WorldWideScience

Sample records for thiosulfatophilum chlorobium phaeobacteroides

  1. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    Energy Technology Data Exchange (ETDEWEB)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  2. Chlorosome lipids from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Sørensen, Peder Grove; Cox, Raymond Pickett; Miller, Mette

    2008-01-01

    We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes......) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified...... as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters...

  3. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

    OpenAIRE

    Eisen, Jonathan A.; Nelson, Karen E.; Paulsen, Ian T.; Heidelberg, John F.; Wu, Martin; Dodson, Robert J.; Deboy, Robert; Gwinn, Michelle L.; Nelson, William C.; Haft, Daniel H.; Hickey, Erin K.; Peterson, Jeremy D.; Durkin, A. Scott; Kolonay, James L.; Yang, Fan

    2002-01-01

    The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel role...

  4. Pheophytinization of bacteriochlorophyll c and energy transfer in cells of Chlorobium tepidum

    DEFF Research Database (Denmark)

    Tokita, S; Hirota, M; Frigaard, N-U

    1999-01-01

    spectrum showed maxima at 775 and 810 nm, which correspond to emissions from BChl c and BChl a, respectively. This indicates energy transfer from BPhe c to BChl c and BChl a. In cells in which BChl c was completely pheophytinized, fluorescence measurements were indicative of direct energy transfer from......Bacteriochlorophyll (BChl) c in whole cells of Chlorobium tepidum grown at 46 degrees C changed into bacteriopheophytin (BPhe) c within 10 days after reaching full growth. When a small amount of C. tepidum cells in which BChl c had been completely pheophytinized were transferred to a new culture......640). These results indicate that C. tepidum can survive even when BChl c has been completely pheophytinized and that BChl c is newly synthesized in such cells when transferred to a new culture medium. In partly pheophytinized cells, upon excitation of BPhe c at 550 nm the fluorescence emission...

  5. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  6. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

    Science.gov (United States)

    Eisen, Jonathan A.; Nelson, Karen E.; Paulsen, Ian T.; Heidelberg, John F.; Wu, Martin; Dodson, Robert J.; Deboy, Robert; Gwinn, Michelle L.; Nelson, William C.; Haft, Daniel H.; Hickey, Erin K.; Peterson, Jeremy D.; Durkin, A. Scott; Kolonay, James L.; Yang, Fan; Holt, Ingeborg; Umayam, Lowell A.; Mason, Tanya; Brenner, Michael; Shea, Terrance P.; Parksey, Debbie; Nierman, William C.; Feldblyum, Tamara V.; Hansen, Cheryl L.; Craven, M. Brook; Radune, Diana; Vamathevan, Jessica; Khouri, Hoda; White, Owen; Gruber, Tanja M.; Ketchum, Karen A.; Venter, J. Craig; Tettelin, Hervé; Bryant, Donald A.; Fraser, Claire M.

    2002-01-01

    The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species. PMID:12093901

  7. Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Chew, Aline Gomez Maqueo; Li, Hui

    2003-01-01

    Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative...... ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated...

  8. Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation

    DEFF Research Database (Denmark)

    Frigaard, N-U; Bryant, D A

    2001-01-01

    -spectinomycin marker. The frequency of spontaneous mutants resistant to gentamicin, erythromycin, or spectinomycin-streptomycin was undetectable or significantly lower than the transformation frequency. Transformation with the gentamicin marker was observed when the transforming DNA contained 1 or 3 kb of total......Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild......-type C. tepidum at 40 degrees C on agar plates could be completely inhibited by 100 microg of gentamicin ml(-1), 2 microg of erythromycin ml(-1), 30 microg of chloramphenicol ml(-1), or 1 microg of tetracycline ml(-1) or a combination of 300 microg of streptomycin ml(-1) and 150 microg of spectinomycin...

  9. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1

    DEFF Research Database (Denmark)

    Kjaer, B; Frigaard, N-U; Yang, F

    1998-01-01

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaqui......Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules.......7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous...

  10. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Li, Hui; Milks, Kirstin J

    2004-01-01

    H, CsmI, CsmJ, and CsmX) but contain relatively little total protein compared to other photosynthetic antenna complexes. Except for CsmA, which has been suggested to bind BChl a, the functions of the chlorosome proteins are not known. Nine mutants in which a single csm gene was inactivated were created......Chlorosomes of the green sulfur bacterium Chlorobium tepidum comprise mostly bacteriochlorophyll c (BChl c), small amounts of BChl a, carotenoids, and quinones surrounded by a lipid-protein envelope. These structures contain 10 different protein species (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, Csm......, and the BChl c absorbance maximum was blue-shifted about 8 nm, indicating that the structure of the BChl c aggregates in these chlorosomes is altered. The results of the present study establish that, except with CsmA, when the known chlorosome proteins are eliminated individually, none of them are essential...

  11. The LRR-Roc-COR module of the Chlorobium tepidum Roco protein: crystallization and X-ray crystallographic analysis.

    Science.gov (United States)

    Deyaert, Egon; Kortholt, Arjan; Versées, Wim

    2017-09-01

    Roco proteins are characterized by the presence of a Roc-COR supradomain harbouring GTPase activity, which is often preceded by an LRR domain. The most notorious member of the Roco protein family is the Parkinson's disease-associated LRRK2. The Roco protein from the bacterium Chlorobium tepidum has been used as a model system to investigate the structure and mechanism of this class of enzymes. Here, the crystallization and crystallographic analysis of the LRR-Roc-COR construct of the C. tepidum Roco protein is reported. The LRR-Roc-COR crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 95.6, b = 129.8, c = 179.5 Å, α = β = γ = 90°, and diffracted to a resolution of 3.3 Å. Based on the calculated Matthews coefficient, Patterson map analysis and an initial molecular-replacement analysis, one protein dimer is present in the asymmetric unit. The crystal structure of this protein will provide valuable insights into the interaction between the Roc-COR and LRR domains within Roco proteins.

  12. Gene Inactivation in the Cyanobacterium Synechococcus sp. PCC 7002 and the Green Sulfur Bacterium Chlorobium tepidum Using In Vitro-Made DNA Constructs and Natural Transformation

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Sakuragi, Yumiko; Bryant, Donald A

    2004-01-01

    Inactivation of a chromosomal gene is a useful approach to study the function of the gene in question and can be used to produce a desired phenotype in the organism. This chapter describes how to generate such mutants of the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium...... Chlorobium tepidum by natural transformation with synthetic DNA constructs. Two alternative methods to generate the DNA constructs, both performed entirely in vitro and based on the polymerase chain reaction (PCR), are also presented. These methods are ligation of DNA fragments with T4 DNA ligase...

  13. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus

    Science.gov (United States)

    Melø, T. B.; Frigaard, N.-U.; Matsuura, K.; Razi Naqvi, K.

    2000-09-01

    Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (TmS) spectra, recorded at ambient temperature and under non-reducing or reducing conditions, are reported. The carotenoid (Car) pigments in both species transfer their singlet excitation to bacteriochlorophyll c (BChl c) with an efficiency which is high (between 0.5 and 0.8) but smaller than unity; BChl c and bacteriochlorophyll a (BChl a) transfer their triplet excitation to the Car's with nearly 100% efficiency. The lifetime of the Car triplet states is approximately 3 μs, appreciably shorter than that of the Car triplets in the light-harvesting complex II (LHCII) in green plants and in other antenna systems. In both types of chlorosomes the yield of BChl c triplets (as judged from the yield of the Car triplets) remains insensitive to the redox conditions. In notable contrast the yield of BChl c singlet emission falls, upon a change from reducing to non-reducing conditions, by factors of 4 and 35 in Cfx. aurantiacus and Cb. tepidum, respectively. It is possible to account for these observations if one postulates that the bulk of the BChl c triplets originate either from a large BChl c pool which is essentially non-fluorescent and non-responsive to changes in the redox conditions, or as a result of a process which quenches BChl c singlet excitation and becomes more efficient under non-reducing conditions. In chlorosomes from Cfx. aurantiacus whose Car content is lowered, by hexane extraction, to 10% of the original value, nearly one-third of the photogenerated BChl c triplets still end up on the residual Car pigments, which is taken as evidence of BChl c-to-BChl c migration of triplet excitation; the BChl c triplets which escape rapid static quenching contribute a depletion

  14. X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes

    DEFF Research Database (Denmark)

    Ikonen, T P; Li, H; Psencík, J

    2007-01-01

    Chlorosomes, the main antenna complexes of green photosynthetic bacteria, were isolated from null mutants of Chlorobium tepidum, each of which lacked one enzyme involved in the biosynthesis of carotenoids. The effects of the altered carotenoid composition on the structure of the chlorosomes were...... studied by means of x-ray scattering and electron cryomicroscopy. The chlorosomes from each mutant strain exhibited a lamellar arrangement of the bacteriochlorophyll c aggregates, which are the major constituents of the chlorosome interior. However, the carotenoid content and composition had a pronounced...... effect on chlorosome biogenesis and structure. The results indicate that carotenoids with a sufficiently long conjugated system are important for the biogenesis of the chlorosome baseplate. Defects in the baseplate structure affected the shape of the chlorosomes and were correlated with differences...

  15. Biological conversion of synthesis gas. Final report, August 31, 1990--September 3, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Johnson, E.R.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    Based upon the results of this culture screening study, Rhodospirillum rubrum is recommended for biocatalysis of the water gas shift reaction and Chlorobium thiosulfatophilum is recommended for H{sub 2}S conversion to elemental sulfur. Both bacteria require tungsten light for growth and can be co-cultured together if H{sub 2}S conversion is not complete (required concentration of at least 1 ppM), thereby presenting H{sub 2} uptake by Chlorobium thiosulfatophilum. COS degradation may be accomplished by utilizing various CO-utilizing bacteria or by indirectly converting COS to elemental sulfur after the COS first undergoes reaction to H{sub 2} in water. The second alternative is probably preferred due to the low expected concentration of COS relative to H{sub 2}S. Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. Rhodospirillum rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}O {yields} CO{sub 2} + H{sub 2}. Chlorobium thiosulfatophilum is also a photosynthetic anaerobic bacteria, and converts H{sub 2}S and COS to elemental sulfur.

  16. The processes of lipid peroxidation in the cells of Chlorobium limicola IMV K-8 under the influence of copper (II sulphate

    Directory of Open Access Journals (Sweden)

    T. B. Segin

    2015-12-01

    Full Text Available The effect of stressors, including heavy metal ions such as Cu2+, promotes activation of free radical processes in the cells of microorganisms, which causes changes in their physiological and biochemical properties and the structure of bacterial membranes. The aim of this work was to assess the influence of copper (II sulphate on intensity of lipid peroxidation (LPO of Chlorobium limicola IMV K-8 by measuring the content of primary (conjugated dienes and lipid hydroperoxides and secondary lipid peroxidation products (TBA-reactive products. Microorganisms were cultivated at a temperature of 28 °C in GSB cultivation medium with exposure to light of wavelength 700–800 nm and intensity 40 lux. A suspension of C. limicola ІМV К-8 cells in the phase of exponential growth was treated for one hour with metal salt solution in concentrations 0.05–0.50 mM for investigation of the influence of copper (II sulphate on its physiological and biochemical properties. The control samples did not contain any copper (II sulphate. Biomass was determined by turbidity of diluted cell suspension by application of photoelectric colorimeter KFK-3. A mixture of n-heptane and isopropyl alcohol was added into cell-free extract for conjugated dienes determination. The samples were incubated at room temperature and centrifuged. Water was added into the supernatant and the samples were stirred. Ethanol was added to the heptanes phase and adsorption was measured at 233 nm. The content of lipid hydroperoxides was determined by a method based on protein precipitation by trichloroacetic acid followed by addition of ammonium thiocyanate. The concentration of TBA-reactive products in the cell-free extracts was determined by color reaction with malondialdehyde and thiobarbituric acid exposed to high temperature and acidity of the medium, which causes formation of trimetinic adduct with maximal absorption at 532 nm. It was shown that when CuSO4 was added to the incubation

  17. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    Science.gov (United States)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  18. Photoproduction of hydrogen by membranes of green photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, J D; Olson, J M

    1980-01-01

    Photoproduction of H/sub 2/ from ascorbate by unit-membrane vesicles from Chlorobium limicola f. thiosulfatophilum was achieved with a system containing gramicidin D, tetramethyl-p-phenylenediamine, methyl viologen, dithioerythritol, Clostridium hydrogenase, and an oxygen-scavenging mixture of glucose, glucose oxidase, ethanol, and catalase. Maximum quantum yield was less than one percent. Half maximum rate of H/sub 2/ production occurred at a white-light intensity of approximately 0.15 cm/sup -2/. The reaction was inhibited completely by 0.3% sodium dodecylbenzene sulfonate, 1% Triton X-100, or preheating the vesicles at 100/sup 0/C for 5 minutes. Low concentrations (0.01 and 0.05%) of Triton X-100 about doubled the reaction rate.

  19. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum.

    Science.gov (United States)

    Valleau, Stéphanie; Saikin, Semion K; Ansari-Oghol-Beig, Davood; Rostami, Masoud; Mossallaei, Hossein; Aspuru-Guzik, Alán

    2014-04-22

    Green sulfur bacteria are an iconic example of nature's adaptation: thriving in environments of extremely low photon density, the bacterium ranks itself among the most efficient natural light-harvesting organisms. The photosynthetic antenna complex of this bacterium is a self-assembled nanostructure, ≈60 × 150 nm, made of bacteriochlorophyll molecules. We study the system from a computational nanoscience perspective by using electrodynamic modeling with the goal of understanding its role as a nanoantenna. Three different nanostructures, built from two molecular packing moieties, are considered: a structure built of concentric cylinders of aggregated bacteriochlorophyll d monomers, a single cylinder of bacteriochlorophyll c monomers, and a model for the entire chlorosome. The theoretical model captures both coherent and incoherent components of exciton transfer. The model is employed to extract optical spectra, concentration and depolarization of electromagnetic fields within the chlorosome, and fluxes of energy transfer for the structures. The second model nanostructure shows the largest field enhancement. Further, field enhancement is found to be more sensitive to dynamic noise rather than structural disorder. Field depolarization, however, is similar for all structures. This indicates that the directionality of transfer is robust to structural variations, while on the other hand, the intensity of transfer can be tuned by structural variations.

  20. A reverse KREBS cycle in photosynthesis: consensus at last

    Science.gov (United States)

    Buchanan, B. B.; Arnon, D. I.

    1990-01-01

    The Krebs cycle (citric acid or tricarboxylic acid cycle), the final common pathway in aerobic metabolism for the oxidation of carbohydrates, fatty acids and amino acids, is known to be irreversible. It liberates CO2 and generates NADH whose aerobic oxidation yields ATP but it does not operate in reverse as a biosynthetic pathway for CO2 assimilation. In 1966, our laboratory described a cyclic pathway for CO2 assimilation (Evans, Buchanan and Arnon 1966) that was unusual in two respects: (i) it provided the first instance of an obligate photoautotroph that assimilated CO2 by a pathway different from Calvin's reductive pentose phosphate cycle (Calvin 1962) and (ii) in its overall effect the new cycle was a reversal of the Krebs cycle. Named the 'reductive carboxylic acid cycle' (sometimes also called the reductive tricarboxylic acid cycle) the new cycle appeared to be the sole CO2 assimilation pathway in Chlorobium thiosulfatophilum (Evans et al. 1966) (now known as Chlorobium limicola forma thiosulfatophilum). Chlorobium is a photosynthetic green sulfur bacterium that grows anaerobically in an inorganic medium with sulfide and thiosulfate as electron donors and CO2 as an obligatory carbon source. In the ensuing years, the new cycle was viewed with skepticism. Not only was it in conflict with the prevailing doctrine that the 'one important property ... shared by all (our emphasis) autotrophic species is the assimilation of CO2 via the Calvin cycle' (McFadden 1973) but also some of its experimental underpinnings were challenged. It is only now that in the words of one of its early skeptics (Tabita 1988) 'a long and tortuous controversy' has ended with general acceptance of the reductive carboxylic acid cycle as a photosynthetic CO2 assimilation pathway distinct from the pentose cycle. (Henceforth, to minimize repetitiveness, the reductive pentose phosphate cycle will often be referred to as the pentose cycle and the reductive carboxylic acid cycle as the carboxylic

  1. Gene expression system in green sulfur bacteria by conjugative plasmid transfer.

    Directory of Open Access Journals (Sweden)

    Chihiro Azai

    Full Text Available Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10(-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.

  2. Biochemical factors affecting the quantum efficiency of hydrogen production by membranes of green photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, J.D.; Olson, J.M.

    1981-01-01

    Photohydrogen production, 200-700 ..mu..mol H/sub 2/ h/sup -1/ (mg bacteriochlorophyll a)/sup -1/ has been obtained in a system containing unit membrane vesicles (Complex I) from the green photosynthetic bacterium Chlorobium limicola f. thiosulfatophilum, ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, dithioerythritol, an oxygen scavenging mixture, either methyl viologen (MV) or clostridial ferredoxin (CPS Fd) as electron carrier, and either CPS hydrogenase or platinum asbestos as catalyst. All components are necessary for maximum activity, and spinach Fd cannot be substituted for CPS Fd. Higher rates of photohydrogen production are obtained using MV or CPS Fd with hydrogenase than with MV and Pt asbestos. The highest quantum efficiencies (7-10% at 0.2-0.9 mW absorbed light and over 20% at lower light) were obtained with CPS Fd, hydrogenase and non-saturating 812 nm light. With saturating white light, however, rates of photohydrogen production varied relatively little among the various combinations of electron carrier and catalyst tested. The reaction rate is unaffected by 0.03% Triton X-100, and is insensitive to treatment with antimycin a or m-chloro-carbonyl cyanide phenylhydrazone.This indicates that neither electron flow through an endogenous cyclic chain, nor maintenance of a proton gradient are involved in this process.

  3. The evolution of glutathione metabolism in phototrophic microorganisms

    Science.gov (United States)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  4. Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, N-U; Matsuura, K

    1999-01-01

    center as a consequence of the quenching mechanism which is activated by O2. This reversible uncoupling of the chlorosome antenna might prevent formation of toxic reactive oxygen species from photosynthetically produced reductants under aerobic conditions. The green filamentous bacterium Chloroflexus...... aurantiacus also contains chlorosomes but energy transfer from the BChl c and BChl a antennas to the reaction center in this species was not affected by O2....

  5. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A

    2006-01-01

    in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form...... of CsmA is inserted near the edges of the baseplate, where CsmA and pre-CsmA interact with CsmB and CsmF. Several chlorosome proteins, including CsmA, CsmC, CsmD, CsmH, CsmI, CsmJ, and CsmX, were shown to exist as homomultimers in the chlorosome envelope. On the basis of the structural information...

  6. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Pedersen, Marie Ø; Pham, Lan; Steensgaard, Dorte B

    2008-01-01

    chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS-PAGE. Mass spectrometric analysis showed an m/z of 6154.8, in agreement with the calculated mass...

  7. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus

    DEFF Research Database (Denmark)

    Melø, T B; Frigaard, N-U; Matsuura, K

    2000-01-01

    S) spectra, recorded at ambient temperature and under non-reducing or reducing conditions, are reported. The carotenoid (Car) pigments in both species transfer their singlet excitation to bacteriochlorophyll c (BChlc) with an efficiency which is high (between 0.5 and 0.8) but smaller than unity; BChlc...

  8. Selective Protein Extraction from Chlorobium tepidum Chlorosomes Using Detergents. Evidence That CsmA Forms Multimers and Binds Bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Bryant, Donald A; Vassilieva, Elena V; Frigaard, Niels-Ulrik

    2002-01-01

    and location of this BChl a are not yet clearly understood. Chlorosomes were treated with sodium dodecyl sulfate (SDS), Lubrol PX, or Triton X-100, separately or in combination with 1-hexanol, and the extracted components were separated from the residual chlorosomes by ultrafiltration on centrifugal filters....... When chlorosomes were treated with low concentrations of SDS, all proteins except CsmA were extracted. However, this treatment did not significantly alter the size and shape of the chlorosomes, did not extract the BChl a, and caused only minor changes in the absorption spectrum of the chlorosomes....... Cross-linking studies with SDS-treated chlorosomes revealed the presence of multimers of the major chlorosome protein, CsmA, up to homooctamers. Extraction of chlorosomes with SDS and 1-hexanol solubilized all ten chlorosome envelope proteins as well as BChl a. Although the size and shape...

  9. The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis

    DEFF Research Database (Denmark)

    Maresca, Julia A; Gomez Maqueo Chew, Aline; Ponsatí, Marta Ros

    2004-01-01

    Bacteriochlorophylls (BChls) c and d, two of the major light-harvesting pigments in photosynthetic green sulfur bacteria, differ only by the presence of a methyl group at the C-20 methine bridge position in BChl c. A gene potentially encoding the C-20 methyltransferase, bchU, was identified...

  10. ORF Alignment: NC_002932 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... [Chlorobium tepidum TLS] ... Length = 101 ... Query: 7 ... TRKELTILKLEEPIFDVRYADCFKATIDSMISTGTSKNIIIDFSQVKAIDS...SGIGSMLLA 66 ... TRKELTILKLEEPIFDVRYADCFKATIDSMISTGTSKNIIIDFSQVKAIDS...SGIGSMLLA Sbjct: 1 ... TRKELTILKLEEPIFDVRYADCFKATIDSMISTGTSKNIIIDFSQVKAIDSSGIGSMLLA 60 ...

  11. Spectroscopic properties of a reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Pedersen, Marie Østergaard; Pham, Lan; Steensgaard, Dorte Bjerre

    2008-01-01

    chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The . Isolated chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS...

  12. NCBI nr-aa BLAST: CBRC-AGAM-07-0017 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-07-0017 ref|ZP_01386547.1| Abortive infection protein [Chlorobium ferroox...idans DSM 13031] gb|EAT58580.1| Abortive infection protein [Chlorobium ferrooxidans DSM 13031] ZP_01386547.1 1e-04 31% ...

  13. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten S.; Miller, Mette; Cox, Raymond P.

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3...

  14. Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes: Bacterial Light-Harvesting Systems

    Czech Academy of Sciences Publication Activity Database

    Chappaz-Gillot, C.; Marek, P.L.; Blaive, B.J.; Canard, G.; Burck, J.; Hahn, H.; Jávor fi, T.; Kelemen, L.; Krupke, R.; Mossinger, D.; Ormos, P.; Reddy, C.M.; Roussel, C.; Steinbach, G.; Szabo, M.; Ulrich, A.S.; Vanthuyne, V.N.; Vijayaraghavan, A.; Župčanová, Anita; Balaban, T.S.

    2012-01-01

    Roč. 134, č. 2 (2012), s. 944-954 ISSN 0002-7863 Institutional support: RVO:60077344 Keywords : Green photosynthetic bacteria * Bacteriochlorophyll-C * Chlorobium-Tepidum Subject RIV: CE - Biochemistry Impact factor: 10.677, year: 2012

  15. Absorption Linear Dichroism Measured Directly on a Single Light-Harvesting System: The Role of Disorder in Chlorosomes of Green Photosynthetic Bacteria

    Czech Academy of Sciences Publication Activity Database

    Furumaki, S.; Vácha, František; Habuchi, S.; Tsukatani, Y.; Bryant, D.A.; Vácha, M.

    2011-01-01

    Roč. 133, č. 17 (2011), s. 6703-6710 ISSN 0002-7863 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : CHLOROBIUM-TEPIDUM * BACTERIOCHLOROPHYLL-C * SUPRAMOLECULAR ORGANIZATION Subject RIV: EF - Botanics Impact factor: 9.907, year: 2011

  16. The effect of the reversed tricarboxylic acid cycle on the (13)C contents of bacterial lipids

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Meer, M.T.J. van der; Schouten, S.

    1998-01-01

    Free and esterified lipids of a green sulfur bacterium, Chlorobium limicola, and a purple sulfur bacterium, Thiocapsa roseopersicina, were investigated to examine the effect of the reversed tricarboxylic acid cycle on the 13C contents of their lipids. The lipids of C. limicola are 2 to 16 enriched

  17. Forster energy transfer in chlorosomes of green photosynthetic bacteria

    Science.gov (United States)

    Causgrove, T. P.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the Forster theory of energy transfer.

  18. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum"

    DEFF Research Database (Denmark)

    Liu, Zhenfeng; Müller, Johannes; Li, Tao

    2013-01-01

    'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell...... of "Candidatus Symbiobacter mobilis," a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium....

  19. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  20. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten Silvia; Miller, Mette; Cox, Raymond Pickett

    2011-01-01

    the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively...... participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active......Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3...

  1. Photosynthetic antennae systems: energy transport and optical absorption

    International Nuclear Information System (INIS)

    Reineker, P.; Supritz, Ch.; Warns, Ch.; Barvik, I.

    2004-01-01

    The energy transport and the optical line shape of molecular aggregates, modeling bacteria photosynthetic light-harvesting systems (chlorosomes in the case of Chlorobium tepidum or Chloroflexus aurantiacus and LH2 in the case of Rhodopseudomonas acidophila) is investigated theoretically. The molecular units are described by two-level systems with an average excitation energy ε and interacting with each other through nearest-neighbor interactions. For LH2 an elliptical deformation of the ring is also allowed. Furthermore, dynamic and in the case of LH2 also quasi-static fluctuations of the local excitation energies are taken into account, simulating fast molecular vibrations and slow motions of the protein backbone, respectively. The fluctuations are described by Gaussian Markov processes in the case of the chlorosomes and by colored dichotomic Markov processes, with exponentially decaying correlation functions, with small (λ s ) and large (λ) decay constants, in the case of LH2

  2. Dicty_cDB: Contig-U15045-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available e) Bacillus anthracis str. CDC 684... 286 2e-75 EU302126_1( EU302126 |pid:none) Luciola terminali... AE006470_46( AE006470 |pid:none) Chlorobium tepidum TLS, complete ... 207 2e-51 AM494956_128( AM494956 |pid...centrotus purpuratus clone R3-42P23, WOR... 36 0.051 11 ( EK354403 ) 1095468426890 Global-Ocean-Sampling_GS-...** SEQUENCI... 38 0.25 13 ( EJ594751 ) 1092961073324 Global-Ocean-Sampling_GS-29-01-01-1... 40 0.26 2 ( BA00...170 ) 1093018401251 Global-Ocean-Sampling_GS-36-01-01-2... 50 0.35 1 ( ER486373 ) 1093015301415 Global-Ocean-Sampli

  3. Dicty_cDB: Contig-U06515-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available bicolorF (DH5a methyl filtered) S... 46 1.5 1 ( FL639764 ) TG_26_G7 Termite gut library Reticuliterm...0375 ) 1092960187571 Global-Ocean-Sampling_GS-31-01-01-1... 44 6.0 1 ( CT500356 ) A BAC library has been constructed...01013_1( AK301013 |pid:none) Homo sapiens cDNA FLJ60076 complet... 54 4e-06 EU973819_1( EU973819 |pid:none) ...K290984 |pid:none) Homo sapiens cDNA FLJ75459 complet... 51 2e-05 CP001097_2035( CP001097 |pid:none) Chlorobium lim... ( EJ751844 ) 1092963041016 Global-Ocean-Sampling_GS-30-02-01-1... 46 1.5 1 ( EJ5

  4. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    Science.gov (United States)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  5. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  6. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Buck, D. R. [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  7. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis.

    Science.gov (United States)

    Mori, Yumi; Kataoka, Takafumi; Okamura, Takahiko; Kondo, Ryuji

    2013-05-01

    This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 10(6) copies ml(-1) in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.

  8. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments

    KAUST Repository

    Liu, Guangli

    2011-08-01

    Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118h) was similar to that obtained by adding acetate or fumarate (110-115h), and less than that with glucose (181h) or Fe(III) (353h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149h (25mM) to 251h (50mM) and 526h (100mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600μg/cm2 for all amendments except Fe(Sh{cyrillic}) (1650μg/cm2). Wastewater produced 91mW/m2, with the other MFCs producing 50mW/m2 (fumarate) to 103mW/m2 (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments. © 2011 Elsevier Ltd.

  9. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda.

    Science.gov (United States)

    Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J

    2015-10-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Think big--giant genes in bacteria.

    Science.gov (United States)

    Reva, Oleg; Tümmler, Burkhard

    2008-03-01

    Long genes should be rare in archaea and eubacteria because of the demanding costs of time and resources for protein production. The search in 580 sequenced prokaryotic genomes, however, revealed 0.2% of all genes to be longer than 5 kb (absolute number: 3732 genes). Eighty giant bacterial genes of more than 20 kb in length were identified in 47 taxa that belong to the phyla Thermotogae (1), Chlorobi (3), Planctomycetes (1), Cyanobacteria (2), Firmicutes (7), Actinobacteria (9), Proteobacteria (23) or Euryarchaeota (1) (number of taxa in brackets). Giant genes are strain-specific, differ in their tetranucleotide usage from the bulk genome and occur preferentially in non-pathogenic environmental bacteria. The two longest bacterial genes known to date were detected in the green sulfur bacterium Chlorobium chlorochromatii CaD3 encoding proteins of 36 806 and 20 647 amino acids, being surpassed in length only by the human titin coding sequence. More than 90% of bacterial giant genes either encode a surface protein or a polyketide/non-ribosomal peptide synthetase. Most surface proteins are acidic, threonine-rich, lack cystein and harbour multiple amino acid repeats. Giant proteins increase bacterial fitness by the production of either weapons towards or shields against animate competitors or hostile environments.

  11. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    Science.gov (United States)

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Diversity of prokaryotes at a shallow submarine vent of Panarea Island (Italy by high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Teresa L. Maugeri

    2013-09-01

    Full Text Available To determine microbial community composition and possible key microbial processes in the shallow-sea hydrothermal vent system off Panarea Island (Italy, we examined bacterial and archaeal communities of sediment and fluid samples from a hot vent by 16S rDNA Illumina sequencing technique. Both high abundant (>1% of total sequences, low abundant (from 0.1 to <1% and rare (< 0.1% phylogenetic groups were responsible for the distinct prokaryotic communities characterizing the heated sediment and fluid. The bacterial and archaeal communities from sediment were dominated by sequences affiliated with Rhodovulum genus (Alphaproteobacteria, including phototrophic ferrous-iron-oxidizing purple bacteria, Thiohalospira and Thiomicrospira (Gammaproteobacteria, typically involved in the sulphur cycle, and Methanococcus (Euryarchaeota. Fluid communities were dominated by anoxygenic phototrophic members of Chlorobium, followed by Thiomicrospira (Gammaproteobacteria, Sulfurimonas, Arcobacter and Sulfurospirillum (Epsilonproteobacteria, and Methanosarcina (Euryarchaeota. Obtained sequences were affiliated with prokaryotes taking a key part in the carbon, iron and sulphur cycling at the shallow hydrothermal system off Panarea Island. Despite the huge sequencing efforts, a great number of Bacteria and Archaea still remains unaffiliated at genus level, indicating that Black Point vent represents a hotspot of prokaryotic diversity.

  13. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake.

    Science.gov (United States)

    Walter, Xavier A; Picazo, Antonio; Miracle, Maria R; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob

    2014-01-01

    Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygenic phototrophic bacteria thriving through the oxidation of Fe(II) has provided support for a biological origin for some BIFs, but despite reports suggesting that anoxygenic phototrophs may oxidize Fe(II) in the environment, a model ecosystem of an ancient ocean where they are demonstrably active was lacking. Here we show that anoxygenic phototrophic bacteria contribute to Fe(II) oxidation in the water column of the ferruginous sulfate-poor, meromictic lake La Cruz (Spain). We observed in-situ photoferrotrophic activity through stimulation of phototrophic carbon uptake in the presence of Fe(II), and determined light-dependent Fe(II)-oxidation by the natural chemocline microbiota. Moreover, a photoferrotrophic bacterium most closely related to Chlorobium ferrooxidans was enriched from the ferruginous water column. Our study for the first time demonstrates a direct link between anoxygenic photoferrotrophy and the anoxic precipitation of Fe(III)-oxides in a ferruginous water column, providing a plausible mechanism for the bacterial origin of BIFs before the advent of free oxygen. However, photoferrotrophs represent only a minor fraction of the anoxygenic phototrophic community with the majority apparently thriving by sulfur cycling, despite the very low sulfur content in the ferruginous chemocline of Lake La Cruz.

  14. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    Science.gov (United States)

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  15. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    Science.gov (United States)

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  16. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  17. Conformational heterogeneity of the Roc domains in C. tepidum Roc–COR and implications for human LRRK2 Parkinson mutations

    Science.gov (United States)

    Rudi, Katharina; Ho, Franz Y.; Gilsbach, Bernd K.; Pots, Henderikus; Wittinghofer, Alfred; Kortholt, Arjan; Klare, Johann P.

    2015-01-01

    Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labelling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains that, in contrast, are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat (LRR) kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum Roc/COR interface significantly influence the structure and nt-induced conformational changes of the Roc domains. PMID:26310572

  18. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.

    Science.gov (United States)

    Rudi, Katharina; Ho, Franz Y; Gilsbach, Bernd K; Pots, Henderikus; Wittinghofer, Alfred; Kortholt, Arjan; Klare, Johann P

    2015-08-26

    Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labelling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains that, in contrast, are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat (LRR) kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum Roc/COR interface significantly influence the structure and nt-induced conformational changes of the Roc domains. © 2015 Authors.

  19. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  20. Diversity and Functional Analysis of the FeMo-Cofactor Maturase NifB

    Directory of Open Access Journals (Sweden)

    Simon Arragain

    2017-11-01

    Full Text Available One of the main hurdles to engineer nitrogenase in a non-diazotrophic host is achieving NifB activity. NifB is an extremely unstable and oxygen sensitive protein that catalyzes a low-potential SAM-radical dependent reaction. The product of NifB activity is called NifB-co, a complex [8Fe-9S-C] cluster that serves as obligate intermediate in the biosyntheses of the active-site cofactors of all known nitrogenases. Here we study the diversity and phylogeny of naturally occurring NifB proteins, their protein architecture and the functions of the distinct NifB domains in order to understand what defines a catalytically active NifB. Focus is on NifB from the thermophile Chlorobium tepidum (two-domain architecture, the hyperthermophile Methanocaldococcus infernus (single-domain architecture and the mesophile Klebsiella oxytoca (two-domain architecture, showing in silico characterization of their nitrogen fixation (nif gene clusters, conserved NifB motifs, and functionality. C. tepidum and M. infernus NifB were able to complement an Azotobacter vinelandii (ΔnifB mutant restoring the Nif+ phenotype and thus demonstrating their functionality in vivo. In addition, purified C. tepidum NifB exhibited activity in the in vitro NifB-dependent nitrogenase reconstitution assay. Intriguingly, changing the two-domain K. oxytoca NifB to single-domain by removal of the C-terminal NifX-like extension resulted in higher in vivo nitrogenase activity, demonstrating that this domain is not required for nitrogen fixation in mesophiles.

  1. Spatial changes in the prokaryotic community structure across a soil catena

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Tkhakakhova, Azida

    2017-04-01

    ; Verrucomicrobia, Proteobacteria and Acidobacteria - in transitional site (both soils with the total dominance of Chthoniobacter flavus). In Fluvisol of accumulative landscape position, it was revealed a completely different prokaryotic community with the dominance of Bacillus, Clostridium, Desulfovibrio, Saccharopolyspora, and Gallionella. B. longiquaesitum and B. nealsonii were the two most abundant species. In general, prokaryotic community of Fluvisol was characterized by a wide range of microorganisms involved in the biogeochemical cycles of iron (Gallionella ferruginea, Rhodoferax ferrireducens, Carboxydocella ferrireducens, Gallionella capsiferriformans, etc.) and sulfur (Desulfomonile iedjei, Sulfurospirillum sp., Desulfonatronum thiosulfatophilum, Thermodesulfovibrio thiophilus, Thermodesulfovibrio aggregans, Ammonifex thiophilus, etc.). Metabolically active archaea of soils across the catena included Thaumarchaeota and Euryarchaeota phyla. In general, 23 species of methanogens were detected in AC position characterized by excessive moisture which explains prevailing of methane emission over consumption. It was also revealed that Methanolobus taylori, Methanococcoides methylutens, and Methanosaeta concilii were the dominant methanogens, while Methylosinus pucelana and Methylosinus acidophilus were the main methanotrophs in prokaryotic communities of studied soils. This research was supported by the Russian Science Foundation, Projects No 14-26-00625 and No 14-26-00079.

  2. Carbon-Isotopic Analysis of Individual Pigments by HPLC-Moving Wire-IRMS

    Science.gov (United States)

    Sessions, A. L.; Keely, B. J.; Hayes, J. M.

    2003-12-01

    We have developed a method for directly analyzing the carbon isotope ratios of individual pigments, including chlorophyll (chl) and its derivatives, by coupling a high-performance liquid chromatograph (HPLC) to an isotope-ratio mass spectrometer (IRMS) via a novel `moving-wire' interface. Pigments were separated on a reversed-phase C18 column, using a binary gradient modified from Airs et al. (2001, J. Chrom. A 917, 167-177). The HPLC effluent was dried onto a continuously-spooling nickel wire, and the involatile sample residue was combusted to CO2 and transferred to the IRMS for isotopic analysis. Replicate analyses of a standard solution yield precision for delta13C of better than 0.2‰ for injections containing ~5 μ g of chl-a. A five-fold improvement in sensitivity should be attainable using capillary HPLC to further reduce solvent volumes. The biomarker potential of tetrapyrrole pigments, combined with the geochemical information recorded by isotopic compositions, makes this combination a potent tool for biogeochemical studies. As a demonstration, we analyzed chlorophyll degradation products in sediments from a lake and a salina. First, compounds derived from bacteriochlorophylls (bchl)-c and -d were extracted from sediment cores taken at Kirisjes Lake (Larsmann Hills, Antarctica). These pigments are products of green sulfur bacteria and indicate the presence of an anoxic photic zone. The δ 13C values of bchl-related compounds are near -25‰ . Using published fractionations for Chlorobium species to extrapolate, dissolved CO2 in Kirisjes Lake probably had a δ 13C value of -12 to -21‰ and was strongly influenced by the recycling of organic carbon, possibly including methane. Second, compounds derived from chl-a, bchl-c, and bchl-d were isolated from sediments taken below a living microbial mat in the hypersaline les Salines de la Trinital (South Catalonia, Spain). The sediments contain visible remnants of past microbial mats and pigment distributions

  3. Three-stage biochemical selection: cloning of prototype class IIS/IIC/IIG restriction endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus.

    Science.gov (United States)

    Skowron, Piotr M; Vitkute, Jolanta; Ramanauskaite, Danute; Mitkaite, Goda; Jezewska-Frackowiak, Joanna; Zebrowska, Joanna; Zylicz-Stachula, Agnieszka; Lubys, Arvydas

    2013-08-06

    In continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI. TsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined. Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection