WorldWideScience

Sample records for thiokol solid rocket

  1. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  2. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  3. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  4. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  5. Flow-Structural Interaction in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Murdock, John

    2004-01-01

    .... The static test failure of the Titan solid rocket motor upgrade (SRMU) that occurred on 1 April, 1991, demonstrated the importance of flow-structural modeling in the design of large, solid rocket motors...

  6. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  7. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  8. Laser Shearography Inspection of TPS (Thermal Protection System) Cork on RSRM (Reusable Solid Rocket Motors)

    Science.gov (United States)

    Lingbloom, Mike; Plaia, Jim; Newman, John

    2006-01-01

    Laser Shearography is a viable inspection method for detection of de-bonds and voids within the external TPS (thermal protection system) on to the Space Shuttle RSRM (reusable solid rocket motors). Cork samples with thicknesses up to 1 inch were tested at the LTI (Laser Technology Incorporated) laboratory using vacuum-applied stress in a vacuum chamber. The testing proved that the technology could detect cork to steel un-bonds using vacuum stress techniques in the laboratory environment. The next logical step was to inspect the TPS on a RSRM. Although detailed post flight inspection has confirmed that ATK Thiokol's cork bonding technique provides a reliable cork to case bond, due to the Space Shuttle Columbia incident there is a great interest in verifying bond-lines on the external TPS. This interest provided and opportunity to inspect a RSRM motor with Laser Shearography. This paper will describe the laboratory testing and RSRM testing that has been performed to date. Descriptions of the test equipment setup and techniques for data collection and detailed results will be given. The data from the test show that Laser Shearography is an effective technology and readily adaptable to inspect a RSRM.

  9. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  10. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  11. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  12. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  13. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  14. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  15. Development of a new generation solid rocket motor ignition computer code

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  16. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  17. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  18. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  19. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  20. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  1. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  2. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  3. Nutation instability of spinning solid rocket motor spacecraft

    Directory of Open Access Journals (Sweden)

    Dan YANG

    2017-08-01

    Full Text Available The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB. The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn. The analysis of the results proposes the design conception of how to control the nutation motion. The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.

  4. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  5. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large

  6. Working-cycle processes in solid-propellant rocket engines (Handbook). Rabochie protsessy v raketnykh dvigateliakh tverdogo topliva /Spravochnik/

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, A.A.; Panin, S.D.; Rumiantsev, B.V.

    1989-01-01

    Physical and mathematical models of processes taking place in solid-propellant rocket engines and gas generators are presented in a systematic manner. The discussion covers the main types of solid propellants, the general design and principal components of solid-propellant rocket engines, the combustion of a solid-propellant charge, thermodynamic calculation of combustion and outflow processes, and analysis of gasdynamic processes in solid-propellant rocket engines. 40 refs.

  7. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  8. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  9. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    Science.gov (United States)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  10. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  11. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  12. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  13. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  14. Scale Effects on Solid Rocket Combustion Instability Behaviour

    OpenAIRE

    David R. Greatrix

    2011-01-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combusti...

  15. Solid Rocket Testing at AFRL (Briefing Charts)

    Science.gov (United States)

    2016-10-21

    Distribution Unlimited. PA#16492 2 Agenda • Solid Rocket Motors • History of Sea Level Testing • Small Component Testing • Full-scale Testing • Altitude...Facility • History of Testing • Questions -Distribution A: Approved for Public Release; Distribution Unlimited. PA#16492 3 RQ-West • AFRL/RQ...INTEGRATION FACILITY NATIONAL HOVER TEST FACILITY TITAN SRM TEST FACILITY TS-1C1-125 LARGE ENGINE/COMPONENT TEST FACILITY TS-1A 1-120 1-115 X-33 LAUNCH

  16. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  17. An Automated Fluid-Structural Interaction Analysis of a Large Segmented Solid Rocket Motor

    National Research Council Canada - National Science Library

    Rex, Brian

    2003-01-01

    .... The fluid-structural interaction (FSI) analysis of the ETM-3 motor used PYTHON, a powerful programming language, and FEM BUILDER, a pre- and post processor developed by ATK Thiokol Propulsion under contract to the AFRL, to automatically...

  18. Parametric Study of Design Options aecting Solid Rocket Motor Start-up and Onset of Pressure Oscillations

    OpenAIRE

    Di Giacinto, M.; Cavallini, E.; Favini, B.; Steelant, Johan

    2014-01-01

    The start-up represents a very critical phase during the whole operational life of solid rocket motors. This paper provides a detailed study of the eects on the ignition transient of the main design parameters of solid propellant motors. The analysis is made with the use of a Q1D unsteady model of solid rocket ignition transient, extensively validated in the frame of the VEGA program, for ignition transient predictions and reconstructions, during the last ten years. Two baseline soli...

  19. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    Science.gov (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  20. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M

    2014-01-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  1. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  2. Cooperative Threat Reduction: Solid Rocket Motor Disposition Facility Project (D-2003-131)

    National Research Council Canada - National Science Library

    2003-01-01

    .... DoD contracted with Lockheed Martin Advanced Environmental Systems for $52.4 million to design, develop, fabricate, and test a closed burn, solid rocket motor disposition facility for the Russian Federation in April 1997...

  3. The Potential for Ozone Depletion in Solid Rocket Motor Plumes by Heterogeneous Chemistry

    National Research Council Canada - National Science Library

    Hanning-Lee, M

    1996-01-01

    ... (hydroxylated alumina), respectively, over the temperature range -60 to 200 degrees C. This work addresses the potential for stratospheric ozone depletion by launch vehicle solid rocket motor exhaust...

  4. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  5. Modified computation of the nozzle damping coefficient in solid rocket motors

    Science.gov (United States)

    Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.

    2018-02-01

    In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.

  6. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  7. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  8. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  9. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    Science.gov (United States)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  10. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, D. R.; Phelps, W. J.

    2011-01-01

    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  11. Internal Flow Analysis of Large L/D Solid Rocket Motors

    Science.gov (United States)

    Laubacher, Brian A.

    2000-01-01

    Traditionally, Solid Rocket Motor (SRM) internal ballistic performance has been analyzed and predicted with either zero-dimensional (volume filling) codes or one-dimensional ballistics codes. One dimensional simulation of SRM performance is only necessary for ignition modeling, or for motors that have large length to port diameter ratios which exhibit an axial "pressure drop" during the early burn times. This type of prediction works quite well for many types of motors, however, when motor aspect ratios get large, and port to throat ratios get closer to one, two dimensional effects can become significant. The initial propellant grain configuration for the Space Shuttle Reusable Solid Rocket Motor (RSRM) was analyzed with 2-D, steady, axi-symmetric computational fluid dynamics (CFD). The results of the CFD analysis show that the steady-state performance prediction at the initial burn geometry, in general, agrees well with 1-D transient prediction results at an early time, however, significant features of the 2-D flow are captured with the CFD results that would otherwise go unnoticed. Capturing these subtle differences gives a greater confidence to modeling accuracy, and additional insight with which to model secondary internal flow effects like erosive burning. Detailed analysis of the 2-D flowfield has led to the discovery of its hidden 1-D isentropic behavior, and provided the means for a thorough and simplified understanding of internal solid rocket motor flow. Performance parameters such as nozzle stagnation pressure, static pressure drop, characteristic velocity, thrust and specific impulse are discussed in detail and compared for different modeling and prediction methods. The predicted performance using both the 1-D codes and the CFD results are compared with measured data obtained from static tests of the RSRM. The differences and limitations of predictions using ID and 2-D flow fields are discussed and some suggestions for the design of large L/D motors and

  12. Injection and swirl driven flowfields in solid and liquid rocket motors

    Science.gov (United States)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  13. Development and Characterization of Fast Burning Solid Fuels/Propellants for Hybrid Rocket Motors with High Volumetric Efficiency

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed work is to develop several fast burning solid fuels/fuel-rich solid propellants for hybrid rocket motor applications. In the...

  14. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  15. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  16. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    Science.gov (United States)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  17. Longitudinal acoustic instabilities in slender solid propellant rockets : linear analysis

    OpenAIRE

    García Schafer, Juan Esteban; Liñán Martínez, Amable

    2001-01-01

    To describe the acoustic instabilities in the combustion chambers of laterally burning solid propellant rockets the interaction of the mean flow with the acoustic waves is analysed, using multiple scale techniques, for realistic cases in which the combustion chamber is slender and the nozzle area is small compared with the cross-sectional area of the chamber. Associated with the longitudinal acoustic oscillations we find vorticity and entropy waves, with a wavelength typically small compared ...

  18. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  19. Mechanical Properties of Aerojet, Thiokol, and JA2 High-Energy Gun Propellants at 1.5 m/s Deformation Rate

    Science.gov (United States)

    2002-01-01

    a2 6 n -32 4C La /C A> i c 4S Figure 5. Remains of specimens tested at 210, 630, and -32 0C. 5 I AUg 2001 "-1t AERQJET/"THIDKOL LOTS 0111W PM 4-40.00...10.00 +78.00 STRESS (Mra) -THIOKOL LOT LA -10T3--01 +5.C THIOKOL LOT JA-IEZ35--Z-02 JAZ LOT HCL03JO14-001 -28.00 AE J>:T? +0.00 4.00 0.0 .0 *20.0 O30 +40M0...WARREN MI 48397-5000 MATERIAL SCIENCE TEAM AMSSB RSS 14 BENET LABORATORIES J HERBERT AMSTA AR CCB M SENNETT R FISCELLA KANSAS ST M SOJA NATICK MA 01760

  20. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    Science.gov (United States)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  1. Seismic tests at the HDR facility using explosives and solid propellant rockets

    International Nuclear Information System (INIS)

    Corvin, P.; Steinhilber, H.

    1981-01-01

    In blast tests the HDR reactor building and its mechanical equipment were subjected to earthquake-type excitations through the soil and the foundation. A series of six tests was carried out, two tests being made with HDR facility under operating conditions (BWR conditions, 285 0 C, 70 bar). The charges were placed in boreholes at a depth of 4 to 10 m and a distance of 16 to 25 m from the reactor building. The tests with solid propellant rockets were made in order to try a new excitation technique. The rockets used in these tests were of compact design and had a short combustion period (500 ms) at high constant thrust (100 kN per combustion chamber). These rockets were fixed to the concrete dome of the building in such a way that the thrust generated during the combustion of the propellant resulted in an impulsive load acting on the building. This type of excitation was selected with a view to investigating the global effects of the load case 'aircraft impact' on the building and the mechanical equipment. In the four tests made so far, up to four rockets were ignited simultaneously, so that the maximum impulse was 2 x 10 5 Ns. The excitation level can be markedly increased by adding further rockets. This excitation technique was characterised by excellent reproducibility of the load parameters. (orig./HP)

  2. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  3. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    Science.gov (United States)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  4. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Clark, J.S.; Walton, J.T.; Mcguire, M.L.

    1992-07-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines. 11 refs

  5. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    International Nuclear Information System (INIS)

    Weaver, J.T.; Stowe, R.A.

    2004-01-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  6. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J.T. [Carleton Univ., Ottawa, Ontario (Canada)]. E-mail: jrweaver@storm.ca; Stowe, R.A. [Defence R and D Canada - Valcartier, Val-Belair, Quebec (Canada)

    2004-07-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  7. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  8. Construction and design of solid-propellant rocket engines. Konstruktsiia i proektirovanie raketnykh dvigatelei tverdogo topliva

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrutdinov, I.K.; Kotel' nikov, A.V.

    1987-01-01

    Methods for assessing the durability of different components of solid-propellant rocket engines are presented. The following aspects of engine development are discussed: task formulation, parameter calculation, construction scheme selection, materials, and durability assessment. 45 references.

  9. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  10. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    OpenAIRE

    David R. Greatrix

    2009-01-01

    In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predi...

  11. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  12. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  13. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  14. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)

  15. Scale Effects on Solid Rocket Combustion Instability Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2011-01-01

    Full Text Available The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.

  16. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  17. Efficient solid rocket propulsion for access to space

    Science.gov (United States)

    Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.

    2010-06-01

    Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.

  18. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  19. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    Science.gov (United States)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  20. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  1. A study of performance and cost improvement potential of the 120 inch (3.05 m) diameter solid rocket motor. Volume 1: Summary report

    Science.gov (United States)

    Backlund, S. J.; Rossen, J. N.

    1971-01-01

    A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.

  2. Lessons from half a century experience of Japanese solid rocketry since Pencil rocket

    Science.gov (United States)

    Matogawa, Yasunori

    2007-12-01

    50 years have passed since a tiny rocket "Pencil" was launched horizontally at Kokubunji near Tokyo in 1955. Though there existed high level of rocket technology in Japan before the end of the second World War, it was not succeeded by the country after the War. Pencil therefore was the substantial start of Japanese rocketry that opened the way to the present stage. In the meantime, a rocket group of the University of Tokyo contributed to the International Geophysical Year in 1957-1958 by developing bigger rockets, and in 1970, the group succeeded in injecting first Japanese satellite OHSUMI into earth orbit. It was just before the launch of OHSUMI that Japan had built up the double feature system of science and applications in space efforts. The former has been pursued by ISAS (the Institute of Space and Astronautical Science) of the University of Tokyo, and the latter by NASDA (National Space Development Agency). This unique system worked quite efficiently because space activities in scientific and applicational areas could develop rather independently without affecting each other. Thus Japan's space science ran up rapidly to the international stage under the support of solid propellant rocket technology, and, after a 20 year technological introduction period from the US, a big liquid propellant launch vehicle, H-II, at last was developed on the basis of Japan's own technology in the early 1990's. On October 1, 2003, as a part of Governmental Reform, three Japanese space agencies were consolidated into a single agency, JAXA (Japan Aerospace Exploration Agency), and Japan's space efforts began to walk toward the future in a globally coordinated fashion, including aeronautics, astronautics, space science, satellite technology, etc., at the same time. This paper surveys the history of Japanese rocketry briefly, and draws out the lessons from it to make a new history of Japan's space efforts more meaningful.

  3. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  4. A multilayered thick cylindrical shell under internal pressure and thermal loads applicable to solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Renganathan, K.; Nageswara Rao, B.; Jana, M.K. [Vikram Sarabhai Space Centre, Trivandrum (India). Structural Engineering Group

    2000-09-01

    A solid propellant rocket motor can be considered to be made of various circumferential layers of different properties. A simple procedure is described here to obtain an analytical solution for the general case of multilayered thick cyclindrical shell for internal pressure and thermal loads. This analytical procedure is useful in the preliminary design analysis of solid propellant rocket motors. Since solid propellant material is of viscoelastic behaviour an approximate viscoelastic solution methodology for the multilayered shell is described for estimation of time dependent solutions of propellant grain in a rocket motor. The analytical solution for a two layer reinforced thick cylindrical shell available in the literature is shown to be a special case of the present analytical solution. The results from the present analytical solution for multilayers is found to be in good agreement with FEA results. (orig.) [German] Der grundlegende Aufbau von Feststoffraketenmotoren kann auf einen Zylinder aus mehreren Schichten mit unterschiedlichen Eigenschaften zurueckgefuehrt werden. Eine einfache Berechnungsprozedur fuer die analytische Loesung des allgemeinen Falles eines mehrschichtigen Zylinders unter innerem Druck und thermischer Belastung wird hier vorgestellt. Diese analytische Methodik ist fuer den Auslegungsprozess von Feststoffraketenmotoren von grundlegender Bedeutung. Das viskoelastische Fliessverhalten des festen Brennstoffes, das den zeitlichen Ablauf des Verbrennungsprozesses wesentlich bestimmt, wird durch ein Naeherungsverfahren gut erfasst. Ein in der Literatur enthaltenes spezielles Ergebnis fuer einen zweischaligen verstaerkten Zylinder ergibt sich als Sonderfall der hier vorgestellten Methodik. Die analytisch erhaltenen Loesungen fuer mehrschichtige Aufbauten sind in guter Uebereinstimmung mit mittels der FEM ermittelten Ergebnisse. (orig.)

  5. Design and Experimental Study on Spinning Solid Rocket Motor

    Science.gov (United States)

    Xue, Heng; Jiang, Chunlan; Wang, Zaicheng

    The study on spinning solid rocket motor (SRM) which used as power plant of twice throwing structure of aerial submunition was introduced. This kind of SRM which with the structure of tangential multi-nozzle consists of a combustion chamber, propellant charge, 4 tangential nozzles, ignition device, etc. Grain design, structure design and prediction of interior ballistic performance were described, and problem which need mainly considered in design were analyzed comprehensively. Finally, in order to research working performance of the SRM, measure pressure-time curve and its speed, static test and dynamic test were conducted respectively. And then calculated values and experimental data were compared and analyzed. The results indicate that the designed motor operates normally, and the stable performance of interior ballistic meet demands. And experimental results have the guidance meaning for the pre-research design of SRM.

  6. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  7. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  8. Maturation of Structural Health Management Systems for Solid Rocket Motors

    Science.gov (United States)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  9. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  10. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    Science.gov (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  11. Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.

  12. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  13. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    OpenAIRE

    David Greatrix

    2015-01-01

    The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave ...

  14. Particle size determination in small solid propellant rocket motors using the diffractively scattered light method.

    OpenAIRE

    Cramer, Robert Grewelle.

    1982-01-01

    Approved for public release; distribution unlimited A dual beam apparatus was developed which simultaneously measured particle size (D32) at the entrance and exit of an exhaust nozzle of a small solid propellant rocket motor. The diameters were determined using measurements of dif fractiveiy scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide powder. Measurements were successfully made at both locations. Because of...

  15. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  16. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  17. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  18. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  19. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  20. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  1. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  2. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  3. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  4. Finite element analysis of propellant of solid rocket motor during ship motion

    Directory of Open Access Journals (Sweden)

    Kai Qu

    2013-03-01

    Full Text Available In order to simulate the stress and strain of solid rocket motors (SRMs, a finite element analysis model was established. The stress spectra of the SRM elements with respect to time in the case that the vessel cruises under a certain shipping condition were obtained by simulation. According to the analysis of the simulation results, a critical zone was confirmed, and the Mises stress amplitudes of the different critical zones were acquired. The results show that the maximum stress and strain of SRM are less than the maximum tensile strength and elongation, respectively, of the propellant. The cumulative damage of the motor must also be evaluated by random fatigue loading.

  5. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  6. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  7. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    Science.gov (United States)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  8. Applied algorithm in the liner inspection of solid rocket motors

    Science.gov (United States)

    Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet

    2018-03-01

    In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.

  9. Scale effects on quasi-steady solid rocket internal ballistic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B2K3 (Canada)

    2010-11-15

    The ability to predict with some accuracy a given solid rocket motor's performance before undertaking one or several costly experimental test firings is important. On the numerical prediction side, as various component models evolve, their incorporation into an overall internal ballistics simulation program allows for new motor firing simulations to take place, which in turn allows for updated comparisons to experimental firing data. In the present investigation, utilizing an updated simulation program, the focus is on quasi-steady performance analysis and scale effects (influence of motor size). The predicted effects of negative/positive erosive burning and propellant/casing deflection, as tied to motor size, on a reference cylindrical-grain motor's internal ballistics, are included in this evaluation. Propellant deflection has only a minor influence on the reference motor's internal ballistics, regardless of motor size. Erosive burning, on the other hand, is distinctly affected by motor scale. (author)

  10. Studies on Flame Spread with Sudden Expansions of Ports of Solid Propellant Rockets under Elevated Pressure.

    OpenAIRE

    B.N. Raghunandan; N.S. Madhavan; C. Sanjeev; V.R.S. Kumar

    1996-01-01

    A detailed experimental study on flame spread over non-uniform ports of solid propellant rockets has been carried out. An idealised. 2-dimensional laboratory motor was used for the experimental study with the aid of cinephotography. Freshly prepared rectangular HTPB propellant with backward facing step was used as the specimenfor this study. It has been shown conclusively that under certain conditions of step location. step height and port height which govern the velocity of gases at the step...

  11. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  12. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  13. Radiometric probe design for the measurement of heat flux within a solid rocket motor nozzle

    Science.gov (United States)

    Goldey, Charles L.; Laughlin, William T.; Popper, Leslie A.

    1996-11-01

    Improvements to solid rocket motor (SRM) nozzle designs and material performance is based on the ability to instrument motors during test firings to understand the internal combustion processes and the response of nozzle components to the severe heating environment. Measuring the desired parameters is very difficult because the environment inside of an SRM is extremely severe. Instrumentation can be quickly destroyed if exposed to the internal rocket motor environment. An optical method is under development to quantify the heating of the internal nozzle surface. A radiometric probe designed for measuring the thermal response and material surface recession within a nozzle while simultaneously confining the combustion products has been devised and demonstrated. As part of the probe design, optical fibers lead to calibrated detectors that measure the interior nozzle thermal response. This two color radiometric measurement can be used for a direct determination of the total heat flux impinging on interior nozzle surfaces. This measurement has been demonstrated using a high power CO2 laser to simulate SRM nozzle heating conditions on carbon phenolic and graphite phenolic materials.

  14. Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2012-01-01

    Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.

  15. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  16. Metallized solid rocket propellants based on AN/AP and PSAN/AP for access to space

    Science.gov (United States)

    Levi, S.; Signoriello, D.; Gabardi, A.; Molinari, M.; Galfetti, L.; Deluca, L. T.; Cianfanelli, S.; Klyakin, G. F.

    2009-09-01

    Solid rocket propellants based on dual mixes of inorganic crystalline oxidizers (ammonium nitrate (AN) and ammonium perchlorate (AP)) with binder and a mixture of micrometric-nanometric aluminum were investigated. Ammonium nitrate is a low-cost oxidizer, producing environment friendly combustion products but with lower specific impulse compared to AP. The better performance obtained with AP and the low quantity of toxic emissions obtained by using AN have suggested an interesting compromise based on a dual mixture of the two oxidizers. To improve the thermal response of raw AN, different types of phase stabilized AN (PSAN) and AN/AP co-crystals were investigated.

  17. Aluminum Agglomeration and Trajectory in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Coats, Douglas; Hylin, E. C; Babbitt, Deborah; Tullos, James A; Beckstead, Merrill; Webb, Michael; Davis, I. L; Dang, Anthony

    2007-01-01

    Report developed under STTR contract for Topic AF06-T012. The demand for higher performance rocket motors at a reduced cost requires continuous improvements in understanding and controlling propellant combustion...

  18. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    Science.gov (United States)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  19. An analysis of the orbital distribution of solid rocket motor slag

    Science.gov (United States)

    Horstman, Matthew F.; Mulrooney, Mark

    2009-01-01

    The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.

  20. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  1. Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model

    Science.gov (United States)

    Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.

    2017-06-01

    This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.

  2. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    Science.gov (United States)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  3. Theodore von Karman - Rocket Scientist

    Indian Academy of Sciences (India)

    seminal contributions to several areas of fluid and solid mechanics, as the first head of ... nent position in Aeronautics research, as a pioneer of rocket science in America ... toral work, however, was on the theory of buckling of large structures.

  4. Optimization of the stand for test of hybrid rocket engines of solid fuel

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay

    2017-01-01

    Full Text Available In the paper the laboratory experimental stand of the hybrid rocket engine of solid fuel to study ballistic parameters of the engine at burning of high-energy materials in flow of hot gas is presented. Mixture of air with nitrogen with a specified content of active oxygen is used as a gaseous oxidizer. The experimental stand has modular design and consists of system of gas supply, system of heating of gas, system for monitoring gas parameters, to which a load cell with a model engine was connected. The modular design of the stand allows to change its configuration under specific objective. This experimental stand allows to conduct a wide range of the pilot studies at interaction of a hot stream of gas with samples high-energy materials.

  5. Test data from small solid propellant rocket motor plume measurements (FA-21)

    Science.gov (United States)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  6. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  7. Analysis of pressure blips in aft-finocyl solid rocket motor

    Science.gov (United States)

    Di Giacinto, M.; Favini, B.; Cavallini, E.

    2016-07-01

    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.

  8. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  9. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  10. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  11. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  12. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  13. Effect of ammonium perchlorate grain sizes on the combustion of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Hegab, A.; Balabel, A. [Menoufia Univ., Menoufia (Egypt). Faculty of Engineering

    2007-07-01

    The combustion of heterogeneous solid rocket propellant consisting of ammonium perchlorate (AP) particles was discussed with reference to the chemical and physical complexity of the propellant and the microscopic scale of the combustion zone. This study considered the primary flame between the decomposition products of the binder and the AP oxidizer; the primary diffusion flame from the oxidizer; density and conductivity of the AP and binder; temperature-dependent gas-phase transport properties; and, an unsteady non-planer regression surface. Three different random packing disc models for the AP particles imbedded in a matrix of a hydroxyl terminated polybutadience (HTPB) fuel-binder were used as a base of the combustion code. The models have different AP grain sizes and distribution with the fuel binder. A 2D calculation was developed for the combustion of heterogeneous solid propellant, accounting for the gas phase physics, the solid phase physics and an unsteady non-planar description of the regressing propellant surface. The mathematical model described the unsteady burning of a heterogeneous propellant by simultaneously solving the combustion fields in the gas phase and the thermal field in the solid phase with appropriate jump condition across the gas/solid interface. The gas-phase kinetics was represented by a two-step reaction mechanism for the primary premixed flame and the primary diffusion flame between the decomposition products of the HTPB and the oxidizer. The essentially-non-oscillatory (ENO) scheme was used to describe the propagation of the unsteady non-planer regression surface. The results showed that AP particle size has a significant effect on the combustion surface deformation as well as on the burning rate. This study also determined the effect of various parameters on the surface propagation speed, flame structure, and the burning surface geometry. The speed by which the combustion surface recedes was found to depend on the exposed pressure

  14. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  15. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  16. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Science.gov (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  17. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    Science.gov (United States)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  18. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  19. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    Science.gov (United States)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  20. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  1. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    Science.gov (United States)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  2. A research on polyether glycol replaced APCP rocket propellant

    Science.gov (United States)

    Lou, Tianyou; Bao, Chun Jia; Wang, Yiyang

    2017-08-01

    Ammonium perchlorate composite propellant (APCP) is a modern solid rocket propellant used in rocket vehicles. It differs from many traditional solid rocket propellants by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing it with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry. For traditional APCP, ingredients normally used are ammonium peroxide, aluminum, Hydroxyl-terminated polybutadiene(HTPB), curing agency and other additives, the greatest disadvantage is that the fuel is too expensive. According to the price we collected in our country, a single kilogram of this fuel will cost 200 Yuan, which is about 35 dollars, for a fan who may use tons of the fuel in a single year, it definitely is a great deal of money. For this reason, we invented a new kind of APCP fuel. Changing adhesive agency from cross-linked htpb to cross linked polyether glycol gives a similar specific thrust, density and mechanical property while costs a lower price.

  3. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study; Volume 1 - Executive Summary

    National Research Council Canada - National Science Library

    Ware, Larry

    1989-01-01

    ...) solid rocket boosters (SRBs) with liquid rocket boosters (LRBs), Figure 1.0-1. The main objectives of a LRB substitution for the SRB were increased STS safety and reliability and increased payload performance...

  4. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

    Science.gov (United States)

    Stefanski, Philip L.

    2015-01-01

    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  5. Plume particle collection and sizing from static firing of solid rocket motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

  6. A parallel solution-adaptive scheme for predicting multi-phase core flows in solid propellant rocket motors

    International Nuclear Information System (INIS)

    Sachdev, J.S.; Groth, C.P.T.; Gottlieb, J.J.

    2003-01-01

    The development of a parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations for multi-phase (gas-particle) core flows in solid propellant rocket motors (SRM). An Eulerian formulation is used to described the coupled motion between the gas and particle phases. A cell-centred upwind finite-volume discretization and the use of limited solution reconstruction, Riemann solver based flux functions for the gas and particle phases, and explicit multi-stage time-stepping allows for high solution accuracy and computational robustness. A Riemann problem is formulated for prescribing boundary data at the burning surface. Efficient and scalable parallel implementations are achieved with domain decomposition on distributed memory multiprocessor architectures. Numerical results are described to demonstrate the capabilities of the approach for predicting SRM core flows. (author)

  7. Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition

    Directory of Open Access Journals (Sweden)

    V. N. Zubov

    2015-01-01

    Full Text Available The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is

  8. Solid propellant processing factor in rocket motor design

    Science.gov (United States)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  9. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  10. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  11. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  12. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  13. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  14. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  15. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    Science.gov (United States)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  16. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    Science.gov (United States)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial

  17. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups

    Science.gov (United States)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  18. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  19. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    Science.gov (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  20. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  1. Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program

    Science.gov (United States)

    Clayton, Louie

    2011-01-01

    This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.

  2. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  3. The Alfred Nobel rocket camera. An early aerial photography attempt

    Science.gov (United States)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  4. Performance characteristics of conventional X-ray generator isotope source and high energy accelerator in rocket motor evaluation

    International Nuclear Information System (INIS)

    Viswanathan, K.; Rao, K.V.; Subbalah, C.; Uttam, M.C.

    1985-01-01

    Final qualification of solid rocket motors and other related components in the Indian Space Programme is carried out using radiographic sources of different energies. The necessity to have different sources of varying energies arises from the fact that the components in the space programme vary from small fastners to gigantic solid rocket motors. In order to achieve the best radiographic quality with the optimised exposure time different X-ray sources are used. To have 100% coverage and to reduce the inspection time, a Real Time Radiography for the high energy LINAC is also planned

  5. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  6. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  7. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  8. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1998-01-01

    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  9. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  10. Space Storable Hybrid Rockets for Orbit Insertion or In Situ Resource Utilization Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort will pave the way towards a Mars Sample Return (MSR) campaign and potentially, future human exploration of Mars. Hybrid rockets utilize a solid...

  11. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    Science.gov (United States)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  12. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  13. Karl Poggensee - A widely unknown German rocket pioneer - The early years 1930-1934 - A chronology

    Science.gov (United States)

    Rohrwild, Karlheinz

    2017-09-01

    The rediscovered estate of Karl Poggensee allows to reproduce chronologically his rocket tests of the period 1930-1934 almost completely for the first time. Thrilled by the movie ;The Woman in the Moon; for the idea of space travel, he started as a student of Hinderburg-Polytechnikum (IAO), Oldenburg, to build his first solid-fuel rocket, producing his own propellant charges. Being a coming electrical engineer his main goal was not set up new record heights, but to provide his rockets with automatic measuring instruments, camera and parachute release systems. The optimization of this sequence was his main focus.

  14. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    Directory of Open Access Journals (Sweden)

    David Greatrix

    2015-02-01

    Full Text Available The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.

  15. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  16. A novel kind of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Lo, R.E. [Berlin University of Technology (Germany). Rocket Technology at the Aerospace Institute (ILR)

    1998-09-01

    Cryogenic Solid Propellants (CSPs) combine the simplicity of conventional solid propulsion with the high performance of liquid propulsion. By introducing materials that require cooling for remaining solid, CSPs offer an almost unlimited choice of propellant constituents that mights be selected with respect to specific impulse, density or environmental protection. The prize to be paid for these advantages is the necessity of constant cooling and the requirement of special design features that provide combustion control by moving from deflagration to hybrid like boundary layer combustion. This is achieved by building the solid propellant grains out of macroscopic elements rather than using the quasi homogeneous mixture of conventional composites. The elements may be coated, providing protection and support. Different elements may be designed for individual tasks and serve as modules for ignition, sustained combustion, gas generation, combustion efficiency enhancement, etc. Modular dissected grains offer many new ways of interaction inside the combustion chamber and new degrees of freedom for the designer of such `multiple internal hybrid grains`. At a preliminary level, a study finished in Germany 1997 demonstrated large payload gains when the US space Shuttle and the ARIANE 5 boosters were replaced by CSP-boosters. A very preliminary cost analysis resulted in development costs in the usual magnitude (but not in higher ones). Costs of operation were identified as crucial, but not established. Some experimental work in Germany is scheduled to begin in 1998, almost all details in this article (and many more that were not mentioned - most prominent cost analyses of CSP development and operations) wait for deeper analysis and verification. Actually, a whole new world new of world of chemical propulsion awaits exploration. The topic can be looked up and discussed at the web site of the Advanced Propulsion Workshop of the International Academy of Astronautics. The author

  17. A six degree-of-freedom thrust sensor for a labscale hybrid rocket

    Science.gov (United States)

    Wright, Ann M.; Wright, Andrew B.; Born, Traig; Strickland, Ryan

    2013-12-01

    A six degree-of-freedom thrust sensor was designed, constructed, calibrated, and tested using the labscale hybrid rocket at the University of Arkansas at Little Rock. The system consisted of six independent legs: one parallel to the axis of symmetry of the rocket for main thrust measurement, two vertical legs near the nozzle end of the rocket, one vertical leg near the oxygen input end of the rocket, and two separated horizontal legs near the nozzle end. Each leg was composed of a rotational bearing, a load cell, and a universal joint above and below the load cell. The leg was designed to create point contact along only one direction and minimize the non-axial forces applied to the load cell. With this system, force in each direction and moments for roll, pitch, and yaw can be measured. The system was calibrated and tested using a labscale hybrid rocket using gaseous oxygen and hydroxyl-terminated polybutadiene solid fuel. The thrust stand proved to be stable during calibration tests. Thrust force vector components and roll, pitch, and yaw moments were calculated for test firings with an oxygen mass flow rate range of 0.0174-0.0348 kg s-1.

  18. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  19. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  20. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    Science.gov (United States)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  1. Nuclear rockets: High-performance propulsion for Mars

    International Nuclear Information System (INIS)

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development

  2. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  3. Rocket-Powered Parachutes Rescue Entire Planes

    Science.gov (United States)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  4. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    Science.gov (United States)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  5. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  6. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  7. Metallic hydrogen: The most powerful rocket fuel yet to exist

    Energy Technology Data Exchange (ETDEWEB)

    Silvera, Isaac F [Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138 (United States); Cole, John W, E-mail: silvera@physics.harvard.ed [NASA MSFC, Huntsville, AL 35801 (United States)

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, I{sub sp}. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of {approx}460s; metallic hydrogen has a theoretical I{sub sp} of 1700s. Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  8. A six degree-of-freedom thrust sensor for a labscale hybrid rocket

    International Nuclear Information System (INIS)

    Wright, Ann M; Born, Traig; Strickland, Ryan; Wright, Andrew B

    2013-01-01

    A six degree-of-freedom thrust sensor was designed, constructed, calibrated, and tested using the labscale hybrid rocket at the University of Arkansas at Little Rock. The system consisted of six independent legs: one parallel to the axis of symmetry of the rocket for main thrust measurement, two vertical legs near the nozzle end of the rocket, one vertical leg near the oxygen input end of the rocket, and two separated horizontal legs near the nozzle end. Each leg was composed of a rotational bearing, a load cell, and a universal joint above and below the load cell. The leg was designed to create point contact along only one direction and minimize the non-axial forces applied to the load cell. With this system, force in each direction and moments for roll, pitch, and yaw can be measured. The system was calibrated and tested using a labscale hybrid rocket using gaseous oxygen and hydroxyl-terminated polybutadiene solid fuel. The thrust stand proved to be stable during calibration tests. Thrust force vector components and roll, pitch, and yaw moments were calculated for test firings with an oxygen mass flow rate range of 0.0174–0.0348 kg s −1 . (paper)

  9. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  10. An example of successful international cooperation in rocket motor technology

    Science.gov (United States)

    Ellis, Russell A.; Berdoyes, Michel

    2002-07-01

    The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative

  11. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  12. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  13. Feasibility study of palm-based fuels for hybrid rocket motor applications

    Science.gov (United States)

    Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi

    2018-02-01

    This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.

  14. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  15. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  16. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  17. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  18. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  19. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    Science.gov (United States)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  20. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  1. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  2. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  3. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  4. Development of the Astrobee F sounding rocket system.

    Science.gov (United States)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  5. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  6. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  7. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  8. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    Science.gov (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  9. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  10. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  11. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    Science.gov (United States)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  12. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  13. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  14. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  15. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  16. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    Science.gov (United States)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  17. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  18. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  19. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Science.gov (United States)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  20. Specific Impulses Losses in Solid Propellant Rockets

    Science.gov (United States)

    1974-12-17

    the solid we go back to the wall flux. Platinum film thermometric probes [77, 78], developed for somewhat similar problems, were used without succ...AS: E Paper 63-41A 207, 1964. [83) A.D. KIDEIR .A XU - J.A. CAHILL - The density of liquid aluminium oxide. J. Inovg. luc.. Chem. vol.14, no 3-4, p...IELLOR - I. GLL.ASIJ - Augo.nted ignition effi ciency for aluminium . Combustion Science rand Tcchnology, vol. I, p. 437, 1970. [90s EIJ. IJJ tBAU

  1. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  2. A New Solid/Liquid Hypergolic System: 3-amino 1,2,4-triazine and Nitric Acid

    Science.gov (United States)

    2016-04-01

    materials. These mixtures are useful in a variety of aviation applications such as space travel , where they are used to ignite rocket motors, or used as...motor, rocket , HAN 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 26 19a. NAME OF RESPONSIBLE PERSON...adducts as additives of liquid/gel hypergols and solid hybrid rocket motor fuels: property and performance predictions. Aberdeen Proving Ground (MD): Army

  3. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  4. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  5. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  6. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  7. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    Science.gov (United States)

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of

  8. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    International Nuclear Information System (INIS)

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  9. Investigation of Exhaust Backflow From a Simulated Cluster of Three Wide-Spaced Rocket Nozzles in a Near-Space Environment

    National Research Council Canada - National Science Library

    Cubbage, James M

    1965-01-01

    ... and to determine pressure and heat- transfer coefficients in the region washed by the backflow. Experiments were conducted in a 61-foot-diameter vacuum sphere using a sine solid-propellant rocket motor and a reflection plate...

  10. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  11. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  12. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  13. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    Science.gov (United States)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  14. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  15. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  16. 16 CFR 1507.10 - Rockets with sticks.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...

  17. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge

    Science.gov (United States)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele

    2013-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  18. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  19. Chemicals - potential substances for WMD creation, explosives and rocket fuel

    International Nuclear Information System (INIS)

    Vorozhtsova, M.D.; Khakimova, N.U.; Barotov, M.A.

    2010-01-01

    fluoropolymer (teflon) production, in metallurgy, during glass reprocessing and others. Chlorine trifluoride - ClF_3 - has wide range. It is applied for nuclear materials conversion, rocket fuel additive as well as for semiconductors production in military field. ClF_3 is colorless gas and has sweetish smell, toxic and strong oxidizer. In this article just some chemicals of CHW production are presented. Chemicals are also potential components of strong explosives. Explosives are known as: cyclonite, octogen, triamino trinitrobenzol, solid oxidant (for example, ammonium perchlorate) and others. Chemicals are widely used in rocket fuel production: combustible chemicals; solid and liquid oxidants; binding polymers; other additives. Solid fuel - admixture of many chemicals and connecting components and usually consist from oxidant and de oxidizer. Liquid fuel - also admixture of different liquid chemicals. Usually for rocket fuel NH_4ClO_4 is widely used, hydrazine, hydrides monomethyl, aluminium powder, AlH_3, nitrogen oxide, nitric acids. Some words about heavy water - D_2O, which is moderator in nuclear reactors, ensures continuous nuclear chain reaction with use of natural uranium. D_2O - colorless liquid, external view doesn't differ from H_2O and not radioactive. Its density is 10% more than H_2O. Thus, in this article the chemical substances are presented which are used for WMD, explosives and rocket fuel production. That's why control and exact identification of these substances is guarantee of weapons of mass destruction (WMD) non-proliferation.

  20. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  1. Scientific Experiences Using Argentinean Sounding Rockets in Antarctica

    Science.gov (United States)

    Sánchez-Peña, Miguel

    2000-07-01

    Argentina in the sixties and seventies, had experience for developing and for using sounding rockets and payloads to perform scientific space experiments. Besides they have several bases in Antarctica with adequate premises and installations, also duly equipped aircrafts and trained crews to flight to the white continent. In February 1965, scientists and technical people from the "Instituto de Investigacion Aeronáutica y Espacial" (I.I.A.E.) with the cooperation of the Air Force and the Tucuman University, conducted the "Matienzo Operation" to measure X radiation and temperature in the upper atmosphere, using the Gamma Centauro rocket and also using big balloons. The people involved in the experience, the launcher, other material and equipment flew from the south tip of Argentina to the Matienzo base in Antarctica, in a C-47 aircraft equipped with skies an additional jet engine Marbore 2-C. Other experience was performed in 1975 in the "Marambio" Antartic Base, using the two stages solid propellent sounding rocket Castor, developed in Argentina. The payload was developed in cooperation with the Max Planck Institute of Germany. It consist of a special mixture including a shape charge to form a ionized cloud producing a jet of electrons travelling from Marambio base to the conjugate point in the Northern hemisphere. The cloud was observed by several ground stations in Argentina and also by a NASA aircraft with TV cameras, flying at East of New York. The objective of this experience was to study the electric and magnetic fields in altitude, the neutral points, the temperature and electrons profile. The objectives of both experiments were accomplished satisfactorily.

  2. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    Science.gov (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  3. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  4. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  5. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  6. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  7. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  8. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  9. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  10. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  11. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  12. Photometric observations of local rocket-atmosphere interactions

    Science.gov (United States)

    Greer, R. G. H.; Murtagh, D. P.; Witt, G.; Stegman, J.

    1983-06-01

    Photometric measurements from rocket flights which recorded a strong foreign luminance in the altitude region between 90 and 130 km are reported. From one Nike-Orion rocket the luminance appeared on both up-leg and down-leg; from a series of Petrel rockets the luminance was apparent only on the down-leg. The data suggest that the luminance may be distributed mainly in the wake region along the rocket trajectory. The luminance is believed to be due to a local interaction between the rocket and the atmosphere although the precise nature of the interaction is unknown. It was measured at wavelengths ranging from 275 nm to 1.61 microns and may be caused by a combination of reactions.

  13. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  14. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  15. Innovative Solid State Lighting Replacements for Industrial and Test Facility Locations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop a solid-state LED replacement lamp for rocket engine test stand lighting and more general hazardous-location lighting. The LED...

  16. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2014-06-01

    interrogating the near field of a number of dense sprays including diesel injectors , aerated liquid jets, solid-cone sprays, impinging-jet sprays and gas...Measurements of Mass Distributions in the Near- Nozzle Region of Sprays form Standard Multi-hole Common-rail Diesel Injection Systems,” 11th Triennial...Shear Coaxial Rocket Injectors from X-ray Radiography Measurements 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  17. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  18. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors

    Science.gov (United States)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.

    2012-01-01

    Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations

  19. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  20. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  1. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  2. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  3. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  4. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  5. Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Sihn, Ihn Cheol; Lim, Byung Joo [Dai-Yang Industries Co., Daejeon (Korea, Republic of)

    2016-11-15

    In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

  6. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  7. The main indicators of the health of children and adolescents in residential zone of the facility for disposal of rocket engines

    Directory of Open Access Journals (Sweden)

    Tarakanova S.Y.

    2014-12-01

    39.5%. The main cause of morbidity in children is diseases of the nervous system and mental disorders, and congenital anomalies. Conclusion. Operation of installations for the disposal of rocket engines solid fuel according to the official reporting forms medical institutions has no effect on child health.

  8. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  9. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  10. A Green, Safe, Dual-pulse Solid Motor for CubeSat Orbit Changing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites such as CubeSats are in need of responsive propulsion, but are limited due to their size. Though single pulse, AP/HTPB fueled solid rocket motors...

  11. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  12. VSB-30 sounding rocket: history of flight performance

    Directory of Open Access Journals (Sweden)

    Wolfgang Jung

    2011-09-01

    Full Text Available The VSB-30 vehicle is a two-stage, unguided, rail launched sounding rocket, consisting of two solid propellant motors, payload, with recovery and service system. By the end of 2010, ten vehicles had already been launched, three from Brazil (Alcântara and seven from Sweden (Esrange. The objective of this paper is to give an overview of the main characteristics of the first ten flights of the VSB-30, with emphasis on performance and trajectory data. The circular 3σ dispersion area for payload impact point has around 50 km of radius. In most launchings of such vehicle, the impact of the payload fell within 2 sigma. This provides the possibility for further studies to decrease the area of dispersion from the impact point.

  13. High-Pressure Burning Rate Studies of Solid Rocket Propellants

    Science.gov (United States)

    2013-01-01

    monopropellant burning rate. The self-de§agration rates of neat AP are plotted in Fig. 2 for both pressed pellets and single crystals. There is agreement...rate data from various investigators: 1 ¡ [2]; pressed pellets : 2 ¡ [3], 3 ¡ [4], and 4 ¡ [2]; and single crystals: 5 ¡ [5], and 6 ¡ [6]. Line ¡ AP...7]. Strand or window burners have had more use in the solid propellant community. There are numerous types and styles of combustion vessels, but they

  14. Determination of the availability of appropriate aged flight rocket motors. [captive tests to determine case bond separation and grain bore cracking

    Science.gov (United States)

    Martin, P. J.

    1974-01-01

    A program to identify surplus solid rocket propellant engines which would be available for a program of functional integrity testing was conducted. The engines are classified as: (1) upper stage and apogee engines, (2) sounding rocket and launch vehicle engines, and (3) jato, sled, and tactical engines. Nearly all the engines were available because their age exceeds the warranted shelf life. The preference for testing included tests at nominal flight conditions, at design limits, and to establish margin limits. The principal failure modes of interest were case bond separation and grain bore cracking. Data concerning the identification and characteristics of each engine are tabulated. Methods for conducting the tests are described.

  15. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  16. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  17. The Norwegian sounding rocket programme 1978-81

    International Nuclear Information System (INIS)

    Landmark, B.

    1978-01-01

    The Norwegian sounding rocket programme is reasonably well defined up to and including the winter of 1981/82. All the projects have been planned and will be carried out in international cooperation. Norwegian scientists so far plan to participate in a number of 24 rocket payloads over the period. Out of these 18 will be launched from the Andoya rocket range, 3 from Esrange and 3 from the siple station in the antarctic. (author)

  18. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  19. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  20. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  1. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  2. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  3. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  4. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  5. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  6. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  7. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  8. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  9. Solid propellant ignition motors for LH_2/LOX rocket engine system

    OpenAIRE

    ARAKI, Tetsuo; AKIBA, Ryojiro; HASHIMOTO, Yasunari; AIHARA, Kenji; TOMITA, Etsu; YASUDA, Seiichi; 荒木, 哲夫; 秋葉, 鐐二郎; 橋本, 保成; 相原, 賢二; 富田, 悦; 安田, 誠一

    1983-01-01

    Solid propellant ignition motors are used in the series of experiments of the 10 ton LH_2/LOX engine featured by the channel wall thrust chamber, This paper presents design specification, experiments and results obtained by actual applications of those ignition motors.

  10. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  11. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  12. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  13. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  14. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  15. The sky is falling III: The effect of deposition from static solid rocket motor tests on juvenile crops.

    Science.gov (United States)

    Doucette, William J; Curry, Eric; McNeill, Laurie S; Heavilin, Justin

    2017-12-01

    A mixture of combustion products (mainly hydrogen chloride, aluminum oxide, and water) and entrained soil, referred to as Test Fire Soil (TFS), can be deposited on crops during static solid rocket motor tests. The impact of a reported worst-case event was previously evaluated by exposing corn and alfalfa to 3200-gTFS/m 2 at 54days after emergence. Exposures via soil and leaves were evaluated separately. Reduced growth (soil exposure) and leaf "scorch" (leaf exposure) were attributed mainly to the high chloride concentrations in the TFS (56,000mg/kg). A follow-up study was conducted to evaluate the effect of a typical deposition event (70-gTFS/m 2 , estimated by radar during several tests) and exposure (soil and leaves simultaneously) on juvenile corn, alfalfa, and winter wheat. Younger crops were used to examine potential age sensitivity differences. Impact was evaluated by comparing the growth, elemental composition, and leaf chlorophyll content of treated and untreated plants. The relationship between deposition exposure and response was also addressed. Growth of corn, alfalfa, and winter wheat exposed to a typical TFS loading was not impacted, although slightly elevated concentrations of aluminum and iron were found in the leaves. At the highest loadings used for the exposure-response experiment, concentrations of chloride and calcium were higher in TFS-exposed corn leaves than in the untreated leaves. Overall results indicate that exposure to a typical deposition event does not adversely impact juvenile crops and that younger plants may be less vulnerable to TFS. However, higher TFS loadings can cause leaf scorch and increase the leaf concentrations of some elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  17. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  18. Enhancing atom densities in solid hydrogen by isotopic substitution

    International Nuclear Information System (INIS)

    Collins, G.W.; Souers, P.C.; Mapoles, E.R.; Magnotta, F.

    1991-01-01

    Atomic hydrogen inside solid H 2 increases the energy density by 200 MegaJoules/m 3 , for each percent mole fraction stored. How many atoms can be stored in solid hydrogen? To answer this, we need to know: (1) how to produce and trap hydrogen atoms in solid hydrogen, (2) how to keep the atoms from recombining into the ground molecular state, and (3) how to measure the atom density in solid hydrogen. Each of these topics will be addressed in this paper. Hydrogen atoms can be trapped in solid hydrogen by co-condensing atoms and molecules, external irradiation of solid H 2 , or introducing a radioactive impurity inside the hydrogen lattice. Tritium, a heavy isotope of hydrogen, is easily condensed as a radioactive isotopic impurity in solid H 2 . Although tritium will probably not be used in future rockets, it provides a way of applying a large, homogenious dose to solid hydrogen. In all of the data presented here, the atoms are produced by the decay of tritium and thus knowing how many atoms are produced from the tritium decay in the solid phase is important. 6 refs., 6 figs

  19. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  20. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  1. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    Science.gov (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  2. Advanced Flow Analysis Tools for Transient Solid Rocket Motor Simulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The challenges of designing, developing, and fielding man-rated propulsion systems continue to increase as NASA's mission moves forward with evolving solid...

  3. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  4. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  5. Remote control video cameras on a suborbital rocket

    International Nuclear Information System (INIS)

    Wessling, Francis C.

    1997-01-01

    Three video cameras were controlled in real time from the ground to a sub-orbital rocket during a fifteen minute flight from White Sands Missile Range in New Mexico. Telemetry communications with the rocket allowed the control of the cameras. The pan, tilt, zoom, focus, and iris of two of the camera lenses, the power and record functions of the three cameras, and also the analog video signal that would be sent to the ground was controlled by separate microprocessors. A microprocessor was used to record data from three miniature accelerometers, temperature sensors and a differential pressure sensor. In addition to the selected video signal sent to the ground and recorded there, the video signals from the three cameras also were recorded on board the rocket. These recorders were mounted inside the pressurized segment of the rocket payload. The lenses, lens control mechanisms, and the three small television cameras were located in a portion of the rocket payload that was exposed to the vacuum of space. The accelerometers were also exposed to the vacuum of space

  6. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  7. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  8. Optimization of Tape Winding Process Parameters to Enhance the Performance of Solid Rocket Nozzle Throat Back Up Liners using Taguchi's Robust Design Methodology

    Science.gov (United States)

    Nath, Nayani Kishore

    2017-08-01

    The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.

  9. Innovative nuclear thermal rocket concept utilizing LEU fuel for space application

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Choi, Jae Young; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    Space is one of the best places for humanity to turn to keep learning and exploiting. A Nuclear Thermal Rocket (NTR) is a viable and more efficient option for human space exploration than the existing Chemical Rockets (CRs) which are highly inefficient for long-term manned missions such as to Mars and its satellites. NERVA derived NTR engines have been studied for the human missions as a mainstream in the United States of America (USA). Actually, the NERVA technology has already been developed and successfully tested since 1950s. The state-of-the-art technology is based on a Hydrogen gas (H_2) cooled high temperature reactor with solid core utilizing High-Enriched Uranium (HEU) fuel to reduce heavy metal mass and to use fast or epithermal neutron spectrums enabling simple core designs. However, even though the NTR designs utilizing HEU is the best option in terms of rocket performance, they inevitably provoke nuclear proliferation obstacles on all Research and Development (R and D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To surmount the security issue to use HEU fuel for a NTR, a concept of the innovative NTR engine, Korea Advanced NUclear Thermal Engine Rocket utilizing Low-Enriched Uranium fuel (KANUTER-LEU) is presented in this paper. The design goal of KANUTER-LEU is to make use of a LEU fuel for its compact reactor, but does not sacrifice the rocket performance relative to the traditional NTRs utilizing HEU. KANUTER-LEU mainly consists of a fission reactor utilizing H_2 propellant, a propulsion system and an optional Electricity Generation System as a bimodal engine. To implement LEU fuel for the reactor, the innovative engine adopts W-UO_2 CERMET fuel to drastically increase uranium density and thermal neutron spectrum to improve neutron economy in the core. The moderator and structural material selections also consider neutronic and thermo-physical characteristics to reduce non-fission neutron loss and

  10. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  11. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  12. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  13. Combustion Stability Assessments of the Black Brant Solid Rocket Motor

    Science.gov (United States)

    Fischbach, Sean

    2014-01-01

    The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.

  14. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  15. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  16. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles

    Science.gov (United States)

    D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry

    2016-09-01

    Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.

  17. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  18. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  19. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R. Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D and D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D and D strategy is now being employed on the larger ''sister'' facility, Test Cell C

  20. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  1. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  2. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    Science.gov (United States)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  3. Von Braun Rocket Team at Fort Bliss, Texas

    Science.gov (United States)

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  4. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  5. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  6. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  7. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  8. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  9. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  10. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  11. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    Science.gov (United States)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  12. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  13. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  14. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    Science.gov (United States)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  15. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  16. The Norwegian sounding rocket programme 1980-83

    International Nuclear Information System (INIS)

    Egeland, A.; Gundersen, A.

    1980-01-01

    As illustrated by the rocket program presented and discussed in this paper, exploration of the polar ionosphere still plays a central part in the Norwegian research program in science. A cornerstone in the Norwegian space program is the Andoeya Rocket Range. It will be shown that advanced radio installations in northern Scandinavia together with the new optical site at Svalbard will stimulate towards further in situ measurements and theoretical work of the polar ionosphere. (Auth.)

  17. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  18. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  19. Health assessment of children and adolescents living in a residential area of production for the disposal of rocket fuel: according to the results of the medical examination

    Directory of Open Access Journals (Sweden)

    Uiba V.V.

    2014-12-01

    Full Text Available Aim: to determine the real prevalence separate nosological forms in the child population living in residential zone installations for the disposal of rocket fuel. Materials and methods. By mobile teams of pediatric physicians there was conducted a comprehensive medical examination of 1621 children in the area of the site location for disposal of rocket engines solid fuel. Results. The surveyed contingent of the most common diseases of the endocrine system, disorders of nutrition and metabolism (21.2% of diagnoses, diseases of the musculoskeletal and connective tissue (19.2 percent, as well as individual symptoms, signs and deviations from the norm by 14.4%. Conclusion. Data indicating the pronounced impact of adverse environmental factors, not identified.

  20. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  1. Vibration Disturbance Damping System Design to Protect Payload of the Rocket

    Directory of Open Access Journals (Sweden)

    Sutisno Sutisno

    2012-12-01

    Full Text Available Rocket motor generates vibrations acting on whole rocket body including its contents. Part of the body which is sensitive to disturbance is the rocket payload. The payload consists of various electronic instruments including: transmitter, various sensors, accelerometer, gyro, the embedded controller system, and others. This paper presents research on rocket vibration influence to the payload and the method to avoid disturbance. Avoiding influence of vibration disturbance can be done using silicone gel material whose typical damping factors are relatively high. The rocket vibration was simulated using electromagnetic motor, and the vibrations were measured using an accelerometer sensor. The measurement results were displayed in the form of curve, indicating the vibration level on some parts of the tested material. Some measurement results can be applied to determine the good material to attenuate vibration disturbance on the instruments of the payload.

