WorldWideScience

Sample records for third-harmonic generation microscopy

  1. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  2. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    Science.gov (United States)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  3. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  4. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    International Nuclear Information System (INIS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-01-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  5. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  6. Phase-matched third harmonic generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.; Fisch, N.J.

    1993-01-01

    Relativistic third harmonic generation in a plasma is investigated. The growth of a third harmonic wave is limited by the difference between the phase velocity of the pump and driven waves. This phase velocity mismatch results in a third harmonic amplitude saturation and oscillation. In order to overcome this saturation, the authors describe a phase-matching scheme based on a resonant density modulation. The limitations of this scheme are analyzed

  7. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  8. Static third-harmonic lines in widely variable fiber continuum generation

    Science.gov (United States)

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.

    2014-01-01

    An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.

  9. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  10. In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy

    Science.gov (United States)

    Wu, Pei-Chun; Hsieh, Tsung-Yuan; Tsai, Zen-Uong; Liu, Tzu-Ming

    2015-03-01

    Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.

  11. Spectral and spatial characteristics of third-harmonic generation in conical light beams

    International Nuclear Information System (INIS)

    Peet, V.E.; Shchemeljov, S.V.

    2003-01-01

    Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed

  12. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2015-06-15

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.

  13. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.; Suk, H.

    2015-01-01

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case

  14. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  15. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    International Nuclear Information System (INIS)

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-01-01

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  16. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    International Nuclear Information System (INIS)

    Stoker, D. S.; Keto, J. W.; Baek, J.; Wang, W.; Becker, M. F.; Kovar, D.

    2006-01-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG (z-scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN-sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χ xxxx (3) (3ω;ω,ω,ω)=1.52±0.25x10 -13 esu. The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects

  17. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  18. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  19. Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Markus Rehberg

    Full Text Available Second and Third Harmonic Generation (SHG and THG microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.

  20. Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma

    International Nuclear Information System (INIS)

    Kaur, Sukhdeep; Sharma, A. K.; Yadav, Sushila

    2010-01-01

    Resonant third harmonic generation by a Gaussian laser beam in a rippled density plasma is studied. The laser ponderomotive force induces second harmonic longitudinal velocity on electrons that couples with the static density ripple to produce a density perturbation at 2ω,2k+q, where ω and k are the frequency and wave number of the laser and q is the ripple wave number of the laser. This density perturbation beats with electron oscillatory velocity at ω,k-vector to produce a nonlinear current driving the third harmonic generation. In the regime of quadratic nonlinearity, the self-focusing of the laser enhances the third harmonic power. However, at higher intensity, plasma density is significantly reduced on the axis, detuning the third harmonic resonance and weakening the harmonic yield. Self-focusing causes enhancement in the efficiency of harmonic generation.

  1. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  2. Theory of third-harmonic generation using Bessel beams, and self-phase-matching

    International Nuclear Information System (INIS)

    Tewari, S.P.; Huang, H.; Boyd, R.W.

    1996-01-01

    Taking Bessel beams (J 0 beam) as a representation of a conical beam, and a slowly varying envelope approximation (SVEA) we obtain the results for the theory of third-harmonic generation from an atomic medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width of the efficiency curve of the third-harmonic generation observed in experiments. copyright 1996 The American Physical Society

  3. Third-harmonic generation for photoionization studies

    International Nuclear Information System (INIS)

    Compton, R.N.; Miller, J.C.

    1982-01-01

    Our group at Oak Ridge National Laboratory (ORNL) has studied resonantly enhanced multiphoton ionization (MPI) of alkali atoms, rare gases, and small molecules using tightly focused dye laser beams (power densities of 10 9 to 10 11 W/cm 2 ). In the case of alkali atoms, some ionization signals appear as a result of gas density effects (dimers or quasi-collisions) as previously discovered by Collins and his collaborators. These have been termed hybrid-resonances. By contrast, in the case of the rare gases, certain resonance ionization signals disappear with increasing gas density. The disappearance of the ionization signals in the rare gases is due to the interference of excitation of the third-harmonic and fundamental laser beam. At low pressure (10 -7 to 10 -5 torr) we have studied (1) mass spectra, (2) kinetic energy released in ionic fragmentation, and (3) photoelectron kinetic energy spectra using time-of-flight mass analysis and a 160 0 spherical sector electrostatic energy analyzer. These experiments, combined with two-color dye laser experiments, can often offer an unambiguous and detailed description of the MPI and subsequent fragmentation events. The major part of this talk will be devoted to the production and the use of vacuum ultraviolet (VUV) light from third-harmonic generation (THG) in the rare gases

  4. Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial

    Science.gov (United States)

    Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.

    2012-09-01

    We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.

  5. Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    1999-01-01

    Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...

  6. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses

    International Nuclear Information System (INIS)

    Akoezbek, N.; Iwasaki, A.; Chin, S.L.; Becker, A.; Scalora, M.; Bowden, C.M.

    2002-01-01

    It is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch. A rich spatiotemporal propagation dynamics of the third-harmonic pulse is predicted. Potential applications of this phenomenon to other parametric processes are discussed

  7. Third harmonic generation by Bloch-oscillating electrons in a quasioptical array

    International Nuclear Information System (INIS)

    Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.

    1999-01-01

    We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics

  8. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    International Nuclear Information System (INIS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-01-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases

  9. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  10. Third harmonic generation of high power far infrared radiation in semiconductors

    International Nuclear Information System (INIS)

    Urban, M.

    1996-04-01

    In this work we investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 μm and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 μm laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. (author) figs

  11. Third-harmonic generation by a Gaussian electromagnetic beam in a magnetoplasma

    International Nuclear Information System (INIS)

    Sodha, M.S.; Umesh, G.

    1978-01-01

    This paper presents an investigation of nonlinear third-harmonic generation in a weakly collisional magnetoplasma due to simultaneous propagation of both the right and left circularly polarized modes, having a Gaussian intensity distribution; self-focusing has been taken into account. At moderate powers, the self-focusing is seen to enhance the harmonic output by two orders of magnitude; at high powers, propagation occurs in an almost uniform waveguide devoid of plasma, and the harmonic output is, consequently, decreased. In the vicinity (ω/sub c//ω=0.7) of the electron cyclotron resonance, the harmonic output of the extraordinary mode is enhanced by an order of magnitude; the present theory is not applicable at resonance

  12. Third harmonic generation of shear horizontal guided waves propagation in plate-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-04-15

    The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

  13. Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field

    International Nuclear Information System (INIS)

    Chen, W-J; Chen, W-F; Pan, C-L; Lin, R-Y; Lee, C-K

    2013-01-01

    We investigate generation of the third harmonic (TH; λ = 355 nm) signal by two-colour excitation (λ = 1064 nm and its second harmonic, λ = 532 nm) in argon gas, with emphasis on the influence of relative phases and intensities of the two-colour pump on the third-order nonlinear frequency conversion process. Perturbative nonlinear optics predicts that the TH signal will oscillate periodically with the relative phases of the two-colour driving laser fields due to the interference of TH signals from a direct third-harmonic-generation (THG) channel and a four-wave mixing (FWM) channel. For the first time, we show unequivocal experimental evidence of this effect. A modulation level as high as 0.35 is achieved by waveform control of the two-colour laser field. The modulation also offers a promising way to retrieve the relative phase value of the two-colour laser field. (letter)

  14. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    Science.gov (United States)

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  15. Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold

    Science.gov (United States)

    Konorov, S. O.; Fedotov, A. B.; Ivanov, A. A.; Alfimov, M. V.; Zabotnov, S. V.; Naumov, A. N.; Sidorov-Biryukov, D. A.; Podshivalov, A. A.; Petrov, A. N.; Fornarini, L.; Carpanese, M.; Ferrante, G.; Fantoni, R.; Zheltikov, A. M.

    2003-09-01

    Second- and third-harmonic generation processes are shown to allow the detection of absorptive agglomerates of nanocrystals in transparent materials and the visualization of optical breakdown in nanocomposite materials. Correlations between laser-induced breakdown and the behavior of the second- and third-harmonic signals produced in SiC/PMMA nanocomposite films are studied. The potential of second- and third-harmonic generation for the on-line visualization of laser breakdown in nanocomposite polymer materials is revealed, with the ablative material removal being monitored by the decay of the second- and third-harmonic signals. The second and third harmonics generated around the optical breakdown threshold by 75-fs pulses of 1.25-μm Cr:forsterite laser radiation are respectively more than two and four orders of magnitude more intense than the second and third harmonics produced under identical conditions by 40-ps pulses of a Nd:YAG laser. The breakdown threshold for PMMA films doped with 10-20-nm SiC nanocrystals forming absorptive agglomerates are demonstrated to be more than an order of magnitude lower than the breakdown threshold for crystalline SiC and about an order of magnitude lower than that for nondoped PMMA films.

  16. Single nano-hole as a new effective nonlinear element for third-harmonic generation

    Science.gov (United States)

    Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.

    2013-07-01

    In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.

  17. Optimal conditions for the generation of the third harmonic of focused radiation in a self-interaction regime

    International Nuclear Information System (INIS)

    Kulagin, I A; Usmanov, T

    1998-01-01

    A method developed for the analysis of the interaction of wave beams in a self-interaction regime is used to determine the changes in the optimal conditions for third-harmonic generation with changes in the degree of focusing of the fundamental-frequency radiation in isotropic media. Conditions under which a redistribution of the intensities and phases of the interacting wave beams reduces the efficiency of third-harmonic generation are identified. It is shown that, under strong focusing conditions, there may be additional extrema in the dependence of the intensity of the harmonic on the density of the medium. (nonlinear optical phenomena)

  18. Single nano-hole as a new effective nonlinear element for third-harmonic generation

    International Nuclear Information System (INIS)

    Melentiev, P N; Konstantinova, T V; Afanasiev, A E; Balykin, V I; Kuzin, A A; Baturin, A S; Tausenev, A V; Konyaschenko, A V

    2013-01-01

    In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities. (letter)

  19. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  20. In-vivo third-harmonic generation microscopy at 1550nm three-dimensional long-term time-lapse studies in living C. elegans embryos

    Science.gov (United States)

    Aviles-Espinosa, Rodrigo; Santos, Susana I. C. O.; Brodschelm, Andreas; Kaenders, Wilhelm G.; Alonso-Ortega, Cesar; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    In-vivo microscopic long term time-lapse studies require controlled imaging conditions to preserve sample viability. Therefore it is crucial to meet specific exposure conditions as these may limit the applicability of established techniques. In this work we demonstrate the use of third harmonic generation (THG) microscopy for long term time-lapse three-dimensional studies (4D) in living Caenorhabditis elegans embryos employing a 1550 nm femtosecond fiber laser. We take advantage of the fact that THG only requires the existence of interfaces to generate signal or a change in the refractive index or in the χ3 nonlinear coefficient, therefore no markers are required. In addition, by using this wavelength the emitted THG signal is generated at visible wavelengths (516 nm) enabling the use of standard collection optics and detectors operating near their maximum efficiency. This enables the reduction of the incident light intensity at the sample plane allowing to image the sample for several hours. THG signal is obtained through all embryo development stages, providing different tissue/structure information. By means of control samples, we demonstrate that the expected water absorption at this wavelength does not severely compromise sample viability. Certainly, this technique reduces the complexity of sample preparation (i.e. genetic modification) required by established linear and nonlinear fluorescence based techniques. We demonstrate the non-invasiveness, reduced specimen interference, and strong potential of this particular wavelength to be used to perform long-term 4D recordings.

  1. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  2. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  3. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  4. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, David J.; Dettmar, Christopher M. [Purdue University, West Lafayette, IN 47907 (United States); Becker, Michael [Argonne National Laboratory, Argonne, IL 60439 (United States); Mulichak, Anne M. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Cherezov, Vadim [The Scripps Research Institute, La Jolla, CA 92037 (United States); Ginell, Stephan L. [Argonne National Laboratory, Argonne, IL 60439 (United States); Battaile, Kevin P.; Keefe, Lisa J. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Fischetti, Robert F. [Argonne National Laboratory, Argonne, IL 60439 (United States); Simpson, Garth J., E-mail: gsimpson@purdue.edu [Purdue University, West Lafayette, IN 47907 (United States)

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.

  5. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    International Nuclear Information System (INIS)

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β 2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed

  6. On the possible origin of bulk third harmonic generation in skin cells

    Science.gov (United States)

    Su, Tung-Yu; Liao, Chien-Sheng; Yang, Chih-Yuan; Zhuo, Guan-Yu; Chen, Szu-Yu; Chu, Shi-Wei

    2011-09-01

    We studied third harmonic generation (THG) of melanin solution with concentrations similar to melanocytes in human skin. In contrast to conventional observation of THG at interface, bulk THG was detected inside the solution due to the formation of melanin hydrocolloids. A linear relationship between melanin concentration and THG intensity was found, suggesting THG originated from high-order hyper-Rayleigh scattering. By fitting this linear relationship, third-order hyperpolarizability of melanin hydrocolloids was determined to be three orders larger than that of water. Our result will be useful for interpretation of THG signals in skin and other tissues containing colloidal particles.

  7. Enhancement of third-order harmonic generation by interaction of two IR femtosecond filaments

    International Nuclear Information System (INIS)

    Liu, Z Y; Ding, P J; Shi, Y C; Lu, X; Liu, Q C; Sun, S H; Ding, B W; Hu, B T; Liu, X L

    2012-01-01

    Three orders of magnitude in the enhancement of the third-order harmonic (TH) generation induced by the interaction of two femtosecond filaments crossing with small angles in the air is achieved. The dependences of the TH generation on the time delay, the relative polarization, the input laser intensity ratios between the probe and pump beam are measured with the crossing angle of 3.5deg , and the results with quasi-vertical crossing angle are also shown for comparison

  8. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    Science.gov (United States)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  9. Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal

    Indian Academy of Sciences (India)

    journal of. September 2000 physics pp. 405–412. Third harmonic generation of .... cell, the short pulse is accompanied by an unavoidable background pulse of 216 ns dura- ... the long pulse laser interacts with only a small number of SF molecules. ... illuminates the discharge region and produces electrons by ionization of ...

  10. One-third (period three) harmonic generation in microwave-driven Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Clarke, J.; Mygind, Jesper

    1986-01-01

    One-third harmonic signals have been generated in the zero voltage state of a Josephson tunnel junction driven with a microwave current in the frequency range 8–20 GHz. The signal was as much as 50 dB above the noise level of the detector with a linewidth of less than 100 Hz. The junction...... parameters and microwave current were measured in situ in separate experiments. The subharmonic generation occurred for ranges of microwave current and frequency that were in reasonable agreement with the results of digital computer simulations. Applied Physics Letters is copyrighted by The American...

  11. Simultaneous effects of electron-hole correlation, hydrostatic pressure, and temperature on the third harmonic generation in parabolic GaAs quantum dots

    International Nuclear Information System (INIS)

    Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.

    2011-01-01

    The combined effects of electron-hole correlation, hydrostatic pressure, and temperature on the third harmonic generation in disk-shaped parabolic GaAs quantum dots are studied under the density matrix formalism and the effective mass approximation. Two well-defined regimes are discussed: (1) the strong-confinement regime, where the Coulomb interaction between the electron and hole is neglected and (2) the weak-confinement regime where the parabolic confinement term is neglected and the system reaches the limit of a hydrogenic problem. The results show that the third harmonic-generation coefficient is strongly dependent on the localization of the electron-hole pair. Also, that by using external perturbations like hydrostatic pressure or by considering the temperature effects it is possible to induce a blue-shift and/or red-shift on the resonant peaks of the third harmonic generation coefficient.

  12. Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration

    DEFF Research Database (Denmark)

    Cisek, Richard; Tokarz, Danielle; Steup, Martin

    2015-01-01

    Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R’SHG) are obtained using reduced Stokes-Mueller polarimetric microscopy...... by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules....

  13. Third-harmonic generation of a laser-driven quantum dot with impurity

    Science.gov (United States)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  14. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  15. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  16. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas.

    Science.gov (United States)

    Hentschel, Mario; Utikal, Tobias; Giessen, Harald; Lippitz, Markus

    2012-07-11

    Plasmonic dimer nanoantennas are characterized by a strong enhancement of the optical field, leading to large nonlinear effects. The third harmonic emission spectrum thus depends strongly on the antenna shape and size as well as on its gap size. Despite the complex shape of the nanostructure, we find that for a large range of different geometries the nonlinear spectral properties are fully determined by the linear response of the antenna. We find excellent agreement between the measured spectra and predictions from a simple nonlinear oscillator model. We extract the oscillator parameters from the linear spectrum and use the amplitude of the nonlinear perturbation only as scaling parameter of the third harmonic spectra. Deviations from the model only occur for gap sizes below 20 nm, indicating that only for these small distances the antenna hot spot contributes noticeable to the third harmonic generation. Because of its simplicity and intuitiveness, our model allows for the rational design of efficient plasmonic nonlinear light sources and is thus crucial for the design of future plasmonic devices that give substantial enhancement of nonlinear processes such as higher harmonics generation as well as difference frequency mixing for plasmonically enhanced terahertz generation.

  17. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    Science.gov (United States)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  18. Passive energy jitter reduction in the cascaded third harmonic generation process

    International Nuclear Information System (INIS)

    Yan, L; Du, Y; You, Y; Sun, X; Wang, D; Hua, J; Shi, J; Lu, W; Huang, W; Chen, H; Tang, C; Huang, Z

    2014-01-01

    In free electron laser (FEL) systems with ultraviolet (UV) laser driven injectors, a highly stable UV source generated through cascaded third harmonic generation (THG) from an infrared (IR) source is a key element in guaranteeing the acceptable current jitter at the undulator. In this letter, the negative slope of the THG efficiency for high intensity ultrashort IR pulses is revealed to be a passive stabilization mechanism for energy jitter reduction in UV. A reduction of 2.5 times the energy jitter in UV is demonstrated in the experiment and simulations show that the energy jitter in UV can be reduced by more than one order of magnitude if the energy jitter in IR is less than 3%, with proper design of the THG efficiency curve, fulfilling the challenging requirement for UV laser stability in a broad scope of applications such as the photoinjector of x-ray FELs. (letter)

  19. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  20. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report a method to achieve a precisely tunable highly stable probe beam generation for performing pump–probe experiment around a given wavelength by tilting a sum frequency generation (SFG) crystal angle. The width of the generated third-harmonic beam is of the order of 2 nm ...

  1. Optimum third harmonic generation efficiency in the far infrared in Si, GaAs and InP

    International Nuclear Information System (INIS)

    Brazis, R.; Raguotis, R.; Siegrist, M.R.

    1997-12-01

    We investigate by means of a Monte Carlo technique the nonlinear drift response of electrons to high power electromagnetic waves in Si, GaAs and InP. The first and third harmonic drift velocity amplitudes and phases are presented as function of the pumping wave frequency in the range of 200 to 500 GHz. The third harmonic generation efficiency is found to reach a maximum at a pumping wave amplitude of 10-25 kV/cm depending on the material and the lattice temperature. Cooling down to liquid nitrogen temperature results in an improvement of the efficiency by a factor of 2 to 10, depending on the material and the pumping wave amplitude. Cooled GaAs and InP are both an order of magnitude more efficient than Si at ambient temperature, for which to date the best measured performance has been reported. (author) 2 figs., 5 refs

  2. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  3. Second harmonic generation microscopy of the living human cornea

    Science.gov (United States)

    Artal, Pablo; Ávila, Francisco; Bueno, Juan

    2018-02-01

    Second Harmonic Generation (SHG) microscopy provides high-resolution structural imaging of the corneal stroma without the need of labelling techniques. This powerful tool has never been applied to living human eyes so far. Here, we present a new compact SHG microscope specifically developed to image the structural organization of the corneal lamellae in living healthy human volunteers. The research prototype incorporates a long-working distance dry objective that allows non-contact three-dimensional SHG imaging of the cornea. Safety assessment and effectiveness of the system were firstly tested in ex-vivo fresh eyes. The maximum average power of the used illumination laser was 20 mW, more than 10 times below the maximum permissible exposure (according to ANSI Z136.1-2000). The instrument was successfully employed to obtain non-contact and non-invasive SHG of the living human eye within well-established light safety limits. This represents the first recording of in vivo SHG images of the human cornea using a compact multiphoton microscope. This might become an important tool in Ophthalmology for early diagnosis and tracking ocular pathologies.

  4. Optical third harmonic generation in the magnetic semiconductor EuSe

    Science.gov (United States)

    Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.

    2012-01-01

    Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.

  5. Detecting a pronounced delocalized state in third-harmonic generation phenomenon; a quantum chaos approach

    Science.gov (United States)

    Behnia, S.; Ziaei, J.; Khodavirdizadeh, M.

    2018-06-01

    Nonlinear optics (NLO) deserves special attention in new optical devices, making it possible to generate coherent light more efficiently. Among the various NLO phenomena the third-harmonic generation (THG) is at the core of the effective operating mechanism of broadband wavelength conversion, in all-optical devices. Here, we aim to understand how the third-order susceptibility and the electric field may be effectively effect on the localization properties of the light in the THG process when included in a two-mode cavity coherently perturbed by a classical field. We address a stable-unstable transition due to the combination effect of the aforementioned factors. We report a reliable evidence confirming the appearance of chaos in THG under suitable conditions. By tracing the signatures of adjacent-spectral-spacing-ratio (ASSR) distribution and participation ratio, we also find a critical point (ɛc ,κc) =(3 . 1 , 0 . 35) for which a pronounced delocalized response is seen. This study may have profound findings for practical devices, and ushers in new opportunities for practical exploitation of the electric field and the third-order susceptibility effect in nonlinear optical devices.

  6. Properties of the second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring

    International Nuclear Information System (INIS)

    Duque, C.M.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities

  7. Properties of the second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave, Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)

    2013-06-15

    The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities.

  8. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.

  9. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  10. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  11. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields

    Science.gov (United States)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.

    2017-09-01

    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  12. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode

    Science.gov (United States)

    Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali

    2016-10-01

    We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.

  13. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  14. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  15. Polarization-sensitive second harmonic generation microscopy of α-quartz like GeO2 (α-GeO2) polycrystal

    International Nuclear Information System (INIS)

    Kawamura, Ibuki; Imakita, Kenji; Kitao, Akihiro; Fujii, Minoru

    2014-01-01

    The usefulness of polarized second harmonic generation (SHG) microscopy to determine crystallographic orientations of domains in polycrystalline films was demonstrated. Orientation of α-quartz like GeO 2 (α-GeO 2 ) domains in polycrystalline films were investigated by using polarized SHG and Raman microscopy. It was found that the SHG intensity of a α-GeO 2 polycrystalline film depends strongly on measurement points and excitation and detection polarizations, while the Raman intensity was almost uniform in the whole mapping area. Analyses of the SHG mappings in different polarization conditions allowed us to determine not only the size and shape of crystalline domains, but also the crystallographic orientations. (paper)

  16. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  17. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing; Yue, Weisheng; Gosztola, David J.; Wiederrecht, Gary P.; Wurtz, Gré gory; Zayats, Anatoly V.

    2016-01-01

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time

  18. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  19. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  20. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    Science.gov (United States)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P 0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  1. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  2. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    Science.gov (United States)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  3. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  4. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  5. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  6. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Science.gov (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  7. Anomalous behavior in the third harmonic generation z response through dispersion induced shape changes and matching χ(3)

    Science.gov (United States)

    Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.

    2006-09-01

    The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.

  8. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  9. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.

    Science.gov (United States)

    Zang, Hong-Wei; Li, He-Long; Su, Yue; Fu, Yao; Hou, Meng-Yao; Baltuška, Andrius; Yamanouchi, Kaoru; Xu, Huailiang

    2018-02-01

    Coherent radiation in the ultraviolent (UV) range has high potential applicability to the diagnosis of the formation processes of soot in combustion because of the high scattering efficiency in the UV wavelength region, even though the UV light is lost largely by the absorption within the combustion flames. We show that the third harmonic (TH) of a Ti:sapphire 800 nm femtosecond laser is generated in a laser-induced filament in a combustion flame and that the conversion efficiency of the TH varies sensitively by the ellipticity of the driver laser pulse but does not vary so much by the choice of alkanol species introduced as fuel for the combustion flames. We also find that the TH recorded from the side direction of the filament is the Rayleigh scattering of the TH by soot nanoparticles within the flame and that the intensity of the TH varies depending on the fuel species as well as on the position of the laser filament within the flame. Our results show that a remote and in situ measurement of distributions of soot nanoparticles in a combustion flame can be achieved by Rayleigh scattering spectroscopy of the TH generated by a femtosecond-laser-induced filament in the combustion flame.

  10. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  11. Temporal characterization of short-pulse third-harmonic generation in an atomic gas by a transmission-grating Michelson interferometer.

    Science.gov (United States)

    Papadogiannis, N A; Nersisyan, G; Goulielmakis, E; Rakitzis, T P; Hertz, E; Charalambidis, D; Tsakiris, G D; Witte, K

    2002-09-01

    By use of a transmission-grating-based Michelson interferometer, second-order interferometric as well as intensity autocorrelation traces of the third harmonic of a Ti:sapphire 50-fs laser beam produced in Ar have been measured. The duration of the harmonic is found to be that expected from lowest-order perturbation theory. At this wavelength, the performance of the interferometer with respect to pulse-front distortion and dispersion is found to be satisfactory. This result is a first step toward the use of the interferometer for the temporal characterization of higher harmonics or harmonic superposition forming attosecond pulse trains.

  12. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    Science.gov (United States)

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  13. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    Science.gov (United States)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  14. A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz

    International Nuclear Information System (INIS)

    Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.

    1995-01-01

    Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. copyright 1995 American Institute of Physics

  15. Scanning second-harmonic optical microscopy of self-assembled InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S. I.; Pedersen, K.

    2001-01-01

    Microscopy provides a suitable technique for local probing of small ensembles of (or even individual) QD's, and when combined with the detection of second-harmonic (SH) generation the technique becomes suitable to reveal tiny changes of symmetry originating either in the material structures or in...

  16. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  17. Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation)

    Science.gov (United States)

    Yildirim, Murat; Feldman, Danielle; Wang, Tianyu; Ouzounov, Dimitre G.; Chou, Stephanie; Swaney, Justin; Chung, Kwanghun; Xu, Chris; So, Peter T. C.; Sur, Mriganka

    2017-02-01

    Rett Syndrome (RTT) is a pervasive, X-linked neurodevelopmental disorder that predominantly affects girls. It is mostly caused by a sporadic mutation in the gene encoding methyl CpG-binding protein 2 (MeCP2).The clinical features of RTT are most commonly reported to emerge between the ages of 6-18 months and implicating RTT as a disorder of postnatal development. However, a variety of recent evidence from our lab and others demonstrates that RTT phenotypes are present at the earliest stages of brain development including neurogenesis, migration, and patterning in addition to stages of synaptic and circuit development and plasticity. We have used RTT patient-derived induced pluripotent stem cells to generate 3D human cerebral organoids that can serve as a model for human neurogenesis in vitro. We aim to expand on our existing findings in order to determine aberrancies at individual stages of neurogenesis by performing structural and immunocytochemical staining in isogenic control and MeCP2-deficient organoids. In addition, we aim to use Third Harmonic Generation (THG) microscopy as a label-free, nondestructive 3D tissue visualization method in order to gain a complete understanding of the structural complexity that underlies human neurogenesis. As a proof of concept, we have performed THG imaging in healthy intact human cerebral organoids cleared with SWITCH. We acquired an intrinsic THG signal with the following laser configurations: 400 kHz repetition rate, 65 fs pulse width laser at 1350 nm wavelength. In these THG images, nuclei are clearly delineated and cross sections demonstrate the depth penetration capacity (< 1mm) that extends throughout the organoid. Imaging control and MeCP2-deficient human cerebral organoids in 2D sections reveals structural and protein expression-based alterations that we expect will be clearly elucidated via both THG and three-photon fluorescence microscopy.

  18. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

    Science.gov (United States)

    Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

    2013-02-11

    We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

  19. On the influence of electron heat transport on generation of the third harmonic of laser radiation in a dense plasma skin layer

    International Nuclear Information System (INIS)

    Isakov, Vladimir A; Kanavin, Andrey P; Uryupin, Sergey A

    2005-01-01

    The flux density is determined for radiation emitted by a plasma at the tripled frequency of an ultrashort laser pulse, which produces weak high-frequency modulations of the electron temperature in the plasma skin layer. It is shown that heat removal from the skin layer can reduce high-frequency temperature modulations and decrease the nonlinear plasma response. The optimum conditions for the third harmonic generation are found. (interaction of laser radiation with matter. laser plasma)

  20. Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Kobayashi, Tsubasa; Cha, Yu-Rok; Kaji, Yuichi; Oshika, Tetsuro; Leproux, Philippe; Couderc, Vincent; Kano, Hideaki

    2018-02-01

    Acanthamoeba keratitis is a disease in which amoebae named Acanthamoeba invade the cornea of an eye. To diagnose this disease before it becomes serious, it is important to detect the cyst state of Acanthamoeba in the early stage of infection. In the present study, we explored spectroscopic signitures of the cyst state of Acanthamoeba using multimodal nonlinear optical microscopy with the channels of multiplex coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and third harmonic generation (THG). A sharp band at around 1603 cm-1 in the CARS (Im[χ(3)]) spectrum was found at the cyst state of Acanthamoeba, which possibly originates from ergosterol and/or 7-dehydrostigmasterol. It can be used as a maker band of Acanthamoeba for medical treatment. Keyword: Acanthamoeba keratitis, coherent anti-Stokes Raman scattering, CARS, second harmonic generation, SHG, microspectroscopy, multiphoton microscopy

  1. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  2. Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ni Jielei; Yao Jinping; Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Jing Chenrui [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Chin, S. L. [Department of Physics, Engineering Physics and Optics, and Center for Optics, Photonics and Laser (COPL), Laval University, Laval, Quebec, G1K 7P4 (Canada); Cheng, Y.; Xu, Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2011-12-15

    We report on the comparative experimental investigation on third- and fifth-harmonic generation (THG and FHG) in atomic and molecular gases driven by midinfrared ultrafast laser pulses at a wavelength of {approx}1500 nm. We observe that the conversion efficiencies of both the THG and FHG processes saturate at similar peak intensities close to {approx}1.5 x 10{sup 14} W/cm{sup 2} for argon, nitrogen, and air, whose ionization potentials are close to each other. Near the saturation intensity, the ratio of yields of the FHG and THG reaches {approx}10{sup -1} for all the gases. Our results show that high-order Kerr effect seems to exist; however, contribution from the fourth-order Kerr refractive index coefficient alone is insufficient to balance the Kerr self-focusing without the assistance of plasma generation.

  3. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    Science.gov (United States)

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  4. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni

    2016-06-06

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump-probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response. © 2016 American Chemical Society.

  5. Limitations and improvements for harmonic generation measurements

    International Nuclear Information System (INIS)

    Best, Steven; Croxford, Anthony; Neild, Simon

    2014-01-01

    A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, β, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized

  6. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    Science.gov (United States)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  7. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  8. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  9. Resonant third harmonic generation of KrF laser in Ar gas

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, R. [Department of Experimental Physics, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00–908 Warsaw (Poland); Barna, A. [Department of Experimental Physics, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, EURATOM Association HAS, 1121 Budapest, XII. Konkoly Thege Miklós út 29-33 (Hungary); Suta, T.; Földes, I. B. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, EURATOM Association HAS, 1121 Budapest, XII. Konkoly Thege Miklós út 29-33 (Hungary); Bohus, J.; Szatmári, S. [Department of Experimental Physics, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Mikołajczyk, J.; Bartnik, A.; Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00–908 Warsaw (Poland); Verona, C. [Department of Mechanical Engineering, University “Tor Vergata”, Via Orazio Raimondo, 18–00173, Rome (Italy); Verona Rinati, G. [Department of Industrial Engineering, University “Tor Vergata”, Via Orazio Raimondo, 18–00173, Rome (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Nowak, T. [Institute of Nuclear Physics, PAN, E. Radzikowskiego 152, 31–342 Cracow (Poland); and others

    2014-12-15

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  10. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities...... and limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  11. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  12. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  13. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  14. Effect of accelerating field third harmonic on microtron steady-state conditions and limiting current

    International Nuclear Information System (INIS)

    Kol'tsov, A.V.; Serov, A.V.

    1992-01-01

    Setting the acceleration regime in a microtron with the resonator in which the third accelerating field harmonic is excited by accelerated clusters is considered. It is shown that excitation of the accelerating field third harmonic in the microtron resonator (E 011 mode) causes a 1.5 time increase of the range of field intensity values under which resonance particle acceleration is possible. Under moderate energies and accelerated currents (10-15 MeV, 50-80 mA) this leads to a reduction of requirements to the stability of power coming to the resonator and cathode temperature. Under accelerated currents of > 100 mA the third harmonic complicates the microtron transition to acceleration regime. The microtron transfers to stable autooscillation regime, but the current achieved in a single short pulse is increased. By varying the value of the resonator quality factor on the third harmonic one can change the current pulse duration and autooscillation period

  15. Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media

    International Nuclear Information System (INIS)

    Takahashi, Eiji J.; Kanai, Tsuneto; Ishikawa, Kenichi L.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2008-01-01

    We demonstrate the generation of a coherent water window x ray by extending the plateau region of high-order harmonics under a neutral-medium condition. The maximum harmonic photon energies attained are 300 and 450 eV in Ne and He, respectively. Our proposed generation scheme, combining a 1.6 μm laser driver and a neutral Ne gas medium, is efficient and scalable in output yields of the water window x ray. Thus, the precept of the design parameter for a single-shot live-cell imaging by contact microscopy is presented

  16. Understanding fifth-harmonic generation in CLBO

    Science.gov (United States)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  17. Third-harmonic entanglement and Einstein-Podolsky-Rosen steering over a frequency range of more than an octave

    Science.gov (United States)

    Olsen, M. K.

    2018-03-01

    The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for such states over wide frequency ranges. In this work we compare the bipartite entanglement and Einstein-Podolsky-Rosen (EPR) -steering properties of the two different parametric schemes which produce third-harmonic optical fields from an input field at the fundamental frequency. The first scheme uses second harmonic cascaded with sum-frequency generation, while the second uses triply degenerate four- wave mixing, also known as direct third-harmonic generation. We find that both schemes produce continuous-variable bipartite entanglement and EPR steering over a frequency range which has previously been unobtainable. The direct scheme produces a greater degree of EPR steering, while the cascaded scheme allows for greater flexibility in having three available bipartitions, thus allowing for greater flexibility in the tailoring of light matter interfaces. There are also parameter regimes in both for which classical mean-field analyses fail to predict the mean-field solutions. Both schemes may be very useful for applications in quantum communication and computation networks, as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable.

  18. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    Science.gov (United States)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  19. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  20. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  1. Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections

    Science.gov (United States)

    Tuer, Adam; Tokarz, Danielle; Prent, Nicole; Cisek, Richard; Alami, Jennifer; Dumont, Daniel J.; Bakueva, Ludmila; Rowlands, John; Barzda, Virginijus

    2010-03-01

    Imaging hematoxylin-and-eosin-stained cancerous histological sections with multicontrast nonlinear excitation fluorescence, second- and third-harmonic generation (THG) microscopy reveals cellular structures with extremely high image contrast. Absorption and fluorescence spectroscopy together with second hyperpolarizability measurements of the dyes shows that strong THG appears due to neutral hemalum aggregation and is subsequently enhanced by interaction with eosin. Additionally, fluorescence lifetime imaging microscopy reveals eosin fluorescence quenching by hemalums, showing better suitability of only eosin staining for fluorescence microscopy. Multicontrast nonlinear microscopy has the potential to differentiate between cancerous and healthy tissue at a single cell level.

  2. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... 413–417. Tunable third-harmonic probe for non-degenerate ultrafast ... A beam splitter was used to split the beam into two with the power ratio of ... Now polarization of the 800-nm beam is made to be parallel with the 400-nm.

  3. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    Science.gov (United States)

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  4. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  5. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    Science.gov (United States)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  6. Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy

    Directory of Open Access Journals (Sweden)

    Chunqiang Li

    2016-01-01

    Full Text Available Atherosclerosis has been recognized as a chronic inflammation disease, in which many types of cells participate in this process, including lymphocytes, macrophages, dendritic cells (DCs, mast cells, vascular smooth muscle cells (SMCs. Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions. The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques. Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation (SHG were developed to image mast cells, SMCs and collagen in plaque ex vivo using endogenous optical signals. Mast cells were imaged with two-photon tryptophan autofluorescence, SMCs were imaged with two-photon NADH autofluorescence, and collagen were imaged with SHG. This development paves the way for further study of mast cell degranulation, and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases (MMPs which participate in the degradation of collagen.

  7. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  8. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    Science.gov (United States)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  9. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kaishang, E-mail: zhoukaishang@sinap.ac.cn; Feng, Chao, E-mail: fengchao@sinap.ac.cn; Wang, Dong, E-mail: wangdong@sinap.ac.cn

    2016-10-21

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the “water window” and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  10. Sub?40?fs, 1060?nm Yb?fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    OpenAIRE

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-01-01

    © 2015 The Authors. Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a > 100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key perform...

  11. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  12. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  13. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal

    Science.gov (United States)

    2016-08-26

    OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...photoluminescence mapping, Raman spectroscopy and atomic -force microscopy. (b) Image produced via scanning and gathering the SH light produced by the 3R-MoS2...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra

  14. Harmonic generation effect in high-Tc films

    International Nuclear Information System (INIS)

    Khare, Neeraj; Shrivastava, S.K.; Padmanabhan, V.P.N.; Khare, Sangeeta; Gupta, A.K.

    1997-01-01

    Harmonic generation in thick BPSCCO and thin YBCO films are reported. The application of an ac field (H ac > H c1 ) of frequency f causes the generation of odd harmonics of frequency (2n+1)f. The application of dc field in addition to the ac field causes the appearance of even harmonics also in the BPSCCO film. However, the appearance of even harmonics is not observed in YBCO film with high J c ∼ 1.6x10 6 A/cm 2 and appearance of second harmonic with small magnitude is observed in YBCO film with low J c ∼ 2x10 3 A/cm 2 . The variation of amplitudes of these harmonics are studied as a function of magnitude of ac and dc field and the results are explained in the framework of critical state model. A high-T c film magnetometer based on the measurement of the amplitude of second harmonic has been developed whose field sensitivity is ∼ 1.5x10 -8 T. (author)

  15. High-harmonic generation in a dense medium

    International Nuclear Information System (INIS)

    Strelkov, V.V.; Platonenko, V.T.; Becker, A.

    2005-01-01

    The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics

  16. X-Band GaN Power Amplifier MMIC with a Third Harmonic-Tuned Circuit

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Bae

    2017-11-01

    Full Text Available This paper presents an X-band GaN HEMT power amplifier with a third harmonic-tuned circuit for a higher power density per area and a higher power-added efficiency (PAE using a 0.25 μm GaN HEMT process of WIN semiconductors, Inc. The optimum load impedances at the fundamental and third harmonic frequencies are extracted from load-pull simulations at the transistor’s extrinsic plane, including the drain-source capacitance and the series drain inductance. The third harmonic-tuned circuit is effectively integrated with the output matching circuit at the fundamental frequency, without complicating the whole output matching circuit. The input matching circuit uses a lossy matching scheme, which allows a good return loss and a simple LC low-pass circuit configuration. The fabricated power amplifier monolithic microwave integrated circuit (MMIC occupies an area of 13.26 mm2, and shows a linear gain of 20 dB or more, a saturated output power of 43.2~44.7 dBm, and a PAE of 35~37% at 8.5 to 10.5 GHz.

  17. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  18. Coherent harmonics generated by a super-short electron pulse

    International Nuclear Information System (INIS)

    Ding Wu

    1996-01-01

    A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics

  19. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  20. Glass formation and the third harmonic generation of Cu2Se–GeSe2–As2Se3 glasses

    International Nuclear Information System (INIS)

    Reshak, A. H.; Klymovych, O. S.; Zmiy, O. F.; Myronchuk, G. L.; Zamuruyeva, O. V.; Alahmed, Z. A.; Chyský, J.; Bila, Jiri; Kamarudin, H.

    2014-01-01

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu 2 Se–GeSe 2 –As 2 Se 3 system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu 2 Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  1. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    Science.gov (United States)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  2. Theoretical description of high-order harmonic generation in solids

    International Nuclear Information System (INIS)

    Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K

    2013-01-01

    We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)

  3. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  4. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  5. Simultaneous operation of a free-electron laser on two harmonically related wavelengths

    International Nuclear Information System (INIS)

    Burke, A.T.; Ride, S.K.

    1992-01-01

    The interaction of light waves at the fundamental and the third harmonic frequencies in a free-electron laser (FEL) oscillator is explored using the 1-D finite pulse mode-code BFELP. The code, which assumes that only the TEM 00 transverse mode is present at both harmonic frequencies, tracks the temporally-finite pulse electric field amplitudes of the fundamental and the third harmonic which interact with an rf-linac-generated electron micropulse inside a wiggler. The evolution of the pulse profiles, with possibly different mirror reflectivities at each frequency, after many passes through the wiggler and the optical resonator, has been generated for various initial conditions. Results include pulse-dependent third-harmonic coherent-spontaneous emission (CSE) with, and without, multiple-pass interference effects; the effects of sidebands at the fundamental on third-harmonic CSE; and, lasing competition between the fundamental and third harmonic in overlapping spatial regions of the electron micropulse

  6. Plasma wave and second harmonic generation

    International Nuclear Information System (INIS)

    Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.

    1978-01-01

    An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)

  7. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  8. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  9. Third generation coaching

    DEFF Research Database (Denmark)

    Stelter, Reinhard

    2014-01-01

    Third generation coaching unfolds a new universe for coaching and coaching psychology in the framework of current social research, new learning theories and discourses about personal leadership. Third generation coaching views coaching in a societal perspective. Coaching has become important...... transformation. Coaching thus facilitates new reflections and perspectives, as well as empowerment and support for self-Bildung processes. Third generation coaching focuses on the coach and the coachee in their narrative collaborative partnership. Unlike first generation coaching, where the goal is to help...

  10. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  11. Solid-liquid transition in Nb powder determined by third harmonic susceptibility

    International Nuclear Information System (INIS)

    Oliveira, A.A.M.; Lisboa-Filho, P.N.; Ortiz, W.A.

    2008-01-01

    Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model

  12. Solid-liquid transition in Nb powder determined by third harmonic susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: ana@df.ufscar.br; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model.

  13. Recent progress of below-threshold harmonic generation

    International Nuclear Information System (INIS)

    Xiong, Wei-Hao; Peng, Liang-You; Gong, Qihuang

    2017-01-01

    The harmonics generated from the interaction of a strong laser field with atoms and molecules in the gas phase can be applied as coherent light sources and detecting techniques for structures and dynamics in matter. In the last three decades, the most prevailing experimental and theoretical studies have been focused on the high-order harmonic generation due to its applications in attosecond science. However, low-order harmonics near the ionization threshold of the target have been less explored, partially because the spectrum in this region is more complicated from both the theoretical and experimental point of view. After several pioneering investigations in the mid 1990s, near threshold harmonics (NTHs) begun to draw a great attention again because of the development of high repetition rate cavity enhanced harmonics about 10 years ago. Very recently, NTHs have attracted a lot of experimental and theoretical studies due to their potential applications as light sources and complicated mechanisms. In this topical review, we will summarize the progress of NTHs, including the early and recent experimental measurements in atoms and molecules, as well as the relevant theoretical explorations of these harmonics. (topical review)

  14. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    Science.gov (United States)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  15. Second and third harmonic generations of a quantum ring with Rashba and Dresselhaus spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, Ali; Azargoshasb, Tahereh; Niknam, Elahe

    2017-10-01

    In current article, the Zeeman effect is considered in the presence of simultaneous Rashba and Dresselhaus spin-orbit interactions (SOI) and under such circumstances the second and third harmonic generations (SHG and THG) of a GaAs quantum ring are investigated at finite temperature. The effective Hamiltonian is derived in cylindrical coordinate while the angular part is eliminated because of axial symmetry and the energy eigenvalues and eigenvectors of two lowest levels are obtained numerically. Eventually, the optical properties of such system are studied hiring compact density matrix approach. The results show that, an increase in the magnetic field, leads to blue shift in resonant peaks of both SHG and THG. Furthermore, by reducing the temperature, all the resonant peaks of both SHG and THG experience a red shift. Finally, the effect of the structure dimension is studied and results illustrate that variation of size leads to both red and blue shifts in resonant peaks.

  16. Discrimination of collagen in normal and pathological dermis through polarization second harmonic generation

    Science.gov (United States)

    Su, Ping-Jung; Chen, Wei-Liang; Hong, Jin-Bon; Li, Tsung-Hsien; Wu, Ruei-Jr; Chou, Chen-Kuan; Lin, Sung-Jan; Dong, Chen-Yuan

    2010-02-01

    We used polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution for medical diagnosis of pathological skin dermis, and found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. We find that the histograms of the d33/d31 ratio for the pathological skins to contain two peak values and to be wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers.

  17. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  18. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  19. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  20. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    Science.gov (United States)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  1. Transmit beamforming for optimal second-harmonic generation.

    Science.gov (United States)

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  2. Coherent bremsstrahlung generation of harmonics in a laser-produced plasma

    International Nuclear Information System (INIS)

    Silin, Viktor P

    1999-01-01

    Foundations of a theory of generation of the harmonics of a laser pump in a fully ionised plasma are proposed. This theory makes it possible to describe the relationships governing harmonic generation in an analytical form. For an elliptically polarised pump field with a low degree of circular polarisation A, the range of plasma parameters is established in which the number of harmonics is found to be of the order of A -1 . Anomalous polarisation properties of the harmonics are predicted. In this case, their polarisation is seen to be nearly perpendicular to the pump polarisation and the degree of circular polarisation increases with the harmonic order number. The harmonic-order-dependent intensity of the pump field which results in circular polarisation of a harmonic is determined making allowance for thermal plasma motion. The conditions under which increasing the low degree of circular pump polarisation increases the efficiency of harmonic generation are established. The nonlinear dependence of the pump polarisation on its intensity under the conditions of collisional absorption in a plasma are identified and an instability of the circular polarisation is revealed. For a plane-polarised pump, it is shown how the maximum power of a harmonic and the pump power corresponding to this maximum scale up with the harmonic order number. The conditions under which the number of harmonics generated is limited owing to the relativistic nature of electron motion in the pump field are established. This effect appears for an unexpectedly weak relativity. (invited paper)

  3. A superconducting short period undulator for a harmonic generation FEL experiment

    International Nuclear Information System (INIS)

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  4. Influence of temperature rise distribution in second harmonic generation crystal on intensity distributions of output second harmonic wave

    International Nuclear Information System (INIS)

    Li Wei; Feng Guoying; Li Gang; Huang Yu; Zhang Qiuhui

    2009-01-01

    Second-harmonic generation (SHG) of high-intensity laser with an SHG crystal for type I angle phase matching has been studied by the use of a split-step algorithm based on the fast Fourier transform and a fourth-order Runge-Kutta (R-K) integrator. The transverse walk-off effect, diffraction, the second-order and the third-order nonlinear effects have been taken into consideration. Influences of a temperature rise distribution of the SHG crystal on the refractive indices of ordinary wave and extraordinary wave have been discussed. The rules of phase mismatching quantity, intensity distribution of output beam and frequency conversion efficiency varying with the temperature rise distribution of the SHG crystal have been analyzed quantitatively. The calculated results indicate that in a high power frequency conversion system, the temperature rise distribution of SHG crystal would result in the phase mismatching of fundamental and harmonic waves, leading to the variation of intensity distribution of the output beam and the decrease of the conversion efficiency. (authors)

  5. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  6. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  7. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    CERN Document Server

    Miyakawa, O; Heinzel, G; Kawamura, S

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect.

  8. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    International Nuclear Information System (INIS)

    Miyakawa, Osamu; Somiya, Kentaro; Heinzel, Gerhard; Kawamura, Seiji

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect

  9. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  10. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy

    Science.gov (United States)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto

    2009-02-01

    The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.

  11. Image Formation in Second-Harmonic Near-Field Microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Lozovski, Valeri Z.; Pedersen, Kjeld

    1999-01-01

    contributions in the effective current, i.e., the currents generated by the self-consistent fields at the fundamental and second-harmonic frequencies. The self-consistent problem for both frequencies is solved exactly by use of the diagram technique adapted from quantum electrodynamics. Preliminary numerical...

  12. Optimization of high harmonic generation by genetic algorithm

    International Nuclear Information System (INIS)

    Constance Valentin; Olga Boyko; Gilles Rey; Brigitte Mercier; Evaggelos Papalazarou; Laure Antonucci; Philippe Balcou

    2006-01-01

    Complete test of publication follows. High Harmonic Generation (HHG) is very sensitive to pulse shape of the fundamental laser. We have first used an Acousto-Optic Programmable Dispersive Filter (AOPDF) in order to modify the spectral phase and second, a deformable mirror in order to modify the wavefront. We have optimized harmonic signal using a genetic algorithm coupled with both setups. We show the influence of macroscopic parameters for optimization process. Genetic algorithms have been already used to modify pulse shapes of the fundamental laser in order to optimize high harmonic signals, in order to change the emission wavelength of one harmonic or to modify the fundamental wavefront to optimize harmonic signals. For the first time, we present a systematic study of the optimization of harmonic signals using the AOPDF. Signal optimizations by a factor 2 to 10 have been measured depending of parameters of generation. For instance, one of the interesting result concerns the effect of macroscopic parameters as position of the entrance of the cell with respect to the focus of the IR laser when we change the pulse shapes. For instance, the optimization is higher when the cell entrance is above the focus where the intensity gradients are higher. Although the spectral phase of the IR laser is important for the response of one atom, the optimization depends also of phase-matching and especially of the effect intensity gradients. Other systematic studies have been performed as well as measurements of temporal profiles and wavefronts of the IR beam. These studies allow bringing out the behaviour of high harmonic generation with respect to the optimization process.

  13. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  14. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    Science.gov (United States)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  15. Interplay between absorption, dispersion and refraction in high-order harmonic generation

    International Nuclear Information System (INIS)

    Dachraoui, H; Helmstedt, A; Bartz, P; Michelswirth, M; Mueller, N; Pfeiffer, W; Heinzmann, U; Auguste, T; Salieres, P

    2009-01-01

    We report a detailed experimental and theoretical study on high-order harmonic generation of a femtosecond Ti-sapphire laser focused at an intensity of around 10 15 W cm -2 onto a high-pressure (50-210 mbar) neon gas cell of variable length (1-3 mm). Using thorough three-dimensional simulations, we discuss the interplay between the different factors influencing the harmonic-generation efficiency, i.e. phase matching determined by the electronic and atomic dispersions, re-absorption of the harmonics by the medium and refraction of the generating laser beam. Generically, we find that, in our generation conditions, the emission yield of harmonics from the plateau region of the spectrum is absorption limited, whereas the emission from harmonics in the cut-off is strongly reduced due to both electron dispersion and ionization-induced refraction of the laser beam. A good agreement between the numerical results and the experimental data is obtained for the harmonic yield dependence on the various generation parameters (gas pressure, medium length and laser intensity).

  16. Harmonic sums and polylogarithms generated by cyclotomic polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-05-15

    The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)

  17. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  18. High-order harmonic generation from a two-dimensional band structure

    Science.gov (United States)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  19. Second harmonic generation in a bounded magnetoplasma

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1975-01-01

    An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma

  20. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.

    Science.gov (United States)

    Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver

    2012-01-01

    Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases. © 2011 IEEE

  1. Second-harmonic generation of practical Bessel beams

    Science.gov (United States)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  2. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.

    Science.gov (United States)

    Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George

    2012-02-01

    Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phase-dependent quantum interference between different pathways in bichromatic harmonic generation

    International Nuclear Information System (INIS)

    Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao

    2009-01-01

    This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)

  4. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  5. Harmonics: Generation and Suppression in AC System Networks ...

    African Journals Online (AJOL)

    However, reactive power flow in electrical networks has adverse effects depending on their magnitude and the nature of the supply network. How these harmonics are generated by nonlinear loads and the means by which they can be kept low are the focus of this paper. Keywords: non-linear loads, harmonics, reactive ...

  6. Multi-order nonlinear diffraction in second harmonic generation

    DEFF Research Database (Denmark)

    Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw

    We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....

  7. Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...

  8. Beam dynamics in CIME for third harmonic

    International Nuclear Information System (INIS)

    Chautard, F.; Bourgarel, M.P.

    2000-01-01

    This report presents the results from simulations for beam dynamics in CIME third harmonics. Details are given regarding the procedures to reach the adaptation at the inflector exit. The aim of these simulation is to determine, for any given ion, the beam correlations at the inflector exit as well as the current values in the isochronous coils for all the field levels. Although not all the steps of the simulation are thoroughly displayed, the report gathers all the the elements necessary for CIME control. Information useful for controlling the Very Low Energy line, the main field and the isochronous coils are also presented. The report has the following content: I. Introduction. II. The field maps and the used codes. A. The maps of CIME magnetic fields; B. The 3D map of CIME electric potentials; C. The maps of 3D electric potentials in the CIME central region; D. Code LIONS and sorting codes. III. Central region. A. An outlook. B.Central rays; IV. Determination of beam correlations. A. Analytical calculation of adaptation conditions; B. Calculation of adaptation conditions based on particle distributions; C. Creating the beam matrices. D. Calculation method for inverse return correlations. V. Results of simulations. VI. Interpolation of isochronous coils at the referential frequency. VII. The interpolation code PARAM. VIII. Conclusions. The paper is supplemented by 4 appendices. The harmonics 2, 4 and 5 are currently under way and the results will be reported in a future paper

  9. Synthesis of Variable Harmonic Impedance in Inverter-Interfaced Distributed Generation Unit for Harmonic Damping Throughout a Distribution Network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop...... at the dominant harmonic frequencies. Thus, the harmonic voltage drop on the grid-side inductance and the harmonic resonances throughout a distribution feeder with multiple shunt-connected capacitors can be effectively attenuated. Simulation and laboratory test results validate the performance of the proposed...

  10. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  11. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers

    International Nuclear Information System (INIS)

    Huang, Zhirong; Kim, Kwang-Je

    2000-01-01

    In a high-gain free-electron laser (FEL) employing a planar undulator, strong bunching at the fundamental wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radiation power is found to approach 1% of the fundamental power level for current high-gain FEL projects

  12. Characterization of oral precancerous lesions based on higher-harmonic generation microscopy

    Science.gov (United States)

    Lin, Chen-Yu; Lin, Chih-Feng; Sun, Chi-Kuang

    2013-03-01

    It is generally accepted that oral cancer arises in the presence of oral precancerous lesions. However, the clinical courses of these lesions are quite unpredictable, and a fundamental enigma remains that when and how these lesions turn to malignant growth. Characterization of these potentially malignant lesions is thus important and could serve as early indicators of this neoplastic transformation process, potentially facilitates the treatment outcome and improves the survival rate. Higher harmonic generation microscope (HGM), providing images with a leaving photodamages in the tissues, was used for this purpose. Oral cavity biopsies were obtained from 18 patients with clinical suspected oral precancerous lesions scheduled for surgical biopsy. HGM images were compared with histological images to determine the results. By visualization of subtle cellular and morphological changes, the preliminary result of this HGM image discloses excellent consistency with traditional histolopathology studies, without the need for fixation, sectioning and staining. More specifically speaking, the keratin thickness was found to be increased comparing with normal adjacent controls. In some cases, variations in cell size, nuclear size and increased nuclear/cytoplasmic ratio, and increased size of nucleoli were identified, indicating different stages of malignant transformation. These results together indicated that HGM provides the capability to characterize features of oral precancerous lesions as well as oral cancer progression, and holds the greatest potential as an ideal tool for clinical screening and surveillance of suspicious oral lesions.

  13. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  14. Second-harmonic generation circular dichroism spectroscopy from tripod-like chiral molecular films

    International Nuclear Information System (INIS)

    Wang Xiao-Ou; Chen Li-An; Chen Li-Xue; Sun Xiu-Dong; Li Jun-Qing; Li Chun-Fei

    2010-01-01

    The second-harmonic generation (SHG) circular dichroism in the light of reflection from chiral films of tripod-like chiral molecules is investigated. The expressions of the second-harmonic generation circular dichroism are derived from our presented three-coupled-oscillator model for the tripod-like chiral molecules. Spectral dependence of the circular dichroism of SHG from film surface composed of tripod-like chiral molecules is simulated numerically and analysed. Influence of chiral parameters on the second-harmonic generation circular dichroism spectrum in chiral films is studied. The result shows that the second-harmonic generation circular dichroism is a sensitive method of detecting chirality compared with the ordinary circular dichroism in linear optics. All of our work indicates that the classical molecular models are very effective to explain the second-harmonic generation circular dichroism of chiral molecular system. The classical molecular model theory can give us a clear physical picture and brings us very instructive information about the link between the molecular configuration and the nonlinear processes

  15. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  16. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  17. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    International Nuclear Information System (INIS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-01-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ (3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the

  18. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  19. Efficient broadband third harmonic frequency conversion via angular dispersion

    International Nuclear Information System (INIS)

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-01-01

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3ω) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than ∼60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1ω input intensity of ∼ 4 GW/cm 2 for near optimal dispersion for phase matching, 5.2 μrad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 μrad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360 degrees about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%

  20. Dynamics of harmonic generation in atoms and molecules

    International Nuclear Information System (INIS)

    Boutu, W.

    2007-09-01

    Harmonics are generated when an ultra-short laser impulse with an energy of 10 14 W/cm 2 is focused on a gas jet. A radiation in the UV X range is then emitted in the direction of the incident laser beam. This radiation has a periodical spectral structure composed of odd harmonics of the fundamental frequency. The first part of this work is dedicated to the optimization of the harmonic radiation. We have studied an alternative and cheaper solution to the flexible mirror, we have used a set of concentric phase plates in order to control the spatial phase of the beam and create an enlarged square profile near the focusing spot. We show how different parameters like phase shift or luminous-flux density or jet position have an impact on the harmonic signal. This second part of this work deals with the generation of high order harmonics in N 2 and CO 2 molecules. The experimental setting is based on the RABITT method (reconstruction of the atto-second burst by interference of 2-photon transitions). We have observed the presence of a spectral minimum linked to a phenomena of quantum interferences between the molecule and the electron wave packet. Moreover, a shift in the spectral phase appears at the place of the interference. (A.C.)

  1. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  2. Automatic computation and solution of generalized harmonic balance equations

    Science.gov (United States)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  3. Squeezing and entanglement in doubly resonant, type II, second-harmonic generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2003-01-01

    We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...

  4. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-01

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  5. High-order harmonic generation in a laser plasma: a review of recent achievements

    International Nuclear Information System (INIS)

    Ganeev, R A

    2007-01-01

    A review of studies of high-order harmonic generation in plasma plumes is presented. The generation of high-order harmonics (up to the 101st order, λ = 7.9 nm) of Ti:sapphire laser radiation during the propagation of short laser pulses through a low-excited, low-ionized plasma produced on the surfaces of different targets is analysed. The observation of considerable resonance-induced enhancement of a single harmonic (λ = 61.2 nm) at the plateau region with 10 -4 conversion efficiency in the case of an In plume can offer some expectations that analogous processes can be realized in other plasma samples in the shorter wavelength range. Recent achievements of single-harmonic enhancement at mid- and end-plateau regions are discussed. Various methods for the optimization of harmonic generation are analysed, such as the application of the second harmonic of driving radiation and the application of prepulses of different durations. The enhancement of harmonic generation efficiency during the propagation of femtosecond pulses through a nanoparticle-containing plasma is discussed. (topical review)

  6. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  7. Pressure and temperature effects on the third-order nonlinear optical properties in GaAs quantum dots

    International Nuclear Information System (INIS)

    Duque, C.M.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    This work is used in the density matrix formalism and the effective mass approximation to study the third harmonic generation coefficient in a GaAs disc-shaped quantum dot with parabolic confinement potential. It is discussed the strong and weak confinement regime. The results show that the third harmonic generation coefficient is strongly dependent on the excitonic pair localization. The study is extended to consider effects such as hydrostatic pressure and temperature to show that it is possible to induce a blue-shift and/or red-shift on the resonant peaks of the third harmonic generation coefficient.

  8. Pressure and temperature effects on the third-order nonlinear optical properties in GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2012-12-15

    This work is used in the density matrix formalism and the effective mass approximation to study the third harmonic generation coefficient in a GaAs disc-shaped quantum dot with parabolic confinement potential. It is discussed the strong and weak confinement regime. The results show that the third harmonic generation coefficient is strongly dependent on the excitonic pair localization. The study is extended to consider effects such as hydrostatic pressure and temperature to show that it is possible to induce a blue-shift and/or red-shift on the resonant peaks of the third harmonic generation coefficient.

  9. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  10. Glass formation and the third harmonic generation of Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Klymovych, O. S.; Zmiy, O. F. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Myronchuk, G. L.; Zamuruyeva, O. V. [Department of Physics, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Alahmed, Z. A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, J.; Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2014-10-14

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu{sub 2}Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  11. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  12. Efficiency enhancement of a harmonic lasing free-electron laser

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-01-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered

  13. Efficiency enhancement of a harmonic lasing free-electron laser

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  14. Efficiency enhancement of a harmonic lasing free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of)

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  15. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  16. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  17. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  18. Third Generation Coaching

    DEFF Research Database (Denmark)

    Stelter, Reinhard

    2016-01-01

    German abstract: Auf der Grundlage aktueller Sozialforschung, neuer Lerntheorien und Diskurse der Personalführung entfaltet sich ein neues Verständnis von Coaching und Coaching-Psychologie. In der dritten Generation wird Coaching aus gesellschaftlicher Perspektive betrachtet. Wenn sich die...... Gesellschaft verändert, muss sich auch Coaching als spezifische Form der Interaktion weiterentwickeln: Die Mission des Third Generation Coaching ist die Entwicklung von Nachhaltigkeit in der Anwendung, indem sich der Dialog stärker auf Werte und Sinn-Schaffen ausrichtet, weg vom einengenden Zielfokus hin zur...... Betonung von Aspirationen, Leidenschaften und Werten. In diesem Sinne trägt Third Generation Coaching zur Entfaltung und Weiterentwicklung persönlicher Identität bei – ein entscheidender Faktor für die menschliche Entwicklung in unserer Zeit. Auf der Basis kollaborativer Zusammenarbeit dieses Ansatzes...

  19. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    Science.gov (United States)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  20. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  1. Eigenmode compendium of the third harmonic module of the European X-ray Free Electron Laser

    Science.gov (United States)

    Flisgen, Thomas; Heller, Johann; Galek, Tomasz; Shi, Liangliang; Joshi, Nirav; Baboi, Nicoleta; Jones, Roger M.; van Rienen, Ursula

    2017-04-01

    Chains of superconducting radio-frequency resonators are key components of modern particle accelerators such as the European XFEL, which is currently under construction in the north of Germany. In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex structures is computationally challenging and is therefore often avoided. In this article, the challenge is faced by using the so-called state-space concatenation approach, which is a combination of domain decomposition and model-order reduction. The technique allows for a reduction of the number of degrees of freedom by a factor of ≈ 1.471 ×10-4 . The method is employed to generate a compendium of eigenmodes in the chain of third harmonic cavities for the European XFEL. The results are discussed in detail and are compared with experimental measurements. The compendium serves as a reference for experiments (inter alia for diagnostics based on higher order modes) at the third harmonic cavity string of the European XFEL, it allows for qualitative understanding of resonant effects appearing in chains of cavities, and it is meant to be a proof of principle of the state-space concatenation approach to handle very long and complex radio-frequency structures. To the authors' knowledge, it is the first time that a modal compendium of a structure with the given complexity is generated. The article presents geometrical details of the chain, defines quantities relevant to superconducting radio-frequency cavities, and describes the employed

  2. Eigenmode compendium of the third harmonic module of the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Thomas Flisgen

    2017-04-01

    Full Text Available Chains of superconducting radio-frequency resonators are key components of modern particle accelerators such as the European XFEL, which is currently under construction in the north of Germany. In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex structures is computationally challenging and is therefore often avoided. In this article, the challenge is faced by using the so-called state-space concatenation approach, which is a combination of domain decomposition and model-order reduction. The technique allows for a reduction of the number of degrees of freedom by a factor of ≈ 1.471×10^{-4}. The method is employed to generate a compendium of eigenmodes in the chain of third harmonic cavities for the European XFEL. The results are discussed in detail and are compared with experimental measurements. The compendium serves as a reference for experiments (inter alia for diagnostics based on higher order modes at the third harmonic cavity string of the European XFEL, it allows for qualitative understanding of resonant effects appearing in chains of cavities, and it is meant to be a proof of principle of the state-space concatenation approach to handle very long and complex radio-frequency structures. To the authors’ knowledge, it is the first time that a modal compendium of a structure with the given complexity is generated. The article presents geometrical details of the chain, defines quantities relevant to superconducting radio-frequency cavities, and describes

  3. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Variation of Rainfall in Three Nigerian Stations, Using harmonic ...

    African Journals Online (AJOL)

    This work is on the variation of rainfall using harmonic analysis for Portharcourt, Kano and Makurdi data, for the three stations the period of study covered 1977 to 2010, for which the time series plot, the amplitude, the first, second and third harmonics were generated. Portharcourt has a gently increasing trend with ...

  5. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  6. Second harmonic generation in a molecular magnetic chain

    Science.gov (United States)

    Cavigli, L.; Sessoli, R.; Gurioli, M.; Bogani, L.

    2006-05-01

    A setup for the determination of all the components of the second harmonic generation tensor in molecular materials is presented. It allows overcoming depletion problems, which one can expect to be common in molecular systems. A preliminary characterization of the nonlinear properties of the single chain magnet CoPhOMe is carried out. We observe a high second harmonic signal, comparable to that of urea, and show that the bulk contributions are dominant over the surface ones.

  7. Laser light absorption and harmonic generation due to self-generated magnetic fields

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1977-01-01

    It is shown that self-generated magnetic fields can play a significant role in laser light absorption. Even normally incident light will then be resonantly absorbed. Computer simulations and theoretical estimates for this absorption and the concomitant harmonic generation are given for parameters characteristic of some recent experiments

  8. A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer

    Science.gov (United States)

    Cheng, Yu-Hsiang; Lin, Chih-Feng; Shih, Ting-Fang; Sun, Chi-Kuang

    2013-03-01

    Oral cancer is one of the most frequently diagnosed human cancers and leading causes of cancer death all over the world, but the prognosis and overall survival rate are still poor because of delay in diagnosis and lack of early intervention. The failure of early diagnosis is due to insufficiency of proper diagnostic and screening tools and most patients are reluctant to undergo biopsy. Optical virtual biopsy techniques, for imaging cells and tissues at microscopic details capable of differentiating benign from malignant lesions non-invasively, are thus highly desirable. A novel multi-harmonic generation microscope, excited by a 1260 nm Cr:forsterite laser, with second and third harmonic signals demonstrating collagen fiber distribution and cell morphology in a sub-micron resolution, was developed for clinical use. To achieve invivo observation inside the human oral cavity, a small objective probe with a suction capability was carefully designed for patients' comfort and stability. By remotely changing its focus point, the same objective can image the mucosa surface with a low magnification, illuminated by side light-emitting diodes, with a charge-coupled device (CCD) for site location selection before the harmonic generation biopsy was applied. Furthermore, the slow galvanometer mirror and the fast resonant mirror provide a 30 fps frame rate for high-speed real-time observation and the z-motor of this system is triggered at the same rate to provide fast 3D scanning, again ensuring patients' comfort. Focusing on the special cytological and morphological changes of the oral epithelial cells, our preliminary result disclosed excellent consistency with traditional histopathology studies.

  9. Next generation data harmonization

    Science.gov (United States)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  10. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  11. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  12. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    Science.gov (United States)

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  13. Optical High Harmonic Generation in C60

    Science.gov (United States)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  14. Mechanical design and fabrication processes for the ALS third-harmonic cavities

    International Nuclear Information System (INIS)

    Franks, M.; Henderson, T.; Hernandez, K.; Otting, D.; Plate, D.; Rimmer, R.

    1999-01-01

    It is planned to install five third-harmonic (1.5 GHz) RF Cavities in May/June 1999 as an upgrade to the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). This paper presents mechanical design features, their experiences in using electronic design models to expedite the manufacturing process, and the fabrication processes employed to produce these cavities for the ALS. They discuss some of the lessons learned from the PEP-II RF Cavity design and fabrication, and outline the improvements incorporated in the new design. They also report observations from the current effort

  15. Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh

    2016-07-13

    We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

  16. Generation of µW level plateau harmonics at high repetition rate.

    Science.gov (United States)

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  17. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  18. Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-05-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.

  19. Spatial properties of odd and even low order harmonics generated in gas.

    Science.gov (United States)

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  20. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation

    Science.gov (United States)

    Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng

    2018-04-01

    III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.

  1. Application of organic compounds for high-order harmonic generation of ultrashort pulses

    Science.gov (United States)

    Ganeev, R. A.

    2016-02-01

    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  2. Phase-locked high-order-harmonic and sub-100-as pulse generation from stretched molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin; Yang Guang

    2006-01-01

    High harmonic generation from diatomic molecules in a linearly polarized intense laser field is investigated and the emission time of the harmonics is discussed with the time-frequency analysis method. It is shown that high harmonic generation from molecules at equilibrium distance is similar to that from atoms. Only the harmonics in the cutoff are synchronized, i.e., well phase-locked, whereas the other harmonics are not phase-locked. For the molecule stretched well beyond its equilibrium distance, the harmonics exhibit distinct time-frequency characteristics. The harmonic spectrum can be extended to I p +8U p , where I p and U p are the ionization and ponderomotive potential, and the harmonics with energies below I p +3.17U p are not phase-locked and the harmonics with energies beyond I p +3.17U p are well phase-locked. Thus a large range of harmonics which are well phase-locked are produced, and a train of clean attosecond (as) pulses with a single 90-as pulse in each half optical cycle can be generated with a multicycle laser pulse. Using a few-cycle laser pulse, an isolated attosecond pulse with a duration of about 95 as is obtained

  3. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  4. Theory for the radiation at the third to fifth harmonics of the plasma frequency upstream from the Earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A theory is presented for the radiation at the third to fifth harmonics of the plasma frequency observed upstream from the Earth's bow shock: the radiation is produced by the process L+T'→T in the foreshock, with the initial T' radiation being the frequently observed second harmonic radiation (generated by another process) and the L waves being products of the decay L'→L+S of L' waves generated by a streaming instability. (Here L, S, and T denote Langmuir, ion acoustic, and 'transverse electromagnetic waves, respectively.) The theory can account for the observed radiation when unusually large levels (electric fields in excess of 10 mV/m) of suitable L waves are present. Such levels of L waves are possible, in principle, but have not been reported before; the radiation is observed quite infrequently, thereby implying a requirement for unusual foreshock conditions. Predictions for the characteristics of the source regions (one to each wing of the foreshock) and the bandwidth of the radiation are given. Potential problems for the theory, relating to the large levels of L waves required to account for the radiation, are discussed. copyright American Geophysical Union 1988

  5. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  6. Harmonic generation and flux quantization in granular superconductors

    International Nuclear Information System (INIS)

    Lam, Q.H.; Jeffries, C.D.

    1989-01-01

    Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops

  7. High-Harmonic Generation in Solids with and without Topological Edge States

    DEFF Research Database (Denmark)

    Bauer, Dieter; Hansen, Kenneth Christian Klochmann

    2018-01-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...

  8. A Case Study of Harmonic Impact on a Motor-Generator Set System

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Pil-Bum [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Motor-Generator Sets are usually used to supply power to a Control Element Drive Mechanism Control System (CEDMCS) at nuclear power plants with pressurized water reactors. Two Motor-Generator Sets, which have 100% capacity, are operated in parallel to improve the reliability of the power supply to the CEDMCS. Fig. 1 presents a diagram of a Motor- Generator Set system. The system of a Motor-Generator Set is composed of electrical equipment, such as a motor, a fly-wheel, and a generator, an exciter and protection-control device, such as a protective relay, synchro check relay, and an auto voltage regulator. In general, the harmonic impact of electrical equipment increases the deterioration of the equipment, the motor, and the generator’s lifetime, which can also be caused by vibration and over-heating and maloperation of the protection-control device. In this paper, we came to understand the harmonic impact on the Motor-Generator Set system through a study of delaying parallel operation by non-operation of the synchro check relay and the fault of under voltage protective relay. Thus, KHNP has established and applied the measures of harmonic reduction by the CEDMCS, such as limiting the voltage harmonic distortion to less than 10%, which is described in IEEE Std 519.

  9. Enhancement of high-order harmonic generation in the presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, I; Altun, Z [Department of Physics, Marmara University, 34722 Ziverbey, Istanbul (Turkey); Topcu, T, E-mail: ilhan.yavuz@marmara.edu.tr [Department of Physics, Auburn University, AL 36849-5311 (United States)

    2011-07-14

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  10. Enhancement of high-order harmonic generation in the presence of noise

    International Nuclear Information System (INIS)

    Yavuz, I; Altun, Z; Topcu, T

    2011-01-01

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  11. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  12. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  13. Application of Fourier transform-second-harmonic generation imaging to the rat cervix.

    Science.gov (United States)

    Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C

    2013-07-01

    We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  14. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles

    International Nuclear Information System (INIS)

    Elouga Bom, L. B.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T.; Ganeev, R. A.

    2009-01-01

    We studied high-order harmonic generation from plasma that contains an abundance of indium oxide nanoparticles. We found that harmonics from nanoparticle-containing plasma are considerably more intense than from plasma produced on the In 2 O 3 bulk target, with high-order harmonic energy ranging from 6 μJ (for the ninth harmonic) to 1 μJ (for the 17th harmonic) in the former case. The harmonic cutoff from nanoparticles was at the 21st order, which is lower than that observed using indium oxide solid target. By comparing the harmonic spectra obtained from solid and nanoparticle indium oxide targets, we concluded that intense harmonics in the latter case are dominantly generated from neutral atoms of the In 2 O 3 nanoparticles

  15. Ellipticity and the offset angle of high harmonics generated by homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Odzak, S; Milosevic, D B

    2011-01-01

    In our recent paper (2010 Phys. Rev. A 82 023412) we introduced a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field and have shown that the nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we now develop a theoretical approach for calculating ellipticity and the offset angle of high harmonics. We show that the emitted harmonics generated by aligned molecules are elliptically polarized even if the applied field is linearly polarized. Using examples of N 2 , O 2 and Ar 2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment and explain them by the destructive two-centre interference. Taking into account that the aligned molecules are an anisotropic medium for high harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy, for both components of the T-matrix element. We propose that the measurement of the elliptic dichroism may reveal further information about the molecular structure.

  16. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  17. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  18. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Science.gov (United States)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  19. High-order harmonic generation in a capillary discharge

    Science.gov (United States)

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  20. Generating transverse response explicitly from harmonic oscillators

    Science.gov (United States)

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  1. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    Science.gov (United States)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  2. Two-color phase control of high-order harmonic generation in intense laser fields

    International Nuclear Information System (INIS)

    Telnov, D.A.; Wang, J.; Chu, S.

    1995-01-01

    We present a time-independent generalized Floquet approach for nonperturbative treatment of high-order harmonic generation (HG) in intense onea (i) determination of the complex quasienergy eigenvalue and eigenfunction by means of the non-Hermitian Floquet formalism, wherein the Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique [Wang, Chu, and Laughlin, Phys. Rev. A 50, 3208 (1994)], and (ii) calculation of the HG rates based on the approach that implies the classical treatment of the electromagnetic field and quantal treatment of the atom. The method is applied to the nonperturbative study of HG by the hydrogen atom in strong laser fields with the fundamental frequencies 532 and 775 nm and their third harmonics. The results show a strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1x10 13 and 5x10 13 W/cm 2 for the fundamental frequency 532 nm and 1x10 13 and 3x10 13 W/cm 2 for the fundamental frequency 775 nm, the harmonic intensity being 10 and 100 times weaker), the total photon emission rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, while valid for the first several HG peaks, is reversed for the higher HG peaks. The HG spectrum for δ=π is broader and the peak heights decrease more slowly compared to the case of δ=0. These results have their analog in the multiphoton above-threshold detachment study performed recently for H - ions [Telnov, Wang, and Chu, Phys. Rev. A 51, 4797 (1995)

  3. Strong nonlinear harmonic generation in a PZT/Aluminum resonator

    Energy Technology Data Exchange (ETDEWEB)

    Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)

    2009-11-01

    In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.

  4. The ALS [Advanced Light Source]: A third generation light source

    International Nuclear Information System (INIS)

    Robinson, A.L.; Schlachter, A.S.

    1989-09-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in April 1993. Based on a low- emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 11 long straight sections available for insertion devices (undulators and wigglers). Undulators will generate high- brightness soft x-ray and ultraviolet (XUV) radiation; wigglers will extend the spectrum generated into the hard x-ray region, but at a lower brightness. Up to 48 bending-magnet ports will also be available. Engineering design has begun on a complement of three undulators with periods of 8.0, 5.0, and 3.9 cm that between them will cover the photon-energy range from 5.4 eV to 2.5 keV when the first, third, and fifth harmonics are used, as well as a wiggler with a critical energy of 3.1 keV. Undulator beam lines will be based on high-resolution spherical-grating monochromators. A Call for Proposals has been issued for those who wish to participate in the design, development, commissioning, and operation of the initial complement of ALS experimental facilities (insertion devices, beam lines, and experimental stations) as members of a participating research team. The deadline for receipt of proposals was August 15, 1989. Proposals are expected to reflect the Letters of Interest received from potential PRTs during the previous year. 6 refs., 4 figs., 5 tabs

  5. Control and metrology of high harmonic generation on plasma mirrors

    International Nuclear Information System (INIS)

    Monchoce, Sylvain

    2014-01-01

    When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh

  6. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation

    International Nuclear Information System (INIS)

    Chiara Corsi; Angela Pirri; Emiliano Sali

    2006-01-01

    Complete test of publication follows. For low gas densities and negligible ionization, the so-called atomic dipole phase, connected with the electronic dynamics involved in the generation process, is the main source of phase modulation and incoherence of high-order harmonics. To accurately determine these laser-intensity-induced phase shifts is therefore of great importance, both for the possible spectroscopic applications of harmonics and for the controlled generation of attosecond pulses. In a semiclassical description, only two electronic trajectories contribute to generate plateau harmonics during each pump optical half-cycle. Electrons appearing in the continuum by tunnel ionization may follow two different quantum paths, namely a long (l) and a short (s) trajectory before recombination. According to the SFA approximation, the harmonic of q th order acquires a phase proportional to the electronic classical action, and simply given by: ψ 0 j (r,t) -α q j I(r,t) with j = l, s where α q j are non-linear phase coefficients, roughly proportional to the time that the originating electron spends in the continuum before recombination. The space and time variation of the laser intensity (I(r,t), causes just a little phase modulation for the s-trajectory harmonic component, while the l-trajectory component becomes strongly chirped and spatially defocused; this gives rise to two spatially-separated regions having different temporal coherence. Here we report the first direct measurement of such atomic dipole phase in the process of high-order harmonic generation. Differently from previous measurements based in the most natural way, i.e., by interferometry. Two phase-locked pump pulses generate two phase-locked harmonic pulses in two nearby positions in a gas jet; one of them is used as a fixed phase reference while the generating intensity of the other is varied. The shift of the XUV interference fringes observed in the far field then gives a direct estimate of the

  7. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Science.gov (United States)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  8. Cumulative Second Harmonic Generation in Lamb Waves for the Detection of Material Nonlinearities

    International Nuclear Information System (INIS)

    Bermes, Christian; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin

    2007-01-01

    An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation, and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT), which yields the amplitudes at different frequencies as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for the alloy aluminum 1100-H14

  9. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    Science.gov (United States)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  10. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  11. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  12. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  13. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  14. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  15. Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider.

    Science.gov (United States)

    Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki

    2015-12-15

    We report the generation of five phase-locked harmonics, f₁:2403  nm, f₂:1201  nm, f₃:801  nm, f₄:600  nm, and f₅:480  nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.

  16. Eigenmode simulations of third harmonic superconducting accelerating cavities for FLASH and the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; The Cockcroft Institute, Daresbury, Warrington (United Kingdom)

    2012-06-15

    The third harmonic nine-cell cavity (3.9 GHz) for FLASH and the European XFEL has been investigated using simulations performed with the computer code CST Microwave Studio registered. The band structure of monopole, dipole, quadrupole and sextupole modes for an ideal cavity has been studied. The higher order modes for the nine-cell structure are compared with that of the cavity mid-cell. The R/Q of these eigenmodes are calculated.

  17. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  18. Surface structure enhanced second harmonic generation in organic nanofibers

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana

    Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...

  19. Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface

    International Nuclear Information System (INIS)

    Collins, Liam; Rodriguez, Brian J.; Kilpatrick, Jason I.; Weber, Stefan A. L.; Vlassiouk, Ivan V.; Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V.

    2014-01-01

    Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solid–liquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the graphene–liquid interface

  20. Theory of second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  1. Analysis and Improvement of Adaptive Coefficient Third Harmonic Voltage Differential Stator Grounding Protection

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2018-06-01

    Full Text Available This paper presents a novel third harmonic voltage differential stator grounding protection (THV-DSGP method combining the adaptive coefficient and fixed coefficient. It can solve the protection sensitivity degradation problem when the insulation resistance of stator winding to ground is slowly declining. This protection method retains the advantages of the adaptive coefficient, which is to maintain high sensitivity in case of an instantaneous ground fault. Moreover, the fixed coefficient can remember the initial insulation state of the stator winding and prevent relay failure when the stator insulation is slowly declining. In addition, due to zero-sequence voltage disconnection (ZSVD often leading to malfunctioning of the THV stator ground protection, the existing criterion of the ZSVD was improved according to the electrical characteristics of the generator when ZSVD happens. THV-DSGP with both adaptive coefficient and fixed coefficient was simulated in the Matlab/Simulink. The simulation results show that the proposed protection can be applied to the slow ground fault of the stator winding. Furthermore, the improved criterion of ZSVD can effectively distinguish the stator metal earth fault and the secondary loop break of the zero-sequence voltage.

  2. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    Science.gov (United States)

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  3. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    Science.gov (United States)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  4. Probing two-centre interference in molecular high harmonic generation

    International Nuclear Information System (INIS)

    Vozzi, C; Calegari, F; Benedetti, E; Berlasso, R; Sansone, G; Stagira, S; Nisoli, M; Altucci, C; Velotta, R; Torres, R; Heesel, E; Kajumba, N; Marangos, J P

    2006-01-01

    Two-centre interference in the recombination step of molecular high harmonic generation (HHG) has been probed in CO 2 and O 2 . We report the order dependence of characteristic enhancements or suppressions of high harmonic production in aligned samples of both molecules. In CO 2 , a robust destructive interference was seen consistent with the known separation of the oxygen atoms that are active in HHG. In O 2 , a harmonic enhancement was found indicating constructive interference. A good agreement was found with a simple two-centre interference model that includes the angular distribution function of the sample. The effective momentum of the electron wave was determined from the spectral position of these interferences. Ellipticity-dependent studies in CO 2 clearly show how the destructive interference can be 'switched off' by increasing the degree of ellipticity and thus shifting the effective resonance condition

  5. High-Harmonic Generation in Solids with and without Topological Edge States

    Science.gov (United States)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  6. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  7. Third generation nuclear plants

    Science.gov (United States)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  8. Transient regime in second harmonic generation

    Science.gov (United States)

    Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine

    2013-09-01

    The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.

  9. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  10. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  11. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  12. Prediction of Metastasis Using Second Harmonic Generation

    Science.gov (United States)

    2016-07-01

    small but statistically significant difference in average F/B of treated US patients versus untreated Dutch patients. Fig. 1. Display of all...predictive ability of models incorporating F/B using a multivariate linear model, but this time applying the analysis to the entire ER+ and ER- cohort. As...AWARD NUMBER: W81XWH-15-1-0040 TITLE: Prediction of Metastasis Using Second Harmonic Generation PRINCIPAL INVESTIGATOR: Edward Brown

  13. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    International Nuclear Information System (INIS)

    Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaidi, Z.

    2009-01-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ (3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ (3) = 20.12 x 10 -12 (esu) of the studied films was found for the 3% doped sample.

  14. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  15. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-03-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  16. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-01-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  17. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); UVSOR Facility (UVSOR), Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2016-03-15

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  18. Status and prospect of third-generation light sources

    International Nuclear Information System (INIS)

    Kihara, Motohiro

    1997-01-01

    The third generation synchrotron radiation facilities, of which the constructions are advanced in the world, the present status in Japan centering around the SPring-8 which started the operation recently, and the expected researches are reported. Also the future prospect is described. PF (2.5 GeV), SRS (2 GeV) and NSLS (2.5 GeV) were the second generation facilities in Japan, Europe and USA, respectively. The new technology for the third generation appeared in latter 1970s, and one of them is 'inserted light source'. The epoch-making development is the concept of low emittance ring. The third generation facilities are the new facilities which enable high brilliance synchrotron radiation by combining undulator with this low emittance ring. The features of the third generation synchrotron radiation are shown. The third generation facilities in X-ray and soft X-ray regions in operation and planning stage in the world are listed. In Japan, the SPring-8 on the largest scale in the world was completed, and the plans of University of Tokyo and Tohoku University are presented. These are explained. As the expected researches using the third generation facilities, the research on phase type X-ray CT, the utilization of micro-beam and others are mentioned. (K.I.)

  19. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    Science.gov (United States)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  20. Gas jet structure influence on high harmonic generation

    OpenAIRE

    Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

    2011-01-01

    Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

  1. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  2. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications

    International Nuclear Information System (INIS)

    Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.

    2013-01-01

    Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications

  3. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  4. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    Science.gov (United States)

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  5. High-order harmonic generation: A coherent ultrashort emission in the XUV range

    International Nuclear Information System (INIS)

    Salieres, Pascal; Hergott, Jean-Francois; Le Deroff, Laurent; Merdji, Hamed; Carre, Bertrand; Auguste, Thierry; Monot, Pascal; D'Oliveira, Pascal; Joyeux, Denis; Phalippou, Daniel

    2000-01-01

    We review the recent progress in theoretical and experimental understanding of harmonic generation by intense laser pulses. We present investigations on the spatial and temporal coherence properties of the harmonic emission, showing that they can be controlled. Finally, we give some examples of current applications of this XUV source, in particular in the diagnostic of dense plasmas

  6. Variable speed DFIG wind energy system for power generation and harmonic current mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)

    2009-06-15

    This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)

  7. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  8. High harmonic generation in H and HD by intense femtosecond ...

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... We have argued that for these conditions the harmonic generation due to the transitions in the electronic ... (XUV) or soft X-ray range and generation of very high-energy attosecond (as) pulses have been widely ..... [3] Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994).

  9. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...

  10. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  11. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images

    Science.gov (United States)

    Paesen, Rik; Smolders, Sophie; Vega, José Manolo de Hoyos; Eijnde, Bert O.; Hansen, Dominique; Ameloot, Marcel

    2016-02-01

    Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.

  12. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  13. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  14. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang

    2015-01-01

    The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)

  15. New results of the high-gain harmonic generation free-electron laser experiment

    International Nuclear Information System (INIS)

    Doyuran, A.; Babzien, M.; Shaftan, T.; Biedron, S.G.; Yu, L.H.; Ben-Zvi, I.; DiMauro, L.F.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Skaritka, J.; Rakowsky, G.; Wang, X.J.; Woodle, M.; Yakimenko, V.; Jagger, J.; Sajaev, V.; Vasserman, I.

    2001-01-01

    We report on the experimental investigation of high-gain harmonic generation carried out at the Accelerator Test Facility at Brookhaven National Laboratory. A seed CO 2 laser at a wavelength of 10.6 μm was used to generate FEL output at a 5.3-μm wavelength. The duration of the output pulse was measured using a second-harmonic intensity autocorrelator, and the coherence length was measured using an interferometer. We also measured the energy distribution of the electron beam after it exited the second undulator, observing behavior consistent with that is expected at saturation. The intensity of the harmonic components of the output at 2.65 and 1.77 μm was determined relative to that of the 5.3-μm fundamental. Finally, using a corrector magnet upstream of the radiator, steering effects on the trajectories of the electron and light beams were studied

  16. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    2014-07-11

    Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...

  17. Theory of surface second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  18. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bahedi, K., E-mail: bahedikhadija@yahoo.com [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L. [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Sahraoui, B.; Essaidi, Z. [Laboratoire POMA, UMR CNRS 6136, Universite d' Angers 2, Bd Lavoisier, 49045 France (France)

    2009-02-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.12 x 10{sup -12} (esu) of the studied films was found for the 3% doped sample.

  19. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  20. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  1. Third harmonic X-mode electron cyclotron resonance heating on TCV using top launch

    International Nuclear Information System (INIS)

    Porte, L.; Alberti, S.; Arnoux, G.; Martin, Y.; Hogge, J.P.; Goodman, T.P.; Henderson, M.A.; Nelson-Melby, E.; Pochelon, A.; Tran, M.Q.

    2003-01-01

    A third harmonic electron cyclotron resonance heating system (X3) has been installed, commissioned and brought into service on the Tokamak a Configuration Variable (TCV). It comprises three 118 GHz, 0.5 MW gyrotrons designed to produce pulses up to 2 seconds long. In the present configuration, 1.0MW is launched vertically from the top of the vessel into the plasma and the remaining 0.5MW is launched horizontally from the low field side. X3 has been used to heat plasmas at density exceeding the 2 nd harmonic cut-off significantly extending the operational space of additionally heated TCV plasmas. Studies have been performed to determine the optimal plasma/launcher configuration for X3 absorption for various plasma conditions and to find methods for real time feedback control of the X3 launcher. First experiments have been performed aimed at heating H-mode plasmas on TCV. First results show that the ELMs in TCV ohmic H-mode plasmas exhibit all characteristics of Type III ELMs. If, at moderate X3 power ( 0.45MW) the Type III ELMs disappear and the H-mode discharge exhibits different MHD phenomena eventually disrupting. (author)

  2. Generation of high harmonic free electron laser with phase-merging effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  3. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  4. Second-harmonic generation microscopy used to evaluate the effect of the dimethyl sulfoxide in the cryopreservation process in collagen fibers of differentiated chondrocytes

    Science.gov (United States)

    Andreoli-Risso, M. F.; Duarte, A. S. S.; Ribeiro, T. B.; Bordeaux-Rego, P.; Luzo, A.; Baratti, M. O.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Carvalho, H. F.; Cesar, C. L.; Kharmadayan, P.; Costa, F. F.; Olalla-Saad, S. T.

    2012-03-01

    Cartilaginous lesions are a significant public health problem and the use of adult stem cells represents a promising therapy for this condition. Cryopreservation confers many advantages for practitioners engaged in cell-based therapies. However, conventional slow freezing has always been associated with damage and mortality due to intracellular ice formation, cryoprotectant toxicity, and dehydration. The aim of this work is to observe the effect of the usual Dimethyl Sulfoxide (DMSO) cryopreservation process on the architecture of the collagen fiber network of chondrogenic cells from mesenchymal stem cells by Second Harmonic Generation (SHG) microscopy. To perform this study we used Mesenchymal Stem Cells (MSC) derived from adipose tissue which presents the capacity to differentiate into other lineages such as osteogenic, adipogenic and chondrogenic lineages. Mesenchymal stem cells obtained after liposuction were isolated digested by collagenase type I and characterization was carried out by differentiation of mesodermic lineages, and flow cytometry using specific markers. The isolated MSCs were cryopreserved by the DMSO technique and the chondrogenic differentiation was carried out using the micromass technique. We then compared the cryopreserved vs non-cryopreserved collagen fibers which are naturally formed during the differentiation process. We observed that noncryopreserved MSCs presented a directional trend in the collagen fibers formed which was absent in the cryopreserved MSCs. We confirmed this trend quantitatively by the aspect ratio obtained by Fast Fourier Transform which was 0.76 for cryopreserved and 0.52 for non-cryopreserved MSCs, a statistical significant difference.

  5. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  6. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  7. Second harmonic generation from photonic structured GaN nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Soya, Takahiro; Inose, Yuta; Kunugita, Hideyuki; Ema, Kazuhiro; Yamano, Kouji; Kikuchi, Akihiko; Kishino, Katsumi, E-mail: t-soya@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2009-11-15

    We observed large enhancement of reflected second harmonic generation (SHG) using the one-dimensional photonic effect in regularly arranged InGaN/GaN single-quantum-well nanowalls. Using the effect when both fundamental and SH resonate with the photonic mode, we obtained enhancement of about 40 times compared with conditions far from resonance.

  8. Quantum properties of transverse pattern formation in second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Scotto, P.; Zambrini, R.

    2002-01-01

    these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...

  9. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T. -C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  10. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    International Nuclear Information System (INIS)

    Kant, Niti; Gupta, Devki Nandan; Suk, Hyyong

    2011-01-01

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  11. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2011-08-15

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  12. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam

    Science.gov (United States)

    Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.

  13. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Zhang, Pei

    2013-02-01

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrumentation. At the FLASH facility in DESY, 1.3 GHz (known as TESLA) and 3.9 GHz (third harmonic) cavities are installed. Wakefields in 3.9 GHz cavities are significantly larger than in the 1.3 GHz cavities. It is therefore important to mitigate the adverse effects of HOMs to the beam by aligning the beam on the electric axis of the cavities. This alignment requires an accurate beam position diagnostics inside the 3.9 GHz cavities. It is this aspect that is focused on in this thesis. Although the principle of beam diagnostics with HOM has been demonstrated on 1.3 GHz cavities, the realization in 3.9 GHz cavities is considerably more challenging. This is due to the dense HOM spectrum and the relatively strong coupling of most HOMs amongst the four cavities in the third harmonic cryo-module. A comprehensive series of simulations and HOM spectra measurements have been performed in order to study the modal band structure of the 3.9 GHz cavities. The dependencies of

  14. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei

    2013-02-15

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrumentation. At the FLASH facility in DESY, 1.3 GHz (known as TESLA) and 3.9 GHz (third harmonic) cavities are installed. Wakefields in 3.9 GHz cavities are significantly larger than in the 1.3 GHz cavities. It is therefore important to mitigate the adverse effects of HOMs to the beam by aligning the beam on the electric axis of the cavities. This alignment requires an accurate beam position diagnostics inside the 3.9 GHz cavities. It is this aspect that is focused on in this thesis. Although the principle of beam diagnostics with HOM has been demonstrated on 1.3 GHz cavities, the realization in 3.9 GHz cavities is considerably more challenging. This is due to the dense HOM spectrum and the relatively strong coupling of most HOMs amongst the four cavities in the third harmonic cryo-module. A comprehensive series of simulations and HOM spectra measurements have been performed in order to study the modal band structure of the 3.9 GHz cavities. The dependencies of

  15. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  16. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  17. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    Science.gov (United States)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  18. Research of second harmonic generation images based on texture analysis

    Science.gov (United States)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  19. Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects

    Science.gov (United States)

    Turquet, Léo; Kakko, Joona-Pekko; Karvonen, Lasse; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri; Kauranen, Martti; Bautista, Godofredo

    2017-08-01

    Non-diffractive Bessel beams are receiving significant interest in optical microscopy due to their remarkably large depth of field. For example, studies have shown the superiority of Bessel beams over Gaussian beams for volumetric imaging of three-dimensionally thick or extended samples. However, the vectorial aspects of the focal fields of Bessel beams are generally obscured when traditional methods are used to characterize their three-dimensional point-spread function in space, which contains contributions from all optical field components. Here, we show experimentally the three-dimensional spatial distribution and enhanced depth of field of the longitudinal electric field components of a focused linearly-polarized Bessel beam. This is done through second-harmonic generation from well-defined vertically-aligned gallium-arsenide nanowires, whose second-order response is primarily driven by the longitudinal fields at the beam focus.

  20. Bunching phase and constraints on echo enabled harmonic generation

    Science.gov (United States)

    Hemsing, E.

    2018-05-01

    A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.

  1. Atto second high harmonic sources

    International Nuclear Information System (INIS)

    Nam, Chang Hee

    2008-01-01

    High harmonic generation is a powerful method to produce attosecond pulses. The high harmonics, emitted from atoms driven by intense femtosecond laser pulses, can from an attosecond pulse train with equally spaced harmonic spectrum or an isolated single attosecond pulse with broad continuum spectrum. Using high power femtosecond laser technology developed at CXRC, we have investigated the spectral and temporal characteristics of high harmonics obtained from gaseous atoms. The spectral structure of harmonics could be manipulated by controlling laser chirp, and continuous tuning of harmonic wavelengths was achieved. For rigorous temporal characterization of attosecond harmonic pulses a cross correlation technique was applied to the photoionization process by harmonic and IR femtosecond pulses and achieved the complete temporal reconstruction of attosecond pulse trains, revealing the detailed temporal structure of the attosecond chirp by material dispersion. The duration of attosecond high harmonic pulses is usually much longer than that of transform limited pulses due to the inherent chirp originating from the harmonic generation process. The attosecond chirp compensation in the harmonic generation medium itself was demonstrated, thereby realizing the generation of near transform limited attosecond pulses. The interference of attosecond electron wave packets, generated from an atom by attosecond harmonic pulses, will be also presented

  2. Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Temkin, R.J.

    1996-01-01

    The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE 21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ∼8%. The best measured phase stability of the TE 31 amplified pulse was ±10 degree over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE 21 had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power

  3. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  4. Second-harmonic generation of Lamb modes in a solid layer supported by a semi-infinite substrate

    International Nuclear Information System (INIS)

    Deng Mingxi

    2004-01-01

    Using a second-order perturbation approximation and a modal expansion analysis approach, this study develops an effective technique for studying the generation of second harmonics of Lamb modes propagating in the composite structure consisting of a solid layer supported by a semi-infinite substrate. The nonlinearity in the elastic wave motion process can result in the generation of second harmonics of primary Lamb mode propagation in the composite structure, and this nonlinearity may be treated as a second-order perturbation of the elastic response of the primary waves. There are second-order bulk and surface/interface driving sources in the composite structure wherever the primary Lamb modes propagate. These driving sources can be thought of as the forcing functions of a finite series of double-frequency Lamb modes (DFLMs) in terms of the approach of modal expansion analysis for waveguide excitation. The fields of the second harmonics of the primary Lamb modes can be regarded as superpositions of the fields of a finite series of DFLMs. Although Lamb modes are dispersive, the field of one DFLM component can have a cumulative growth effect when its phase velocity exactly or approximately equals that of a primary Lamb mode. The formal solutions for the second harmonics of Lamb modes have been obtained. The numerical simulations clearly show the physical process of the generation of second harmonics of Lamb modes in the composite structure. The complicated problems of second-harmonic generation of Lamb modes have been exactly determined within the second-order perturbation approximation

  5. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    Science.gov (United States)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  6. High-order harmonic generation in clusters irradiated by an infrared laser field of moderate intensity

    International Nuclear Information System (INIS)

    Zaretsky, D F; Korneev, Ph; Becker, W

    2010-01-01

    Extending the Lewenstein model of high-order harmonic generation (HHG) in a laser-irradiated atom, a model of HHG in a cluster is formulated. The constituent atoms of the cluster are assumed to be partly ionized. An electron freed through tunnelling may recombine either with its parent ion or with another ion in the vicinity. Harmonics due to the former process are coherent within the same cluster and may be coherent between different clusters, while harmonics due to the latter process are incoherent. Depending on the density of available ions, the incoherent mechanism may dominate the total harmonic yield, and the harmonic spectrum, which extends to higher energies, has a less distinct cutoff and an enhanced low-energy part.

  7. Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2018-03-01

    Generation of high harmonics in a monolayer graphene initiated by a strong coherent radiation field, taking into account electron-electron Coulomb interaction, is investigated. A microscopic theory describing the nonlinear optical response of graphene is developed. The Coulomb interaction of electrons is treated in the scope of dynamic Hartree-Fock approximation. The closed set of integrodifferential equations for the single-particle density matrix of a graphene quantum structure is solved numerically. The obtained solutions show the significance of many-body Coulomb interaction on the high harmonic generation process in graphene.

  8. Second harmonic generation: Effects of the multiple reflections of the fundamental and the second harmonic waves on the Maker fringes

    Science.gov (United States)

    Tellier, Gildas; Boisrobert, Christian

    2007-11-01

    The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.

  9. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  10. Generation of a third harmonic due to spin-flip transitions in non-symmetric heterostructures

    CERN Document Server

    Korovin, A V

    2003-01-01

    The third-order non-linear response due to spin-flip transitions of electrons in asymmetric narrow-gap quantum wells with a spin-split energy spectrum is calculated. The resonant spectral dependences and the gate-voltage dependences of the third-order susceptibility are obtained. The efficiency of up-conversion of the microwave pumping into submillimetre radiation in the multi-well structure is estimated and the dependences on the incidence angle and on the polarization of pumping are presented.

  11. Pressure tunable cascaded third order nonlinearity and temporal pulse switching

    DEFF Research Database (Denmark)

    Eilenberger, Falk; Bache, Morten; Minardi, Stefano

    2013-01-01

    Effects based on the χ(3)-nonlinearity are arguably the most commonly discussed nonlinear interactions in photonics. In the description of pulse propagation, however, the generation of the third harmonic (TH) is commonly neglected, because it is strongly phase mismatched in most materials...

  12. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  13. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  14. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  15. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  16. Harmonic development of tide-generating potential of terrestrial planets

    Science.gov (United States)

    Kudryavtsev, Sergey M.

    2008-08-01

    The aim of this study is to obtain high-accurate harmonic developments of the tide-generating potential (TGP) of Mercury, Venus and Mars. The planets’ TGP values have been first calculated on the base of DE/LE-406 numerical planetary/lunar ephemerides over a long period of time and then processed by a new spectral analysis method. According to this method the development is directly made to Poisson series where both amplitudes and arguments of the series’ terms are high-degree polynomials of time. A new harmonic development of Mars TGP is made over the time period 1900 AD 2100 AD and includes 767 second-order Poisson series’ terms of minimum amplitude equal to 10-7 m2 s-2. Analogous series composing both Mercury and Venus TGP harmonic models are built over the time period 1000 AD 3000 AD and include 1,061 and 693 terms, respectively. A modification of the standard HW95 format for representation of the terrestrial planets’ TGP is proposed. The number of terms in the planets’ TGP models transformed to the modified HW95 format is 650 for Mercury, 422 for Venus, and 480 for Mars. The quality of the new developments of the terrestrial planets’ TGP is better than that of the similar developments obtained earlier.

  17. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  18. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  19. Third-harmonic generation in silicon and photonic crystals of macroporous silicon in the spectral intermediate-IR range; Erzeugung der Dritten Harmonischen in Silizium und Photonischen Kristallen aus makroporoesem Silizium im spektralen mittleren IR-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Mitzschke, Kerstin

    2007-11-01

    Nonlinear optical spectroscopy is a powerful method to study surface or bulk properties of condensed matter. In centrosymmetric materials like silicon even order nonlinear optical processes are forbidden. Besides self-focussing or self phase modulation third-harmonic-generation (THG) is the simplest process that can be studied. This work demonstrates that THG is a adapted non-contact and non-invasive optical method to get information about bulk structures of silicon and Photonic crystals (PC), consisting of silicon. Until now most studies are done in the visible spectral range being limited by the linear absorption losses. So the extension of THG to the IR spectral range is extremely useful. This will allow the investigation of Photonic Crystals, where frequencies near a photonic bandgap are of special interest. 2D- photonic structures under investigation were fabricated via photoelectrochemical etching of the Si (100) wafer (thickness 500 {mu}m) receiving square and hexagonal arranged pores. The typical periodicity of the structures used is 2 {mu}m and the length of the pores reached to 400 {mu}m. Because of stability the photonic structures were superimposed on silicon substrate. The experimental set-up used for the THG experiments generates tuneable picosecond IR pulses (tuning range 1500-4000 cm{sup -1}). The IR-pulse hit the sample either perpendicular to the sample surface or under an angle {theta}. The sample can be rotated (f) around the surface normal. The generated third harmonic is analysed by a polarizer, spectrally filtered by a polychromator and registered by a CCD camera. The setup can be used either in transmission or in reflection mode. Optical transmission and reflection spectra of the Si bulk correspond well with the theoretical description, a 4-fold and a 8-fold dependencies of the azimuth angle resulting in the structure of the x{sup (3)}-tensor of (100)-Si. The situation changes dramatically if the PC with hexagonal structure is investigated

  20. Influence of micro- and macro-processes on the high-order harmonic generation in laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495 (Japan); Physical Department, Voronezh State University, Voronezh 394006 (Russian Federation)

    2016-03-21

    We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.

  1. High order harmonic generation in noble gases using plasmonic field enhancement

    International Nuclear Information System (INIS)

    Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej

    2013-01-01

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Power: towards a third generation definition

    OpenAIRE

    13250612 - Zaaiman, Stephanus Johannes

    2008-01-01

    Power is a well-established concept in the social sciences especially in the political sciences. Although it is widely used in scientific discourse, different definitions and perspectives prevail with regard to it. This article aims to explore the possibilities of taking the debate further towards a third generation definition of social power. Although first generation definitions (associated with Weber and Dahl) and second generation definitions (associated with inter alia Giddens and Morris...

  3. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    Science.gov (United States)

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  4. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  5. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  6. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N.V.; Wesseling, P.; Hamer, P.C.; Noske, D.P.; Galgano, G.D.; Mansvelder, H.D.; Baayen, J.C.; Groot, M.L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  7. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  8. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  9. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2010-01-01

    -matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum...

  10. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    Science.gov (United States)

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  11. Texture analysis applied to second harmonic generation image data for disease classification and development of a multi-view second harmonic generation imaging platform

    Science.gov (United States)

    Wen, Lianggong

    Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites

  12. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  13. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Leißner, Till [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark); Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek, E-mail: fiutowski@mci.sdu.dk [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Brewer, Jonathan R. [Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark)

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  14. Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent.

    Science.gov (United States)

    Ascenti, Giorgio; Zimbaro, Giovanni; Mazziotti, Silvio; Chimenz, Roberto; Fede, Carmelo; Visalli, Carmela; Scribano, Emanuele

    2004-06-01

    Contrast-enhanced voiding urosonography (VUS) is largely accepted both for the diagnosis and follow-up of vesicoureteric reflux (VUR) in children. To evaluate the usefulness of contrast-enhanced second-harmonic VUS in the diagnosis and grading of VUR, using a second-generation contrast agent. Eighty consecutive children were prospectively studied with contrast-enhanced second-harmonic VUS. All children received a second-generation contrast medium, constituted by phospholipid-stabilized microbubbles of sulphur-hexafluoride (SonoVue, Bracco, Milan, Italy). US monitoring of the bladder, of the retrovesical space and of the kidneys was performed using, alternatively, both tissue-harmonic and contrast-harmonic modes. In those young boys where VUR was depicted at VUS, examination was completed with transperineal, sagittal urethral exploration during micturition. VUR was graded in five steps and diagnoses were compared with voiding cystourethrography (VCUG). VUR was diagnosed in 52 reno-ureteral units with VUS. In 49 of these reno-ureteral units, VCUG confirmed the presence of VUR. In comparison to VUS, sensitivity and negative predictive value of VCUG were inferior. The grade of VUR detected at VUS was higher than that detected at VCUG in three units. In no case was the grade of VUR detected at VCUG higher than the one detected at VUS. The differences between VUS and VCUG in grading VUR were statistically significant (p=0.02). Imaging of the normal posterior urethra was skilfully demonstrated with US in 15 young boys with VUR. No statistically significant differences were found between tissue-harmonic and contrast-harmonic mode (p=0.102). Contrast-enhanced second-harmonic VUS is a sensitive and easy technique for the evaluation of VUR. A second-generation US contrast medium such as SonoVue, if available, should be the first choice as the dose required for one examination is much lower and consequently significant reduction of contrast agent cost is possible. Copyright

  15. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Generation of deep ultraviolet radiation at 210 nm by Type-I third harmonic generation is achieved in a pair of BBO crystals with conversion efficiency as high as 36%. The fundamental source is the dye laser radiation pumped by the second harmonic of a Q-switched Nd : YAG laser. A walk-off compensated configuration ...

  16. Nonlinear microscopy as diagnostic tool for the discrimination of activated T cells

    Science.gov (United States)

    Gavgiotaki, E.; Filippidis, G.; Zerva, I.; Agelaki, S.; Georgoulias, V.; Athanassakis, I.

    2017-07-01

    Third Harmonic Generation (THG) imaging was applied to mouse resting and activated T-cells. Quantification of THG signal, which corresponded to lipid droplets, could distinguish activated Tcells, allowing follow-up of immune response development.

  17. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    International Nuclear Information System (INIS)

    Cabasse, A; Hazera, Ch; Quintard, L; Cormier, E; Petit, S; Constant, E

    2016-01-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 10 10 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects. (paper)

  18. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin

    2015-01-01

    for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient singlepass concept, we generate 3.7 W...... successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other......Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...

  19. Green bright squeezed light from a cw periodically poled KTP second harmonic generator

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2002-01-01

    We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using qu...... reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found. (C)2002 Optical Society of America....... quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise...

  20. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  1. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  2. Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields

    International Nuclear Information System (INIS)

    Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.

    2006-01-01

    The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase

  3. How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions

    Science.gov (United States)

    Kovchegov, Yuri V.; Skokov, Vladimir V.

    2018-05-01

    We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. We evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics contribution to the two-gluon production in the saturation framework is nonzero.

  4. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  5. Plasmonic enhancement of High Harmonic Generation revisited: Predominance of Atomic Line Emission

    Directory of Open Access Journals (Sweden)

    Ropers C.

    2013-03-01

    Full Text Available We demonstrate nanostructure-enhanced extreme ultraviolet fluorescence from noble gases driven by low-energy, few-cycle light pulses. Despite sufficient local intensities, plasmon-enhanced high harmonic generation is not observed, which follows from the small, nanometer-size coherent source volume.

  6. Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Xiang Yan-Xun

    2010-01-01

    Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform

  7. First lasing of a high-gain harmonic generation free-electron laser experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Babzien, M.; Ben-Zvi, I.; Biedron, S. G.; DiMauro, L. F.; Douryan, A.; Galayda, J. N.; Gluskin, E.; Graves, W.; Jagger, J.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Rakowsky, G.; Sajaev, V.; Skaritka, J.; Solomon, L.; Vasserman, I.; Wang, X. L.; Woodle, M.; Yakimenko, V.; Yu, L.-H.

    1999-09-11

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2 x 10{sup 7} times larger than the spontaneous radiation, In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance ({approximately}2 m) through the same wiggler. This means the HGHG signal is 2 x 10{sup 6} times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  8. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency

  9. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency

  10. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  11. Extreme UV harmonic production by free-electron generators of coherent radiation

    International Nuclear Information System (INIS)

    Ortega, J.M.

    1986-01-01

    The bunching phenomenon is the basic process occurring in a free-electron generator of coherent generation such as the Klystron in the mm-wave-length range or the free-electron laser (FEL) in the optical region. During interaction with the incident electromagnetic wave the electrons are progressively gathered into small packets separated by a length equal to its wavelength λ/sub L/. Once the electrons are bunched there is a given phase relationship between them and the field of any wave which wavelength is an harmonic of λ/sub L/. This is the source of the gain (electrons decelerated by the field) or of the absorption (electrons accelerated by the laser) mechanisms. In the FEL case the electrons are passing through an undulator (spatially varying periodic magnetic field). Since one uses high-energy electrons (E≅100-1000 MeV) they emit synchrotron radiation called in this case undulator radiation or spontaneous emission. This radiation coexists with the stimulated emission giving rise to the gain mechanism and to the FEL oscillation. When the electrons are bunched the spontaneous emission becomes coherent at the wavelength harmonic of λ/sub L/, and there is an increase in the emission intensity which ideally would be N/sub e/. (Number of electrons is typically ≅10/sup 10/.) Thus bursts of photons are emitted at frequencies harmonic of an incident wave which may be an external laser or the FEL itself. This is likely to extend the spectral range of the free-electron generation of coherent radiation toward the extreme UV λ<1000A). The advantages and limitations of the various solutions (linear or circular accelerator, FEL, or external laser) are discussed. The authors summarize the various experimental results obtained to date and the prospects for the synchrotron radiation dedicated ring super-ACO presently under construction at LURE at Orsay

  12. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    International Nuclear Information System (INIS)

    Feller, M.B.

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described

  13. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Marla Beth [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  14. Enhancement of harmonic generation using a two section undulator

    International Nuclear Information System (INIS)

    Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.

    1999-01-01

    Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture

  15. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  16. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  17. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  18. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  19. Nonlinear optical spectroscopy and microscopy of model random and biological media

    Science.gov (United States)

    Guo, Yici

    Nonlinear optical (NLO) spectroscopy and microscopy applied to biomedical science are emerging as new and rapidly growing areas which offer important insight into basic phenomena. Ultrafast NLO processes provide temporal, spectral and spatial sensitivities complementary or superior to those achieved through conventional linear optical approaches. The goal of this thesis is to explore the potential of two fundamental NLO processes to produce noninvasive histological maps of biological tissues. Within the goal of the thesis, steady state intensity, polarization and angular measurements of second- and third-harmonic generations (SHG, THG) have been performed on model random scattering and animal tissue samples. The nonlinear optical effects have been evaluated using models. Conversion efficiencies of SHG and THG from animal tissue interfaces have been determined, ranging from 10-7 to 10-10. The changes in the multiharmonic signals were found to depend on both local and overall histological structures of biological samples. The spectral signatures of two photon excitation induced fluorescence from intrinsic fluorophores have been acquired and used to characterize the physical state and types of tissues. Two dimensional scanning SHG and TPF tomographic images have been obtained from in vitro animal tissues, normal and diseased human breast tissues, and resolved subsurface layers and histo-chemical distributions. By combining consecutive 2D maps, a 3D image can be produced. The structure and morphology dependence of the SH signal has been utilized to image and evaluate subsurface tumor progression depth. Second harmonic microscopy in model random and biological cells has been studied using a CCD camera to obtain direct images from subcellular structures. Finally, near infrared (NIR) NLO spectroscopy and microscopy based on SHG and TPF have demonstrated high spatial resolution, deeper penetration depth, low level photo-damaging and enhanced morphological sensitivity for

  20. Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    International Nuclear Information System (INIS)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-01

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D 2 O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D 2 O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D 2 O a promising immersion medium for deep-tissue imaging

  1. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  2. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  3. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  4. Control of quantum paths of high-order harmonics and attosecond pulse generation in the presence of a static electric field

    International Nuclear Information System (INIS)

    Hong Weiyi; Lu Peixiang; Cao Wei; Lan Pengfei; Wang Xinlin

    2007-01-01

    The time-frequency properties of high-order harmonic generation in the presence of a static electric field are investigated. It is found that the quantum paths contributing to the harmonics can be controlled by adding a static electric field. The highest photon energies of harmonics emitted in the adjacent half-cycles of the laser field are modulated by the static electric field, and then an attosecond pulse train with one burst per optical cycle can be extracted. For the ratio between the laser and the static field of 0.39, the harmonic spectrum is extended to I p + 9.1U p , and the harmonics above I p + 0.7U p are emitted almost in phase. The phase-locked harmonics covered by a broad bandwidth are produced, and then a regular attosecond pulse train with a pulse duration of 80 as is generated

  5. Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas

    International Nuclear Information System (INIS)

    Mori, W.B.; Decker, C.D.; Leemans, W.P.

    1993-01-01

    The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results

  6. High harmonic generation in H2 and HD by two-colour femtosecond ...

    Indian Academy of Sciences (India)

    We have argued that for these combinations, the harmonic generation due to transitions in the electronic continuum by tunnelling or multiphoton ionization may be neglected and only the electronic transitions within the two lowest electronic states would be important. Thus, the characteristic features of HHG spectra in the ...

  7. Micromachining of glass by the third harmonic of nanosecond Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Ramil, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)], E-mail: aramil@cdf.udc.es; Lamas, J.; Alvarez, J.C.; Lopez, A.J.; Saavedra, E.; Yanez, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)

    2009-03-01

    The ablation processing of glass was performed by using the third harmonic of nanosecond Nd:YVO{sub 4} laser. The objective of this work was the formation of deep holes with a high aspect ratio in soda lime glass; with this purpose different ways to raster the glass surface with the focused laser beam, i.e., single line, parallel lines and orthogonally crossing lines, have been tried and the effect of different parameters as the number of lines and number of scans in the depth and inclination of the sidewalls of the hole has been analyzed. Moreover, to reduce the time consumption in the laser processing of glass plates the relationship between penetration depths and overlapping factor has been studied and an optimum value of scan speed has been obtained for a particular case.

  8. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  9. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

  10. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-03-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .

  11. Geometric effect on second harmonic generation from gold grating

    Science.gov (United States)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  12. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  13. Second harmonic generation in anisotropic Langmuir-Blodgett films of N-docosyl-4-nitroaniline

    DEFF Research Database (Denmark)

    Geisler, T.; Rosenkilde, S.; Ramanujam, P.S.

    1992-01-01

    Langmuir-Blodgett (LB) films of N-docosyl-4-nitroaniline have been made and their nonlinear optical properties studied by second harmonic generation (SHG) measurements. A significant enhancement of the intensity of the second harmonic of the 1.064-mu-m YAG was observed when a two layer Y-type film...... structure. Both of these observations are not common for Y-type LB films and the usual assumption of C(infinity nu) symmetry is therefore not valid. The results make us suggest that these LB films possess C(s) and C2-nu symmetry for mono- and multilayers, respectively. Theoretical expressions...

  14. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  15. Second Harmonic Generation of Unpolarized Light

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  16. arXiv Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $\\mathbf{\\sqrt{\\textit{s}_{_{\\rm NN}}}}$ = 2.76 TeV

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choudhury, Subikash; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Larionov, Pavel; Lattuca, Alessandra; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silaeva, Svetlana; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2018-01-01

    Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum $k_{\\rm T}$ for different collision centralities in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}} = 2.76$ TeV. We find that the $R_{\\rm side}$ and $R_{\\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, osc...

  17. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  18. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  19. Search for third generation squarks at the LHC

    International Nuclear Information System (INIS)

    Weber, H.

    2014-01-01

    We present the results of searches of ATLAS and CMS experiments for third generation squark production in the context of supersymmetry. In many scenarios of supersymmetry the super-partners of the bottom and top quark are the lightest squarks. These particles could therefore be the first sparticles observed at the LHC. The ATLAS and CMS experiments have a wide variety of searches sensitive to third generation squark production that have been conducted with the 2011 data sets. Their results are interpreted in simplified models where limits on different production and decay channels of stop and sbottom quarks have been set. (author)

  20. Time-resolved photoemission micro-spectrometer using higher-order harmonics of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Azuma, J.; Kamada, M.; Kondo, Y.

    2004-01-01

    Full text: A new photoemission spectrometer is under construction for the photoemission microscopy and the time-resolved pump- probe experiment. The higher order harmonics of the Ti:sapphire laser is used as the light source of the VUV region in this system. Because the fundamental laser is focused tightly into the rare gas jet to generate the higher order harmonics, the spot size of the laser, in other words, the spot size of the VUV light source is smaller than a few tens of micrometer. This smallness of the spot size has advantage for the microscopy. In order to compensate the low flux of the laser harmonics, a multilayer-coated schwaltzshild optics was designed. The multilayers play also as the monochromatic filter. The spatial resolution of this schwaltzshild system is found to be less than 1 micrometer by the ray-tracing calculations. A main chamber of the system is equipped with a time-of-flight energy analyzer to improve the efficiency of the electron detection. The main chamber and the gas chamber are separated by a differential pumping chamber and a thin Al foil. The system is designed for the study of the clean surface. It will be capable to perform the sub-micron photoemission microscopy and the femto-second pump-probe photoemission study for the various photo-excited dynamics on clean surfaces

  1. Simulation of electromagnetic scattering through the E-XFEL third harmonic cavity module

    CERN Document Server

    Joshi, N.Y; Shiliang, L; Baboi, N

    2017-01-01

    The European XFEL (E-XFEL) is being fabricated in Hamburg to serve as an X-ray Free Electron Laser light source. The electron beam will be accelerated through linacs consisting of 1.3GHz superconducting cavities along a length of 2.1km. In addition, third harmonic cavities will improve the quality of the beam by line arising the field profile and hence reducing the energy spread. There are eight 3.9GHz cavities within a single module AH1 of E-XFEL. The beam-excited electromagnetic(EM) field in these cavities can be decomposed into a series of eigenmodes. These modes are, in general, not cut-off between one cavity and the next, as they are able to couple to each other through out the module. Here for the first time, we evaluate components of the scattering matrix for module AH1. This is a computation ally expensive system, and hence we employ a Generalized Scattering Matrix(GSM)technique to allow rapid computation with reduced memory requirements. Verification is provided on reduced structures, which are...

  2. Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation

    International Nuclear Information System (INIS)

    Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.

    2011-01-01

    This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.

  3. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  4. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  5. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  6. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  7. Ab initio calculation of harmonic generation spectra of helium using a time-dependent non-Hermitian formalism

    Czech Academy of Sciences Publication Activity Database

    Gilary, I.; Kaprálová, Petra; Moiseyev, N.

    2006-01-01

    Roč. 74, - (2006), 052505-1 ISSN 1050-2947 R&D Projects: GA AV ČR(CZ) KJB100550501; GA MŠk(CZ) LC512 Grant - others:Israel Science Foundation(IL) 1152/04 Institutional research plan: CEZ:AV0Z40550506 Keywords : high-order harmonic generation * symmetry selection rules * even harmonics * complex scaling * F-produkt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006

  8. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Science.gov (United States)

    Akilbekova, Dana; Bratlie, Kaitlin M

    2015-01-01

    The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  9. Optical second harmonic generation from V-shaped chromium nanohole arrays

    Science.gov (United States)

    Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey

    2014-02-01

    We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.

  10. Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation

    Science.gov (United States)

    Singh, B.; Shahani, D. T.; Verma, A. K.

    2015-03-01

    This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.

  11. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available In this paper, we present the direct-substitution (DS method to study the second-harmonic generation (SHG in arbitrary one-dimensional optical superlattices (OS. Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What’s more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems. Keywords: Second-harmonic generation, Direct-substitution, Fibonacci

  12. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  13. Quantum-path control in high-order harmonic generation at high photon energies

    International Nuclear Information System (INIS)

    Zhang Xiaoshi; Lytle, Amy L; Cohen, Oren; Murnane, Margaret M; Kapteyn, Henry C

    2008-01-01

    We show through experiment and calculations how all-optical quasi-phase-matching of high-order harmonic generation can be used to selectively enhance emission from distinct quantum trajectories at high photon energies. Electrons rescattered in a strong field can traverse short and long quantum trajectories that exhibit differing coherence lengths as a result of variations in intensity of the driving laser along the direction of propagation. By varying the separation of the pulses in a counterpropagating pulse train, we selectively enhance either the long or the short quantum trajectory, and observe distinct spectral signatures in each case. This demonstrates a new type of coupling between the coherence of high-order harmonic beams and the attosecond time-scale quantum dynamics inherent in the process

  14. Influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures

    International Nuclear Information System (INIS)

    Deng Mingxi; Wang Ping; Lv Xiafu

    2006-01-01

    This paper describes influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures. The nonlinearity in the elastic wave propagation is treated as a second-order perturbation of the linear elastic response. Due to the kinematic nonlinearity and the elastic nonlinearity of materials, there are second-order bulk and surface/interface driving sources in layered planar structures through which Lamb waves propagate. These driving sources can be thought of as forcing functions of a series of double frequency lamb waves (DFLWs) in terms of the approach of modal expansion analysis for waveguide excitation. The total second-harmonic fields consist of a summation of DFLWs in the corresponding stress-free layered planar structures. The interfacial properties of layered planar structures can be described by the well-known finite interfacial stiffness technique. The normal and tangential interfacial stiffness constants can be coupled with the equation governing the expansion coefficient of each DFLW component. On the other hand, the normal and tangential interfacial stiffness constants are associated with the degree of dispersion between Lamb waves and DFLWs. Theoretical analyses and numerical simulations indicate that the efficiency of second-harmonic generation by Lamb wave propagation is closely dependent on the interfacial properties of layered structures. The potential of using the effect of second-harmonic generation by Lamb wave propagation to characterize the interfacial properties of layered structures are considered. Some experimental results are presented

  15. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  16. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  17. Second harmonic generation spectroscopy on Si surfaces and interfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld

    2010-01-01

    Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...

  18. Third-generation cephalosporins as antibiotic prophylaxis in neurosurgery : What's the evidence?

    NARCIS (Netherlands)

    Liu, Weiming; Neidert, Marian Christoph; Groen, Rob J. M.; Woernle, Christoph Michael; Grundmann, Hajo

    To analyze the role of third-generation cephalosporins as prophylactic antibiotics in neurosurgery. We reviewed the literature for data from randomized controlled trials (RCTs) on third-generation cephalosporins compared to other antibiotic regimen in neurosurgery. End point of the RCTs was the

  19. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures

    DEFF Research Database (Denmark)

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank

    2016-01-01

    We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maxima...

  20. Harmonic Interaction Analysis in Grid-connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    research about the harmonic interaction. However, it is found that the Linear Time Invariant (LTI) based model analysis makes it difficult to analyze these phenomena because of the time-varying properties of the power electronic based systems. This paper investigates grid-connected converter by using......An increasing number of power electronic based Distributed Generation (DG) systems and loads generate not only characteristic harmonics but also unexpected harmonics. Several methods like impedance based analysis, which are derived from the conventional average model, are introduced to perform...

  1. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  2. Autonomous control of inverter-interfaced Distributed Generation units for harmonic current filtering and resonance damping in an islanded microgrid

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...

  3. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-03-18

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20  GeV.

  4. Towards Second and Third Generation Web-Based Multimedia

    OpenAIRE

    Ossenbruggen, Jacco; Geurts, Joost; Cornelissen, F.J.; Rutledge, Lloyd; Hardman, Lynda

    2001-01-01

    textabstractFirst generation Web-content encodes information in handwritten (HTML) Web pages. Second generation Web content generates HTML pages on demand, e.g. by filling in templates with content retrieved dynamically from a database or transformation of structured documents using style sheets (e.g. XSLT). Third generation Web pages will make use of rich markup (e.g. XML) along with metadata (e.g. RDF) schemes to make the content not only machine readable but also machine processable - a ne...

  5. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  6. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    Science.gov (United States)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  7. Multimodal imaging of vocal fold scarring in a rabbit model by multiphoton microscopy

    Science.gov (United States)

    Kazarine, Alexei; Bouhabel, Sarah; Douillette, Annie H.; Kost, Karen; Li-Jessen, Nicole Y. K.; Mongeau, Luc; Wiseman, Paul W.

    2017-02-01

    Vocal fold scarring as a result of injury or disease can lead to voice disorders which can significantly affect the quality of life. During the scarring process, the normally elastic tissue of the vocal fold lamina propria is replaced by a much stiffer collagen-based fibrotic tissue, which impacts the fold's ability to vibrate. Surgical removal of this tissue is often ineffective and can result in further scarring. Injectable biomaterials, a form of tissue engineering, have been proposed as a potential solution to reduce existing scars or prevent scarring altogether. In order to properly evaluate the effectiveness of these new materials, multiphoton microscopy emerges as an effective tool due to its intrinsic multiple label free contrast mechanisms that highlight extracellular matrix elements. In this study, we evaluate the spatial distribution of collagen and elastin fibers in a rabbit model using second harmonic generation (SHG), third harmonic generation (THG) and two photon autofluorescence (TPAF) applied to unlabeled tissue sections. In comparison to traditional methods that rely on histological staining or immunohistochemistry, SHG, THG and TPAF provide a more reliable detection of these native proteins. The evaluation of collagen levels allows us to follow the extent of scarring, while the presence of elastin fibers is thought to be indicative of the level of healing of the injured fold. Using these imaging modalities, we characterize the outcome of injectable biomaterial treatments in order to direct future treatments for tissue engineering.

  8. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    Science.gov (United States)

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  9. A research technique for the effect of higher harmonic voltages on the operating parameters of a permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Hasanova L. H.

    2017-12-01

    Full Text Available Nowadays permanent magnet synchronous machines those frequency-controlled from stator side with frequency inverters made on the basis of power transistors or fully controlled thyristors, are widely used as motors and generators. In future they are also promising a good application in transport, including marine. Modern frequency inverters are equipped with a control system based on sine-shaped pulse width modulation. While shaping the voltage in the output of the inverter, in addition to the fundamental harmonic, higher harmonic components are also included in the voltage shape, which certainly affect the operating parameters of the generator (electromagnetic torque, power, currents. To determine this effect the modeling and investigation technique of higher harmonic voltages in the "electric network – frequency converter – synchronous machine with permanent magnets" system has been developed. The proposed equations of a frequency-controlled permanent magnet synchronous machine allow relatively simply reproduce the harmonic composition of the voltage in the output of a frequency inverter equipped with the control system based on a sinusoidal pulse width modulation. The developed research technique can be used for inverters with any number and composition of voltage harmonic components feeding a stator winding of a permanent magnet synchronous machine. On a particular case, the efficiency of the research technique of the higher harmonics influence on the operating parameters of the generator has been demonstrated. At the same time, the study has been carried out taking into account the shape of the voltage curve feeding the windings of the synchronous machine containing in addition to the fundamental harmonic the 8, 10, 11, 13, 14 and 16-th harmonic components, and the rated active power of the synchronous machine has been equal to 1 500 kW.

  10. Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses

    International Nuclear Information System (INIS)

    Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.

    2010-01-01

    We present theoretical calculations for polarization and ellipticity of high-order harmonics from aligned N 2 , CO 2 , and O 2 molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photo-recombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear species-dependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a 'complete' experiment in molecules.

  11. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...

  12. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  13. The diffraction and walk off in the second harmonic generation

    International Nuclear Information System (INIS)

    He Yujuan; Cai Bangwei; Zhang Bin

    2000-01-01

    Taking the second harmonic generation of Gaussian beam in a KDP crystal of type I matching for example, the effects of diffraction and walk off on doubling conversion efficiency have been worked out. The result indicates that the effect of diffraction is very small and can even by neglected. When the input Gaussian beam size is very small, the effect of walk off is very deleterious on doubling conversion. Along with the enlarging of beam size, the effect of walk off is much smaller and can even be neglected

  14. Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6 Cladding Waveguides

    Directory of Open Access Journals (Sweden)

    Jia Yuechen

    2013-11-01

    Full Text Available We report on the second harmonic generation of violet light of a nonlinear cladding waveguide in BiB3O6 crystal produced by femtosecond laser inscription. Under continuous-wave pump laser at 800 nm, the guided second harmonic wave at 400 nm with a conversion efficiency of ~0.32% has been realized through the Type I birefringence phase matching configuration.

  15. Revival structures of linear molecules in a field-free alignment condition as probed by high-order harmonic generation

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, H. T.; Park, J. Y.; Nam, C. H.; Kim, T. K.; Lee, J. H.; Ihee, H.

    2006-01-01

    Revival structures (rotational coherence) of three linear molecules (N 2 , O 2 , and CO 2 ) in a field free alignment condition have been investigated using high-order harmonic generation. The harmonic yields of these molecules were measured in a pump-probe manner by using a weak femtosecond (fs) laser pulse for field-free alignment of molecules and another intense fs laser pulse for harmonic generation. The harmonic intensities from 23rd to 29th order with respect to the time delay between the pump and the probe pulses showed revival structures in the condition of a field-free alignment of molecules. While the revival structure of a N 2 molecule had one-fourth the period of the full revival time and different degrees of modulation among different fractional revival times, the revival structures of O 2 and CO 2 molecules showed one-eighth the periods of the full revival time and similar degrees of modulation among all fractional revival times. The revival structures could be interpreted in terms of the nature of the highest occupied molecular orbital and the total nuclear spin.

  16. Validity testing of third-order nonlinear models for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, M.A. [Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de La Laguna Torreon, Coah. (Mexico); Escarela-Perez, R. [Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, Av. San Pablo 180, Col. Reynosa, C.P. 02200 (Mexico); Espinosa-Perez, G. [Division de Estudios Posgrado de la Facultad de Ingenieria Universidad Nacional Autonoma de Mexico (Mexico); Alvarez-Ramirez, J. [Universidad Autonoma Metropolitana -Iztapalapa, Division de Ciencias Basicas e Ingenieria (Mexico)

    2009-06-15

    Third-order nonlinear models are commonly used in control theory for the analysis of the stability of both open-loop and closed-loop synchronous machines. However, the ability of these models to describe the electrical machine dynamics has not been tested experimentally. This work focuses on this issue by addressing the parameters identification problem for third-order models for synchronous generators. For a third-order model describing the dynamics of power angle {delta}, rotor speed {omega} and quadrature axis transient EMF E{sub q}{sup '}, it is shown that the parameters cannot be identified because of the effects of the unknown initial condition of E{sub q}{sup '}. To avoid this situation, a model that incorporates the measured electrical power dynamics is considered, showing that state measurements guarantee the identification of the model parameters. Data obtained from a 7 kVA lab-scale synchronous generator and from a 150 MVA finite-element simulation were used to show that, at least for the worked examples, the estimated parameters display only moderate variations over the operating region. This suggests that third-order models can suffice to describe the main dynamical features of synchronous generators, and that third-order models can be used to design and tune power system stabilizers and voltage regulators. (author)

  17. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  18. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...... the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...

  19. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity.

    Science.gov (United States)

    Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv

    2006-08-01

    Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.

  20. High-frequency harmonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  1. Determination of nonlinear resistance voltage-current relationships by measuring harmonics

    Science.gov (United States)

    Stafford, J. M.

    1971-01-01

    Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.

  2. Stator current harmonics evolution by neural network method based on CFE/SS algorithm for ACEC generator of Rey Power Plant

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Mirabedini, H.

    2001-01-01

    One method for on-line fault diagnosis in synchronous generator is stator current harmonics analysis. Then artificial neural network is considered in this paper in order to evaluate stator current harmonics in different loads. Training set of artificial neural network is made ready by generator modeling, finite element method and state space model. Many points from generator capability curve are used in order to complete this set. Artificial neural network which is used in this paper is a percept ron network with a single hidden layer, Eight hidden neurons and back propagation algorithm. Results are indicated that the trained artificial neural network can identify stator current harmonics for arbitrary load from the capability curve. The error is less than 10% in comparison with values obtained directly from the CFE-SS algorithm. The rating parameters of modeled generator are 43950 (kV A), 11(KV), 3000 (rpm), 50 (H Z), (P F=0.8)

  3. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    International Nuclear Information System (INIS)

    Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.

    2007-01-01

    We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data

  4. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  5. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    Science.gov (United States)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  6. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  7. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Directory of Open Access Journals (Sweden)

    Dana Akilbekova

    Full Text Available The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  8. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  9. Interaction of nitrate, barium, strontium and cadmium ions with fused quartz/water interfaces studied by second harmonic generation.

    Science.gov (United States)

    Hayes, Patrick L; Malin, Jessica N; Konek, Christopher T; Geiger, Franz M

    2008-01-31

    Inorganic anions and cations are ubiquitous in environmental chemistry. Here, we use second harmonic generation to track the interaction of the environmentally important metal cations barium, strontium, and cadmium and the nitrate anion with fused quartz/water interfaces at pH 7. Using a dynamic flow system, we assess the extent of reversibility in the binding process and report the absolute number density of adsorbed cations, their charge densities, and their free energies of adsorption. We also present resonantly enhanced second harmonic generation experiments that show that nitrate is surface active and report the free energies and binding constants for the adsorption process. The second harmonic generation spectrum of surface-bound nitrate shows a new adsorption band that cuts further into the solar spectrum than nitrate in the aqueous or solid state. The results that we obtain for all four inorganic ions and the implications for tropospheric and aquatic chemistry as well as geochemistry are discussed in the context of fundamental science as well as pollutant transport models.

  10. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  11. Application of multiphoton microscopy in dermatological studies: A mini-review

    Directory of Open Access Journals (Sweden)

    Elijah Yew

    2014-09-01

    Full Text Available This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance.

  12. Wavelength and intensity dependence of recollision-enhanced multielectron effects in high-order harmonic generation

    Science.gov (United States)

    Abanador, Paul M.; Mauger, François; Lopata, Kenneth; Gaarde, Mette B.; Schafer, Kenneth J.

    2018-04-01

    Using a model molecular system (A2) with two active electrons restricted to one dimension, we examine high-order harmonic generation (HHG) enhanced by rescattering. Our results show that even at intensities well below the single ionization saturation, harmonics generated from the cation (A2+ ) can be significantly enhanced due to the rescattering of the electron that is initially ionized. This two-electron effect is manifested by the appearance of a secondary plateau and cutoff in the HHG spectrum, extending beyond the predicted cutoff in the single active electron approximation. We use our molecular model to investigate the wavelength dependence of rescattering enhanced HHG, which was first reported in a model atomic system [I. Tikhomirov, T. Sato, and K. L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017), 10.1103/PhysRevLett.118.203202]. We demonstrate that the HHG yield in the secondary cutoff is highly sensitive to the available electron rescattering energies as indicated by a dramatic scaling with respect to driving wavelength.

  13. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  14. High throughput second harmonic imaging for label-free biological applications

    KAUST Repository

    Macias Romero, Carlos; Didier, Marie E P; Jourdain, Pascal; Marquet, Pierre; Magistretti, Pierre J.; Tarun, Orly B.; Zubkovs, Vitalijs; Radenovic, Aleksandra; Roke, Sylvie

    2014-01-01

    Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.

  15. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  16. Advances in high-order harmonic generation sources for time-resolved investigations

    International Nuclear Information System (INIS)

    Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly

    2015-01-01

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  17. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Science.gov (United States)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  18. Determining the helicity structure of third generation resonances

    International Nuclear Information System (INIS)

    Papaefstathiou, Andreas

    2011-11-01

    We examine methods that have been proposed for determining the helicity structure of decays of new resonances to third generation quarks and/or leptons. We present analytical and semi-analytical predictions and assess the applicability of the relevant variables in realistic reconstruction scenarios using Monte Carlo-generated events, including the effects of QCD radiation and multiple parton interactions, combinatoric ambiguities and fast detector simulation. (orig.)

  19. A Miniaturize Bandpass Filter with Harmonic Suppression Using Meandered Quarter-Wavelength Resonators

    Directory of Open Access Journals (Sweden)

    Yun-Long Lu

    2014-01-01

    Full Text Available A miniaturized bandpass filter with harmonics suppression is presented. The proposed filter consists of two quarter-wavelength microstrip resonators, which are meandered for circuit size reduction. An interdigital capacitor, loading at zero-voltage point, is employed to provide the desired coupling between the resonators at operating frequency, whereas the coupling coefficient at the third harmonic is realized to be zero. Besides, the second and fourth harmonics are suppressed since λ/4 resonators are adopted. Benefiting from these properties, a miniaturized bandpass filter with the second, third, and fourth harmonics suppression was designed and implemented. The final measured and simulated results show good consistence with the theoretical counterparts.

  20. Direct detection of the parametrically generated half-harmonic voltage in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.

    1976-01-01

    The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...

  1. New ultrafast X-ray sources and their applications. Coherent ultrashort X UV emission by harmonic generation

    International Nuclear Information System (INIS)

    Salieres, P.; Le deroff, L.; Hergott, J.F.; Merdji, H.; Carre, B.

    2000-01-01

    By focusing an intense short-pulse laser into a rare gas jet, high-order harmonics of the laser frequency are generated. Considerable progress have been made in the last few years, with the observation of harmonic orders higher that 200, extending the emission down to 3 nm. Besides its fundamental interest, this XUV emission represents a new source with unique properties of coherence and ultrashort (femtosecond) duration. A growing number of applications are reported, ranging from atomic and molecular spectroscopy to solid-state and plasma physics. (authors)

  2. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  3. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  4. Pharmacodynamics and common drug-drug interactions of the third-generation antiepileptic drugs.

    Science.gov (United States)

    Stefanović, Srđan; Janković, Slobodan M; Novaković, Milan; Milosavljević, Marko; Folić, Marko

    2018-02-01

    Anticonvulsants that belong to the third generation are considered as 'newer' antiepileptic drugs, including: eslicarbazepine acetate, lacosamide, perampanel, brivaracetam, rufinamide and stiripentol. Areas covered: This article reviews pharmacodynamics (i.e. mechanisms of action) and clinically relevant drug-drug interactions of the third-generation antiepileptic drugs. Expert opinion: Newer antiepileptic drugs have mechanisms of action which are not shared with the first and the second generation anticonvulsants, like inhibition of neurotransmitters release, blocking receptors for excitatory amino acids and new ways of sodium channel inactivation. New mechanisms of action increase chances of controlling forms of epilepsy resistant to older anticonvulsants. Important advantage of the third-generation anticonvulsants could be their little propensity for interactions with both antiepileptic and other drugs observed until now, making prescribing much easier and safer. However, this may change with new studies specifically designed to discover drug-drug interactions. Although the third-generation antiepileptic drugs enlarged therapeutic palette against epilepsy, 20-30% of patients with epilepsy is still treatment-resistant and need new pharmacological approach. There is great need to explore all molecular targets that may directly or indirectly be involved in generation of seizures, so a number of candidate compounds for even newer anticonvulsants could be generated.

  5. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  6. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  7. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  8. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2003-01-01

    , and the spatial resolution at the pump wavelength of 790 nm is determined to be better than 0.7 m. SHSOM images of positively poled silica waveguides were obtained for different polarization combinations of the incident pump beam and the detected second-harmonic radiation. Calibration of the SHSOM with a Ga...

  9. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  10. A structure and second-harmonic generation of crystals Li B3O5

    International Nuclear Information System (INIS)

    Burak, Ya.V.

    1997-01-01

    Projections of atoms of nonlinear optical crystals Li B 3 O 5 onto planes perpendicular to directions of the phase matching of type-1 and type-2 for second-harmonic generation (SHG) in a YAG:Nd laser are constructed. Analyses of the interdependence of orientations of (B 3 O 7 ) 5 -complexes and of the effectiveness of SHG are conducted

  11. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    Science.gov (United States)

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  12. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  13. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    International Nuclear Information System (INIS)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.; Sibilia, C.

    2009-01-01

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  14. Stator Current Harmonic Control with Resonant Controller for Doubly Fed Induction Generator

    DEFF Research Database (Denmark)

    Liu, Changjin; Blaabjerg, Frede; Chen, Wenjie

    2012-01-01

    rotor current control loop for harmonic suppression. The overall control scheme is implemented in dq frame. Based on a mathematical model of the DFIG control system, the effects on system stability using the resonant controller, an analysis of the steady-state error, and the dynamic performance......, are discussed in this paper. Taking these effects into account, the parameters of the resonant controller can be designed and effectively damp the influence from the grid voltage harmonics. As a result, the impacts of the negative sequence fifth- and positive sequence seventh-order voltage harmonics...... harmonics, especially low-order harmonics. This paper proposes a stator current harmonic suppression method using a sixth-order resonant controller to eliminate negative sequence fifth- and positive sequence seventh-order current harmonics. A stator current harmonic control loop is added to the conventional...

  15. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  16. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  17. Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2014-01-01

    The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness

  18. Fast harmonic field mapper

    International Nuclear Information System (INIS)

    Au, R.; Fowler, M.; Hanawa, H.; Riedel, J.; Qua, Z.G.

    1984-01-01

    In early 1983 it was decided to mount coils on arms separated by 120 degrees and buck them out so that the third harmonic dphi/dt component would be cancelled and thus the first and second field harmonics could be very accurately measured. The original intention was to do as others had done, namely, use fast ADC's to read the voltages, and computer process the result to get the Fourier components. However, because of the 100 to 1 dynamic range of the fast ADC's and the likelihood that noise would be a problem, the authors decided to do things differently. Using a fast Fourier transform analyzer was considered, but this instrument is very expensive, so they decided to use a completely electronic analog approach: The authors decided to use active bandpass filters to render the harmonic components

  19. Third generation synchrotron radiation applied to materials science

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Yun, W.

    1993-01-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines

  20. A concept of a new undulator that will generate irrational higher harmonics in synchrotron radiation

    International Nuclear Information System (INIS)

    Hashimoto, Shinya; Sasaki, Shigemi

    1994-03-01

    A preliminary consideration has been made on an undulator with magnetic poles quasi-periodically aligned along the path of electron beams to discriminate the rational higher harmonics of radiation that are harmful in some synchrotron radiation experiments. The harmonics with irrational ratios in energy generated by the undulator is never simultaneously reflected by a crystal monochromator in the same orientation. A combination of the new undulator and high-resolution crystal monochromator is expected to be very useful on beamlines of high energy radiation in which X-ray mirrors are useless because of too small critical angles of total reflection. Further, a possibility of manufacturing the new undulator has been discussed. (author)