Science.gov (United States)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.

    2017-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF

  3. Turbulent mass transfer in electrochemical systems: Turbulence for electrochemistry, electrochemistry for turbulence

    International Nuclear Information System (INIS)

    Vorotyntsev, M.A.

    1991-01-01

    Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs

  4. Revisit to Grad's Closure and Development of Physically Motivated Closure for Phenomenological High-Order Moment Model

    International Nuclear Information System (INIS)

    Myong, R. S.; Nagdewe, S. P.

    2011-01-01

    The Grad's closure for the high-order moment equation is revisited and, by extending his theory, a physically motivated closure is developed for the one-dimensional velocity shear gas flow. The closure is based on the physical argument of the relative importance of various terms appearing in the moment equation. Also, the closure is derived such that the resulting theory may be inclusive of the well established linear theory (Navier-Stokes-Fourier) as limiting case near local thermal equilibrium.

  5. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  6. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  7. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  8. Statistical theory of resistive drift-wave turbulence and transport

    International Nuclear Information System (INIS)

    Hu, G.; Krommes, J.A.; Bowman, J.C.

    1997-01-01

    Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa endash Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. copyright 1997 American Institute of Physics

  9. Modelling complex draft-tube flows using near-wall turbulence closures

    Energy Technology Data Exchange (ETDEWEB)

    Ventikos, Y.; Sotiropoulos, F. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Patel, V.C. [Univ. of Iowa, Iowa City, IA (United States). Iowa Institute of Hydraulic Research

    1996-12-31

    This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.

  10. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  11. Development of a three-dimensional high-order strand-grids approach

    Science.gov (United States)

    Tong, Oisin

    Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening

  12. Towards a collisionless fluid closure in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dif Pradalier, G

    2005-07-01

    In this work 2 generic possible descriptions of a plasma have been compared namely the kinetic and the fluid approaches. The latter focuses on the successive moments (n, u, p, q,...) of the distribution function, whereas the former describes the time-evolution in phase space of this distribution function, both being based on the Vlasov equation. The fluid description is attractive for the Vlasov equation is tractable with great difficulties. Nevertheless it rests on a major difficulty: as the set of fluid equations constitute an infinite hierarchy, a closure equation must be chosen. The first chapter details physical characteristics of a fundamental kinetic interaction mechanism between waves and particles. In chapter 2 we propose a fluid closure that allows analytic comparison with a linear fully kinetic result, near an homogeneous, electrostatic, Maxwellian equilibrium. This approach consists in adjusting chosen parameters in order to minimize the discrepancies between fluid and kinetic linear response functions. In chapter 3 we present a general frame for a fluid closure in a magnetized plasma. This is attempted in a linear, simplified model with low dimensionality.

  13. Strategies for Reduced-Order Models in Uncertainty Quantification of Complex Turbulent Dynamical Systems

    Science.gov (United States)

    Qi, Di

    Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are

  14. Numerical schemes for one-point closure turbulence models

    International Nuclear Information System (INIS)

    Larcher, Aurelien

    2010-01-01

    First-order Reynolds Averaged Navier-Stokes (RANS) turbulence models are studied in this thesis. These latter consist of the Navier-Stokes equations, supplemented with a system of balance equations describing the evolution of characteristic scalar quantities called 'turbulent scales'. In so doing, the contribution of the turbulent agitation to the momentum can be determined by adding a diffusive coefficient (called 'turbulent viscosity') in the Navier-Stokes equations, such that it is defined as a function of the turbulent scales. The numerical analysis problems, which are studied in this dissertation, are treated in the frame of a fractional step algorithm, consisting of an approximation on regular meshes of the Navier-Stokes equations by the nonconforming Crouzeix-Raviart finite elements, and a set of scalar convection-diffusion balance equations discretized by the standard finite volume method. A monotone numerical scheme based on the standard finite volume method is proposed so as to ensure that the turbulent scales, like the turbulent kinetic energy (k) and its dissipation rate (ε), remain positive in the case of the standard k - ε model, as well as the k - ε RNG and the extended k - ε - ν 2 models. The convergence of the proposed numerical scheme is then studied on a system composed of the incompressible Stokes equations and a steady convection-diffusion equation, which are both coupled by the viscosities and the turbulent production term. This reduced model allows to deal with the main difficulty encountered in the analysis of such problems: the definition of the turbulent production term leads to consider a class of convection-diffusion problems with an irregular right-hand side belonging to L 1 . Finally, to step towards the unsteady problem, the convergence of the finite volume scheme for a model convection-diffusion equation with L 1 data is proved. The a priori estimates on the solution and on its time derivative are obtained in discrete norms, for

  15. A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2013-01-01

    Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.

  16. THOR: A New Higher-Order Closure Assumed PDF Subgrid-Scale Parameterization; Evaluation and Application to Low Cloud Feedbacks

    Science.gov (United States)

    Firl, G. J.; Randall, D. A.

    2013-12-01

    The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been

  17. Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.

    Science.gov (United States)

    Rogachevskii, Igor; Kleeorin, Nathan

    2003-09-01

    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.

  18. Magnetohydrodynamic flows and turbulence: a report on the Third Beer-Sheva Seminar

    International Nuclear Information System (INIS)

    Branover, H.; Mestel, A.J.; Moore, D.J.; Shercliff, J.A.

    1981-01-01

    This paper is a summary of the Third Beer-Sheva Seminar on magnetohydrodynamic (MHD) flows and turbulence, held in Israel in March 1981 with 67 participants from 9 countries. Reviews and research papers were presented on fundamental MHD and turbulence studies, both theoretical and experimental, including two-phase phenomena, and on applications of MHD to electrical generation (especially in two-phase systems), electromagnetic pumps, flow-couplers and flowmeters, thermonuclear fusion and a range of metallurgical problems, many involving free surfaces. (author)

  19. Turbulent viscosity optimized by data assimilation

    Directory of Open Access Journals (Sweden)

    Y. Leredde

    Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.

    Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes

  20. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  1. Eigenspace perturbations for structural uncertainty estimation of turbulence closure models

    Science.gov (United States)

    Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).

  2. Use of third molar transplantation for closure of the oroantral communication after tooth extraction: a report of 2 cases.

    Science.gov (United States)

    Kitagawa, Yoshimasa; Sano, Kazuo; Nakamura, Mikiko; Ogasawara, Toshiyuki

    2003-04-01

    This clinical report introduces a promising and unique method for the immediate closure of the oroantral communication (OAC) after tooth extraction: the use of the transplanted third molar with closed apices. In 2 adult patients, OAC caused by the extraction of an upper molar was immediately closed by using a transplanted third molar with complete root formation. After tooth extraction at the recipient site, OAC with perforated mucosa of the sinus floor was confirmed and the donor third molar was transferred to the prepared recipient socket. Endodontic therapy of the transplanted third molar began at 3 weeks after surgery, and prosthetic treatment was completed at 5 months after the operation. These 2 patients were carefully observed both clinically and radiographically. Closure of the OAC was successfully performed, and the transplanted teeth became fixed with the passage of time in these 2 patients. Root resorption did not occur, and good functional results were obtained without any complications. Tooth transplantation of a mature third molar for closure of the OAC is a simple and excellent method because the transplanted tooth not only closes the communication to the maxillary sinus, but it also satisfactorily functions at the recipient site during mastication, even in adult patients.

  3. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans

    1997-01-01

    of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  4. PDF approach for turbulent scalar field: Some recent developments

    Science.gov (United States)

    Gao, Feng

    1993-01-01

    The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.

  5. Mapping closure for probability distribution function in low frequency magnetized plasma turbulence

    International Nuclear Information System (INIS)

    Das, A.; Kaw, P.

    1995-01-01

    Recent numerical studies on the Hasegawa--Mima equation and its variants describing low frequency magnetized plasma turbulence indicate that the potential fluctuations have a Gaussian character whereas the vorticity exhibits non-Gaussian features. A theoretical interpretation for this observation using the recently developed mapping closure technique [Chen, Chen, and Kraichnan, Phys. Rev. Lett. 63, 2657 (1989)] has been provided here. It has been shown that non-Gaussian statistics for the vorticity arises because of a competition between nonlinear straining and diffusive damping whereas the Gaussianity of the statistics of φ arises because the only significant nonlinearity is associated with divergence free convection, which produces no strain terms. copyright 1995 American Institute of Physics

  6. Progress in modeling hypersonic turbulent boundary layers

    Science.gov (United States)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  7. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  8. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  9. Group-kinetic theory of turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  10. Flow simulation in piping system dead legs using second moment, closure and k-epsilon model

    International Nuclear Information System (INIS)

    Deutsch, E.; Mechitoua, N.; Mattei, J.D.

    1996-01-01

    This paper deals with an industrial application of second moment closure turbulence model in in numerical simulation of 3D turbulent flows in piping system dead legs. Calculations performed with the 3D ESTET code are presented which contrast the performance of k-epsilon eddy viscosity model and second moment closure turbulence models. Coarse (100 000), medium (400 000) and fine (1 500 000) meshes were used. The second moment closure performs significantly better than eddy viscosity model and predicts with a good agreement the vortex penetration in dead legs provided to use sufficiently refined meshes. The results point out the necessity to be able to perform calculations using fine mesh before introducing refined physical models such as second moment closure turbulence model in a numerical code. This study illustrates the ability of second moment closure turbulence model to simulate 3D turbulent industrial flows. Reynolds stress model computation does not require special care, the calculation is carried on as simply as the k-ξ one. The CPU time needed is less that twice the CPU time needed using k-ξ model. (authors)

  11. Application of a k-epsilon closure to a heated turbulent offset jet

    International Nuclear Information System (INIS)

    Raghunath, G.; Kumar, R.; Liburdy, J.A.

    1986-01-01

    The complex flow which occurs when a heated turbulent jet discharges above a cool, isothermal surface was investigated numerically. This flow is influenced by significant flow curvature, buoyancy, impingement, and recirculation. The main features of the flow have been characterized in the literature by the exit Reynolds number and offset ratio. It is the purpose of this study to assess the applicability of a modified k-epsilon closure model to this flow. Comparisons with limited data for the unheated case and flow predictions for the heated case are presented. The impingement distance is determined to within 2 percent of the experimental results. However, detailed velocity profiles are not well predicted near the wall. Curvature modification and the wall boundary condition for epsilon significantly affect the solution. 15 references

  12. Transposes, L-Eigenvalues and Invariants of Third Order Tensors

    OpenAIRE

    Qi, Liqun

    2017-01-01

    Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...

  13. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  14. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  15. Rank-Ordered Multifractal Analysis (ROMA of probability distributions in fluid turbulence

    Directory of Open Access Journals (Sweden)

    C. C. Wu

    2011-04-01

    Full Text Available Rank-Ordered Multifractal Analysis (ROMA was introduced by Chang and Wu (2008 to describe the multifractal characteristic of intermittent events. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has successfully been applied to MHD turbulence simulations and turbulence data observed in various space plasmas. In this paper, the technique is applied to the probability distributions in the inertial range of the turbulent fluid flow, as given in the vast Johns Hopkins University (JHU turbulence database. In addition, a new way of finding the continuous ROMA spectrum and the scaled probability distribution function (PDF simultaneously is introduced.

  16. Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Bjoern Anders

    1997-12-31

    This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.

  17. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  18. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  19. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  20. Closure of the squared Zakharov--Shabat eigenstates

    International Nuclear Information System (INIS)

    Kaup, D.J.

    1976-01-01

    By solution of the inverse scattering problem for a third-order (degenerate) eigenvalue problem, the closure of the squared eigenfunctions of the Zakharov--Shabat equations is found. The question of the completeness of squared eigenstates occurs in many aspects of ''inverse scattering transforms'' (solving nonlinear evolution equations exactly by inverse scattering techniques), as well as in various aspects of the inverse scattering problem. The method used here is quite suggestive as to how one might find the closure of the squared eigenfunctions of other eigenvalue equations, and the strong analogy between these results and the problem of finding the closure of the eigenvectors of a nonself-adjoint matrix is pointed out

  1. Order and turbulence in rf-driven Josephson junction series arrays

    International Nuclear Information System (INIS)

    Dominguez, D.; Cerdeira, H.A.

    1994-01-01

    We study underdamped Josephson junction series arrays that are globally coupled through a resistive shunting load and driven by an rf bias current. We find coherent, ordered, partially ordered and turbulent regimes in the IV characteristics. The ordered regime corresponds to giant Shapiro steps. In the turbulent regime there is a saturation of the broad band noise for a large number of junctions. This corresponds to a breaking of the law of large numbers already seen in globally coupled maps. Coexisting with this, we find an emergence of novel pseudo-steps in the IV characteristics. (author). 18 refs, 3 figs

  2. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  3. Molecular mixing in turbulent flow

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1993-01-01

    The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence

  4. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Fu, Rong [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles CA USA; Shaikh, Muhammad J. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland WA USA; Wang, Minghuai [Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing China; Collaborative Innovation Center of Climate Change, Nanjing China; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Dickinson, Robert E. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marengo, Jose [Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, São Jose dos Campos Brazil

    2017-09-21

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with further reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.

  5. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  6. MPDATA: Third-order accuracy for variable flows

    Science.gov (United States)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  7. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

    CERN Document Server

    Hutter, Kolumban

    2004-01-01

    The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

  8. Kinetic features of interchange turbulence

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Depret, G

    2005-01-01

    Non-linear gyrokinetic simulations of the interchange instability are discussed. The semi-Lagrangian numerical scheme allows one to address two critical points achieved with simulations lasting several confinement times: an accurate statistical analysis of the fluctuations and the back reaction of the turbulence on equilibrium profiles. Zonal flows are found to quench a 2D + 1D interchange turbulence when one of the species has a vanishing response to zonal modes. Conversely, when streamers dominate, the equilibrium profiles are found to be stiff. In the non-linear regime and steady-state turbulence, the distribution function exhibits a significant departure from a Maxwellian distribution. This property is characterized by an expansion on generalized Laguerre functions with a slow decay of the series of moments. This justifies the use of gyrokinetic simulations since a standard fluid approach, based on a limited number of moments, would certainly require a complex closure so as to take into account the impact of these non-vanishing high order moments

  9. Exact statistical results for binary mixing and reaction in variable density turbulence

    Science.gov (United States)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived

  10. John Lumley's Contributions to Turbulence Modeling

    Science.gov (United States)

    Pope, Stephen

    2015-11-01

    We recall the contributions that John Lumley made to turbulence modeling in the 1970s and 1980s. In these early days, computer power was feeble by today's standards, and eddy-viscosity models were prevalent in CFD. Lumley recognized, however, that second-moment closures represent the simplest level at which the physics of turbulent flows can reasonably be represented. This is especially true when the velocity field is coupled to scalar fields through buoyancy, as in the atmosphere and oceans. While Lumley was not the first to propose second-moment closures, he can be credited with establishing the rational approach to constructing such closures. This includes the application of various invariance principles and tensor representation theorems, imposing the constraints imposed by realizability, and of course appealing to experimental data in simple, canonical flows. These techniques are now well-accepted and have found application far beyond second-moment closures.

  11. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  12. Non-Equilibrium Turbulence and Two-Equation Modeling

    Science.gov (United States)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  13. Application of PDF methods to compressible turbulent flows

    Science.gov (United States)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  14. Fully developed MHD turbulence near critical magnetic Reynolds number

    International Nuclear Information System (INIS)

    Leorat, J.; Pouquet, A.; Frisch, U.

    1981-01-01

    Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers Rsup(M) where magnetic fields can be self-excited by a dynamo mechanism. Such flows have kinetic Reynolds numbers Rsup(V) of the order of 10 7 and are therefore highly turbulent. The behaviour of MHD turbulence with high Rsup(V) and low magnetic Prandtl numbers is investigated, using the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity the study is restricted to homogeneous and isotropic turbulence, but includes helicity. A critical magnetic Reynolds number Rsub(c)sup(M) of the order of a few tens (non-helical case) is obtained above which magnetic energy is present. Rsub(c)sup(M) is practically independent of Rsup(V) (in the range 40 to 10 6 ) and can be considerably decreased by the presence of helicity. No attempt is made to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding Rsub(c)sup(M) such as decreased turbulent heat transport. (author)

  15. A statistical state dynamics approach to wall turbulence.

    Science.gov (United States)

    Farrell, B F; Gayme, D F; Ioannou, P J

    2017-03-13

    This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  16. Progress in turbulence research

    International Nuclear Information System (INIS)

    Bradshaw, P.

    1990-01-01

    Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs

  17. 76 FR 3015 - Prohibitions in Areas Designated by Order; Closure of National Forest System Lands To Protect...

    Science.gov (United States)

    2011-01-19

    ... DEPARTMENT OF AGRICULTURE Forest Service 36 CFR Part 261 RIN 0596-AC93 Prohibitions in Areas Designated by Order; Closure of National Forest System Lands To Protect Privacy of Tribal Activities AGENCY... regarding special closures to provide for closure of National Forest System lands to protect the privacy of...

  18. Modeling variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  19. Introduction to the theory of fluid and magnetofluid turbulence

    International Nuclear Information System (INIS)

    Montgomery, D.

    1984-03-01

    This set of notes was transcribed from the tape recording of three lectures given at the Institute of Plasma Physics, Nagoya University, in June, 1983. The lectures were intended to provide an introduction to the theory of magnetofluid turbulence which is a relatively new branch of plasma physics. It is related more closely to classic fluid dynamics than to the nonlinear theory of plasma oscillation. For this reason, fluid turbulence theory was reviewed as the background of the subject. The first lecture is on the origins of fluid and magnetofluid turbulence. The universal transition to turbulence takes place at sufficiently high Reynolds number, well above the critical threshold. The second lecture is on closures, attempt on dynamical theories. The Navier-Stokes case is discussed, and the attempt to reduce the number of the degrees of freedom, the importance of helicity in MHD, the direct interaction approximation (DIA) and others are explained. The third lecture is on the cascade and inverse cascade in fluid and magnetofluid. The idea of cascade was introduced into the theory of Navier-Stokes turbulence around 1941. The calculation of a form for inertial range energy spectra, the relation with dissipation rate, the tendency of migrating to long wavelength, the simulation of decaying turbulence, the numbers characterizing MHD and others are discussed. (Kako, I.)

  20. Extension of relativistic dissipative hydrodynamics to third order

    International Nuclear Information System (INIS)

    El, Andrej; Xu Zhe; Greiner, Carsten

    2010-01-01

    Following the procedure introduced by Israel and Stewart, we expand the entropy current up to the third order in the shear stress tensor π αβ and derive a novel third-order evolution equation for π αβ . This equation is solved for the one-dimensional Bjorken boost-invariant expansion. The scaling solutions for various values of the shear viscosity to the entropy density ratio η/s are shown to be in very good agreement with those obtained from kinetic transport calculations. For the pressure isotropy starting with 1 at τ 0 =0.4 fm/c, the third-order corrections to Israel-Stewart theory are approximately 10% for η/s=0.2 and more than a factor of 2 for η/s=3. We also estimate all higher-order corrections to Israel-Stewart theory and demonstrate their importance in describing highly viscous matters.

  1. A prospective randomized clinical study of the influence of primary closure or dressing on post-operative morbidity after mandibular third molar surgery

    Directory of Open Access Journals (Sweden)

    Peter E Egbor

    2014-01-01

    Full Text Available Objective: The aim of the following study is to determine the effect of primary closure or dressing on post-operative morbidity after impacted lower third molar surgery. Materials and Methods: This was a randomized clinical study of 72 patients who had surgical extraction of impacted mandibular third molars. The subjects were divided into two groups of A and B. Group A had total closure (primary closure and Group B had whitehead varnish dressing of the socket. Pain, swelling and trismus were evaluated pre-operatively using visual analogue scale, flexible tape measuring method and inter-incisal distance measurement with Vernier Callipers respectively as well as post-operatively on 1 st , 2 nd , 3 rd , 5 th and 7 th day. Results: The study participants consisted of 27 males and 45 females in a ratio 1:1.7. With a mean age of 24.7 ± 4.9 years (range 19-33 years for Group A and 25.5 ± 4.3 years (range 20-39 years for Group B. Post-operative pain was not significantly affected by the closure techniques (P > 0.05. Dressing was found to significantly reduce the degree of swelling and trismus peaking on the 2 nd day (P = 0.0207 and P = 0.010 respectively. Conclusion: The use of dressing was more effective than primary closure to reduce the degree of swelling and trismus though its effect on post-operative pain reduction was not significant.

  2. Implementation of second moment closure turbulence model for incompressible flows in the industrial finite element code N3S

    International Nuclear Information System (INIS)

    Pot, G.; Laurence, D.; Rharif, N.E.; Leal de Sousa, L.; Compe, C.

    1995-12-01

    This paper deals with the introduction of a second moment closure turbulence model (Reynolds Stress Model) in an industrial finite element code, N3S, developed at Electricite de France.The numerical implementation of the model in N3S will be detailed in 2D and 3D. Some details are given concerning finite element computations and solvers. Then, some results will be given, including a comparison between standard k-ε model, R.S.M. model and experimental data for some test case. (authors). 22 refs., 3 figs

  3. An h-adaptive finite element method for turbulent heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carriington, David B [Los Alamos National Laboratory

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  4. Optofluidic third order distributed feedback dye laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light......This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...

  5. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  6. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  7. Direct numerical simulation of free convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.; Boudjemadi, R.; Le Quere, P.

    1996-03-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of high order correlations is constituted and used for testing a second moment closure based on the LRR model and elliptic relaxation near wall effects. Counter gradient turbulent transport, found in the central part of the channel, requires an algebraic model for the triple correlations instead of the standard DH or HL, gradient diffusion models. (authors). 18 refs., 14 figs., 1 tab

  8. Lower first permanent molars: developing better predictors of spontaneous space closure.

    Science.gov (United States)

    Teo, Terry Kuo-Yih; Ashley, Paul Francis; Derrick, Donald

    2016-02-01

    First, first permanent molars (FPMs) of poor prognosis are often planned for extraction at an 'ideal time' so that second permanent molars (SPMs) erupt favourably to replace them. However for lower FPM extractions, timing is not an accurate predictor of success. The aim of this study was to identify additional radiographic factors that could better predict the degree of spontaneous space closure of the lower SPM following FPM extraction. Data from a previous study of 127 lower SPMs from 66 patients was re-analysed by incorporating additional radiographic factors. These included calcification stage of the bifurcation of the SPM, position of the second premolar, mesial angulation of SPM in relation to the FPM, and presence of the third permanent molar. Results were analysed using ordered logistic regression. Only 58 per cent of FPMs extracted at the 'ideal time' (SPM development at Demirjian stage E) had complete space closure. The best outcomes resulted from a combination of SPMs not at Demirjian development stage G, together with the presence of mesial angulation of the SPM and presence of the third permanent molar, where 85 per cent of those cases had complete space closure. Apart from extraction timing of the FPM, consideration must also be given to the presence of the third permanent molar and angulation of the SPM in order to ensure a reliable degree of spontaneous space closure of the lower SPM. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  10. New developments in isotropic turbulent models for FENE-P fluids

    Science.gov (United States)

    Resende, P. R.; Cavadas, A. S.

    2018-04-01

    The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.

  11. A minimal model of self-sustaining turbulence

    International Nuclear Information System (INIS)

    Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.; Ioannou, Petros J.

    2015-01-01

    In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL ∞ model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL ∞ dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that are consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems

  12. Philosophies and fallacies in turbulence modeling

    Science.gov (United States)

    Spalart, Philippe R.

    2015-04-01

    We present a set of positions, likely to be controversial, on turbulence modeling for the Reynolds-Averaged Navier Stokes (RANS) equations. The paper has three themes. First is what we call the "fundamental paradox" of turbulence modeling, between the local character of the Partial Differential Equations strongly favored by CFD methods and the nonlocal physical nature of turbulence. Second, we oppose two philosophies. The "Systematic" philosophy attempts to model the exact transport equations for the Reynolds stresses or possibly higher moments term by term, gradually relegating the Closure Problem to higher moments and invoking the "Principle of Receding Influence" (although rarely formulating it). In contrast, the "Openly Empirical" philosophy produces models which satisfy strict constraints such as Galilean invariance, but lack an explicit connection with terms in the exact turbulence equations. The prime example is the eddy-viscosity assumption. Third, we explain a series of what we perceive as fallacies, many of them widely held and by senior observers, in turbulence knowledge, leading to turbulence models. We divide them into "hard" fallacies for which a short mathematical argument demonstrates that a particular statement is wrong or meaningless, and "soft" fallacies for which approximate physical arguments can be opposed, but we contend that a clear debate is overdue and wishful thinking has been involved. Some fallacies appear to be "intermediate." An example in the hard class is the supposed isotropy of the diagonal Reynolds stresses. Examples in the soft class are the need to match the decay rate of isotropic turbulence, and the value of realizability in a model. Our hope is to help the direct effort in this field away from simplistic and hopeless lines of work, and to foster debates.

  13. Assessment of consistent two-equation closure for forest flows

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Cavar, Dalibor; Bechmann, Andreas

    of grid turbulence and wall-bounded flow, the closure suggested is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies. The present work assess the plant drag closure by comparing results of two different CFD models against observations derived over the forested area...... and can be applied for any twoequation closure. Results derived by different CFD models with k-epsilon and k-omega closure are similar and in good comparison with observations. Overall, numerical results show that the closure performs well, opening new possibilities for application to tasks related...... to the atmospheric boundary layer—where it is important to adequately account for the influences of vegetation....

  14. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  15. Dynamics of platicons due to third-order dispersion

    Science.gov (United States)

    Lobanov, Valery E.; Cherenkov, Artem V.; Shitikov, Artem E.; Bilenko, Igor A.; Gorodetsky, Michael L.

    2017-07-01

    Dynamics of platicons caused by the third-order dispersion is studied. It is shown that under the influence of the third-order dispersion platicons obtain angular velocity depending both on dispersion and on detuning value. A method of tuning of platicon associated optical frequency comb repetition rate is proposed. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  16. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  17. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    Science.gov (United States)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  18. Conditional dissipation of scalars in homogeneous turbulence: Closure for MMC modelling

    Science.gov (United States)

    Wandel, Andrew P.

    2013-08-01

    While the mean and unconditional variance are to be predicted well by any reasonable turbulent combustion model, these are generally not sufficient for the accurate modelling of complex phenomena such as extinction/reignition. An additional criterion has been recently introduced: accurate modelling of the dissipation timescales associated with fluctuations of scalars about their conditional mean (conditional dissipation timescales). Analysis of Direct Numerical Simulation (DNS) results for a passive scalar shows that the conditional dissipation timescale is of the order of the integral timescale and smaller than the unconditional dissipation timescale. A model is proposed: the conditional dissipation timescale is proportional to the integral timescale. This model is used in Multiple Mapping Conditioning (MMC) modelling for a passive scalar case and a reactive scalar case, comparing to DNS results for both. The results show that this model improves the accuracy of MMC predictions so as to match the DNS results more closely using a relatively-coarse spatial resolution compared to other turbulent combustion models.

  19. Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension

    International Nuclear Information System (INIS)

    Qu Gai-Zhu; Zhang Shun-Li; Li Yao-Long

    2014-01-01

    In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators. (general)

  20. Decay ratio for third order Brownian oscillators

    International Nuclear Information System (INIS)

    Konno, H.; Kanemoto, S.

    1998-01-01

    We have obtained the analytical expressions of the decay ratios for two types of third order Brownian oscillators which are generalizations of the second order Brownian oscillator driven by the Gaussian-white noise. The resulting expressions will provide us useful baseline information for more complicated practical problems and their applications

  1. Second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence.

    Science.gov (United States)

    Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-15

    The general formulae for second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence are derived and validated by the Bessel-Gaussian Schell-model beams and cosine-Gaussian-correlated Schell-model beams. Our finding shows that the second-order moments of partially coherent Schell-model beams are related to the second-order partial derivatives of source spectral degree of coherence at the origin. The formulae we provide are much more convenient to analyze and research propagation problems in turbulence.

  2. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  3. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    International Nuclear Information System (INIS)

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  4. Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity.

    Science.gov (United States)

    Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N

    2010-04-12

    Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

  5. Mean-Lagrangian formalism and covariance of fluid turbulence.

    Science.gov (United States)

    Ariki, Taketo

    2017-05-01

    Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.

  6. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  7. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    International Nuclear Information System (INIS)

    Krommes, John A.

    2001-01-01

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  8. Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Serre, Eric

    2015-01-01

    Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation

  9. Some third order rotatable designs in five dimensions | Mutiso | East ...

    African Journals Online (AJOL)

    ... performed according to our dimensional designs need not be discarded. These deisgns require a smaller number of points than most of the available five dimensional third order rotatable designs. Keywords: third order; rotatable designs; four dimensions; five dimensions; sequential > East African Journal of Statistics Vol.

  10. Collisions and turbulence in optical rogue wave formation

    DEFF Research Database (Denmark)

    Genty, G.; de Sterke, C.M.; Bang, Ole

    2010-01-01

    We discuss optical rogue wave generation in terms of collisions and turbulence processes. Simulations of picosecond pulse propagation in optical fibres show rogue soliton generation from either third-order dispersion or Raman scattering independently. Simulations of rogue soliton emergence...

  11. Validity testing of third-order nonlinear models for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, M.A. [Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de La Laguna Torreon, Coah. (Mexico); Escarela-Perez, R. [Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, Av. San Pablo 180, Col. Reynosa, C.P. 02200 (Mexico); Espinosa-Perez, G. [Division de Estudios Posgrado de la Facultad de Ingenieria Universidad Nacional Autonoma de Mexico (Mexico); Alvarez-Ramirez, J. [Universidad Autonoma Metropolitana -Iztapalapa, Division de Ciencias Basicas e Ingenieria (Mexico)

    2009-06-15

    Third-order nonlinear models are commonly used in control theory for the analysis of the stability of both open-loop and closed-loop synchronous machines. However, the ability of these models to describe the electrical machine dynamics has not been tested experimentally. This work focuses on this issue by addressing the parameters identification problem for third-order models for synchronous generators. For a third-order model describing the dynamics of power angle {delta}, rotor speed {omega} and quadrature axis transient EMF E{sub q}{sup '}, it is shown that the parameters cannot be identified because of the effects of the unknown initial condition of E{sub q}{sup '}. To avoid this situation, a model that incorporates the measured electrical power dynamics is considered, showing that state measurements guarantee the identification of the model parameters. Data obtained from a 7 kVA lab-scale synchronous generator and from a 150 MVA finite-element simulation were used to show that, at least for the worked examples, the estimated parameters display only moderate variations over the operating region. This suggests that third-order models can suffice to describe the main dynamical features of synchronous generators, and that third-order models can be used to design and tune power system stabilizers and voltage regulators. (author)

  12. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence: An analytical theory

    Science.gov (United States)

    Ristorcelli, J. R.

    1995-01-01

    The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.

  13. Hojman's theorem of the third-order ordinary differential equation

    International Nuclear Information System (INIS)

    Hong-Sheng, Lü; Hong-Bin, Zhang; Shu-Long, Gu

    2009-01-01

    This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results. (general)

  14. Comparison of simulations and theory of low-frequency plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LoDestro, L L; Cohen, B I; Cohen, R H; Dimits, A M; Matsuda, Y; Nevins, W M; Newcomb, W A; Williams, T J; Koniges, A E; Dannevik, W P; Crotinger, J A; Amala, P A.K. [Lawrence Livermore National Lab., CA (USA); Sydora, R D; Dawson, J M; Ma, S; Decyk, V K [California Univ., Los Angeles, CA (USA). Dept. of Physics; Lee, W W; Hahm, T S [Princeton Univ., NJ (USA). Plasma Physics Lab.; Naitou, H

    1990-08-15

    We use a combination of computational and analytic methods to study low-frequency turbulence and turbulent transport in a strongly magnetized plasma. We describe two major computational efforts, one based on gyrokinetic-particle simulation and the second on numerical solution of closure approximations to fluid equations. These codes are used to study instabilities on the drift timescale, and to assess the validity of qualitative predictions of energy-transport scalings based on dimensional analysis and on analytic versions of closure approximations. 27 refs., 2 figs.

  15. Third-order nonlinear optical properties of thin sputtered gold films

    Science.gov (United States)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  16. Correlation effects of third-order perturbation in the extended Hubbard model

    International Nuclear Information System (INIS)

    Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.

    1989-01-01

    Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs

  17. Synthesis, characterization and third-order nonlinear optical ...

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... the past, several strategies have been evolved to enhance the third-order nonlinear ..... retical fit using the formulation given in ref. [22]. Fit param- ..... Acknowledgement. The corresponding author acknowledges the financial.

  18. Third order differential equations with delay

    Directory of Open Access Journals (Sweden)

    Petr Liška

    2015-05-01

    Full Text Available In this paper, we study the oscillation and asymptotic properties of solutions of certain nonlinear third order differential equations with delay. In particular, we extend results of I. Mojsej (Nonlinear Analysis 68, 2008 and we improve conditions on the property B of N. Parhi and S. Padhi (Indian J. Pure Appl. Math., 33, 2002.

  19. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  20. Application of third order stochastic dominance algorithm in investments ranking

    Directory of Open Access Journals (Sweden)

    Lončar Sanja

    2012-01-01

    Full Text Available The paper presents the use of third order stochastic dominance in ranking Investment alternatives, using TSD algorithms (Levy, 2006for testing third order stochastic dominance. The main goal of using TSD rule is minimization of efficient investment set for investor with risk aversion, who prefers more money and likes positive skew ness.

  1. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    International Nuclear Information System (INIS)

    Evans, S. K.

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve 'clean closure' of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems

  2. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  3. High-Resolution Global Modeling of the Effects of Subgrid-Scale Clouds and Turbulence on Precipitating Cloud Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bogenschutz, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Moeng, Chin-Hoh [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-10-13

    The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.

  4. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    Science.gov (United States)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky

  5. Novel third-order Lovelock wormhole solutions

    Science.gov (United States)

    Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.

    2016-06-01

    In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.

  6. Third-order monochromatic aberrations via Fermat's principle

    International Nuclear Information System (INIS)

    Marasco, A.; Romano, A.

    2006-01-01

    By Fermat's principle and particular optical paths, which are not rays, a new aberration function is introduced. This function allows to derive, without resorting to the whole Hamiltonian formalism, the third-order geometrical aberrations of an optical system with a symmetry of revolution

  7. Taub-NUT black holes in third order Lovelock gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Dehghani, M.H.

    2008-01-01

    We consider the existence of Taub-NUT solutions in third order Lovelock gravity with cosmological constant, and obtain the general form of these solutions in eight dimensions. We find that, as in the case of Gauss-Bonnet gravity and in contrast with the Taub-NUT solutions of Einstein gravity, the metric function depends on the specific form of the base factors on which one constructs the circle fibration. Thus, one may say that the independence of the NUT solutions on the geometry of the base space is not a robust feature of all generally covariant theories of gravity and is peculiar to Einstein gravity. We find that when Einstein gravity admits non-extremal NUT solutions with no curvature singularity at r=N, then there exists a non-extremal NUT solution in third order Lovelock gravity. In 8-dimensional spacetime, this happens when the metric of the base space is chosen to be CP 3 . Indeed, third order Lovelock gravity does not admit non-extreme NUT solutions with any other base space. This is another property which is peculiar to Einstein gravity. We also find that the third order Lovelock gravity admits extremal NUT solution when the base space is T 2 xT 2 xT 2 or S 2 xT 2 xT 2 . We have extended these observations to two conjectures about the existence of NUT solutions in Lovelock gravity in any even-dimensional spacetime

  8. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  9. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  10. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  11. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2000-01-01

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified

  12. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    Science.gov (United States)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  13. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  14. Brown's TRANSPORT up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1991-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients

  15. Brown's transport up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1992-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  16. Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection

    Science.gov (United States)

    Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh

    2017-11-01

    Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.

  17. Characterization of Symmetry Properties of First Integrals for Submaximal Linearizable Third-Order ODEs

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.

  18. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  19. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    International Nuclear Information System (INIS)

    Singh, Vijender; Aghamkar, Praveen

    2014-01-01

    We obtain a large third-order optical nonlinearity (χ (3)  ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm

  20. Conditional Moment Closure Modelling of a Lifted H2/N2 Turbulent Jet Flame Using the Presumed Mapping Function Approach

    Directory of Open Access Journals (Sweden)

    Ahmad El Sayed

    2015-01-01

    Full Text Available A lifted hydrogen/nitrogen turbulent jet flame issuing into a vitiated coflow is investigated using the conditional moment closure (CMC supplemented by the presumed mapping function (PMF approach for the modelling of conditional mixing and velocity statistics. Using a prescribed reference field, the PMF approach yields a presumed probability density function (PDF for the mixture fraction, which is then used in closing the conditional scalar dissipation rate (CSDR and conditional velocity in a fully consistent manner. These closures are applied to a lifted flame and the findings are compared to previous results obtained using β-PDF-based closures over a range of coflow temperatures (Tc. The PMF results are in line with those of the β-PDF and compare well to measurements. The transport budgets in mixture fraction and physical spaces and the radical history ahead of the stabilisation height indicate that the stabilisation mechanism is susceptible to Tc. As in the previous β-PDF calculations, autoignition around the “most reactive” mixture fraction remains the controlling mechanism for sufficiently high Tc. Departure from the β-PDF predictions is observed when Tc is decreased as PMF predicts stabilisation by means of premixed flame propagation. This conclusion is based on the observation that lean mixtures are heated by downstream burning mixtures in a preheat zone developing ahead of the stabilization height. The spurious sources, which stem from inconsistent CSDR modelling, are further investigated. The findings reveal that their effect is small but nonnegligible, most notably within the flame zone.

  1. Periodic solutions of certain third order nonlinear differential systems with delay

    International Nuclear Information System (INIS)

    Tejumola, H.O.; Afuwape, A.U.

    1990-12-01

    This paper investigates the existence of 2π-periodic solutions of systems of third-order nonlinear differential equations, with delay, under varied assumptions. The results obtained extend earlier works of Tejumola and generalize to third order systems those of Conti, Iannacci and Nkashama as well as DePascale and Iannacci and Iannacci and Nkashama. 16 refs

  2. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  3. Instability of black strings in the third-order Lovelock theory

    Science.gov (United States)

    Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo

    2016-05-01

    We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.

  4. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)

    2014-03-17

    We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.

  5. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  6. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Watanabe, T.-H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W. [University of Texas at Austin, Institute for Fusion Studies, Austin, Texas (United States)

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity {chi} obtained from the HP model is significantly larger than the {chi} given by the NCM which is closer to {chi} measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q{sub k} to the temperature fluctuation T{sub k} is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q{sub k}/T{sub k}), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total {chi}. (author)

  7. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Horton, W.

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity χ obtained from the HP model is significantly larger than the χ given by the NCM which is closer to χ measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q k to the temperature fluctuation T k is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q k /T k ), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total χ. (author)

  8. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)

    2015-08-28

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  9. Third-order optical intensity correlation measurements of pseudo-thermal light

    International Nuclear Information System (INIS)

    Chen Xi-Hao; Wu Wei; Meng Shao-Ying; Li Ming-Fei

    2014-01-01

    Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging. (general)

  10. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    Science.gov (United States)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  11. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  12. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M

    2007-01-01

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|χ (3) |) and the linear absorption coefficient (α) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |χ (3) |/α for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape

  13. Third-order theory for multi-directional irregular waves

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2012-01-01

    A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at...

  14. Multi-octave analog photonic link with improved second- and third-order SFDRs

    Science.gov (United States)

    Tan, Qinggui; Gao, Yongsheng; Fan, Yangyu; He, You

    2018-03-01

    The second- and third-order spurious free dynamic ranges (SFDRs) are two key performance indicators for a multi-octave analogy photonic link (APL). The linearization methods for either second- or third-order intermodulation distortion (IMD2 or IMD3) have been intensively studied, but the simultaneous suppression for the both were merely reported. In this paper, we propose an APL with improved second- and third-order SFDRs for multi-octave applications based on two parallel DPMZM-based sub-APLs. The IMD3 in each sub-APL is suppressed by properly biasing the DPMZM, and the IMD2 is suppressed by balanced detecting the two sub-APLs. The experiment demonstrates significant suppression ratios for both the IMD2 and IMD3 after linearization in the proposed link, and the measured second- and third-order SFDRs with the operating frequency from 6 to 40 GHz are above 91 dB ṡHz 1 / 2 and 116 dB ṡHz 2 / 3, respectively.

  15. Statistical Mechanics of Turbulent Flows

    International Nuclear Information System (INIS)

    Cambon, C

    2004-01-01

    counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point correlations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-ε to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled 'The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics

  16. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  17. Spectrum evolution of primordial cosmic turbulence

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1980-01-01

    The evolution of primordial cosmic turbulence prior to the epoch of plasma recombination is investigated numerically using the Wiener-Hermite expansion technique which gives reasonable results for laboratory turbulence. It is found that the Kolmogorov spectrum is established only within a narrow range of wavenumber space for reasonable parameter sets, because the expansion of the Universe has a tendency to suppress an energy cascade from larger eddies to smaller ones. The present result does not agree with that obtained by Kurskov and Ozernoi, who computed the decay of turbulence in a fictitious non-expanding frame using the Heisenberg closure hypothesis, while it was done in a physical frame in the present work. (author)

  18. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    Science.gov (United States)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  19. Effect of third-order aberrations on dynamic accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Rucker, Frances J; Stark, Lawrence R; Badar, Mustanser; Borgovan, Theodore; Burke, Sean; Kruger, Philip B

    2007-03-01

    We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1-3D, 0.2Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 microm) and coma (0.34, 0.94 microm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

  20. Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods

    Science.gov (United States)

    Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.

    2017-06-01

    An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.

  1. Third-order gap plasmon based metasurfaces for visible light

    DEFF Research Database (Denmark)

    Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.

    2017-01-01

    with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... of the performance of polarization beam splitters based on third-order GSP resonance as well as other potential applications of the suggested approach....... by an optically thick gold film are calculated for the operation wavelength of 633 nm. Exploiting the occurrence of the third-order GSP resonance for nanobricks having their lengths close to 300 nm, we design the phase-gradient metasurface, representing an array of (450 x 2250 nm2) supercells made of 5 nanobricks...

  2. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M [Ultrafast Studies Section, Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2007-08-08

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|{chi}{sup (3)}|) and the linear absorption coefficient ({alpha}) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |{chi}{sup (3)}|/{alpha} for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape.

  3. Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films

    International Nuclear Information System (INIS)

    Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng

    2014-01-01

    The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities

  4. Scale-similar clustering of heavy particles in the inertial range of turbulence

    Science.gov (United States)

    Ariki, Taketo; Yoshida, Kyo; Matsuda, Keigo; Yoshimatsu, Katsunori

    2018-03-01

    Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4 /3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4 /3 power law is supported by a direct numerical simulation of particle-laden turbulence.

  5. Criticality in third order lovelock gravity and butterfly effect

    International Nuclear Information System (INIS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v B E.H > v B E.G.B > v B 3rdLovelock . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)

  6. Criticality in third order lovelock gravity and butterfly effect

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  7. Convergence of third order correlation energy in atoms and molecules.

    Science.gov (United States)

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  8. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  9. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  10. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    Science.gov (United States)

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  11. Third order TRANSPORT with MAD [Methodical Accelerator Design] input

    International Nuclear Information System (INIS)

    Carey, D.C.

    1988-01-01

    This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix

  12. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  13. Third-Order Matching in the Polymorphic Lambda Calculus

    NARCIS (Netherlands)

    Springintveld, J.

    We show that it is decidable whether a third-order matching problem in the polymorphic lambda calculus has a solution. The proof is constructive in the sense that an algorithm can be extracted from it that, given such a problem, returns a substitution if it has a solution and fail otherwise.

  14. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  15. Turbulent diffusion downstream of a linear heat source installed in a turbulent boundary layer; Diffusion turbulente en aval d`une source lineaire de chaleur placee dans une couche limite turbulente

    Energy Technology Data Exchange (ETDEWEB)

    El Kabiri, M.; Paranthoen, P.; Rosset, L.; Lecordier, J.C. [Rouen Univ., 76 - Mont-Saint-Aignan (France)

    1997-12-31

    An experimental study of heat transport downstream of a linear source installed in a turbulent boundary layer is performed. Second and third order momenta of velocity and temperature fields are presented and compared to gradient-type modeling. (J.S.) 7 refs.

  16. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  17. Algebraic Properties of First Integrals for Scalar Linear Third-Order ODEs of Maximal Symmetry

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order ordinary differential equations (ODEs and their point symmetries. It is well known that there are three classes of linear third-order ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y′′′=0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals.

  18. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    Science.gov (United States)

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  19. Hierarchical order in wall-bounded shear turbulence

    International Nuclear Information System (INIS)

    Carbone, F.; Aubry, N.

    1996-01-01

    Since turbulence at realistic Reynolds numbers, such as those occurring in the atmosphere or in the ocean, involve a high number of modes that cannot be resolved computationally in the foreseeable future, there is a strong motivation for finding techniques which drastically decrease the number of such required modes, particularly under inhomogeneous conditions. The significance of this work is to show that wall-bounded shear turbulence, in its strongly inhomogeneous direction (normal to the wall), can be decomposed into one (or a few) space endash time mother mode(s), with each mother generating a whole family of modes by stretching symmetry. In other words, the generated modes are similar, dilated copies of their mother. In addition, we show that the nature of all previous modes strongly depends on the symmetry itself. These findings constitute the first scaling theory of inhomogeneous turbulence. copyright 1996 American Institute of Physics

  20. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  1. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  2. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  3. Boundary-layer turbulence as a kangaroo process

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is

  4. A High Order Accuracy Computational Tool for Unsteady Turbulent Flows and Acoustics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this research effort is to develop a higher order unsteady turbulent flow solver based on the FDV method, and to exploit its attributes of...

  5. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    KAUST Repository

    Lellmann, Jan; Morel, Jean-Michel; Schö nlieb, Carola-Bibiane

    2013-01-01

    features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE

  6. Criticality in third order lovelock gravity and butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Qaemmaqami, Mohammad M. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2018-01-15

    We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v{sub B}{sup E.H} > v{sub B}{sup E.G.B} > v{sub B}{sup 3rdLovelock}. Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)

  7. Scalar flux modeling in turbulent flames using iterative deconvolution

    Science.gov (United States)

    Nikolaou, Z. M.; Cant, R. S.; Vervisch, L.

    2018-04-01

    In the context of large eddy simulations, deconvolution is an attractive alternative for modeling the unclosed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows; however, their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory they can be used in order to model any unclosed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence.

  8. Physical modelling of interactions between interfaces and turbulence; Modelisation physique des interactions entre interfaces et turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Toutant, A

    2006-12-15

    The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)

  9. Third-order aberration-free ion-optical system for an electromagnetic isotope separator

    International Nuclear Information System (INIS)

    Chavet, I.

    1982-12-01

    The essential qualities required of a production isotope separator are high output and high enrichment factor. For this purpose, the imaging system should have as little geometric aberration as possible. In the proposed system, consisting of a homogeneous sector-type analyzing magnet, the beam is crossed in the axial direction at the entrance boundary of the magnetic field and the incidence to this boundary is normal. It is shown that for this case all radial aberrations to the ''practical'' third order can be eliminated provided four optical conditions are satisfied: two related to heterogeneous aberration terms in addition to the two conditions related to the second and third order homogeneous aperture aberration terms. The resulting equations take into account the magnetic fringe-field effects to the third order. (author)

  10. Application of low Reynolds number k-{epsilon} turbulence models to the study of turbulent wall jets

    Energy Technology Data Exchange (ETDEWEB)

    Kechiche, Jamel; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5000, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60, rue Joliot-Curie, Technopole de Chateau-Gombert, 13453 cedex 13, Marseille (France)

    2004-02-01

    In this work, we use closure models called ''low Reynolds number k-{epsilon} models'', which are self-adapting ones using different damping functions, in order to explore the computed behavior of a turbulent plane two-dimensional wall jets. In this study, the jet may be either isothermal or submitted to various wall boundary conditions (uniform temperature or a uniform heat flux) in forced convection regime. A finite difference method, using a staggered grid, is employed to solve the coupled governing equations with the inlet and the boundary conditions. The predictions of the various low Reynolds number k-{epsilon} models with standard or modified C{sub {mu}} adopted in this work were presented and compared with measurements and numerical results found in the literature. (authors)

  11. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  12. Functional calculus in strong plasma turbulence

    International Nuclear Information System (INIS)

    Ahmadi, G.; Hirose, A.

    1980-01-01

    The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author)

  13. Bed slope effects on turbulent wave boundary layers: 1. Model validation and quantification of rough-turbulent results

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    measurements for steady streaming induced by a skewed free stream velocity signal is also provided. We then simulate a series of experiments involving oscillatory flow in a convergent-divergent smooth tunnel, and a good match with respect to bed shear stresses and streaming velocities is achieved......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model....... The streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor...

  14. External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models

    Science.gov (United States)

    Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.

    2011-12-01

    External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.

  15. Lagrangian analysis of invariant third-order equations of motion in relativistic classical particle mechanics

    International Nuclear Information System (INIS)

    Matsyuk, R.Ya.

    1985-01-01

    The problem on the existence of the invariant third-order Euler-Poisson equations in the pseudo-Euclidean space is investigated. The locally variational problem is determined by the Lagrangian density over the space of the second-order jets. The one - parameter family of the invariant third-order Euler-Poisson equations is groved to be the only one in the three-dimensional pseudo-Euclidean space. No invariant third-order Euler-Poisson equations exist in the four-dimensional pseudo-Euclidean space. It is shown that the Mathisson equation and the equation of geodesic circles in particular cases may be considered in the context of the Ostrogradiskij mechanics and the Kavaguchi geometry

  16. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  17. Oscillation criteria for third order nonlinear delay differential equations with damping

    Directory of Open Access Journals (Sweden)

    Said R. Grace

    2015-01-01

    Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.

  18. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    International Nuclear Information System (INIS)

    Sharma, Mamta; Tripathi, S. K.

    2015-01-01

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect

  19. Influence of vapor phase turbulent stress to the onset of slugging in a horizontal pipe

    International Nuclear Information System (INIS)

    Park, Jee Won

    1995-01-01

    An influence of the vapor phase turbulent stress(i, e., the two-phase Reynolds stress)to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the vapor phase turbulent stress was found to stabilize the flow stratification. 4 figs., 12 refs. (Author)

  20. The third order nonlinear susceptibility of InAs at infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2008-01-01

    Nonlinear susceptibilities of the third order and coefficient of nonlinear absorption in InAs n-type with a different degree of a doping have been measured. The values of the third order nonlinear susceptibilities have derived from these measurements essentially exceed the values calculated on the basis of model featuring nonlinear susceptibility of electrons, being in conduction-band nonparabolicity. It has been shown that the observable discrepancy has been eliminated, if in calculation a dissipation of energy of electrons has been considered. Growth of efficiency at four-wave mixingin narrow-gap semiconductors has been restricted to nonlinear absorption of interacting waves

  1. A simple design rule for 1st order form-closure of underactuated hands

    Directory of Open Access Journals (Sweden)

    S. Krut

    2011-02-01

    Full Text Available The property of form-closure of a grasp, as generally defined in the literature, is based on the assumption that contact points between the hand and the object are fixed in space. However, this assumption is false when considering a grasp exerted by an underactuated hand, since in this case, it is not possible to control the position of each phalanx independently. In spite of researchers' interest in studying form-closure, none of the available published work on this subject takes into consideration the particular kinematics of underactuated hands. Actually, there are few available tools to qualify or quantify the stability of a grasp exerted by an underactuated hand, thus the design of underactuated hands mostly results from an intuitive approach. This paper aims to reduce this gap.

    A classification of underactuated hands is proposed, based on the expression of contact forces. This highlights the influence of non-backdrivable mechanisms introduced in the transmission of the closing motion of the hand on the stability of the grasp. The way to extend the original definition of form-closure to underactuated grasps is illustrated. A more general definition is formulated, which checks the stability of the set "object + hand". Using this new definition, a simple rule is proposed for designing a hand capable of achieving 1st order form-closed grasps.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  2. Computationally efficient near-field source localization using third-order moments

    Science.gov (United States)

    Chen, Jian; Liu, Guohong; Sun, Xiaoying

    2014-12-01

    In this paper, a third-order moment-based estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is proposed for passive localization of near-field sources. By properly choosing sensor outputs of the symmetric uniform linear array, two special third-order moment matrices are constructed, in which the steering matrix is the function of electric angle γ, while the rotational factor is the function of electric angles γ and ϕ. With the singular value decomposition (SVD) operation, all direction-of-arrivals (DOAs) are estimated from a polynomial rooting version. After substituting the DOA information into the steering matrix, the rotational factor is determined via the total least squares (TLS) version, and the related range estimations are performed. Compared with the high-order ESPRIT method, the proposed algorithm requires a lower computational burden, and it avoids the parameter-match procedure. Computer simulations are carried out to demonstrate the performance of the proposed algorithm.

  3. BOOK REVIEW: Statistical Mechanics of Turbulent Flows

    Science.gov (United States)

    Cambon, C.

    2004-10-01

    counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS, (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point corelations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-epsilon to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled `The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics

  4. Comparison of second and third orders Runge-Kutta methods for ...

    African Journals Online (AJOL)

    This work is concerned with the analysis of second and third orders Runge- Kutta formulae capable of solving initial value problems in Ordinary Differential Equations of the form: y1 = f(x, y), y(x0) = y0, a £ x £ b. The intention is to find out which of these two orders can improve the performance of results when implemented ...

  5. Two new solutions to the third-order symplectic integration method

    International Nuclear Information System (INIS)

    Iwatsu, Reima

    2009-01-01

    Two new solutions are obtained for the symplecticity conditions of explicit third-order partitioned Runge-Kutta time integration method. One of them has larger stability limit and better dispersion property than the Ruth's method.

  6. Computer program 'TRIO' for third order calculation of ion trajectory

    International Nuclear Information System (INIS)

    Matsuo, Takekiyo; Matsuda, Hisashi; Fujita, Yoshitaka; Wollnik, H.

    1976-01-01

    A computer program for the calculation of ion trajectory is described. This program ''TRIO'' (Third Order Ion Optics) is applicable to any ion optical system consisting of drift spaces, cylindrical or toroidal electric sector fields, homogeneous or inhomogeneous magnetic sector fields, magnetic and electrostatic Q-lenses. The influence of the fringing field is taken into consideration. A special device is introduced to the method of matrix multiplication to shorten the calculation time and the required time proves to be about 40 times shorter than the ordinary method as a result. The trajectory calculation is possible to execute with accuracy up to third order. Any one of three dispersion bases, momentum, energy, mass and energy, is possible to be selected. Full LIST of the computer program and an example are given. (auth.)

  7. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)

    2015-06-24

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.

  8. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  9. Special course on modern theoretical and experimental approaches to turbulent flow structure and its modelling

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The large eddy concept in turbulent modeling and techniques for direct simulation are discussed. A review of turbulence modeling is presented along with physical and numerical aspects and applications. A closure model for turbulent flows is presented and routes to chaos by quasi-periodicity are discussed. Theoretical aspects of transition to turbulence by space/time intermittency are covered. The application to interpretation of experimental results of fractal dimensions and connection of spatial temporal chaos are reviewed. Simulation of hydrodynamic flow by using cellular automata is discussed.

  10. A mathematical model of turbulence for turbulent boundary layers

    International Nuclear Information System (INIS)

    Pereira Filho, H.D.V.

    1977-01-01

    Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt

  11. PROTRUSION OF THE DEVICE - A COMPLICATION OF CATHETER CLOSURE OF PATENT DUCTUS-ARTERIOSUS

    NARCIS (Netherlands)

    OTTENKAMP, J; HESS, J; TALSMA, MD; BUISLIEM, TN

    Objective-To assess the medium term results of percutaneous transvenous closure of patent ductus arteriosus, in particular with regard to protrusion of the device with or without turbulence of the bloodflow. Design-Clinical examination and echocardiographic study (cross sectional Doppler, and colour

  12. Third-order particle-hole ring diagrams with contact-interactions and one-pion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2017-05-15

    The third-order particle-hole ring diagrams are evaluated for a NN-contact interaction of the Skyrme type. The pertinent four-loop coefficients in the energy per particle anti E(k{sub f}) ∝ k{sub f}{sup 5+2n} are reduced to double integrals over cubic expressions in Euclidean polarization functions. Dimensional regularization of divergent integrals is performed by subtracting power divergences and the validity of this method is checked against the known analytical results at second order. The complete O(p{sup 2}) NN-contact interaction is obtained by adding two tensor terms and their third-order ring contributions are also calculated in detail. The third-order ring energy arising from long-range 1π-exchange is computed and it is found that direct and exchange contributions are all attractive. The very large size of the three-ring energy due to point-like 1π-exchange, anti E(k{sub f0}) ≅ -92 MeV at saturation density, is however in no way representative for that of realistic chiral NN-potentials. Moreover, the third-order (particle-particle and hole-hole) ladder diagrams are evaluated with the full O(p{sup 2}) contact interaction, and the simplest three-ring contributions to the isospin-asymmetry energy A(k{sub f}) ∝ k{sub f}{sup 5} are studied. (orig.)

  13. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  14. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  15. Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses

    International Nuclear Information System (INIS)

    Estrada-Silva, F C; Rosete-Aguilar, M; Garduno-Mejia, J; Gonzalez-Galicia, M A; Bruce, N C; Ortega-Martinez, R

    2011-01-01

    When using lenses to focus ultra-short pulses, chromatic aberration produces pulse spreading, after propagation through the lens. The focusing of ultra-short pulses has been analyzed by using Fourier optics where the field amplitude of the pulse is evaluated around the focal region of the lens by performing a third order expansion on the wave number around the central frequency of the carrier. In the literature, the pulse focusing in the neighborhood of the focal region of the lens has been calculated by expanding the wave number up to second order. The second order approximation works for pulses with a duration greater than 20fs, or pulses propagating through low dispersion materials; but, it is necessary to do third order approximation for pulses with a shorter duration, or propagating through highly dispersive materials. In this paper we analyze 15fs and 20fs pulses, with a carrier wavelength of 810nm, at the paraxial focal plane of singlets and achromatic doublets. The analysis includes the third order GVD and the results are compared with those obtained when the wave number is expanded up to second order.

  16. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    KAUST Repository

    Lellmann, Jan

    2013-01-01

    We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.

  17. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    Science.gov (United States)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  18. An algorithm for solving initial value problems of third order ordinary ...

    African Journals Online (AJOL)

    Abstract. We propose an implicit multi-step method for the solution of initial value problems (IVPs) of third order ordinary differential equations (ODE) which does not require reducing the ODE to first order before solving. The development of the method is based on collocation of the differential system and interpolation of the ...

  19. GCFR 1/20-scale PCRV central core cavity closure model test

    International Nuclear Information System (INIS)

    Robinson, G.C.; Dougan, J.R.

    1981-06-01

    Oak Ridge National Laboratory has been conducting structural response tests of the prestressed concrete reactor vessel (PCRV) closures for the 300-MW(e) gas-cooled fast reactor demonstration power plant. This report describes the third in a series of tests of small-scale closure plug models. The model represents a redesign of the central core cavity closure plug. The primary objective was to demonstrate structural performance and ultimate load capacity of the closure plug. Secondary objectives included obtaining data on crack development and propagation and on mode of failure of the composite structure

  20. Turbulence modeling of natural convection in enclosures: A review

    International Nuclear Information System (INIS)

    Choi, Seok Ki; Kim, Seong O

    2012-01-01

    In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed

  1. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  2. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  3. Efficient spectral-Petrov-Galerkin methods for third- and fifth-order ...

    African Journals Online (AJOL)

    Two new families of general parameters generalized Jacobi polynomials are introduced. Some efficient and accurate algorithms based on these families are developed and implemented for solving third- and fifth-order differential equations in one variable subject to homogeneous and nonhomogeneous boundary ...

  4. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  5. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Science.gov (United States)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  6. Why the warming can't be natural: the nonlinear geophysics of climate closure

    Science.gov (United States)

    Lovejoy, S.

    2015-12-01

    Claims with extraordinary consequences require extraordinary evidence. It is not sufficient to prove that the warming is "extremely likely" to be anthropogenic: to achieve "climate closure", we must also disprove the converse theory that it is a natural fluctuation. This disproof requires an understanding of the strongly nonlinear atmospheric variability: since the 1980's this understanding is one of the important contributions of nonlinear geophysics to the atmospheric sciences. Atmospheric variability spans twenty orders of magnitude in time and ten in space, but it can be tamed with the help of emergent high-level turbulent laws and their anisotropic and multifractal generalizations. We take a voyage through scales and with the help of some new fluctuation analysis tools, we review the arguments and evidence for wide scale range space-time scaling: high level turbulent laws. We examine the consequences for the extreme fluctuations ("grey swan", "black swan" events) and we apply this to estimating the probabilities and return times of extreme centennial, global scale temperature fluctuations. Even with conservative assumptions, the natural warming hypothesis can be rejected with >99% confidence.

  7. Monte-Carlo computation of turbulent premixed methane/air ignition

    Science.gov (United States)

    Carmen, Christina Lieselotte

    The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.

  8. Einstein-Weyl spaces and third-order differential equations

    Science.gov (United States)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  9. Correlation Scales of the Turbulent Cascade at 1 au

    Science.gov (United States)

    Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.

    2018-05-01

    We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.

  10. Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence

    International Nuclear Information System (INIS)

    Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y

    2011-01-01

    In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.

  11. A generalized self-similar spectrum for decaying homogeneous and isotropic turbulence

    Science.gov (United States)

    Yang, Pingfan; Pumir, Alain; Xu, Haitao

    2017-11-01

    The spectrum of turbulence in dissipative and inertial range can be described by the celebrated Kolmogorov theory. However, there is no general solution of the spectrum in the large scales, especially for statistically unsteady turbulent flows. Here we propose a generalized self-similar form that contains two length-scales, the integral scale and the Kolmogorov scale, for decaying homogeneous and isotropic turbulence. With the help of the local spectral energy transfer hypothesis by Pao (Phys. Fluids, 1965), we derive and solve for the explicit form of the energy spectrum and the energy transfer function, from which the second- and third-order velocity structure functions can also be obtained. We check and verify our assumptions by direct numerical simulations (DNS), and our solutions of the velocity structure functions compare well with hot-wire measurements of high-Reynolds number wind-tunnel turbulence. Financial supports from NSFC under Grant Number 11672157, from the Alexander von Humboldt Foundation, and from the MPG are gratefully acknowledged.

  12. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    Science.gov (United States)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with

  13. A new third order rotatable design in five dimensions through ...

    African Journals Online (AJOL)

    Experiments of this kind could be widely applicable in human medicine, veterinary medicine, agriculture and in general, product research-innovation development for optimum resource utilisation based industrialisation process in line with the Kenya Vision 2030. In this paper, a third order rotatable design in five dimensions ...

  14. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    Science.gov (United States)

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  15. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...

  16. Turbulence modulation induced by interaction between a bubble swarm and decaying turbulence in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Imaizumi, Ryota; Morikawa, Koichi; Higuchi, Masamori; Saito, Takayuki

    2009-01-01

    In this study, the interaction between a bubble swarm and homogeneous isotropic turbulence was experimentally investigated. The objective is to clarify the turbulence modulation induced by interaction between the bubble swarm and the homogeneous isotropic turbulence without mean flow. In order to generate simultaneously ideally homogeneous isotropic turbulence and a sufficiently controlled bubble swarm, we employed both oscillating grid and bubble generators equipped with audio speakers. First, the homogeneous isotropic turbulence was formed by operating the oscillating grid cylindrical acrylic pipe (height: 600 mm, inner diameter: 149 mm) filled with ion-exchanged and degassed water. Second, we stopped the oscillating-grid in arbitrary time after the homogeneous isotropic turbulence was achieved. A few moments later, the controlled bubble swarm (number of bubbles: 3, average equivalent diameter of bubble: 3 mm, bubble Reynolds number: 859, Weber number: 3.48) was launched into the decaying turbulence described above, using the bubble generators. The bubble formation, bubble size and bubble-launch timing are controlled arbitrarily and precisely by this device. In this study, we conducted the following experiments: 1) measurement of the motion of bubbles in rest water and oscillating grid turbulence via high-speed visualization, 2) measurement of the liquid phase motion around the bubbles in rest water via PIV system with LIF method, 3) measurement of the liquid phase motion around the bubbles in oscillating-grid turbulence via PIV system with LIF method. In the vitalization of the liquid-phase motion of both experiments, two high speed video cameras were employed in order to simultaneously film large- and small-scale interrogation areas. The liquid-phase ambient turbulence hastened the change of the bubble motion from zigzag mode to spiral mode. The interaction between the bubble swarm and liquid-phase turbulence increased decay-rate of the turbulence. (author)

  17. Turbulence Statistics in a Two-Dimensional Vortex Condensate

    Science.gov (United States)

    Frishman, Anna; Herbert, Corentin

    2018-05-01

    Disentangling the evolution of a coherent mean-flow and turbulent fluctuations, interacting through the nonlinearity of the Navier-Stokes equations, is a central issue in fluid mechanics. It affects a wide range of flows, such as planetary atmospheres, plasmas, or wall-bounded flows, and hampers turbulence models. We consider the special case of a two-dimensional flow in a periodic box, for which the mean flow, a pair of box-size vortices called "condensate," emerges from turbulence. As was recently shown, a perturbative closure describes correctly the condensate when turbulence is excited at small scales. In this context, we obtain explicit results for the statistics of turbulence, encoded in the Reynolds stress tensor. We demonstrate that the two components of the Reynolds stress, the momentum flux and the turbulent energy, are determined by different mechanisms. It was suggested previously that the momentum flux is fixed by a balance between forcing and mean-flow advection: using unprecedently long numerical simulations, we provide the first direct evidence supporting this prediction. By contrast, combining analytical computations with numerical simulations, we show that the turbulent energy is determined only by mean-flow advection and obtain for the first time a formula describing its profile in the vortex.

  18. An accurate scheme by block method for third order ordinary ...

    African Journals Online (AJOL)

    problems of ordinary differential equations is presented in this paper. The approach of collocation approximation is adopted in the derivation of the scheme and then the scheme is applied as simultaneous integrator to special third order initial value problem of ordinary differential equations. This implementation strategy is ...

  19. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  20. Third-order QCD corrections to the charged-current structure function F3

    International Nuclear Information System (INIS)

    Moch, S.; Vermaseren, J.A.M.; Vogt, A.

    2008-12-01

    We compute the coefficient function for the charge-averaged W ± -exchange structure function F 3 in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling α s and of 1/Q 2 power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F 3 in powers of α s is stable at all values of x relevant to measurements at high scales Q 2 . At small x the third-order coefficient function is dominated by diagrams with the colour structure d abc d abc not present at lower orders. At large x the coefficient function for F 3 is identical to that of F 1 up to terms vanishing for x→1. (orig.)

  1. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  2. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  3. Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer

    International Nuclear Information System (INIS)

    Pozorski, Jacek; Waclawczyk, Marta; Minier, Jean-Pierre

    2004-01-01

    The temperature field in a heated turbulent flow is considered as a dynamically passive scalar. The probability density function (PDF) method with down to the wall integration is explored and new modelling proposals are put forward, including the explicit account for the molecular transport terms. Two variants of the approach are considered: first, the scalar PDF method with the use of externally-provided turbulence statistics; and second, the joint (stand-alone) velocity-scalar PDF method where a near-wall model for dynamical variables is coupled with a model for temperature. The closure proposals are formulated in the Lagrangian setting and resulting stochastic evolution equations are solved with a Monte Carlo method. The near-wall region of a heated channel flow is taken as a validation case; the second-order thermal statistics are of a particular interest. The PDF computation results agree reasonably with available DNS data. The sensitivity of results to the molecular Prandtl number and to the thermal wall boundary condition is accounted for

  4. Third-order least squares modelling of milling state term for improved computation of stability boundaries

    Directory of Open Access Journals (Sweden)

    C.G. Ozoegwu

    2016-01-01

    Full Text Available The general least squares model for milling process state term is presented. A discrete map for milling stability analysis that is based on the third-order case of the presented general least squares milling state term model is first studied and compared with its third-order counterpart that is based on the interpolation theory. Both numerical rate of convergence and chatter stability results of the two maps are compared using the single degree of freedom (1DOF milling model. The numerical rate of convergence of the presented third-order model is also studied using the two degree of freedom (2DOF milling process model. Comparison gave that stability results from the two maps agree closely but the presented map demonstrated reduction in number of needed calculations leading to about 30% savings in computational time (CT. It is seen in earlier works that accuracy of milling stability analysis using the full-discretization method rises from first-order theory to second-order theory and continues to rise to the third-order theory. The present work confirms this trend. In conclusion, the method presented in this work will enable fast and accurate computation of stability diagrams for use by machinists.

  5. Free vibration analysis of beams by using a third-order shear ...

    Indian Academy of Sciences (India)

    Free vibrations of beams; the third-order shear deformation theory; ... Thus, a shear correction factor is required to compensate for the error because of ...... Wang C M, Kitipornchai S 2003 Vibration of Timoshenko beams with internal hinge.

  6. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  7. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  8. Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions

    Science.gov (United States)

    Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.

    2013-12-01

    In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of

  9. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.

    2001-01-01

    The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...

  10. The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics

    1997-02-01

    Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)

  11. A wavenumber-partitioning scheme for two-dimensional statistical closures

    International Nuclear Information System (INIS)

    Bowman, J.C.

    1994-11-01

    One of the principal advantages of statistical closure approximations for fluid turbulence is that they involve smoothly varying functions of wavenumber. This suggests the possibility of modeling a flow by following the evolution of only a few representative wavenumbers. This work presents two new techniques for the implementation of two-dimensional isotropic statistical closures that for the first time allows the inertial-range scalings of these approximation to be numerically demonstrated. A technique of wavenumber partitioning that conserves both energy and enstrophy is developed for two-dimensional statistical closures. Coupled with a new time-stepping scheme based on a variable integrating factor, this advance facilitates the computation of energy spectra over seven wavenumber decades, a task that will clearly remain outside the realm of conventional numerical simulations for the foreseeable future. Within the context of the test-field model, the method is used to demonstrate Kraichnan's logarithmically-corrected scaling for the enstrophy inertial range and to make a quantitative assessment of the effect of replacing the physical Laplacian viscosity with an enhanced hyperviscosity

  12. 4th European Turbulence Conference

    CERN Document Server

    1993-01-01

    The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...

  13. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  14. Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow

    Science.gov (United States)

    Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas

    2017-11-01

    While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.

  15. PDF modeling of turbulent flows on unstructured grids

    Science.gov (United States)

    Bakosi, Jozsef

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on

  16. Ion and impurity transport in turbulent, anisotropic magnetic fields

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Isliker, H; Vogiannou, A; Vlahos, L; Weyssow, B

    2011-01-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  17. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)

    2011-08-15

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  18. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Science.gov (United States)

    Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.

    2011-08-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  19. Gross separation approaching a blunt trailing edge as the turbulence intensity increases.

    Science.gov (United States)

    Scheichl, B

    2014-07-28

    A novel rational description of incompressible two-dimensional time-mean turbulent boundary layer (BL) flow separating from a bluff body at an arbitrarily large globally formed Reynolds number, Re, is devised. Partly in contrast to and partly complementing previous approaches, it predicts a pronounced delay of massive separation as the turbulence intensity level increases. This is bounded from above by a weakly decaying Re-dependent gauge function (hence, the BL approximation stays intact locally), and thus the finite intensity level characterizing fully developed turbulence. However, it by far exceeds the moderate level found in a preceding study which copes with the associated moderate delay of separation. Thus, the present analysis bridges this self-consistent and another forerunner theory, proposing extremely retarded separation by anticipating a fully attached external potential flow. Specifically, it is shown upon formulation of a respective distinguished limit at which rate the separation point and the attached-flow trailing edge collapse as [Formula: see text] and how on a short streamwise scale the typical small velocity deficit in the core region of the incident BL evolves to a large one. Hence, at its base, the separating velocity profile varies generically with the one-third power of the wall distance, and the classical triple-deck problem describing local viscous-inviscid interaction crucial for moderately retarded separation is superseded by a Rayleigh problem, governing separation of that core layer. Its targeted solution proves vital for understanding the separation process more close to the wall. Most importantly, the analysis does not resort to any specific turbulence closure. A first comparison with the available experimentally found positions of separation for the canonical flow past a circular cylinder is encouraging. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-01-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  1. Performance assessment of the RANS turbulence models in nuclear fuel rod bundles

    International Nuclear Information System (INIS)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan

    2005-02-01

    The three experiments for turbulent flow in a rod bundle geometry were simulated in this CFD analysis using various RANS models. The CFD predictions were compared with the experimental and DNS results. The RANS models used here are the nonlinear quadratic/cubic κ-ε models and the second-order closure models (SSG, LRR, RSM-ω). The anisotropic models predicted the secondary flow and showed a significantly improved agreement with the measurements from the standard κ-ε model. In particular, the SSG model resulted in the best performance showing the closest agreement with the experimental results. However, the RANS models could not predict the very high anisotropy observed in a rod bundle with a small pitch-to-diameter ratio

  2. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  3. Hydromagnetic turbulence in the direct interaction approximation

    International Nuclear Information System (INIS)

    Nagarajan, S.

    1975-01-01

    The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)

  4. Extended Thermodynamics for Dense Gases up to Whatever Order and with Only Some Symmetries

    Directory of Open Access Journals (Sweden)

    Maria Cristina Carrisi

    2015-10-01

    Full Text Available Extended Thermodynamics of dense gases is characterized by two hierarchies of field equations, which allow one to overcome some restrictions on the generality of the previous models. This idea has been introduced by Arima, Taniguchi, Ruggeri and Sugiyama. In the case of a 14-moment model, they have found the closure of the balance equations up to second order with respect to equilibrium. Here, the closure is obtained up to whatever order and imposing only the necessary symmetry conditions. It comes out that the first non-symmetric parts of the higher order fluxes appear only at third order with respect to equilibrium, even if Arima, Taniguchi, Ruggeri and Sugiyama found a non-symmetric part proportional to an arbitrary constant also at first order with respect to equilibrium. Consequently, this constant must be zero, as Arima, Taniguchi, Ruggeri and Sugiyama assumed in the applications and on an intuitive ground.

  5. Turbulent flow computation in a circular U-Bend

    Directory of Open Access Journals (Sweden)

    Miloud Abdelkrim

    2014-03-01

    Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  6. Turbulent flow computation in a circular U-Bend

    Science.gov (United States)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  7. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  8. Third-order QCD corrections to heavy quark pair production near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Kurt

    2008-11-07

    The measurement of the top quark mass is an important task at the future International Linear Collider. The most promising process is the top quark pair production in the threshold region. In this region the top quarks behave non-relativistically and a perturbative treatment using effective field theories is possible. Current second order theoretical predictions in a fixed order approach show an uncertainty which is bigger than the expected experimental errors. Therefore, an improvement of the cross section calculation is desirable. There are two ways to incorporate higher order effects, one is to calculate the full next order in the fixed order approach, another possibility is to resum large logarithms. In this work, the fixed order calculation has been extended to the third order in perturbation theory for the QCD corrections. The result is a strongly improved scale behavior and a better understanding of heavy quarkonium systems. The Green function result is given in a semi-analytic form. The energy levels and wave functions for heavy quarkonium states have been calculated from the poles of the Green function and are presented for arbitrary quantum number n. The results have been implemented in a Mathematica program which makes the data easily accessible. Once some missing matching coefficients are calculated, and a complete electroweak calculation is available, the results of this work can be used to improve the precision of the top quark mass measurement to an uncertainty of less than 50 MeV. An inclusion of initial state radiation and beam effects are essential for a realistic observable. In the future, the results obtained could be used for a third order resummation of large logarithms. Further applications are also the extraction of the bottom quark mass with sum rules. (orig.)

  9. A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.

    Science.gov (United States)

    Popescu, Dan M; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise.

  10. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    Science.gov (United States)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  11. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  12. Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin

    International Nuclear Information System (INIS)

    Beneke, M.; Kiyo, Y.; Schuller, K.

    2008-01-01

    We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given

  13. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and

  14. Turbulent flow with suction in smooth and rough pipes

    International Nuclear Information System (INIS)

    Verdier, Andre.

    1977-11-01

    It concerns an experimental study of turbulent flow inside a pipe with rough and porous wall and suction applied through it. The first part recall the basic knowledge concerning the turbulent flow with roughness. In second part statistical equations of fluid wall stress are written in the case of a permeable rough wall, in order to underline the respective role played by viscosity and pressure terms. In the third part the dynamic equilibrium of the flow is experimentally undertaken in the smooth and rough range with and without wall suction. Some empirical formulae are proposed for the mean velocity profiles in the inertial range and for friction velocity with suction. In the case of the sand roughness used, it does not seem that critical Reynolds number of transition from smooth to rough range is varied [fr

  15. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  16. A Second-Order Turbulence Model Based on a Reynolds Stress Approach for Two-Phase Flow—Part I: Adiabatic Cases

    Directory of Open Access Journals (Sweden)

    S. Mimouni

    2009-01-01

    Full Text Available In our work in 2008, we evaluated the aptitude of the code Neptune_CFD to reproduce the incidence of a structure topped by vanes on a boiling layer, within the framework of the Neptune project. The objective was to reproduce the main effects of the spacer grids. The turbulence of the liquid phase was modeled by a first-order K-ε model. We show in this paper that this model is unable to describe the turbulence of rotating flows, in accordance with the theory. The objective of this paper is to improve the turbulence modeling of the liquid phase by a second turbulence model based on a Rij-ε approach. Results obtained on typical single-phase cases highlight the improvement of the prediction for all computed values. We tested the turbulence model Rij-ε implemented in the code versus typical adiabatic two-phase flow experiments. We check that the simulations with the Reynolds stress transport model (RSTM give satisfactory results in a simple geometry as compared to a K-ε model: this point is crucial before calculating rod bundle geometries where the K-ε model may fail.

  17. Systems of conservation laws with third-order Hamiltonian structures

    Science.gov (United States)

    Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.

    2018-02-01

    We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2 , classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.

  18. A Three Step Explicit Method for Direct Solution of Third Order ...

    African Journals Online (AJOL)

    This study produces a three step discrete Linear Multistep Method for Direct solution of third order initial value problems of ordinary differential equations of the form y'''= f(x,y,y',y''). Taylor series expansion technique was adopted in the development of the method. The differential system from the basis polynomial function to ...

  19. Third-order WKBJ eigenvalues for Lennard-Jones and Varshni V potentials

    International Nuclear Information System (INIS)

    Kesarwani, R.N.; Varshni, Y.P.

    1978-01-01

    The WKBJ method is applied to the third order for obtaining the eigenvalues for the fifth potential of Varshni, and the relevant integrals are analytically evaluated. Numerical results are obtained for the Lennard-Jones Potential, which is a special case of the Varshni V potential, and are compared to the results of Harrison and Bernstein obtained by a numerical integration of the wave equation. Error estimates are made. It is shown that for diatomic potentials, the Langer correction is not needed if the WKBJ approximation is carried to second and higher orders. (author)

  20. Third-order QCD corrections to the charged-current structure function F{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vermaseren, J.A.M. [NIKHEF, Amsterdam (Netherlands); Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences

    2008-12-15

    We compute the coefficient function for the charge-averaged W{sup {+-}}-exchange structure function F{sub 3} in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling {alpha}{sub s} and of 1/Q{sup 2} power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F{sub 3} in powers of {alpha}{sub s} is stable at all values of x relevant to measurements at high scales Q{sup 2}. At small x the third-order coefficient function is dominated by diagrams with the colour structure d{sup abc}d{sub abc} not present at lower orders. At large x the coefficient function for F{sub 3} is identical to that of F{sub 1} up to terms vanishing for x{yields}1. (orig.)

  1. DSHEA's third-party literature exemption; mail order sales, direct marketing, and Internet use.

    Science.gov (United States)

    Raubicheck, C J

    1999-01-01

    This article examines ways in which marketers of dietary supplements can make use of the "third-party literature" section of the Dietary Supplement Health and Education Act of 1994 (DSHEA). This provision permits persons or entities, other than manufacturers or distributors, to distribute to consumers certain publications in connection with the sale of particular supplements. These publications may include statements about the therapeutic benefits of such products without subjecting the products to regulation by the Food and Drug Administration (FDA) as unapproved new drugs. Specifically, this article addresses the following: Can a dietary supplement manufacturer or distributor send third-party literature about a dietary supplement to a customer in a mail order sales transaction? Can third-party literature be disseminated by mail with dietary supplement catalogues only? Can third-party literature be disseminated by sales representatives engaged in direct marketing of dietary supplements? Can third-party literature appear on the Internet? The answer appears to be affirmative in each of these situations.

  2. Mixing and Turbulence Statistics in an Inclined Interface Richtmyer-Meshkov Instability

    Science.gov (United States)

    Subramaniam, Akshay; Lele, Sanjiva

    2016-11-01

    The interaction of a Mach 1.55 shockwave with a nominally inclined interface is considered. Unlike the classical Richtmyer-Meshkov problem, the interface evolution is non-linear from early time and large highly correlated vortical structures are observed even after reshock. The simulations target the experiment of McFarland et al. (2014). Simulations are performed using the Miranda code (Cook et al., 2005) that uses high-order spectral-like numerics (Lele, 1992). Results from multiple grid resolutions up to 4 billion grid points establish grid convergence. Comparisons to the experiments show that the simulations adequately capture the physics of the problem. Analysis of the data from the simulations based on variable density turbulence equations in the Favre averaged form will be presented. Statistics of unclosed terms in the variable density RANS equations will also be presented and compared to standard closure models. It is observed that the Reynolds Stresses have a non-monotonic return to isotropy after reshock and that compressibility effects are important long after reshock. The effect of numerics are also quantified and presented. Computer time for this work was provided by NSF PRAC award "Multi-material turbulent mixing" on the Blue Waters system.

  3. Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure

    NARCIS (Netherlands)

    Thielen, L.; Hanjalić, K.; Jonker, H.; Manceau, R.

    2005-01-01

    We present numerical computations of flow and heat transfer in multiple jets impinging normally on a flat heated surface, obtained with a new second-moment turbulence closure combined with an elliptic blending model of non-viscous wall blocking effect. This model provides the mean velocity and

  4. Simulation of a 3D Turbulent Wavy Channel based on the High-order WENO Scheme

    Science.gov (United States)

    Tsai, Bor-Jang; Chou, Chung-Chyi; Tsai, Yeong-Pei; Chuang, Ying Hung

    2018-02-01

    Passive interest turbulent drag reduction, effective means to improve air vehicle fuel consumption costs. Most turbulent problems happening to the nature and engineering applications were exactly the turbulence problem frequently caused by one or more turbulent shear flows. This study was operated with incompressible 3-D channels with cyclic wavy boundary to explore the physical properties of turbulence flow. This research measures the distribution of average velocity, instant flowing field shapes, turbulence and pressure distribution, etc. Furthermore, the systematic computation and analysis for the 3-D flow field was also implemented. It was aimed to clearly understand the turbulence fields formed by wavy boundary of tube flow. The purpose of this research is to obtain systematic structural information about the turbulent flow field and features of the turbulence structure are discussed.

  5. Security option file - After closure (DOS-AF)

    International Nuclear Information System (INIS)

    2016-01-01

    A first volume presents the context and scope of the Cigeo project, and the scope of this document. It proposes a general presentation of Cigeo, the regulatory framework and standards. It describes the different aspects and components of the security strategy: principles, security functions after closure, objectives of protection, global approach. It proposes a security assessment: objectives, consistency with international practices, assessment steps, scenarios, scenario quantitative assessment. The next part addresses security management. The second volume contains a description of the storage system: site characteristics, types of stored parcels, the future of the installation after its closure. The third volume proposes a security assessment. It addresses the management of risks and uncertainties, describes a scenario of normal evolution and also scenarios of altered evolutions, scenarios of unintentional human intrusion, and what-if type scenarios. The fourth volume reports lessons at the current stage of the project, and gives an overview of important activities from storage design to storage closure

  6. Double-lock technique: a simple method to secure abdominal wall closure

    International Nuclear Information System (INIS)

    Jategaonkar, P.A.; Yadav, S.P.

    2013-01-01

    Secure closure of a laparotomy incision remains an important aspect of any abdominal operation with the aim to avoid the postoperative morbidity and hasten the patient's recovery. Depending on the operator's preference and experience, it may be done by the continuous or the interrupted methods either using a non-absorbable or delayed-absorbable suture. We describe a simple, secure and quick technique of abdominal wall closure which involves continuous suture inter-locked doubly after every third bite. This simple and easy to use mass closure technique can be easily mastered by any member of the surgical team and does not need any assistant. It amalgamates the advantages of both, the continuous and the interrupted methods of closures. To our knowledge, such a technique has not been reported in the literature. (author)

  7. Monitoring calculation of closure change of Extradosed Cable-stayed Bridge

    Science.gov (United States)

    Shi, Jing Xian; Ran, Zhi Hong

    2018-06-01

    During the construction of extradosed cable-stayed bridge in Yunnan province, China, the construction unit has made certain changes in the construction process of the closure section due to environmental restrictions: remove the hanging basket after the closure, the sling shall not be provided in closure section, the function of the sling is realized by the hanging basket on the 16th beam. In case of this change, the bridge has been constructed to section 15th. In order to ensure the smooth and orderly progress of each stage in the closure phase, this article is arranged according to the construction plan, appropriate adjustment of related procedures, checking the bridge safety at all stages of construction, the stress and force of the main girder are compared to ensure the safety of the construction after closure changes. Adjust the height of the beam of the 16th and 17th to adapt the new construction plan, and the bridge closure smoothly.

  8. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  9. Third-order ordinary differential equations Y”' = f(x, y, y'', y′”) with ...

    African Journals Online (AJOL)

    dimensional symmetry algebra. Mathematics Subject Classication (2010): 34A05, 34A25, 53A55, 76M60. Key words: Linearization, third order ODEs, point transformation, contact transformation, Lie symmetries, relative differential invariants.

  10. Symposium on Turbulent Shear Flows, 7th, Stanford University, CA, Aug. 21-23, 1989, Proceedings. Volumes 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Papers on turbulent shear flows are presented, covering topics such as the structure of pressure fluctuations, fossil two-dimensional turbulence in the ocean, turbulence production and eddy structure in wall turbulence, bypass transition in a heated boundary layer, a turbulent spot in plane Poiseuille flow, the evolution of an axisymmetric jet, plane mixing layer development, vortex models of a pseudoturbulent shear flow, numerical techniques for turbulence studies, Reynolds stress in the wall region of turbulent pipe flow, the turbulent structure of a momentumless wake, the near field of the transverse jet. Additional topics include a turbulent boundary layer disturbed by a cylinder, evolving mixing layers, flow analysis in a vortex flowmeter, ejections and bursts in pulsatile turbulent wall flow measurements, a flat plate oscillating in pitch, turbulent buoyant flows, isothermal lobed mixer flows, flow distortion on a turbulent scalar field, two phase flows. In addition, papers on the applications of turbulent shear flow studies are given, including air pollutant deposition, closures, oceanography, instrumentation, heat transfer, rotating flows, combustion, coherent structures, turbulence control, and scalar transport modeling

  11. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  12. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1982-01-01

    This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube

  13. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory

  14. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  15. Plasma Turbulence General Topics

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)

    1965-06-15

    It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.

  16. Turbulent thermal boundary layer on a permeable flat plate

    International Nuclear Information System (INIS)

    Vigdorovich, I. I.

    2007-01-01

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses

  17. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  18. A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Yang-Yih, Chen; Hung-Chu, Hsu

    2009-01-01

    Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)

  19. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models

    International Nuclear Information System (INIS)

    Fakhar, K.; Kara, A. H.

    2012-01-01

    We study the symmetries, conservation laws and reduction of third-order equations that evolve from a prior reduction of models that arise in fluid phenomena. These could be the ordinary differential equations (ODEs) that are reductions of partial differential equations (PDEs) or, alternatively, PDEs related to given ODEs. In this class, the analysis includes the well-known Blasius, Chazy, and other associated third-order ODEs. (general)

  20. Single versus double-layer uterine closure at cesarean: impact on lower uterine segment thickness at next pregnancy.

    Science.gov (United States)

    Vachon-Marceau, Chantale; Demers, Suzanne; Bujold, Emmanuel; Roberge, Stephanie; Gauthier, Robert J; Pasquier, Jean-Charles; Girard, Mario; Chaillet, Nils; Boulvain, Michel; Jastrow, Nicole

    2017-07-01

    Uterine rupture is a potential life-threatening complication during a trial of labor after cesarean delivery. Single-layer closure of the uterus at cesarean delivery has been associated with an increased risk of uterine rupture compared with double-layer closure. Lower uterine segment thickness measurement by ultrasound has been used to evaluate the quality of the uterine scar after cesarean delivery and is associated with the risk of uterine rupture. To estimate the impact of previous uterine closure on lower uterine segment thickness. Women with a previous single low-transverse cesarean delivery were recruited at 34-38 weeks' gestation. Transabdominal and transvaginal ultrasound evaluation of the lower uterine segment thickness was performed by a sonographer blinded to clinical data. Previous operative reports were reviewed to obtain the type of previous uterine closure. Third-trimester lower uterine segment thickness at the next pregnancy was compared according to the number of layers sutured and according to the type of thread for uterine closure, using weighted mean differences and multivariate logistic regression analyses. Of 1613 women recruited, with operative reports available, 495 (31%) had a single-layer and 1118 (69%) had a double-layer closure. The mean third-trimester lower uterine segment thickness was 3.3 ± 1.3 mm and the proportion with lower uterine segment thickness cesarean delivery is associated with a thicker third-trimester lower uterine segment and a reduced risk of lower uterine segment thickness <2.0 mm in the next pregnancy. The type of thread for uterine closure has no significant impact on lower uterine segment thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  2. Symplectic and trigonometrically fitted symplectic methods of second and third order

    International Nuclear Information System (INIS)

    Monovasilis, Th.; Simos, T.E.

    2006-01-01

    The numerical integration of Hamiltonian systems by symplectic and trigonometrically symplectic method is considered in this Letter. We construct new symplectic and trigonometrically symplectic methods of second and third order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis

  3. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    International Nuclear Information System (INIS)

    Davies, J.; Vogt, A.

    2016-06-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  4. Self-similar regimes of turbulence in weakly coupled plasmas under compression

    Science.gov (United States)

    Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.

    2018-02-01

    Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.

  5. Evaluation of Two Energy Balance Closure Parametrizations

    Science.gov (United States)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  6. Predictions for heat transfer characteristics in a natural draft reactor cooling system using a second moment closure turbulence model

    International Nuclear Information System (INIS)

    Nishimura, M.; Maekawa, I.

    2004-01-01

    A numerical study is performed on the natural draft reactor cavity cooling system (RCCS). In the cooling system, buoyancy driven heated upward flow could be in the mixed convection regime that is accompanied by heat transfer impairment. Also, the heating wall condition is asymmetric with regard to the channel cross section. These flow regime and thermal boundary conditions may invalidate the use of design correlation. To precisely simulate the flow and thermal fields within the RCCS, the second moment closure turbulence model is applied. Two types of the RCCS channel geometry are selected to make a comparison: an annular duct with fins on the outer surface of the inner circular wall, and a multi-rectangular duct. The prediction shows that the local heat transfer coefficient on the RCCS with finned annular duct is less than 1/6 of that estimated with Dittus-Boelter correlation. Much portion of the natural draft airflow does not contribute cooling at all because mainstream escapes from the narrow gaps between the fins. This result and thus the finned annulus design are unacceptable from the viewpoint for structural integrity of the RCCS wall boundary. The performance of the multi-rectangular duct design is acceptable that the RCCS maximum temperature is less than 400 degree centigrade even when the flow rate is halved from the designed condition. (author)

  7. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  8. Physically-consistent wall boundary conditions for the k-ω turbulence model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl

    2010-01-01

    A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...... of the fluctuating velocity signal. Both conventional k = 0 and dk/dy = 0 wall boundary conditions are considered. Results indicate that either condition can provide accurate solutions, for the bulk of the flow, over both smooth and rough beds. It is argued that the zero-gradient condition is more consistent...... with the near wall physics, however, as it allows direct integration through a viscous sublayer near smooth walls, while avoiding a viscous sublayer near rough walls. This is in contrast to the conventional k = 0 wall boundary condition, which forces resolution of a viscous sublayer in all circumstances...

  9. Autologous Platelet-rich Plasma after Third Molar Surgery.

    Science.gov (United States)

    Gandevivala, Adil; Sangle, Amit; Shah, Dinesh; Tejnani, Avneesh; Sayyed, Aatif; Khutwad, Gaurav; Patel, Arpit Arunbhai

    2017-01-01

    The aim of this study is to compare the efficacy of autologous platelet-rich plasma (PRP) in the third molar impactions, with respect to: pain, swelling, healing, and periodontal status distal to the second molar in patients who need surgical removal of bilateral impacted mandibular third molars. Twenty-five patients of both sexes aged between 16 and 60 years who required bilateral surgical removal of their impacted third molars and met the inclusion criteria were included in the study. After surgical extraction of the third molar, primary closure was performed in the control group, whereas PRP was placed in the socket followed by primary closure in the case group. The outcome variables were pain, swelling, wound healing, and periodontal probe depth that were follow-up period of 2 months. Quantitative data are presented as mean. Statistical significance was checked by t -test. There was a difference in the pain (0.071) and facial swelling (0.184), reduction between test and control on day 3, but it was not found to be significant. Periodontal pocket depth (0.001) and wound healing (0.001) less in case group compared with the control group was found to be significant. The use of PRP lessens the severity of immediate postoperative sequelae and decreases preoperative pocket depth.

  10. Testing quantum mechanics using third-order correlations

    International Nuclear Information System (INIS)

    Kinsler, P.

    1996-01-01

    Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of open-quote open-quote semiclassical theories,close-quote close-quote and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the open-quote open-quote all or nothing close-quote close-quote Greenberger-Horne-Zeilinger test of local hidden variable theories. copyright 1996 The American Physical Society

  11. Models for Master-Slave Clock Distribution Networks with Third-Order Phase-Locked Loops

    OpenAIRE

    Piqueira, José Roberto Castilho; de Carvalho Freschi, Marcela

    2007-01-01

    The purpose of this work is to study the processing and transmission of clock signals in networks of geographically distributed nodes, in order to derive conditions for frequency and phase synchronization between the nodes. The focus is on the master-slave architecture, which presents a priority scheme of clock distribution. One-way master-slave (OWMS ) and two-way master-slave (TWMS) chains are studied, considering that the slave nodes are third-order phase-locked loops...

  12. A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence

    Science.gov (United States)

    McComb, W. D.; Yoffe, S. R.

    2017-09-01

    A statistical closure of the Navier-Stokes hierarchy which leads to equations for the two-point, two-time covariance of the velocity field for stationary, homogeneous isotropic turbulence is presented. It is a generalisation of the self-consistent field method due to Edwards (1964) for the stationary, single-time velocity covariance. The probability distribution functional P≤ft[\\mathbf{u},t\\right] is obtained, in the form of a series, from the Liouville equation by means of a perturbation expansion about a Gaussian distribution, which is chosen to give the exact two-point, two-time covariance. The triple moment is calculated in terms of an ensemble-averaged infinitesimal velocity-field propagator, and shown to yield the Edwards result as a special case. The use of a Gaussian zero-order distribution has been found to justify the introduction of a fluctuation-response relation, which is in accord with modern dynamical theories. In a sense this work completes the analogy drawn by Edwards between turbulence and Brownian motion. Originally Edwards had shown that the noise input was determined by the correlation of the velocity field with the externally applied stirring forces but was unable to determine the system response. Now we find that the system response is determined by the correlation of the velocity field with internal quasi-entropic forces. This analysis is valid to all orders of perturbation theory, and allows the recovery of the local energy transfer (LET) theory, which had previously been derived by more heuristical methods. The LET theory is known to be in good agreement with experimental results. It is also unique among two-point statistical closures in displaying an acceptable (i.e. non-Markovian) relationship between the transfer spectrum and the system response, in accordance with experimental results. As a result of the latter property, it is compatible with the Kolmogorov (K41) spectral phenomenology. In memory of Professor Sir Sam Edwards F

  13. Effects of premixed flames on turbulence and turbulent scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Lipatnikov, A.N.; Chomiak, J. [Department of Applied Mechanics, Chalmers University of Technology, 412 75 Goeteborg (Sweden)

    2010-02-15

    Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research. (author)

  14. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Directory of Open Access Journals (Sweden)

    Stojan Jovanović

    2016-06-01

    Full Text Available The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  15. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Science.gov (United States)

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  16. Third order mode laser diode: design of a twin photon source

    International Nuclear Information System (INIS)

    Ducci, S.; Berger, V.; Rossi, A. de; Ortiz, V.; Calligaro, M.; Vinter, B.; Nagle, J.; Berger, V.

    2004-01-01

    We demonstrate the lasing action on a third order waveguide mode in a laser diode. The AlGaAs heterostructure has been designed to achieve a parametric emission of photons pairs through modal phase matching. This device is very compact and does not generate coupling loss between the laser source and the non-linear waveguide. It is the first step on the way to design a twin photon micro-source. (A.C.)

  17. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    Science.gov (United States)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  18. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  19. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity

    DEFF Research Database (Denmark)

    Stoy, Paul C.; Mauder, Matthias; Foken, Thomas

    2013-01-01

    approached 1. These results suggest that landscape-level heterogeneity in vegetation and topography cannot be ignored as a contributor to incomplete energy balance closure at the flux network level, although net radiation measurements, biological energy assimilation, unmeasured storage terms......The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent...... motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites...

  20. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    International Nuclear Information System (INIS)

    Pal, Sandip

    2016-01-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars

  1. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  2. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  3. Enhancement of third-order harmonic generation by interaction of two IR femtosecond filaments

    International Nuclear Information System (INIS)

    Liu, Z Y; Ding, P J; Shi, Y C; Lu, X; Liu, Q C; Sun, S H; Ding, B W; Hu, B T; Liu, X L

    2012-01-01

    Three orders of magnitude in the enhancement of the third-order harmonic (TH) generation induced by the interaction of two femtosecond filaments crossing with small angles in the air is achieved. The dependences of the TH generation on the time delay, the relative polarization, the input laser intensity ratios between the probe and pump beam are measured with the crossing angle of 3.5deg , and the results with quasi-vertical crossing angle are also shown for comparison

  4. Density Effects on Post-shock Turbulence Structure

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration

    2017-11-01

    The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.

  5. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    Science.gov (United States)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  6. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    Science.gov (United States)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  7. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  8. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  9. Hopf bifurcation and chaos in a third-order phase-locked loop

    Science.gov (United States)

    Piqueira, José Roberto C.

    2017-01-01

    Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.

  10. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  11. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  12. Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity

    Science.gov (United States)

    Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein

    2015-12-01

    In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.

  13. Field Investigation of the Turbulent Flux Parameterization and Scalar Turbulence Structure over a Melting Valley Glacier

    Science.gov (United States)

    Guo, X.; Yang, K.; Yang, W.; Li, S.; Long, Z.

    2011-12-01

    We present a field investigation over a melting valley glacier on the Tibetan Plateau. One particular aspect lies in that three melt phases are distinguished during the glacier's ablation season, which enables us to compare results over snow, bare-ice, and hummocky surfaces [with aerodynamic roughness lengths (z0M) varying on the order of 10-4-10-2 m]. We address two issues of common concern in the study of glacio-meteorology and micrometeorology. First, we study turbulent energy flux estimation through a critical evaluation of three parameterizations of the scalar roughness lengths (z0T for temperature and z0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach (Andreas 1987, Boundary-Layer Meteorol 38:159-184) is based on surface-renewal models and has been very widely applied in glaciated areas; the second (Yang et al. 2002, Q J Roy Meteorol Soc 128:2073-2087) has never received application over an ice/snow surface, despite its validity in arid regions; the third approach (Smeets and van den Broeke 2008, Boundary-Layer Meteorol 128:339-355) is proposed for use specifically over rough ice defined as z0M > 10-3 m or so. This empirical z0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives underestimated z0T and z0q. The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively (relative errors often > 30%). Overall, the second approach produces fairly low errors in energy flux estimates; it thus emerges as a practically useful choice to parameterize z0T and z0q over an ice/snow surface. Our evaluation of z0T and z0q parameterizations hopefully serves as a useful source of reference for physically based modeling of land-ice surface energy budget and mass balance. Second, we explore how scalar turbulence

  14. RANS analyses on erosion behavior of density stratification consisted of helium–air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3)

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2015-08-15

    Highlights: . • The third international benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in the reactor containment vessel. • Two types turbulence model modification were applied in order to accurately simulate the turbulence helium transportation in the density stratification. • The analysis result in case with turbulence model modification is good agreement with the experimental data. • There is a major difference of turbulence helium–mass transportation between in case with and without the turbulence model modification. - Abstract: Density stratification in the reactor containment vessel is an important phenomenon on an issue of hydrogen safety. The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project on containment thermal hydraulics. As a part of the activity, we participated in the third international CFD benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in containment vessel. This paper shows our approach for the IBE-3, focusing on the turbulence transport phenomena in eroding the density stratification and introducing modified turbulence models for improvement of the CFD analyses. For this analysis, we modified the CFD code OpenFOAM by using two turbulence models; the Kato and Launder modification to estimate turbulent kinetic energy production around a stagnation point, and the Katsuki model to consider turbulence damping in density stratification. As a result, the modified code predicted well the experimental data. The importance of turbulence transport modeling is also discussed using the calculation results.

  15. RANS analyses on erosion behavior of density stratification consisted of helium–air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3)

    International Nuclear Information System (INIS)

    Abe, Satoshi; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2015-01-01

    Highlights: . • The third international benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in the reactor containment vessel. • Two types turbulence model modification were applied in order to accurately simulate the turbulence helium transportation in the density stratification. • The analysis result in case with turbulence model modification is good agreement with the experimental data. • There is a major difference of turbulence helium–mass transportation between in case with and without the turbulence model modification. - Abstract: Density stratification in the reactor containment vessel is an important phenomenon on an issue of hydrogen safety. The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project on containment thermal hydraulics. As a part of the activity, we participated in the third international CFD benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in containment vessel. This paper shows our approach for the IBE-3, focusing on the turbulence transport phenomena in eroding the density stratification and introducing modified turbulence models for improvement of the CFD analyses. For this analysis, we modified the CFD code OpenFOAM by using two turbulence models; the Kato and Launder modification to estimate turbulent kinetic energy production around a stagnation point, and the Katsuki model to consider turbulence damping in density stratification. As a result, the modified code predicted well the experimental data. The importance of turbulence transport modeling is also discussed using the calculation results

  16. Statistical theory of turbulent incompressible multimaterial flow

    International Nuclear Information System (INIS)

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe

  17. Symmetry of the complete second-order nonlinear conductivity tensor for an unmagnetized relativistic turbulent plasma

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1983-01-01

    A new exact symmetry is proved for the complete second-order nonlinear conductivity tensor of an unmagnetized relativistic turbulent plasma. The symmetry is not limited to principal parts. If Cerenkov resonance is ignored, the new symmetry reduces to the well-known symmetry related to the Manley--Rowe relations, crossing symmetry, and nondissipation of the principal part of the nonlinear current. Also, a new utilitarian representation for the complete tensor is obtained in which all derivatives are removed and the pole structure is clearly exhibited

  18. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.

  20. A third-order KdV solution for internal solitary waves and its application in the numerical wave tank

    Directory of Open Access Journals (Sweden)

    Qicheng Meng

    2016-04-01

    Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.

  1. Third-order perturbation theory for van der Waals interaction coefficients

    International Nuclear Information System (INIS)

    Tang Liyan; Shi Tingyun; Yan Zongchao; Mitroy, J.

    2011-01-01

    The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C 9 /R 9 interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C 9 coefficient are given for the homonuclear alkali-metal dimers. The size of the C 9 :C 3 dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C 11 and C 13 coefficients between two helium atoms and lithium atoms in their ground states are also given.

  2. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  3. Flapping model of scalar mixing in turbulence

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1991-01-01

    Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects

  4. Limit cycles from a cubic reversible system via the third-order averaging method

    Directory of Open Access Journals (Sweden)

    Linping Peng

    2015-04-01

    Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.

  5. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  6. Symposium on Turbulent Shear Flows, 6th, Universite de Toulouse III, France, Sept. 7-9, 1987, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This symposium includes topics on wall flows, unsteady flows, scalar and buoyant transport, instrumentation and techniques, combustion, aerodynamic flows, free flows, geophysical flows, complex flows, separated flows, coherent structures, closures, numerical simulation, and two-phase flows. Papers are presented on the effect of favorable pressure gradients on turbulent boundary layers, the models of hydrodynamic resonances in separated shear flows, the transport of passive scalars in a turbulent channel flow, a pulsed hot-wire probe for near-wall measurements, and vortex dynamics in diffusion flames. Consideration is also given to time-dependent structure in wing-body junction flows, bifurcating air jets at high subsonic speeds, the wake of an axisymmetric body with or without tail separation, coherent structures in quasi-geostrophic jets, and separated flow predictions using a new turbulence model. Additional papers are on stochastic estimation of organized structures in turbulent channel flow, a comparative study of eleven models of turbulence, and a numerical study of a stably stratified mixing layer

  7. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  8. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    Science.gov (United States)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is

  9. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    Science.gov (United States)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  10. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  11. Analysis of low-pass filters for approximate deconvolution closure modelling in one-dimensional decaying Burgers turbulence

    Science.gov (United States)

    San, O.

    2016-01-01

    The idea of spatial filtering is central in approximate deconvolution large-eddy simulation (AD-LES) of turbulent flows. The need for low-pass filters naturally arises in the approximate deconvolution approach which is based solely on mathematical approximations by employing repeated filtering operators. Two families of low-pass spatial filters are studied in this paper: the Butterworth filters and the Padé filters. With a selection of various filtering parameters, variants of the AD-LES are systematically applied to the decaying Burgers turbulence problem, which is a standard prototype for more complex turbulent flows. Comparing with the direct numerical simulations, it is shown that all forms of the AD-LES approaches predict significantly better results than the under-resolved simulations at the same grid resolution. However, the results highly depend on the selection of the filtering procedure and the filter design. It is concluded that a complete attenuation for the smallest scales is crucial to prevent energy accumulation at the grid cut-off.

  12. Comparison of different turbulence models in open channels with smooth-rough bedforms

    International Nuclear Information System (INIS)

    Ghani, U.

    2013-01-01

    The turbulence models play an important role in all types of computational fluid dynamics based numerical modelling. There is no universal turbulence model which can be applied in all the scenarios. Therefore, if a suitable closure model is used in a simulation work, only then the successful numerical modelling will be achieved. This paper presents the evaluation of three turbulence models in numerical modelling of open channel flows having beds comprising of two parallel strips, one being smooth and the other one being rough. The roughness on the rough side of the channel was created with the help of gravels. The turbulence models tested for their suitability in this case were Reynolds stress model, k-model and RNG based k-model. A structured mesh was used in this simulation work. Grid independence test was also conducted in the simulation. The evaluation of the turbulence models was made through the primary velocity contours and secondary velocity vectors over the cross section of the channel. It was revealed that Reynolds stress model simulated the flow behaviour successfully and results obtained through this model matched very closely to that of the experimental data whereas k-model and RNG based k-model failed to reproduce the flow field successfully. These results will be helpful for CFD (Computational Fluid Dynamics) modellers in correct selection of the turbulence model in these types of channels. (author)

  13. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  14. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn

    2016-08-10

    Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  15. Conformal invariance in hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Falkovich, Gregory

    2007-01-01

    This short survey is written by a physicist. It contains neither theorems nor precise definitions. Its main content is a description of the results of numerical solution of the equations of fluid mechanics in the regime of developed turbulence. Due to limitations of computers, the results are not very precise. Despite being neither exact nor rigorous, the findings may nevertheless be of interest for mathematicians. The main result is that the isolines of some scalar fields (vorticity, temperature) in two-dimensional turbulence belong to the class of conformally invariant curves called SLE (Scramm-Loewner evolution) curves. First, this enables one to predict and find a plethora of quantitative relations going far beyond what was known previously about turbulence. Second, it suggests relations between phenomena that seemed unrelated, like the Euler equation and critical percolation. Third, it shows that one is able to get exact analytic results in statistical hydrodynamics. In short, physicists have found something unexpected and hope that mathematicians can help to explain it.

  16. Drift wave turbulence in low-β plasmas

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans

    1983-01-01

    Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...

  17. Magnetohydrodynamic turbulence revisited

    International Nuclear Information System (INIS)

    Goldreich, P.; Sridhar, S.

    1997-01-01

    In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society

  18. A fluctuation method to calculate the third order elastic constants in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zimu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Qu, Jianmin, E-mail: j-qu@northwestern.edu [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-05-28

    This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.

  19. Third-order perturbation theory for van der Waals interaction coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Tang Liyan; Shi Tingyun [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Yan Zongchao [Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia)

    2011-11-15

    The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C{sub 9}/R{sup 9} interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C{sub 9} coefficient are given for the homonuclear alkali-metal dimers. The size of the C{sub 9}:C{sub 3} dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C{sub 11} and C{sub 13} coefficients between two helium atoms and lithium atoms in their ground states are also given.

  20. The Dominicans, The Third Order and a social order. Santafé de Bogotá. XVI-XIX centuries

    Directory of Open Access Journals (Sweden)

    William Elvis Plata

    2015-01-01

    Full Text Available Since their arrival in New Granada, the dominicans promoted the so called “Third Order”, which brought a number of lay organizations such as fraternities, sororities and devouts groups. This article analyzes such organizations as key nodes of colonial society, through a symbiotic relationship with the colonial elite, which continued until the dawn of republican era. This link were favored by institutions such as chaplaincies and pious deeds. It allowed, among other things, the provision of many of the new members of the order and endowed convents of movable and immovable property and capital necessary for its functioning, in exchange for ensuring social order and provide prestige for this life and salvation for the other. This successful model was torn apart with the advent of the Enlightenment and will fall precipitously shortly after Independence.

  1. Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow

    Science.gov (United States)

    Farrell, Brian F.; Ioannou, Petros J.

    2017-08-01

    This paper describes a study of the self-sustaining process in wall turbulence. The study is based on a second order statistical state dynamics model of Couette flow in which the state variables are the streamwise mean flow (first cumulant) and perturbation covariance (second cumulant). This statistical state dynamics model is closed by either setting the third cumulant to zero or by replacing it with a stochastic parametrization. Statistical state dynamics models with this form are referred to as S3T models. S3T models have been shown to self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by direct numerical simulation of the equations of motion. The use of a statistical state dynamics model to study the physical mechanisms underlying turbulence has important advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of S3T statistical state dynamics models isolates the interaction between the mean flow and the perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using statistical state dynamics models of S3T form is that the analytical structure of S3T turbulence can be completely characterized. For example, the perturbation component of turbulence in the S3T system is demonstrably maintained by a parametric perturbation growth mechanism in which fluctuation of the mean flow maintains the perturbation field which in turn maintains the mean flow fluctuations in a synergistic interaction. Furthermore, the equilibrium

  2. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    Science.gov (United States)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  3. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  4. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  5. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs)

  6. Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames

    Energy Technology Data Exchange (ETDEWEB)

    Merci, Bart [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Ghent (Belgium); Roekaerts, Dirk [Department of Multi-Scale Physics, Delft University of Technology, Delft (Netherlands); Naud, Bertrand [CIEMAT, Madrid (Spain); Pope, Stephen B. [Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY (United States)

    2006-07-15

    Numerical simulation results are presented for turbulent jet diffusion flames with various levels of turbulence-chemistry interaction, stabilized behind a bluff body (Sydney Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The mass density function transport equation is solved in a Lagrangian manner. A second-moment-closure turbulence model is applied to obtain accurate mean flow and turbulent mixing fields. The behavior of two micromixing models is discussed: the Euclidean minimum spanning tree model and the modified Curl coalescence dispersion model. The impact of the micromixing model choice on the results in physical space is small, although some influence becomes visible as the amount of local extinction increases. Scatter plots and profiles of conditional means and variances of thermochemical quantities, conditioned on the mixture fraction, are discussed both within and downstream of the recirculation region. A distinction is made between local extinction and incomplete combustion, based on the CO species mass fraction. The differences in qualitative behavior between the micromixing models are explained and quantitative comparison to experimental data is made. (author)

  7. Zeolite Y Films as Ideal Platform for Evaluation of Third-Order Nonlinear Optical Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hyun Sung Kim

    2016-01-01

    Full Text Available Zeolites are ideal host material for generation and stabilization of regular ultrasmall quantum dots (QDs array with the size below 1.5 nm. Quantum dots (QDs with high density and extinction absorption coefficient have been expected to give high level of third-order nonlinear optical (3rd-NLO and to have great potential applications in optoelectronics. In this paper, we carried out a systematic elucidation of the third-order nonlinear optical response of various types of QDs including PbSe, PbS, CdSe, CdS, ZnSe, ZnS, Ag2Se, and Ag2S by manipulation of QDs into zeolites Y pores. In this respect, we could demonstrate that the zeolite offers an ideal platform for capability comparison 3rd-NLO response of various types of QDs with high sensitivities.

  8. Closure Plan for the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-10-30

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

  9. Closure Plan for the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

  10. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-03

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  11. 3D Electric Waveforms of Solar Wind Turbulence

    Science.gov (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2018-01-01

    Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.

  12. Construction quality assurance closure report, Lawrence Livermore National Laboratory Site 300, Pits 1 and 7

    International Nuclear Information System (INIS)

    1993-02-01

    This document presents the Final Construction Quality Assurance (CQA) report for the closure cover system of two mixed, low-level radioactive and hazardous waste landfills (pits) at Site 300. Site 300, operated by the Lawrence Livermore National Laboratory (LLNL), is located in the Altamont Hills, approximately 15 miles southeast of Livermore, California. The purpose of this report is to document the CQA program established to assure that construction is completed in accordance with the design intent and the approved Closure and Post Closure Plans dated May 1989 and revised January 1990 (EPA ID Number: CA 2890090002). Inclusive within the Closure and Post Closure Plan were the CQA Plan and the Technical Specifications for the final cover system. This report contains a complete narrative with photographic documentation of the construction activities and progress, problems encountered and solutions utilized, and third party testing and monitoring results, thus establishing the verification of compliance with the Quality Assurance Plan for the project

  13. Reactor vessel closure head replacements in 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Framatome-Jeumont Industrie consortium have completed in 1997 28 reactor vessel (RV) closure head replacements, including five on 1300 MWe class PWR units. Framatome manages the operations and handles removal and reinstallation of equipment (not including the control rod drive mechanisms (CRDM)) and the requalification tests, while JI, which manufactures the CRDMs, is involved in the CRDM cutting, re-machining and welding operations, using tools of original design, in order to optimize the RV closure head operation in terms of costs, schedule and dosage

  14. 3rd Turbulence and Interactions Conference

    CERN Document Server

    Estivalezes, Jean-Luc; Gleize, Vincent; Lê, Thien-Hiep; Terracol, Marc; Vincent, Stéphane

    2014-01-01

    The book presents a snapshot of the state-of-art in the field of turbulence modeling and covers the latest developments concerning direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation, and other related topics. It provides readers with a comprehensive review of both theory and applications, describing in detail the authors’ own experimental results. The book is based on the proceedings of the third Turbulence and Interactions Conference (TI 2012), which was held on June 11-14 in La Saline-les-Bains, La Réunion, France, and includes both keynote lectures and outstanding contributed papers presented at the conference. This multifaceted collection, which reflects the conference´s emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a practice-oriented guide for students, researchers and professionals in ...

  15. HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072

    International Nuclear Information System (INIS)

    M.E. Davis

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards

  16. HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Davis

    2007-05-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards.

  17. Turbulent resistivity driven by the magnetorotational instability

    Science.gov (United States)

    Fromang, S.; Stone, J. M.

    2009-11-01

    Aims: We measure the turbulent resistivity in the nonlinear regime of the MRI, and evaluate the turbulent magnetic Prandtl number. Methods: We perform a set of numerical simulations with the Eulerian finite volume codes Athena and Ramses in the framework of the shearing box model. We consider models including explicit dissipation coefficients and magnetic field topologies such that the net magnetic flux threading the box in both the vertical and azimuthal directions vanishes. Results: We first demonstrate good agreement between the two codes by comparing the properties of the turbulent states in simulations having identical microscopic diffusion coefficients (viscosity and resistivity). We find the properties of the turbulence do not change when the box size is increased in the radial direction, provided it is elongated in the azimuthal direction. To measure the turbulent resistivity in the disk, we impose a fixed electromotive force on the flow and measure the amplitude of the saturated magnetic field that results. We obtain a turbulent resistivity that is in rough agreement with mean field theories like the Second Order Smoothing Approximation. The numerical value translates into a turbulent magnetic Prandtl number Pmt of order unity. Pmt appears to be an increasing function of the forcing we impose. It also becomes smaller as the box size is increased in the radial direction, in good agreement with previous results obtained in very large boxes. Conclusions: Our results are in general agreement with other recently published papers studying the same problem but using different methodology. Thus, our conclusion that Pmt is of order unity appears robust.

  18. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  19. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Energy Technology Data Exchange (ETDEWEB)

    Vermeire, B.C., E-mail: brian.vermeire@concordia.ca; Witherden, F.D.; Vincent, P.E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  20. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Science.gov (United States)

    Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  1. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    International Nuclear Information System (INIS)

    Vermeire, B.C.; Witherden, F.D.; Vincent, P.E.

    2017-01-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  2. Third-order operator-differential equations with discontinuous coefficients and operators in the boundary conditions

    Directory of Open Access Journals (Sweden)

    Araz R. Aliev

    2013-10-01

    Full Text Available We study a third-order operator-differential equation on the semi-axis with a discontinuous coefficient and boundary conditions which include an abstract linear operator. Sufficient conditions for the well-posed and unique solvability are found by means of properties of the operator coefficients in a Sobolev-type space.

  3. Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses

    International Nuclear Information System (INIS)

    Tang Gao; Liu Cunming; Luo Lan; Chen Wei

    2010-01-01

    The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.

  4. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  5. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  6. Orientational and electronic contributions to the third-order susceptibilities of cryogenic liquids

    International Nuclear Information System (INIS)

    Kildal, H.; Brueck, S.R.J.

    1980-01-01

    Alternating current Kerr effect and third-harmonic generation (THG) are reported for the cryogenic liquids CO, O 2 , N 2 , and Ar pumped by CO 2 TEA laser radiation. The THG experiments measure the hyperpolarizability, while the Kerr effect measurements probe the total nonresonant third-order susceptibility chi/sup( 3 ), arising from both molecular orientation and electronic hyperpolarizability. The THG process in liquid CO is dominated by a vibrational two-photon resonant contribution for the CO 2 R(6) pump line at 9.35 μm. By studying the interference between the resonant and nonresonant contributions in liquid CO--O 2 mixtures the hyperpolarizability of liquid O 2 has been determined relative to the two-photon resonant chi/sup( 3 ) of liquid CO. These measurements give the first experimental confirmation for liquid media that the two-photon resonance contribution to polarized scattering consists of both narrow and broad linewidth components associated with, respectively, the isotropic and anisotropic Raman polarizabilities

  7. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    Science.gov (United States)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  8. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    Science.gov (United States)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  9. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  10. Gyrokinetic studies of turbulence in steep gradient region: Role of turbulence spreading and E x B shear

    International Nuclear Information System (INIS)

    Hahm, T.S.; Lin, Z.; Diamond, P.H.; Gurcan, O.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Lee, W.W.; Lewandowski, J.L.V.; Tang, W.M.

    2005-01-01

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length. (author)

  11. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  12. Numerical Study on Turbulent Airfoil Noise with High-Order Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2009-01-01

    step, the incompressible pressure and velocity form input to the acoustic equations. In this paper, sound generation from a NACA 0012 airfoil in turbulent flow condition is studied. The noise source regions are found at the trailing edge and the strength of the sources is depended on the Reynolds...

  13. Electron acceleration by turbulent plasmoid reconnection

    Science.gov (United States)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  14. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

    Science.gov (United States)

    Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  15. Evaluation of Container Closure System Integrity for Frozen Storage Drug Products.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Nikoloff, Jonas; Adler, Michael; Mahler, Hanns-Christian

    2016-01-01

    Sometimes, drug product for parenteral administration is stored in a frozen state (e.g., -20 °C or -80 °C), particularly during early stages of development of some biotech molecules in order to provide sufficient stability. Shipment of frozen product could potentially be performed in the frozen state, yet possibly at different temperatures, for example, using dry ice (-80 °C). Container closure systems of drug products usually consist of a glass vial, rubber stopper, and an aluminum crimped cap. In the frozen state, the glass transition temperature (Tg) of commonly used rubber stoppers is between -55 and -65 °C. Below their Tg, rubber stoppers are known to lose their elastic properties and become brittle, and thus potentially fail to maintain container closure integrity in the frozen state. Leaks during frozen temperature storage and transportation are likely to be transient, yet, can possibly risk container closure integrity and lead to microbial contamination. After thawing, the rubber stopper is supposed to re-seal the container closure system. Given the transient nature of the possible impact on container closure integrity in the frozen state, typical container closure integrity testing methods (used at room temperature conditions) are unable to evaluate and thus confirm container closure integrity in the frozen state. Here we present the development of a novel method (thermal physical container closure integrity) for direct assessment of container closure integrity by a physical method (physical container closure integrity) at frozen conditions, using a modified He leakage test. In this study, different container closure systems were evaluated with regard to physical container closure integrity in the frozen state to assess the suitability of vial/stopper combinations and were compared to a gas headspace method. In summary, the thermal physical container closure integrity He leakage method was more sensitive in detecting physical container closure

  16. On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto

    2018-01-01

    The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.

  17. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    CERN Document Server

    Mordik, S N

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  18. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    International Nuclear Information System (INIS)

    Mordik, S.N.; Ponomarev, A.G.

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model

  19. Redo third ventriculostomy.

    Science.gov (United States)

    Hellwig, Dieter; Giordano, Mario; Kappus, Christoph

    2013-02-01

    Endoscopic third ventriculostomy (ETV) is the treatment of choice for obstructive hydrocephalus. In some cases a reclosure of the ventriculostoma occurs. This could be caused by different reasons, such as operative technique, size of the stoma, scarring, or a persisting Liliequist membrane. The databases of the Neurosurgical Department of the Philipps University Marburg and the International Neuroscience Institute Hannover have been explored. The medical reports of patients who suffered from hydrocephalus and were treated with ETV between 1990 and 2010 were reviewed, with special consideration of a nonpatent ventriculostoma and a repeated ETV. Of 148 patients with ETV, we had 14 patients in whom the stoma was not patent. In 8 of those, we performed a successful second ventriculostomy. Five patients were treated with application of a ventriculoperitoneal shunt. One patient died of an acute obstructive hydrocephalus due to the closure of the ventriculostoma. The success rate of repeat ETV has been 87.5%. In cases of secondary closure of the stoma after ETV, an endoscopic reventriculostomy is recommended using the same operative approach and should be taken into consideration before the application of a cerebrospinal fluid diversion system. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Transfer function of radio over fiber multimode fiber optic links considering third-order dispersion.

    Science.gov (United States)

    Capmany, J; Gasulla, Ivana

    2007-08-20

    Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.

  1. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  2. Approximate deconvolution model for the simulation of turbulent gas-solid flows: An a priori analysis

    Science.gov (United States)

    Schneiderbauer, Simon; Saeedipour, Mahdi

    2018-02-01

    Highly resolved two-fluid model (TFM) simulations of gas-solid flows in vertical periodic channels have been performed to study closures for the filtered drag force and the Reynolds-stress-like contribution stemming from the convective terms. An approximate deconvolution model (ADM) for the large-eddy simulation of turbulent gas-solid suspensions is detailed and subsequently used to reconstruct those unresolved contributions in an a priori manner. With such an approach, an approximation of the unfiltered solution is obtained by repeated filtering allowing the determination of the unclosed terms of the filtered equations directly. A priori filtering shows that predictions of the ADM model yield fairly good agreement with the fine grid TFM simulations for various filter sizes and different particle sizes. In particular, strong positive correlation (ρ > 0.98) is observed at intermediate filter sizes for all sub-grid terms. Additionally, our study reveals that the ADM results moderately depend on the choice of the filters, such as box and Gaussian filter, as well as the deconvolution order. The a priori test finally reveals that ADM is superior compared to isotropic functional closures proposed recently [S. Schneiderbauer, "A spatially-averaged two-fluid model for dense large-scale gas-solid flows," AIChE J. 63, 3544-3562 (2017)].

  3. On the interaction between fluid turbulence and particle loading: numerical simulation of turbidity currents and prediction of deep-sea arenites

    Science.gov (United States)

    Doronzo, D. M.; Dufek, J.

    2012-04-01

    Turbidity currents are water-particle flows able to move large distance over the seafloor, and the deep-sea arenitic facies of their deposits often represents an important class of hydrocarbon reservoirs. Coupling flow behavior and the resulting deposits may thus help finding new reservoirs, as well as reconstructing the sediment transport mechanisms from the continental shelf to the abyssal plain. There is a broad literature of turbidity currents, which includes field, theoretical, experimental, and numerical studies on flow dynamics and associated deposits. Generally, the field and theoretical approaches focus on the scale of actual deposits and currents, respectively, whereas experimental and numerical approaches are often restricted to the laboratory scale and relatively low-Reynolds number, respectively. Fully resolved simulations that incorporate complex bathymetry, large-scale flow, multiphase and 3D effects, are computationally expensive and require closure schemes. Here, a 2D numerical model of turbidity current is proposed, which is based on the Euler-Lagrange formulation of multiphase physics, and on the Reynolds-averaged Navier-Stokes closure of turbulence. This strategy has been recently used in volcanology to simulate the gas-particle flow of pyroclastic density currents, in order to predict their deposits. The incompressible conservation equations of mass and momentum are solved for the water, and the equation of particle motion is solved for the sediment, which for this example, has an initial concentration of 1 % of 0.5 mm sand particles. The equations are solved numerically with the finite-volume method of Ansys Fluent software, and particle and fluid motion are two-way coupled during calculation, which means that the particles are tracked on the basis of water solution, then are allowed to affect the liquid turbulence through a momentum exchange. The Reynolds (turbulent) stresses, which dominate over the viscous ones in the turbidity current, are

  4. Safe disposal of radioactive waste. Post-closure safety assessment of permanent repository in Novi han

    International Nuclear Information System (INIS)

    Mateeva, M.

    2007-01-01

    A presented material is the third part of the monograph with title 'Safe disposal of radioactive waste. Post-closure safety assessment of the permanent repository in Novi Han'. This part deals with review of the scenario selection procedure. The process system of permanent repository for radioactive waste is describing in details for different levels. Preliminary screening process of features, events and processes is presented here. Interaction matrixes for basic disposal system components are constructed. Final selection and grouping between the included features, events and processes is done. Selected and defined scenarios for post-closure safety assessment are presented too. Key words: post-closure safety assessment, scenario generation procedure, process system, process influence diagram, and interaction matrix

  5. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  6. Closure technique after carotid endarterectomy influences local hemodynamics.

    Science.gov (United States)

    Harrison, Gareth J; How, Thien V; Poole, Robert J; Brennan, John A; Naik, Jagjeeth B; Vallabhaneni, S Rao; Fisher, Robert K

    2014-08-01

    Meta-analysis supports patch angioplasty after carotid endarterectomy (CEA); however, studies indicate considerable variation in practice. The hemodynamic effect of a patch is unclear and this study attempted to elucidate this and guide patch width selection. Four groups were selected: healthy volunteers and patients undergoing CEA with primary closure, trimmed patch (5 mm), or 8-mm patch angioplasty. Computer-generated three-dimensional models of carotid bifurcations were produced from transverse ultrasound images recorded at 1-mm intervals. Rapid prototyping generated models for flow visualization studies. Computational fluid dynamic studies were performed for each model and validated by flow visualization. Mean wall shear stress (WSS) and oscillatory shear index (OSI) maps were created for each model using pulsatile inflow at 300 mL/min. WSS of OSI >0.3 were considered pathological, predisposing to accretion of intimal hyperplasia. The resultant WSS and OSI maps were compared. The four groups comprised 8 normal carotid arteries, 6 primary closures, 6 trimmed patches, and seven 8-mm patches. Flow visualization identified flow separation and recirculation at the bifurcation increased with a patch and was related to the patch width. Computational fluid dynamic identified that primary closure had the fewest areas of low WSS or elevated OSI but did have mild common carotid artery stenoses at the proximal arteriotomy that caused turbulence. Trimmed patches had more regions of abnormal WSS and OSI at the bifurcation, but 8-mm patches had the largest areas of deleteriously low WSS and high OSI. Qualitative comparison among the four groups confirmed that incorporation of a patch increased areas of low WSS and high OSI at the bifurcation and that this was related to patch width. Closure technique after CEA influences the hemodynamic profile. Patching does not appear to generate favorable flow dynamics. However, a trimmed 5-mm patch may offer hemodynamic benefits over an 8

  7. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  8. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    Science.gov (United States)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  9. A new kinetic description for turbulent collisions including mode-coupling

    International Nuclear Information System (INIS)

    Misguich, J.H.; Tchen, C.M.

    1982-07-01

    The usual introduction of higher-order mode-coupling terms in the description of turbulent collisions beyond usual Renormalized Quasi-Linear approximation (RQL) is briefly analyzed. Here new results are derived in the framework of the general kinetic theory, and the equivalence is proved with the long time limit of simple results deduced from the Vlasov equation. The correction to the RQL turbulent collision term is analyzed and a new approximation is proposed. Turbulent collisions are also described by perturbation around the Lagrangian autocorrelation of fluctuating fields. For an homogeneous turbulence, however, the asymptotic integral of this Lagrangian autocorrelation vanishes identically, similarly to what occurs in Brownian motion. For inhomogeneous turbulence this method can nevertheless be used, and higher-order mode-coupling terms can be interpreted as a shielding of elementary Lagrangian turbulent collisions

  10. Optical nonclassicality test based on third-order intensity correlations

    Science.gov (United States)

    Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.

    2018-03-01

    We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.

  11. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  12. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    structure function of the longitudinal and vertical velocity components is examined using five experimental data sets that span the roughness sub-layer above vegetation canopies, the atmospheric surface-layer above a lake and a grass field, and an open channel experiment. The results indicate that close to the wall/surface, this scaling exists in the longitudinal velocity structure function only, with the vertical velocity counterpart exhibiting a much narrower extent of this range due to smaller separation of scales. Phenomenological aspects of the large-scale eddies show that the length scale formed by the friction velocity and energy dissipation acts as a dominant similarity length scale in collapsing experimental data at different heights, mainly due to the imbalance between local production and dissipation of turbulence kinetic energy. • Nonlocal heat transport in the convective atmospheric boundary-layer: Failure of the mean gradient-diffusion (K-theory) in the convective boundary-layer is explored. Using large eddy simulation runs for the atmospheric boundary layer spanning weakly to strongly convective conditions, a generic diagnostic framework that encodes the role of third-order moments in nonlocal heat transport is developed and tested. The premise is that these nonlocal effects are responsible for the inherent asymmetry in vertical transport, and hence the necessary non-Gaussian nature of the joint probability density function (JPDF) of vertical velocity and potential temperature must account for these effects. Conditional sampling (quadrant analysis) of this function and the imbalance between the flow mechanisms of ejections and sweeps are used to characterize this asymmetry, which is then linked to the third-order moments using a cumulant-discard method for the Gram-Charlier expansion of the JPDF. The connection between the ejection-sweep events and the third-order moments shows that the concepts of bottom-up/top-down diffusion, or updraft/downdraft models

  13. B235 一様等方性乱流における 1 点・ 2 点速度分布

    OpenAIRE

    巽, 友正; Tomomasa, TATSUMI; 国際高等研究所; International Institute for Advanced Studies

    2001-01-01

    This is the third report of my works on the derivation of the velocity distributions of homogeneous turbulence, using the cross-independence closure hypothesis and the equations of one and two-point velocitiy distributions. In the first report, the hypothesis was applied to the equation of 1-point velocity distribution and it was shown that there exists a self-similar solution representing a normal velocity distribution of decaying turbulence. In the second report, the physical basis of the h...

  14. Is there a statistical mechanics of turbulence?

    International Nuclear Information System (INIS)

    Kraichnan, R.H.; Chen, S.Y.

    1988-09-01

    The statistical-mechanical treatment of turbulence is made questionable by strong nonlinearity and strong disequilibrium that result in the creation of ordered structures imbedded in disorder. Model systems are described which may provide some hope that a compact, yet faithful, statistical description of turbulence nevertheless is possible. Some essential dynamic features of the models are captured by low-order statistical approximations despite strongly non-Gaussian behavior. 31 refs., 5 figs

  15. Evaluation of the Momentum Closure Schemes in MPAS-Ocean

    Science.gov (United States)

    Zhao, Shimei; Liu, Yudi; Liu, Wei

    2018-04-01

    In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith

  16. The Vacuum-Assisted Closure (VAC) device for hastened attachment of a superficial inferior-epigastric flap to third-degree burns on hand and fingers.

    Science.gov (United States)

    Weinand, Christian

    2009-01-01

    The vacuum-assisted closure (VAC) device has a wide range of clinical applications, including treatment of infected surgical wounds, traumatic wounds, pressure ulcers, wounds with exposed bone and hardware, diabetic foot ulcers, and venous stasis ulcers. Increased release of growth factors has been described, leading to improved vascularization and thereby formation of new tissue. The system is also used in burn surgery for reconstructive purposes. In this case report, a patient suffered from a third-degree burn injury to the dorsum of the hand with exposure of tendons, necessitating the use of a flap reconstruction. The patient was treated with a superficial inferior-epigastric artery-based flap and the VAC system was applied in a created glove-like shape. Hastened attachment of the flap onto the exposed fingers was observed after 4 days. The author reports on the additional use of the VAC system to hasten flap attachment in a patient with a burn injury to the dorsum of the hand.

  17. Third-Order Transport with MAD Input: A Computer Program for Designing Charged Particle Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Karl

    1998-10-28

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems.

  18. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  19. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    International Nuclear Information System (INIS)

    Branicki, M.; Majda, A.J.

    2013-01-01

    of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a fashion elucidated here. The DSS technique exploiting a simple Gaussian closure of the nonlinear stochastic forecast model emerges as the most suitable trade-off between the superresolution skill and computational complexity associated with estimating the cross-correlations between the aliasing modes of the sparsely observed turbulent signal. Such techniques offer a promising and efficient approach to constraining unresolved turbulent fluxes through stochastic superparameterization and a subsequent improvement in coarse-grained filtering and prediction of the next generation atmosphere–ocean system (AOS) models

  20. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  1. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  2. Retrospective cost adaptive Reynolds-averaged Navier-Stokes k-ω model for data-driven unsteady turbulent simulations

    Science.gov (United States)

    Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.

    2018-03-01

    This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.

  3. Turbulence modeling of the Von Karman flow: Viscous and inertial stirrings

    International Nuclear Information System (INIS)

    Poncet, Sebastien; Schiestel, Roland; Monchaux, Romain

    2008-01-01

    The present work considers the turbulent Von Karman flow generated by two counter-rotating smooth flat (viscous stirring) or bladed (inertial stirring) disks. Numerical predictions based on one-point statistical modeling using a low-Reynolds number second-order full stress transport closure (RSM model) are compared to velocity measurements performed at CEA (Commissariat a l'Energie Atomique, France). The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of inertial stirring instead of modeling the blades themselves. The influences of the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics and the turbulence properties in the Von Karman configuration. In particular, we highlighted the transition between the merged and separated boundary layer regimes and the one between the Batchelor [Batchelor, G.K., 1951. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quat. J. Mech. Appl. Math. 4 (1), 29-41] and the Stewartson [Stewartson, K., 1953. On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49, 333-341] flow structures in the smooth disk case. We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings

  4. Vacuum with mesh is a feasible temporary closure device after fascial dehiscence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Skarbye, Mona; Jensen, Kenneth Højsgaard

    2013-01-01

    INTRODUCTION: The open abdomen is a challenging condition and a temporary abdominal closure device is required in order to protect the intra-abdominal viscera. We aimed to evaluate the feasibility of a recent device: vacuum-assisted wound closure and mesh-mediated fascial traction (VAWCM) after f...

  5. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  6. Stomal Closure: Strategies to Prevent Incisional Hernia

    Science.gov (United States)

    Harries, Rhiannon L.; Torkington, Jared

    2018-01-01

    Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias. PMID:29670882

  7. Stomal Closure: Strategies to Prevent Incisional Hernia

    Directory of Open Access Journals (Sweden)

    Rhiannon L. Harries

    2018-04-01

    Full Text Available Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias.

  8. Third-Order Elliptic Lowpass Filter for Multi-Standard Baseband Chain Using Highly Linear Digitally Programmable OTA

    Science.gov (United States)

    Elamien, Mohamed B.; Mahmoud, Soliman A.

    2018-03-01

    In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.

  9. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  10. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  11. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  12. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  13. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  14. Stabilization of third-order bilinear systems using constant controls

    Directory of Open Access Journals (Sweden)

    A. E. Golubev

    2014-01-01

    Full Text Available This paper deals with the zero equilibrium stabilization for dynamical systems that have control input singularities. A dynamical system with scalar control input is called nonregular if the coefficient of input becomes null on a subset of the phase space that contains the origin. One of the classes of nonregular dynamical systems is represented by bilinear systems. In case of second-order bilinear systems the necessary and sufficient conditions for the zero equilibrium stabilizability are known in the literature. However, in general case the stabilization problem in the presence of control input singularities has not been solved yet.In this note we solve the problem of the zero equilibrium stabilization for the third-order bilinear dynamical systems given in a canonical form. The solution is found in the class of constant controls. The necessary and sufficient conditions are obtained for the zero equilibrium stabilizability of the bilinear systems in question.The dependence of the zero equilibrium stabilizability on system parameter values is analyzed. The general criteria of stabilizability by means of constant controls are given for the bilinear systems in question. In case when all the system parameters have nonzero values the necessary and sufficient stabilizability conditions are proved. The case when some of the parameters are equal to zero is also considered.Further research can be focused on extending the obtained results to a higher-order case of bilinear and affine dynamical systems. The solution of the considered stabilization problem should also be found not only within constant controls but also in a class of state feedbacks, particularly, in the case when stabilizing constant control does not exist.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.

  15. Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2014-01-01

    The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness

  16. Influence of turbulence on bed load sediment transport

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Chua, L.; Cheng, N. S.

    2003-01-01

    This paper summarizes the results of an experimental study on the influence of an external turbulence field on the bedload sediment transport in an open channel. The external turbulence was generated by: (1) with a horizontal pipe placed halfway through the depth, h; (2) with a series of grids......-bed experiments and the ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment...... correlated with the sediment transport rate. The sediment transport increases markedly with increasing turbulence level....

  17. Turbulent equipartitions in two dimensional drift convection

    International Nuclear Information System (INIS)

    Isichenko, M.B.; Yankov, V.V.

    1995-01-01

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits

  18. Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity

    Science.gov (United States)

    Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong

    We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.

  19. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    Science.gov (United States)

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  20. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  1. Mass extraction container closure integrity physical testing method development for parenteral container closure systems.

    Science.gov (United States)

    Yoon, Seung-Yil; Sagi, Hemi; Goldhammer, Craig; Li, Lei

    2012-01-01

    Container closure integrity (CCI) is a critical factor to ensure that product sterility is maintained over its entire shelf life. Assuring the CCI during container closure (C/C) system qualification, routine manufacturing and stability is important. FDA guidance also encourages industry to develop a CCI physical testing method in lieu of sterility testing in a stability program. A mass extraction system has been developed to check CCI for a variety of container closure systems such as vials, syringes, and cartridges. Various types of defects (e.g., glass micropipette, laser drill, wire) were created and used to demonstrate a detection limit. Leakage, detected as mass flow in this study, changes as a function of defect length and diameter. Therefore, the morphology of defects has been examined in detail with fluid theories. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it has been verified that the method was robust, and capable of determining the acceptance limit using 3σ for syringes and 6σ for vials. Sterile products must maintain their sterility over their entire shelf life. Container closure systems such as those found in syringes and vials provide a seal between rubber and glass containers. This seal must be ensured to maintain product sterility. A mass extraction system has been developed to check container closure integrity for a variety of container closure systems such as vials, syringes, and cartridges. In order to demonstrate the method's capability, various types of defects (e.g., glass micropipette, laser drill, wire) were created in syringes and vials and were tested. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water

  2. Prediction of turbulent heat transfer with surface blowing using a non-linear algebraic heat flux model

    International Nuclear Information System (INIS)

    Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.

    2003-01-01

    The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data

  3. Numerical study and modeling of turbulence modulation in a sheet flow burdened with particulates; Etude numerique et modelisation de la modulation de la turbulence dans un ecoulement de nappe chargee en particules

    Energy Technology Data Exchange (ETDEWEB)

    Vermorel, O

    2003-11-15

    This work is devoted to the numerical and theoretical study of turbulence modulation by particles using direct numerical simulation for the continuous phase coupled with a Lagrangian prediction of trajectories of discrete particles. The configuration corresponds to a slab of particles injected at high velocity into an isotropic decaying turbulence. The motion of a particle is supposed to be governed only by the drag force. The particle mass loading is large so that momentum exchange between particles and fluid results in a significant modulation of the turbulence. Collisions are neglected. The momentum transfer between particles and gas causes a strong acceleration of the gas in the slab. In the periphery of the slab, the turbulence is enhanced due to the production by the mean gas velocity gradients. The analysis of the interphase transfer terms in the gas turbulent kinetic energy equation shows that the direct effect of the particles is to damp the turbulence in the core of the slab but to enhance it in the periphery. This last effect is due to a strong correlation between the particle distribution and the instantaneous gas velocity. Another issue concerns the k-{epsilon} model and the validity of its closure assumptions in two phase flows. A new eddy viscosity expression, function of particle parameters, is used to model the Reynolds stress tensor. The modelling of the gas turbulent dissipation rate is questioned. A two-phase Langevin equation is also tested to model drift velocity and fluid-particles velocity covariance equations. (author)

  4. Efficient algorithms and implementations of entropy-based moment closures for rarefied gases

    International Nuclear Information System (INIS)

    Schaerer, Roman Pascal; Bansal, Pratyuksh; Torrilhon, Manuel

    2017-01-01

    We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) , we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.

  5. Efficient algorithms and implementations of entropy-based moment closures for rarefied gases

    Science.gov (United States)

    Schaerer, Roman Pascal; Bansal, Pratyuksh; Torrilhon, Manuel

    2017-07-01

    We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) [13], we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.

  6. Efficient algorithms and implementations of entropy-based moment closures for rarefied gases

    Energy Technology Data Exchange (ETDEWEB)

    Schaerer, Roman Pascal, E-mail: schaerer@mathcces.rwth-aachen.de; Bansal, Pratyuksh; Torrilhon, Manuel

    2017-07-01

    We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) , we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.

  7. Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.

    Science.gov (United States)

    Hilst, G. R.

    1973-01-01

    Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.

  8. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations...

  9. Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate

    Science.gov (United States)

    Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan

    2016-10-01

    An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.

  10. Third-order correlator for measuring the time profile of petawatt laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, V N; Lozhkarev, V V; Luchinin, G A; Mironov, S Yu; Khazanov, Efim A; Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Didenko, N V; Konyashchenko, Aleksandr V; Lutsenko, Andrei P [' Avesta-project' Ltd., Troitsk, Moscow Region (Russian Federation)

    2008-11-30

    A third-order correlator with a single-shot time window and a full dynamic range of 10{sup 8} is developed. The time contrast of radiation from the front-end system of a petawatt femtosecond laser complex measured with the correlator within time windows {+-}1 ps and {+-}100 ps was 10{sup 4} and more than 10{sup 8}, respectively. Based on the theoretical analysis of the cross-correlator operation, a number of requirements providing the optimal functioning of the cross-correlator are found. The reasons restricting the technical parameters of the correlator are discussed. (measurement of parameters of laser radiation)

  11. Third-order correlator for measuring the time profile of petawatt laser pulses

    International Nuclear Information System (INIS)

    Ginzburg, V N; Lozhkarev, V V; Luchinin, G A; Mironov, S Yu; Khazanov, Efim A; Yakovlev, I V; Didenko, N V; Konyashchenko, Aleksandr V; Lutsenko, Andrei P

    2008-01-01

    A third-order correlator with a single-shot time window and a full dynamic range of 10 8 is developed. The time contrast of radiation from the front-end system of a petawatt femtosecond laser complex measured with the correlator within time windows ±1 ps and ±100 ps was 10 4 and more than 10 8 , respectively. Based on the theoretical analysis of the cross-correlator operation, a number of requirements providing the optimal functioning of the cross-correlator are found. The reasons restricting the technical parameters of the correlator are discussed. (measurement of parameters of laser radiation)

  12. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  13. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  14. Possible effects of small-scale intermittency in turbulent reacting flows

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.

    2006-12-01

    It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale 'intermittency' on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here. (author)

  15. Validity of the assumption of Gaussian turbulence; Gyldighed af antagelsen om Gaussisk turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Hansen, K.S.; Juul Pedersen, B.

    2000-07-01

    Wind turbines are designed to withstand the impact of turbulent winds, which fluctuations usually are assumed of Gaussian probability distribution. Based on a large number of measurements from many sites, this seems a reasonable assumption in flat homogeneous terrain whereas it may fail in complex terrain. At these sites the wind speed often has a skew distribution with more frequent lulls than gusts. In order to simulate aerodynamic loads, a numerical turbulence simulation method was developed and implemented. This method may simulate multiple time series of variable not necessarily Gaussian distribution without distortion of the spectral distribution or spatial coherence. The simulated time series were used as input to the dynamic-response simulation program Vestas Turbine Simulator (VTS). In this way we simulated the dynamic response of systems exposed to turbulence of either Gaussian or extreme, yet realistic, non-Gaussian probability distribution. Certain loads on turbines with active pitch regulation were enhanced by up to 15% compared to pure Gaussian turbulence. It should, however, be said that the undesired effect depends on the dynamic system, and it might be mitigated by optimisation of the wind turbine regulation system after local turbulence characteristics. (au)

  16. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  17. Nonlinear absorption and receptivity of the third order in InAs infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2005-01-01

    Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves

  18. Third-order nonlinearities and structural features in Langmuir-Blodgett films of 1-benzyl-9-hydrofullerene-60

    International Nuclear Information System (INIS)

    Shihong Ma; Liying Liu; Xingze Lu

    1995-01-01

    Third-order nonlinear susceptibilities χ xxxx (3) (-3ω; ω, ω, ω) have been deduced by measuring third-harmonic generation in Langmuir-Blodgett (LB) films of 1-benzyl-9-hydrofullerene-60 (C 60 -Be). The structural features of the condensed layer at the air-water interface and LB films of the C 60 -Be were investigated by small angle x-ray diffraction (SAXD) and optical measurements. The third-order nonlinear susceptibilities (χ (3) ) were obtained by measuring the THG intensities in LB films of C 60 -Be and comparing with that of CS 2 used as the reference. The value of χ xxxx (3) (2.1 x 10 -11 esu) was deduced at a 65 nm thick films. The χ (3) is attributed to a three-photon near resonance at the energy level of 29410 cm -1 . A new-type of two-chain amphiphilic molecule 1,10-bistearyl-4,6,13, 15-tetra-18-nitrogencrown-6 (NC) was used as insert material to construct mixed C 60 -Be/NC LB films. Our π-A, UV-visible absorption and SAXD measurements showed that the structural improvement in the mixed C 60 -Be/NC LB films was realized by insertion of the C 60 -Be molecules between the two hydrophobic chains of the NC molecules

  19. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  20. Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-05-15

    A strained flamelet model is proposed for turbulent premixed flames using scalar dissipation rate as a parameter. The scalar dissipation rate of reaction progress variable is a suitable quantity to describe the flamelet structure since it is governed by convection-diffusion-reaction balance and it is defined at every location in the flamelets, which are represented by laminar flames in reactant-to-product opposed flow configuration. The mean reaction rate is obtained by using the flamelets reaction rate and the joint pdf of the progress variable and its dissipation rate. The marginal pdf of the progress variable is presumed to be {beta}-pdf and the pdf of the conditional dissipation rate is taken to be log-normal. The conditional mean dissipation rate is obtained from modelled mean dissipation rate. This reaction rate closure is assessed using RANS calculations of statistically planar flames in the corrugated flamelets and thin reaction zones regimes. The flame speeds calculated using this closure are close to the experimental data of Abdel-Gayed et al. (1987) for flames in both the regimes. Comparisons with other reaction rate closures showed the benefits of the strained flamelets approach. (author)

  1. First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}

    Science.gov (United States)

    Ruiz, A.; Muriel, C.

    2017-05-01

    A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.

  2. Guidance for closure of existing DOE LLW disposal sites

    International Nuclear Information System (INIS)

    Blanchfield, L.

    1987-01-01

    During FY 1986, a closure guidance document was developed. The purpose of this document is to provide guidance in support of DOE Order 5820.2 to site operating contractors for the stabilization and closure of existing low-level waste (LLW) shallow land disposal sites at US Department of Energy (DOE) facilities. Guidance is provided to aid operators in placing existing LLW sites in a closed conditions, i.e., a condition in which a nonoperational site meets postclosure performance requirements and can be shown, within a high degree of confidence, to perform as anticipated in the future, under the most cost-effective maintenance approach. Guidance is based on the philosophy that closure should be planned and performed using a systems approach. Plans for FY 1987 call for revision of the document to incorporate more information on closure of LLW sites also containing radioactive mixed waste and/or transuranic waste. 4 references, 3 figures, 2 tables

  3. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  4. Radiographic prognostic factors determining spontaneous space closure after loss of the permanent first molar.

    Science.gov (United States)

    Patel, Sameer; Ashley, Paul; Noar, Joseph

    2017-04-01

    Permanent first molars (PFM) with a poor prognosis are routinely extracted in children throughout the United Kingdom. National guidelines suggest that to achieve spontaneous closure for the mandibular arch, the PFM should be extracted at 8 to 10 years of age, during bifurcation formation of the second molar. The literature is of limited quality and has suggested alternative variables that may be associated with successful space closure. Our aim was to investigate the radiographic prognostic factors associated with space closure after extraction of PFM. Two objectives of the research are reported in this article: to determine factors that might predict space closure of the second molar after extraction of the PFM, and to develop a tool kit to aid clinical decision making. We assessed 148 maxillary and 153 mandibular PFM extracted from 81 participants retrospectively. Dental age, second molar developmental stage, second premolar and second molar angulations, and presence or absence of the third molar were assessed on the preextraction orthopantomograms. Outcome was assessed via visual examination, study models, or radiographs. Closure occurred in 89.9% of the maxillary and 49.0% of the mandibular quadrants. Dental age was statistically, but not clinically, significant in the maxillary arch (P space closure. The developed tool kit requires further validity testing. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Prediction of Equilibrium States of Kinematic and Thermal Fields in Homogeneous Turbulence Submitted To the Rotation

    International Nuclear Information System (INIS)

    Chebbi, Besma; Bouzaiane, Mounir; Lili, Taieb

    2009-01-01

    In this work, effects of rotation on the evolution of kinematic and thermal fields in homogeneous sheared turbulence are investigated using second order closure modeling. The Launder-Reece-Ro di models, the Speziale-Sarkar-Gatski model and the Shih-Lumley models are retained for pressure-strain correlation and pressure-temperature correlation. Whereas classic models are retained for time evolution equations of kinematic and thermal dissipation rates. The fourth order Runge-Kutta method is used to resolve three non linear differential systems obtained after modeling. The numerical integration is carried out separately for several values of the dimensionless rotation number R equal to 0, 0.25 and 0.5. The obtained results are compared to the recent results of Direct Numerical Simulations of G.Brethouwer. The results have confirmed the asymptotic equilibrium behaviors of kinematic and thermal dimensionless parameters. Furthermore they have shown that rotation affects not only kinematic field but also thermal field. The coupling between the Speziale-Sarkar-Gatski model and the Launder-Reece-Rodi model is of a big contribution on the prediction of kinematic and thermal fields

  6. Transition to turbulence in pulsatile flow through heart valves--a modified stability approach.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1994-11-01

    The presence of turbulence in the cardiovascular system is generally an indication of some type of abnormality. Most cardiologists agree that turbulence near a valve indicates either valvular stenosis or regurgitation, depending on the phase of its occurrence during the cardiac cycle. As no satisfying analytical solutions of the stability of turbulent pulsatile flow exist, accurate, unbiased flow stability criteria are needed for the identification of turbulence initiation. The traditional approach uses a stability diagram based upon the stability of a plane Stokes layer where alpha (the Womersley parameter) is defined by the fundamental heart rate. We suggest a modified approach that involves the decomposition of alpha into its frequency components, where alpha is derived from the preferred modes induced on the flow by interaction between flow pulsation and the valve. Transition to turbulence in pulsatile flow through heart values was investigated in a pulse duplicator system using three polymer aortic valve models representing a normal aortic valve, a 65 percent stenosed valve and a 90 percent severely stenosed valve, and two mitral valve models representing a normal mitral valve and a 65 percent stenosed valve. Valve characteristics were closely simulated as to mimic the conditions that alter flow stability and initiate turbulent flow conditions. Valvular velocity waveforms were measured by laser Doppler anemometry (LDA). Spectral analysis was performed on velocity signals at selected spatial and temporal points to produce the power density spectra, in which the preferred frequency modes were identified. The spectra obtained during the rapid closure stage of the valves were found to be governed by the stenosis geometry. A shift toward higher dominant frequencies was correlated with the severity of the stenosis. According to the modified approach, stability of the flow is represented by a cluster of points, each corresponding to a specific dominant mode apparent

  7. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment

    OpenAIRE

    Ribeiro, Gerson Luiz Ulema; Jacob, Helder B.

    2016-01-01

    ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages...

  8. On Challenges for Hypersonic Turbulent Simulations

    International Nuclear Information System (INIS)

    Yee, H.C.; Sjogreen, B.

    2009-01-01

    This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme

  9. Joint PDF modelling of turbulent flow and dispersion in an urban street canyon

    OpenAIRE

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2010-01-01

    The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exc...

  10. Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer

    Science.gov (United States)

    Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano

    2016-11-01

    A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.

  11. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blanton, Paul [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bobbitt, John H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  12. Chaos control of third-order phase-locked loops using backstepping nonlinear controller

    International Nuclear Information System (INIS)

    Harb, Ahmad M.; Harb, Bassam A.

    2004-01-01

    Previous study showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector characteristics experienced a Hopf bifurcation point as well as chaotic behavior. As a result, this behavior drives the PLL to the out-of-lock (unstable) state. The analysis was based on a modern nonlinear theory such as bifurcation and chaos. The main goal of this paper is to control this chaotic behavior. A nonlinear controller based on the theory of backstepping is designed. The study showed the effectiveness of the designed nonlinear controller in controlling the undesirable unstable behavior and pulling the PLL back to the in-lock state

  13. Profile of angle closure in a tertiary care center in north India

    Directory of Open Access Journals (Sweden)

    Ichhpujani Parul

    2010-01-01

    Full Text Available Purpose: To study the demographic and clinical profile of the types of primary angle closure patients presenting at a tertiary care center in North India. Materials and Methods: Clinic records of patients diagnosed as primary angle closure were reviewed. International Society of Geographical and Epidemiological Ophthalmology (ISGEO classification scheme was used to categorize patients. Demographic and clinical data including prior management was collected and analyzed. Main Outcome measures were age, sex, symptomatology, best corrected visual acuity (BCVA, intraocular pressure (IOP, gonioscopy, optic disc assessment and visual field defects. Logistic regression model and receiver operating curve (ROC were calculated for predictors of type of glaucoma. Results: Eight hundred and fourteen patients (1603 eyes; males: 380, females: 434 were diagnosed to have various subtypes of angle closure. Mean (±SD age at presentation was significantly higher for males (57.57 ± 11.62 years as compared to females (53.64 ± 10.67 years ( P < 0001. Primary angle closure glaucoma (PACG was most frequently diagnosed subtype (49.38% followed by Primary angle closure (PAC (39.68% and Primary angle closure suspect (PACS (10.93% respectively. The three subtypes differed significantly among their mean IOP (on ANOVA, F = 14.04; P < 0001 using Greenhouse-Geisser correction. Univariate analysis was done to find significant predictors for the outcome of PACG. Logistic regression model and ROC containing the significant predictors yielded a very high AUC of 0.93 with strong discriminatory ability for PACG. Conclusion: In our hospital-based study, the significant predictors for the outcome of PACG included male gender, diminution of vision, the presence of pain and worsening grades of BCVA. Nearly half of PACG presented with advanced disease. In spite of one-third of the patients being diagnosed as angle closure prior to referral, only 8.34% had iridotomy (laser or surgical

  14. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  15. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Zubair; Bhaskar, Ankush [Indian Institute of Geomagnetism (IIG), New Panvel, Navi Mumbai-410218 (India); Raghav, Anil, E-mail: raghavanil1984@gmail.com [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India)

    2017-08-01

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation of the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.

  16. Turbulence associated with the sawtooth internal disruption

    International Nuclear Information System (INIS)

    Andreoletti, J.; Laviron, C.; Olivain, J.; Pecquet, A.L.

    1989-05-01

    Specific turbulence associated with the sawtooth internal disruption has been observed on TFR tokamak plasmas by analyzing density fluctuations with CO 2 laser light scattering. The time localization is clearly connected with the successive phases of the relaxation process. Some specific turbulence appears in relation to the kink motion, but the main burst corresponds to the collapse phase. We concentrate our study on this strong burst and show first its frequency and wave number spectral properties and the corresponding pseudo dispersion relation. The specific turbulence is spatially localized. It is within the interior of the q = 1 surface and extends approximately 120 0 azimuthally. Taking into account the twisting of the central plasma during the turbulent kink phase, this location agrees with the azimuthal position of the ''sooner and faster'' outgoing heat flux. The power level of this turbulence is two orders of magnitude larger than the local quasi-stationary turbulence. These observations are in fair agreement with the predictions of the sawtooth disruption model previously proposed by Andreoletti. The observed specific turbulence shows several similarities with the so called ''magnetodrift turbulence'' described in the model

  17. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  18. Hydrodynamic study of the turbulent fluidized beds; Etude hydrodynamique des lits fluidises turbulents

    Energy Technology Data Exchange (ETDEWEB)

    Taxil, I.

    1996-12-20

    Gas-solid turbulent fluidization has already been widely studied in the literature. However, its definition and specificities remain controversial and confused. Most of the studies focussed on the turbulent transition velocities are based on wall pressure drop fluctuations studies. In this work, we first characterize the turbulent regime with the classical study of pressure drop signals with standard deviation analysis, completed with a more specific frequency analysis and also by a stochastic analysis. Then, we evaluate bubble flow properties. Experimental results have been obtained in a 0.2 m I.D. fluidized bed expanding to 0.4 m I.D. in the freeboard in order to limit entrainment at high fluidization velocities. The so lid used was FCC catalyst. It was fluidized by air at ambient conditions. The superficial fluidization velocity ranged 0.2 to 2 m/s. Fast response transducers recorded pressure drop at the wall and bubble flow properties (bubble size, bubble velocity and bubble frequency) could be deduced from a light reflected signal at various bed locations with optical fibers. It has been shown the turbulent regime is delimited by two velocities: Uc (onset of turbulent regime) and Utr (onset of transport regime), which can be determined based on standard deviations, dominant frequencies and width of wave land of pressure signals. The stochastic analysis confirms that the signal enriches in frequencies in the turbulent regime. Bubble size and bubble velocity could be correlated to the main superficial gas velocity. The main change in bubble flow in the turbulent regime was shown to be the stagnation of the bubble frequency at its maximum value. It was also shown that the bubble flow properties in the turbulent regime imply a strong aeration of the emulsion phase. (authors) 76 refs.

  19. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  20. Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer

    KAUST Repository

    Cristancho, Juan

    2012-12-01

    The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.