  2. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  3. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  4. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  5. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  6. Infrasound from the 2009 and 2017 DPRK rocket launches

    Science.gov (United States)

    Evers, L. G.; Assink, J. D.; Smets, P. SM

    2018-06-01

    Supersonic rockets generate low-frequency acoustic waves, that is, infrasound, during the launch and re-entry. Infrasound is routinely observed at infrasound arrays from the International Monitoring System, in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Association and source identification are key elements of the verification system. The moving nature of a rocket is a defining criterion in order to distinguish it from an isolated explosion. Here, it is shown how infrasound recordings can be associated, which leads to identification of the rocket. Propagation modelling is included to further constrain the source identification. Four rocket launches by the Democratic People's Republic of Korea in 2009 and 2017 are analysed in which multiple arrays detected the infrasound. Source identification in this region is important for verification purposes. It is concluded that with a passive monitoring technique such as infrasound, characteristics can be remotely obtained on sources of interest, that is, infrasonic intelligence, over 4500+ km.

  7. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  8. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Science.gov (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  9. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    Science.gov (United States)

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  11. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  12. Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System

    Directory of Open Access Journals (Sweden)

    Luciana de Barros

    2016-04-01

    Full Text Available The application of fluoropolymers in high-energy-release pyrotechnic compositions is common in the space and defense areas. Pyrotechnic compositions of magnesium/Teflon/Viton are widely used in military flares and pyrogen igniters for igniting the solid propellant of a rocket motor. Pyrotechnic components are considered high-risk products as they may cause catastrophic accidents if initiated or ignited inadvertently. To reduce the hazards involved in the handling, storage and transportation of these devices, the magnesium/Teflon/Viton composition was subjected to various sensitivity tests, DSC and had its stability and compatibility tested with other materials. This composition obtained satisfactory results in all the tests, which qualifies it as safe for production, handling, use, storage and transportation.

  13. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  14. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  15. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    Science.gov (United States)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  16. A two-channel wave analyser for sounding rockets and satellites

    International Nuclear Information System (INIS)

    Brondz, E.

    1989-04-01

    Studies of low frequency electromagnetic waves, produced originally by lightning discharges penetrating the ionosphere, provide an important source of valuable information about the earth's surrounding plasma. Use of rockets and satellites supported by ground-based observations implies, unique opportunity for measuring in situ a number of parameters simultaneously in order to correlate data from various measurements. However, every rocket experiment has to be designed bearing in mind telemetry limitations and/or short flight duration. Typical flight duration for Norwegian rockets launched from Andoeya Rocket Range is 500 to 600 s. Therefore, the most desired way to use a rocket or satellite is to carry out data analyses on board in real time. Recent achievements in Digital Signal Processing (DSP) technology have made it possible to undertake very complex on board data manipulation. As a part of rocket instrumentation, a DSP based unit able to carry out on board analyses of low frequency electromagnetic waves in the ionosphere has been designed. The unit can be seen as a general purpose computer built on the basis of a fixed-point 16 bit signal processor. The unit is supplied with a program code in order to perform wave analyses on two independent channels simultaneously. The analyser is able to perform 256 point complex fast fourier transformations, and it produce a spectral power desity estimate on both channels every 85 ms. The design and construction of the DSP based unit is described and results from the tests are presented

  17. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    Science.gov (United States)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  18. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Science.gov (United States)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  19. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  20. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  1. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  2. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  3. Computational study of variable area ejector rocket flowfields

    Science.gov (United States)

    Etele, Jason

    Access to space has always been a scientific priority for countries which can afford the prohibitive costs associated with launch. However, the large scale exploitation of space by the business community will require the cost of placing payloads into orbit be dramatically reduced for space to become a truly profitable commodity. To this end, this work focuses on a next generation propulsive technology called the Rocket Based Combined Cycle (RBCC) engine in which rocket, ejector, ramjet, and scramjet cycles operate within the same engine environment. Using an in house numerical code solving the axisymmetric version of the Favre averaged Navier Stokes equations (including the Wilcox ko turbulence model with dilatational dissipation) a systematic study of various ejector designs within an RBCC engine is undertaken. It is shown that by using a central rocket placed along the axisymmetric axis in combination with an annular rocket placed along the outer wall of the ejector, one can obtain compression ratios of approximately 2.5 for the case where both the entrained air and rocket exhaust mass flows are equal. Further, it is shown that constricting the exit area, and the manner in which this constriction is performed, has a significant positive impact on the compression ratio. For a decrease in area of 25% a purely conical ejector can increase the compression ratio by an additional 23% compared to an equal length unconstricted ejector. The use of a more sharply angled conical section followed by a cylindrical section to maintain equivalent ejector lengths can further increase the compression ratio by 5--7% for a total increase of approximately 30%.

  4. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  5. In-flight calibration of mesospheric rocket plasma probes

    International Nuclear Information System (INIS)

    Havnes, Ove; Hartquist, Thomas W.; Kassa, Meseret; Morfill, Gregor E.

    2011-01-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  6. In-flight calibration of mesospheric rocket plasma probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, Ove [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); University Studies Svalbard (UNIS), N-9170 Longyearbyen, Svalbard (Norway); Hartquist, Thomas W. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Kassa, Meseret [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); Morfill, Gregor E. [Max-Planck-Institute fuer extraterrestrische Physik, D-85741Garching (Germany)

    2011-07-15

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  7. In-flight calibration of mesospheric rocket plasma probes.

    Science.gov (United States)

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  8. Review on film cooling of liquid rocket engines

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2018-03-01

    Full Text Available Film cooling in combination with regenerative cooling is presently considered as an efficient method to guarantee safe operation of liquid rocket engines having higher heat flux densities for long duration. This paper aims to bring all the research carried out in the field of liquid rocket engine film cooling since 1950. The analytical and numerical procedure followed, experimental facilities and measurements made and major inferences drawn are reviewed in detail, and compared where ever possible. Review has been made through a discussion of the analyses methodologies and the factors that influence film cooling performance. An effort has also been made to determine the status of the research, pointing out critical gaps, which are still to be explained and addressed by future generations. Keywords: Heat transfer, Liquid rocket thrust chamber, Film cooling, Cooling effectiveness

  9. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  10. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    Science.gov (United States)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  11. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  12. A technique for rocket-borne detection of electron bunching at megahertz frequencies

    International Nuclear Information System (INIS)

    Gough, M.P.

    1980-01-01

    Energetic electrons precipitating in the auroral ionosphere may be bunched at frequencies up to several megahertz as a result of local wave-particle interactions. A technique is described whereby this megahertz bunching can be observed using conventional rocket-borne energetic electron detectors counting at rates below 10 5 cps. Electron arrival time information is pre-processed on board the rocket and any bunching present can be realized by subsequent computer processing on the ground using only a modest data transmission rate from the rocket. Results of a pilot rocket experiment prove the value of the technique and lead on to formulating the design of a future experiment where the maximum amount of data processing is performed on the rocket. The technique should perform an important diagnostic role, helping us to understand the complex wave-particle interactions occurring in the auroral ionosphere. (orig.)

  13. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  14. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  15. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  16. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  17. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  18. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  19. A summary of results from solar monitoring rocket flights

    Science.gov (United States)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  20. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  1. Preliminary design study for a carbide LEU-nuclear thermal rocket

    International Nuclear Information System (INIS)

    Venneri, P.F.; Kim, Y.

    2014-01-01

    Nuclear space propulsion is a requirement for the successful exploration of the solar system. It offers the possibility of having both a high specific impulse and a relatively high thrust, allowing rapid transit times with a minimum usage of fuel. This paper proposes a nuclear thermal rocket design based on heritage NERVA rockets that makes use of Low Enriched Uranium (LEU) fuel. The Carbide LEU Nuclear Thermal Rocket (C-LEU-NTR) is designed to fulfill the rocket requirements as set forth in the NASA 2009 Mars Mission Design Reference Architecture 5.0, that is provide 25,000 lbf of thrust, operate at full power condition for at least two hours, and have a specific impulse close to 900 s. The neutronics analysis was done using MCNP5 with the ENDF/B-VII.1 neutron library. The thermal hydraulic calculations and size optimization were completed with a finite difference code being developed at the Center for Space Nuclear Research. (authors)

  2. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  3. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  4. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  5. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  6. Holographic elements and curved slit used to enlarge field of view in rocket detection system

    Science.gov (United States)

    Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc

    2006-09-01

    Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.

  7. A spacecraft charging study on the SCEX 3 rocket

    International Nuclear Information System (INIS)

    Mullen, E.G.; Gussenhoven, M.S.; Hardy, D.A.; Murphy, G.P.; Lloyd, J.W.F.; Slutter, W.; Malcolm, P.; Kellogg, P.J.; Monson, S.

    1991-01-01

    Instruments on the SCEX 3 rocket payload flown from the Poker Flats Rocket Range in February 1990 were used to study charging during electron beam emissions. This paper reports that the data show that electrostatic analyzers can be used to measure vehicle charging and direct beam return currents in dense plasma conditions. The data also show return current dependencies on pitch angle, beam current and beam energy

  8. The seven secrets of how to think like a rocket scientist

    CERN Document Server

    Longuski, James

    2007-01-01

    This book explains the methods that rocket scientists use - expressed in a way that could be applied in everyday life. It's short and snappy and written by a rocket scientist. It is intended for general "armchair" scientists.

  9. History of the development of rocket technology and astronautics in Poland

    Science.gov (United States)

    Geisler, W.

    1977-01-01

    The development of rocket technology in Poland is outlined. The history cites 13th century use of war rockets in combating Tartars as well as 20th century studies of the future and reality of space flights.

  10. Major accomplishments of America's nuclear rocket program (ROVER)

    International Nuclear Information System (INIS)

    Finseth, J.L.

    1991-01-01

    The United States embarked on a program to develop nuclear rocket engines in 1955. This program was known as project Rover. Initially nuclear rockets were considered as a potential backup for intercontinental ballistic missile propulsion but later proposed applications included both a lunar second stage as well as use in manned-Mars flights. Under the Rover program, 19 different reactors were built and tested during the period of 1959-1969. Additionally, several cold flow (non-fuelled) reactors were tested as well as a nuclear fuels test cell. The Rover program was terminated in 1973, due to budget constraints and an evolving political climate. The Rover program would have led to the development of a flight engine had the program continued through a logical continuation. The Rover program was responsible for a number of technological achievements. The successful operation of nuclear rocket engines on a system level represents the pinnacle of accomplishment. This paper will discuss the engine test program as well as several subsystems

  11. Results from a tethered rocket experiment (Charge-2)

    Science.gov (United States)

    Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.

    A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

  12. Effect of Six Missile-Bay Baffle Configurations and a Rocket End Plate on Ejection Releases of an MB-1 Rocket from a 0.05 Scale Model of the Convair F-106A Airplane

    Science.gov (United States)

    Hinson, William F.; Lee, John B.

    1959-01-01

    As a continuation of an investigation of the release characteristics of an MB-1 rocket carried internally by the Convair F-106A airplane, six missile-bay baffle configurations and a rocket end plate have been investigated in the 27- by 27-inch preflight jet of the NASA Wallops Station. The MB-1 rocket used had retractable fins and was ejected from a missile bay modified by the addition of six different baffle configurations. For some tests a rocket end plate was added to the model. Dynamically scaled models (0.04956 scale) were tested at a simulated altitude of 22,450 feet and Mach numbers of 0.86, 1.59, and 1.98, and at a simulated altitude of 29,450 feet and a Mach number of 1.98. The results of this investigation indicate that the missile-bay baffle configurations and the rocket end plate may be used to reduce the positive pitch amplitude of the MB-1 rocket after release. The initial negative pitching velocity applied to the MB-1 rocket might then be reduced in order to maintain a near-level-flight attitude after release. As the fuselage angle of attack is increased, the negative pitch amplitude of the rocket is decreased.

  13. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2013-07-03

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...

  14. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  15. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  16. Night Airglow Observations from Orbiting Spacecraft Compared with Measurements from Rockets.

    Science.gov (United States)

    Koomen, M J; Gulledge, I S; Packer, D M; Tousey, R

    1963-06-07

    A luminous band around the night-time horizon, observed from orbiting capsules by J. H. Glenn and M. S. Carpenter, and identified as the horizon enhancement of the night airglow, is detected regularly in rocket-borne studies of night airglow. Values of luminance and dip angle of this band derived from Carpenter's observations agree remarkably well with values obtained from rocket data. The rocket results, however, do not support Carpenter's observation that the emission which he saw was largely the atomic oxygen line at 5577 A, but assign the principal luminosity to the green continuum.

  17. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  18. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  19. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    Science.gov (United States)

    Gaines, E. E.; Imhof, W. L.; Voss, H. D.; Reagan, J. B.

    1983-07-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of about 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area.

  20. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    International Nuclear Information System (INIS)

    Gaines, E.E.; Imhof, W.L.; Voss, H.D.; Reagan, J.B.

    1983-01-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of approx. 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area. (author)

  1. SSTO rockets. A practical possibility

    Science.gov (United States)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  2. The efficient future of deep-space travel - electric rockets; Das Zeitalter der Elektrischen Raketen

    Energy Technology Data Exchange (ETDEWEB)

    Choueiri, Edgar Y. [Princeton Univ., NJ (United States). Electric Propulsion and Plasma Dynamics Lab.

    2010-01-15

    Conventional rockets generate thrust by burning chemical fuel. Electric rockets propel space vehicles by applying electric or electromagnetic fields to clouds of charged particles, or plasmas, to accelerate them. Although electric rockets offer much lower thrust levels than their chemical cousins, they can eventually enable spacecraft to reach greater speeds for the same amount of propellant. Electric rockets' high-speed capabilities and their efficient use of propellant make them valuable for deep-space missions. (orig.)

  3. SUB-PPB QUANTITATION AND CONFIRMATION OF PERCHLORATE IN DRINKING WATERS CONTAINING HIGH TOTAL DISSOLVED SOLIDS USING ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  4. The electromagnetic rocket gun - a means to reach ultrahigh velocities

    International Nuclear Information System (INIS)

    Winterberg, F.

    1983-01-01

    A novel kind of electromagnetic launcher for the acceleration of multigram-size macroparticles, up to velocities required for impact fusion, is proposed. The novel launcher concept combines the efficiency of a gun with the much higher velocities attainable by a rocket. In the proposed concept a rocket-like projectile is launched inside a gun barrel, drawing its energy from a travelling magnetic wave. The travelling magnetic wave heats and ionizes the exhaust jet of the rocket. As a result, the projectile i propelled both by the recoil from the jet and the magnetic pressure of the travelling magnetic wave. In comparison to magnetic linear accelerators, accelerating either superconducting or ferromagnetic projectiles, the proposed concept has several important advantages. First, the exhaust jet is much longer than the rocket-like projectile and which permits a much longer switching time to turn on the travelling magnetic wave. Second, the proposed concept does not require superconducting projectiles, or projectiles made from expensive ferromagnetic material. Third, unlike in railgun accelerators, the projectile can be kept away from the wall, and thereby can reach much larger velocities. (orig.)

  5. 76 FR 20715 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2011-04-13

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... continuing sounding rocket operations at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... information about NASA's Sounding Rocket Program (SRP) and the University of Alaska-Fairbanks' PFRR may be...

  6. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  7. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    International Nuclear Information System (INIS)

    Nam, S. H.; Suh, K. Y.; Kang, S. G.

    2008-01-01

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H 2 ) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I sp ) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H 2 /O 2 rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance

  8. Safety test of an improved multihundred watt FSA: launch abort, solid propellant fire

    International Nuclear Information System (INIS)

    Seabourn, C.M.

    1978-07-01

    This safety test consisted of exposing a simulant-fueled Improved Multihundred Watt Fuel Sphere Assembly, containing a Pt-3008 sphere holding the fuel simulant, to a single proximity fire of UTP-3001 solid rocket propellant for 10.5 min. The graphite outside shell sustained only minor abrasion damage. It was covered on one side with a heavy deposit of alumina from the fire mixed with silica from the test bed. The Pt-3008 shell had small amounts of carbon, alumina, and silica deposited on its surface but sustained no other damage. The PT-3008 sphere was not breached, and therefore the fuel sphere assembly would not release fuel in a solid-propellant fire of a launch abort. 12 figures

  9. Modeling and validation of Ku-band signal attenuation through rocket plumes

    NARCIS (Netherlands)

    Veek, van der B.J.; Chintalapati, S.; Kirk, D.R.; Gutierrez, H.; Bun, R.F.

    2013-01-01

    Communications to and from a launch vehicle during ascent are of critical importance to the success of rocket-launch operations. During ascent, the rocket's exhaust plume causes significant interference in the radio communications between the vehicle and ground station. This paper presents an

  10. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  11. Design and Evaluation of a Turbojet Exhaust Simulator, Utilizing a Solid-Propellant Rocket Motor, for use in Free-Flight Aerodynamic Research Models

    Science.gov (United States)

    deMoraes, Carlos A.; Hagginbothom, William K., Jr.; Falanga, Ralph A.

    1954-01-01

    A method has been developed for modifying a rocket motor so that its exhaust characteristics simulate those of a turbojet engine. The analysis necessary to the design is presented along with tests from which the designs are evaluated. Simulation was found to be best if the exhaust characteristics to be duplicated were those of a turbojet engine at high altitudes and with the afterburner operative.

  12. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    Science.gov (United States)

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  13. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  14. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  15. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake (TTR)

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent interviews. Most pertinently, an interview in 2005 with a

  16. Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation

    Science.gov (United States)

    Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif

    2018-04-01

    A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.

  17. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  18. Theoretical and Experimental Analysis of the Physics of Water Rockets

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  19. Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System

    Directory of Open Access Journals (Sweden)

    Lesong Zhou

    2017-10-01

    Full Text Available This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.

  20. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  1. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    Science.gov (United States)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  2. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    Science.gov (United States)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  3. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Chen, Dongyang; Rui, Xiaoting

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  4. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  5. Acoustic field generated by flight of rocket at the Earth surface

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Maslov, A.N.

    2006-01-01

    In this paper we present a model, which describes the propagation of acoustic impulses produced by explosion of carrier rocket at the active part of trajectory, down through the atmosphere. Calculations of acoustic field parameters on the earth surface were made for altitudes of rocket flight from 2.8 to 92.3 km and yield of explosions from 0.001 to 0.5 t tnt. It was shown the infrasound accompaniment of rocket flight with the goal to register the explosion it is possible only for an altitude about 70 km. For this case, test set should be situated at the distance not exceeding 120 km from the starting place. (author)

  6. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  7. An X-ray Experiment with Two-Stage Korean Sounding Rocket

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    1998-12-01

    Full Text Available The test result of the X-ray observation system is presented which have been developed at Korea Astronomy Observatory for 3 years (1995-1997. The instrument, which is composed of detector and signal processing parts, is designed for the future observations of compact X-ray sources. The performance of the instrument was tested by mounting on the two-stage Korean Sounding Rocket, which was launched from Taean rocket flight center on June 11 at 10:00 KST 1998. Telemetry data were received from individual parts of the instrument for 32 and 55.7 sec, respectively, since the launch of the rocket. In this paper, the result of the data analysis based on the telemetry data and discussion about the performance of the instrument is reported.

  8. LOX/Methane Regeneratively-Cooled Rocket Engine Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technologies required to build a subcritical regeneratively cooled liquid oxygen/methane rocket combustion chamber for...

  9. Potential climate impact of black carbon emitted by rockets

    Science.gov (United States)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  10. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  11. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  12. Launch Excitement with Water Rockets

    Science.gov (United States)

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  13. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  14. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  15. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    Science.gov (United States)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  16. Space Power Experiments Aboard Rockets SPEAR-3

    National Research Council Canada - National Science Library

    Raitt, W. J

    1997-01-01

    The SPEAR-3 program was a sounding rocket payload designed to study the interaction of a charged body with the Earth's upper atmosphere with particular reference to the discharging ability of selected...

  17. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  18. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  19. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  1. Rocket measurements of positive ions during polar mesosphere winter echo conditions

    Directory of Open Access Journals (Sweden)

    A. Brattli

    2006-01-01

    Full Text Available On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E during conditions with Polar Mesosphere Winter Echoes (PMWE. Each of the rockets was equipped with a Positive Ion Probe (PIP and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km layer.

  2. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    OpenAIRE

    Eerland, Willem J.; Box, Simon; Sóbester, András

    2017-01-01

    The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of th...

  3. Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment

    CERN Document Server

    Chernogor, Leonid F

    2013-01-01

    Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers.The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burn

  4. Measurement of the electrostatic field in aurora by antarctic rocket

    International Nuclear Information System (INIS)

    Takeya, Yoshio; Minami, Shigeyuki

    1974-01-01

    The direct measurement of the electrostatic field produced by the flow of charged particles and geomagnetic field in aurora has been carried out by means of rockets or satellites. The construction of an electric field meter and its characteristics are described, which measures the vectors of electric field with antarctic rockets. New scheme is presented: three components of an electric field are directly obtained through the probes set in three directions. (Mori, K.)

  5. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  6. Microcomputers, Model Rockets, and Race Cars.

    Science.gov (United States)

    Mirus, Edward A., Jr.

    1985-01-01

    The industrial education orientation program at Wisconsin School for the Deaf (WSD) presents problem-solving situations to all seventh- and eighth-grade hearing-impaired students. WSD developed user-friendly microcomputer software to guide students individually through complex computations involving model race cars and rockets while freeing…

  7. Physico-Chemical Research on the Sounding Rocket Maser 13

    Science.gov (United States)

    Lockowandt, Christian; Kemi, Stig; Abrahamsson, Mattias; Florin, Gunnar

    MASER is a sounding rocket platform for short-duration microgravity experiments, providing the scientific community with an excellent microgravity tool. The MASER programme has been running by SSC from 1987 and has up to 2012 provided twelve successful flights for microgravity missions with 6-7 minutes of microgravity, the g-level is normally below 1x10-5 g. The MASER 13 is planned to be launched in spring 2015 from Esrange Space Center in Northern Sweden. The rocket will carry four ESA financed experiment modules. The MASER 13 vehicle will be propelled by the 2-stage solid fuel VSB-30 rocket motor, which provided the 390 kg payload with an apogee of 260 km and 6 and a half minutes of microgravity. Swedish Space Corporation carries out the MASER missions for ESA and the program is also available for other customers. The payload comprise four different experiment modules of which three could be defined as physic-chemical research; XRMON-SOL, CDIC-3, MEDI. It also comprises the Maser Service Module and the recovery system. The Service Module provided real-time 5 Mbps down-link of compressed experiment digital video data from the on-board cameras, as well as high-speed housekeeping telemetry data. XRMON-SOL In this experiment the influence of gravity on the formation of an equiaxed microstructure will be investigated. Special attention will be put on the aspect of nucleation, segregation and impingement. The experiment scope is to melt and solidify an AlCu-alloy sample in microgravity. The solidification will be performed in an isothermal environment. The solidification process will be monitored and recorded with X-ray image during the whole flight, images will also be down-linked to ground for real-time monitoring and possible interaction. CDIC-3 The goal is to study in migrogravity the spatio-temporal dynamics of a chemical front travelling in a thin solution layer open to the air and specifically the respective role of Marangoni and density-related hydrodynamic

  8. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  9. Effective Mechanical Property Estimation of Composite Solid Propellants Based on VCFEM

    Directory of Open Access Journals (Sweden)

    Liu-Lei Shen

    2018-01-01

    Full Text Available A solid rocket motor is one of the critical components of solid missiles, and its life and reliability mostly depend on the mechanical behavior of a composite solid propellant (CSP. Effective mechanical properties are critical material constants to analyze the structural integrity of propellant grain. They are estimated by a numerical method that combines the Voronoi cell finite element method (VCFEM and the homogenization method in the present paper. The correctness of this combined method has been validated by comparing with a standard finite element method and conventional theoretical models. The effective modulus and the effective Poisson’s ratio of a CSP varying with volume fraction and component material properties are estimated. The result indicates that the variations of the volume fraction of inclusions and the properties of the matrix have obvious influences on the effective mechanical properties of a CSP. The microscopic numerical analysis method proposed in this paper can also be used to provide references for the design and the analysis of other large volume fraction composite materials.

  10. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  11. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads

    Directory of Open Access Journals (Sweden)

    Marina Cavaiuolo

    2014-04-01

    Full Text Available Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases.

  12. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads.

    Science.gov (United States)

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-04-14

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases.

  13. Using PDV to Understand Damage in Rocket Motor Propellants

    Science.gov (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  14. Unsupervised Anomaly Detection for Liquid-Fueled Rocket Prop...

    Data.gov (United States)

    National Aeronautics and Space Administration — Title: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. Abstract: This article describes the results of applying four...

  15. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  16. Hezbollah Rockets and Missiles: Deployment and Defence Programme

    Directory of Open Access Journals (Sweden)

    Ladislav Kulhánek

    2018-01-01

    Full Text Available The paper addresses the issue of the proliferation of the rocket technology deployed in guerrilla warfare throughout the Near East. It evaluates assumptions and identifies potential regressions with respect to the most recent hot phase in the violent conflict between Hezbollah and Israel, with a focus on primary methods based on rocket shelling and resistance efforts. In comparing the two military forces, Israel emerges as the stronger, even if artillery and tactical ballistic missiles with warheads containing substances defined as weapons of mass destruction were to be deployed as an extreme first measure by Hezbollah, in which case an Israeli or American response would destroy at least parts of Lebanon.

  17. Near noise field characteristics of Nike rocket motors for application to space vehicle payload acoustic qualification

    Science.gov (United States)

    Hilton, D. A.; Bruton, D.

    1977-01-01

    Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.

  18. On the coordination of EISCAT measurements with rocket and satellite observations

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1977-01-01

    The scientific interest of combining EISCAT measurements of the thermal ionospheric plasma with sounding rocket and/or satellite measurements of the hot plasma distribution function and other variables is discussed briefly. Some examples are presented where such coordinated measurements are of great interest. The importance of being able to launch rockets through, or at least quite close to, the radar beam is emphasized. (Auth.)

  19. Sounding rocket study of auroral electron precipitation

    International Nuclear Information System (INIS)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation was found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984

  20. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  1. X-ray scanning of overhead aurorae from rockets

    International Nuclear Information System (INIS)

    Barcus, J.R.; Goldberg, R.A.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events to investigate their structure and effects on the atmosphere. The instrument complement included X-ray scintillation detectors with energy discrimination in four ranges to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. For this purpose, each instrument was designed for wide angle viewing; however, properties of the rocket motion have permitted coarse observation of distinct spatial X-ray structure. The detectors were mounted at a 45 0 angle with respect to the payload axis to permit scanning of the upper hemisphere, with rocket spin rates near 5 c/s during the upleg portion of each flight. Here, atmospheric shielding reduced energetic particle contamination effects to insignificant values below 65 to 75 km. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on 21 September (0302 LMT) into an aurora observed to have two distinct azimuthal regions of optical brightness. Payload 18.179 (23 September, 0147 LMT) was launched into an aurora of more diffuse character. The presence of a two component spectrum is indicated for each event with the hard component originating in the more diffuse, optically faint regions. (author)

  2. Ultra-fast Escape of a Octopus-inspired Rocket

    Science.gov (United States)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  3. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  4. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    Science.gov (United States)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  5. Simulation and experimental research on line throwing rocket with flight

    OpenAIRE

    Wen-bin Gu; Ming Lu; Jian-qing Liu; Qin-xing Dong; Zhen-xiong Wang; Jiang-hai Chen

    2014-01-01

    The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basicall...

  6. Rotational flow in tapered slab rocket motors

    Science.gov (United States)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  7. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads

    OpenAIRE

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-01-01

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human di...

  8. Government Relations: It's Not Rocket Science

    Science.gov (United States)

    Radway, Mike

    2007-01-01

    Many people in the early childhood education field are afraid of government relations work, intimidated by politicians, and believe the whole process is unseemly. The author asserts that they should not be afraid nor be intimidated because government relations is not rocket science and fundamentally officeholders are no different from the rest of…

  9. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  10. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  11. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  12. Two-step rocket engine bipropellant valve concept

    Science.gov (United States)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  13. Detection of aurorae in light time of the day at rocket investigations of atmospheric radiation

    International Nuclear Information System (INIS)

    Khokhlov, V.N.

    1996-01-01

    Results of rocket observations of aurorae in light time of the day were analyzed. Characteristic features of Rayleigh scattering, day airglow, solar radiation, scattered in the device and near-rocket glow were considered. The contribution of aurorae in the light time of the day was determined on the basis of analyzing results of rocket experiments, laboratory measurements and theoretical simulation. 4 refs., 2 figs

  14. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  15. Manufacturing Advanced Channel Wall Rocket Liners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  16. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  17. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  18. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  19. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket

    Science.gov (United States)

    Lin, Charles C. H.; Shen, Ming-Hsueh; Chou, Min-Yang; Chen, Chia-Hung; Yue, Jia; Chen, Po-Cheng; Matsumura, Mitsuru

    2017-08-01

    We report the first observation of concentric traveling ionospheric disturbances (CTIDs) triggered by the launch of a SpaceX Falcon 9 rocket on 17 January 2016. The rocket-triggered ionospheric disturbances show shock acoustic wave signature in the time rate change (time derivative) of total electron content (TEC), followed by CTIDs in the 8-15 min band-pass filtering of TEC. The CTIDs propagated northward with phase velocity of 241-617 m/s and reached distances more than 1000 km away from the source on the rocket trajectory. The wave characteristics of CTIDs with periods of 10.5-12.7 min and wavelength 200-400 km agree well with the gravity wave dispersion relation. The optimal wave source searching and gravity wave ray tracing technique suggested that the CTIDs have multiple sources which are originated from 38-120 km altitude before and after the ignition of the second-stage rocket, 200 s after the rocket was launched.

  20. Measurement of IR atmospheric band dayglow by S-520-4 rocket

    International Nuclear Information System (INIS)

    Makino, Tadao; Yamamoto, Hiromasa; Sekiguchi, Hiroyuki

    1984-01-01

    The measurement of IR atmospheric band dayglow was made by rocket S-520-4 flown from Uchinoura at 1000 JST on Sept. 5, 1981. The instrument loaded on the rocket was the same type as the one loaded on EXOS-C satellite which will be launched in 1984 in order to observe the mesospheric ozone. This rocket experiment was performed for the purpose of testing the functions of this instrument in flight. The 1.27 μm filter radiometer consisted of three plane mirros, a camera lens, a chopper and a PbS detector array. The PbS array (4x5=20 elements) was operated at about -4 0 C with a thermoelectric cooler. We obtained the following results from the rocket experiment: (i) this instrument worked well during the flight, (ii) the intensities of the solar radiation scattered by the sea and clouds were obtained at 1.27 μm, and (iii) the baffle designed to permit the daytime measurement of the atmospheric emission could attenuate the off-axis radiation as weak as possible. The altitude distribution of the daytime mesospheric ozone density derived from the downleg data was in agreement with the previous profile obtained in twilight condition. (author)

  1. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.

    1979-01-01

    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  2. Three-Axis Gasless Sounding Rocket Payload Attitude Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas released by current sounding rocket payload attitude control systems (ACS) has the potential to interfere with some types of science instruments. A single-axis...

  3. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  4. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    Science.gov (United States)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic

  5. Space Processing Applications Rocket project, SPAR 1. Final report

    International Nuclear Information System (INIS)

    Reeves, F.; Chassay, R.

    1976-12-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment

  6. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  8. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    Science.gov (United States)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  9. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    Directory of Open Access Journals (Sweden)

    Novi Andria

    2013-03-01

    Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.

  10. Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen

    Science.gov (United States)

    Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael

    2018-06-01

    The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.

  11. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  12. Simultaneous rocket and radar measurements of currents in an auroral arc

    International Nuclear Information System (INIS)

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  13. Rocket Based Combined Cycle (RBCC) engine inlet

    Science.gov (United States)

    2004-01-01

    Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.

  14. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    Science.gov (United States)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  15. Design Methodology and Performance Evaluation of New Generation Sounding Rockets

    Directory of Open Access Journals (Sweden)

    Marco Pallone

    2018-01-01

    Full Text Available Sounding rockets are currently deployed for the purpose of providing experimental data of the upper atmosphere, as well as for microgravity experiments. This work provides a methodology in order to design, model, and evaluate the performance of new sounding rockets. A general configuration composed of a rocket with four canards and four tail wings is sized and optimized, assuming different payload masses and microgravity durations. The aerodynamic forces are modeled with high fidelity using the interpolation of available data. Three different guidance algorithms are used for the trajectory integration: constant attitude, near radial, and sun-pointing. The sun-pointing guidance is used to obtain the best microgravity performance while maintaining a specified attitude with respect to the sun, allowing for experiments which are temperature sensitive. Near radial guidance has instead the main purpose of reaching high altitudes, thus maximizing the microgravity duration. The results prove that the methodology at hand is straightforward to implement and capable of providing satisfactory performance in term of microgravity duration.

  16. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  17. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  18. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  19. ELIMINATION OF ROCKET IGNITION SIDE LOADS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to Topic H10: Ground Processing and in particular to Subtopic H10.02. When a rocket motor/engine is ignited at low altitude its...

  20. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs