WorldWideScience

Sample records for thin-layer resistivity structure

  1. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  2. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  3. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer

    International Nuclear Information System (INIS)

    Li Yingtao; Long Shibing; Lv Hangbing; Liu Qi; Wang Yan; Zhang Sen; Lian Wentai; Wang Ming; Zhang Kangwei; Xie Hongwei; Liu Ming; Liu Su

    2011-01-01

    The stabilization of the resistive switching characteristics is important to resistive random access memory (RRAM) device development. In this paper, an alternative approach for improving resistive switching characteristics in ZrO 2 -based resistive memory devices has been investigated. Compared with the Cu/ZrO 2 /Pt structure device, by embedding a thin TiO x layer between the ZrO 2 and the Cu top electrode, the Cu/TiO x -ZrO 2 /Pt structure device exhibits much better resistive switching characteristics. The improvement of the resistive switching characteristics in the Cu/TiO x -ZrO 2 /Pt structure device might be attributed to the modulation of the barrier height at the electrode/oxide interfaces.

  4. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  5. Resistivity scaling due to electron surface scattering in thin metal layers

    Science.gov (United States)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  6. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  7. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  8. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  9. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    Science.gov (United States)

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  10. Layered Ultrathin Coherent Structures (LUCS)

    International Nuclear Information System (INIS)

    Schuller, I.K.; Falco, C.M.

    1979-01-01

    A new class of superconducting materials, Layered Ultrathin Coherent Structures (LUCS) are described. These materials are produced by sequentially depositing ultrathin layers of materials using high rate magnetron sputtering or thermal evaporation. Strong evidence is presented that layers as thin as 10 A can be prepared in this fashion. Resistivity data indicates that the mean free path is layer thickness limited. A strong disagreement is found between the experimentally measured transition temperatures T/sub c/ and the T/sub c/'s calculated using the Cooper limit approximation. This is interpreted as a change in the band structure or the phonon structure of the material due to layering or to surfaces

  11. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  13. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  14. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering

    International Nuclear Information System (INIS)

    Herrero, J.; Guillen, C.

    2004-01-01

    The improvement of the optical and electrical characteristics of indium tin oxide (ITO) layers is pursued to achieve a higher efficiency in its application as frontal electrical contacts in thin film photovoltaic devices. In order to take advantage of the polycrystalline structure of ZnO films as growth support, the properties of ITO layers prepared at room temperature by sputtering onto bare and ZnO-coated substrates have been analyzed using X-ray diffraction, optical and electrical measurements. It has been found that by inserting a thin ZnO layer, the ITO film resistivity can be reduced as compared to that of a single ITO film with similar optical transmittance. The electrical quality improvement is related to ITO grain growth enhancement onto the polycrystalline ZnO underlayer

  15. Oxidation effects on the electric resistance of In and Al in thin layers

    International Nuclear Information System (INIS)

    Moncada, G.; Araya, J.; Clark, N.

    1981-01-01

    Measurements of electric resistance (R) in function of the time in evaporated samples of thin layers of In and Al trivalent elements in both vacuum and atmospheric pressure are reported. Measurements in samples at ambient and cooled with nitrogen temperatures taken place. The changes observed in R is attributed partly to changes in the sample surface produced by the oxidation. (L.C.) [pt

  16. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  17. Fabrication of planar, layered nanoparticles using tri-layer resist templates.

    Science.gov (United States)

    Hu, Wei; Zhang, Mingliang; Wilson, Robert J; Koh, Ai Leen; Wi, Jung-Sub; Tang, Mary; Sinclair, Robert; Wang, Shan X

    2011-05-06

    A simple and universal pathway to produce free multilayer synthetic nanoparticles is developed based on lithography, vapor phase deposition and a tri-layer resist lift-off and release process. The fabrication method presented in this work is ideal for production of a broad range of nanoparticles, either free in solution or still attached to an intact release layer, with unique magnetic, optical, radioactive, electronic and catalytic properties. Multi-modal capabilities are implicit in the layered architecture. As an example, directly fabricated magnetic nanoparticles are evaluated to illustrate the structural integrity of thin internal multilayers and the nanoparticle stability in aggressive biological environments, which is highly desired for biomedical applications.

  18. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  19. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  20. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  1. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  2. Thin pentacene layer under pressure

    International Nuclear Information System (INIS)

    Srnanek, R.; Jakabovic, J.; Kovac, J.; Donoval, D.; Dobrocka, E.

    2011-01-01

    Organic semiconductors have got a lot of interest during the last years, due to their usability for organic thin film transistor. Pentacene, C 22 H 14 , is one of leading candidates for this purpose. While we obtain the published data about pressure-induced phase transition only on single crystal of pentacene we present pressure-induced phase transition in pentacene thin layers for the first time. Changes in the pentacene structure, caused by the pressure, were detected by micro-Raman spectroscopy. Applying the defined pressure to the pentacene layer it can be transformed from thin phase to bulk phase. Micro-Raman spectroscopy was found as useful method for detection of changes and phases identification in the pentacene layer induced by mechanical pressure. Such a pressure-induced transformation of pentacene thin layers was observed and identified for the first time. (authors)

  3. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  4. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  5. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-04-01

    Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  7. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  8. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  9. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  10. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode.

    Science.gov (United States)

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-02-24

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.

  11. Effect of Tin Electrode (Sn, Electrode Distance and Thin Layer Size of Zinc Phthalocyanine (ZnPc to Resistance Changes With Ozone Exposure

    Directory of Open Access Journals (Sweden)

    Agustina Mogi

    2018-01-01

    Full Text Available This study was aimed to determine the effect of tin electrode distances and the thickness of a thin layer of ZnPc (Zinc phtyalocyanine toward changes in resistance with ozone exposure. Tin deposition on the glass surface was conducted using spraying method. The reaction between ozone and ZnPc produces electrical properties that can be read through the resistance value of the multimeter. Based on this study, it was investigated that the smaller a distance between the electrode and the thicker deposition of ZnPc lead to the less resistance. This showed that a thin layer of the conductivity increases along with the longer exposure to ozone gas. The movement of electrons with the hole was free.

  12. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  13. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  14. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  15. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    Directory of Open Access Journals (Sweden)

    Kun-Neng Chen

    2017-02-01

    Full Text Available We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□ and high optical transmittance (88.1% at room temperature without postannealing processing on the deposited thin films.

  16. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    Science.gov (United States)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  17. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  18. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Schaekers, Marc [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Blasco, Nicolas [Air Liquide Electronics US, L.P., 46401 Landing Parkway, Fremont, California 94538 (United States)

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  19. Thin TiOx layer as a voltage divider layer located at the quasi-Ohmic junction in the Pt/Ta2O5/Ta resistance switching memory.

    Science.gov (United States)

    Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi

    2017-02-09

    Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.

  20. Increased cathode performance using a thin film LSM layer on a structured 8YSZ electrolyte surface

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, D.; Weber, A.; Ivers-Tiffee, E. [Karlsruhe Univ. (T.H.) (DE). Inst. fuer Werkstoffkunde der Elektrotechnik (IWE); Guntow, U.; Mueller, G. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany)

    2000-07-01

    A considerable part of the power losses in a SOFC single cell occurs due to the polarization resistance of the cathode/electrolyte interface. The resulting high cathodic overvoltage corresponds to an enhanced degradation of the cell. In case of a screen printed LSM cathode layer (LSM: La{sub 1-x}Sr{sub x}MnO{sub 3}) on a YSZ electrolyte substrate (YSZ: Y{sub 2}O{sub 3} stabilised ZrO{sub 2}) the cathodic reaction is generally assumed to be restricted to the three phase boundary (tpb) between cathode, oxidant and the electrolyte surface. The electrochemical active area was increased by a modification of the cathode/electrolyte interface. Single cells with a thin film LSM layer on a structured 8YSZ electrolyte showed a power output of about 0.95 W/cm{sup 2} at 0.7 V cell voltage (950 C; oxidant: air, 0.7 1/min; fuel: hydrogen, 0.5 1/min, 15% fuel utilization). (orig.)

  1. Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2012-09-21

    The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.

  2. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  3. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  4. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  5. Resistive switching in TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin

    2011-10-26

    The continuing improved performance of the digital electronic devices requires new memory technologies which should be inexpensively fabricated for higher integration capacity, faster operation, and low power consumption. Resistive random access memory has great potential to become the front runner as the non volatile memory technology. The resistance states stored in such cell can remain for long time and can be read out none-destructively by a very small electrical pulse. In this work the typically two terminal memory cells containing a thin TiO{sub 2} layer are studied. Polycrystalline TiO{sub 2} thin films are deposited with atomic layer deposition and magnetron reactive sputtering processes, which are both physically and electrically characterized. The resistive switching cells are constructed in a metal/TiO{sub 2}/metal structure. Electroforming process initiate the cell from the beginning good insulator to a real memory cell to program the resistive states. Multilevel resistive bipolar switching controlled by current compliance is the common characteristic observed in these cells, which is potentially to be used as so called multi-bit memory cells to improve the memory capacity. With different top electrodes of Pt, Cu, Ag the resistive switching behaviors are studied. The switching behaviors are different depending on the top metal such as the minimum current compliance, the endurance of the programmed resistance states and the morphology change during the switching. The temperature dependence of different resistance states are investigated. A reduction of the activation energy and their possible conduction mechanisms is discussed on the base of the basic current conduction models. It is found that the resistance state transfers from semiconductor to metallic property with the reducing resistances. The calculated temperature coefficients of their metallic states on the Cu/TiO{sub 2}/Pt and Ag/TiO{sub 2}/Pt are very close to the reported literature data

  6. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Sammelselg, Väino; Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan

    2013-01-01

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H 2 SO 4 was studied. • Smallest etching rates of < 5 pm/s for TiO 2 , Al 2 O 3 , and Cr 2 O 3 were reached. • Highest etching rate of 2.8 nm/s for Al 2 O 3 was occurred. • Remarkable differences in etching of non- and crystalline films were observed

  7. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    OpenAIRE

    Kun-Neng Chen; Cheng-Fu Yang; Chia-Ching Wu; Yu-Hsin Chen

    2017-01-01

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (?-IGZO/Ag/?-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron...

  8. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  9. Corrosion-resistant multilayer structures with improved reflectivity

    Science.gov (United States)

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  10. Effects of interfacial layer on characteristics of TiN/ZrO2 structures.

    Science.gov (United States)

    Kim, Younsoo; Kang, Sang Yeol; Choi, Jae Hyoung; Lim, Jae Soon; Park, Min Young; Chung, Suk-Jin; Chung, Jaegwan; Lee, Hyung Ik; Kim, Ki Hong; Kyoung, Yong Koo; Heo, Sung; Yoo, Cha Young; Kang, Ho-Kyu

    2011-09-01

    To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.

  11. Quantifying resistances across nanoscale low- and high-angle interspherulite boundaries in solution-processed organic semiconductor thin films.

    Science.gov (United States)

    Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin

    2012-11-27

    The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.

  12. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Melvin David; Kim, Hyunki [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806 (Korea, Republic of); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of)

    2015-05-15

    Highlights: • Ni-embedding transparent conductor effectively reduces the resistivity. • Ni insertion improves the carrier mobility and collection efficiencies. • ITO/Ni/AZO is effective to improve photo-responses compared to ITO/AZO. - Abstract: A thin Ni layer of 5 nm thickness was deposited in between indium-tin-oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers of 50 nm thickness each. The Ni inserting tri-layer structure (ITO/Ni/AZO) showed lower resistivity of 5.51 × 10{sup −4} Ωcm which is nearly 20 times lesser than 97.9 × 10{sup −4} Ωcm of bilayer structure (ITO/AZO). A thin Ni layer in between ITO and AZO enhanced the carrier concentration, mobility and photoresponse behaviors so that figure of merit (FOM) value of ITO/Ni/AZO device was greater than that of ITO/AZO device. ITO/Ni/AZO structure showed improved quantum efficiencies over a broad range of wavelengths (∼350–950 nm) compared to that of ITO/AZO bilayer structure, resulting in enhanced photoresponses. These results show that the optical, electrical and photoresponse properties of ITO/AZO structure could be enhanced by inserting Ni layer of 5 nm thickness in between ITO and AZO layers.

  13. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw; Chang, Chih-Hsiang; Chang, Chih-Jui [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  14. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  15. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  16. AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chien-Hsun [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, Tainan 71003, Taiwan (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-01

    Highlights: • High-quality Al-doped ZnO (AZO)/Au/AZO transparent conducting oxide films. • AZO films (30 nm) made by RF sputtering; ion sputtering for Au film (5–20 nm). • Effects of Au thickness on optical and electrical properties were analyzed. • The resistivity of 9 × 10{sup −5} Ω cm and the transmittance of 86.2% of the multilayer films were obtained in this study. - Abstract: Aluminum-doped ZnO (AZO)/gold/AZO tri-layer structures with very low resistivity and high transmittance are prepared by simultaneous RF magnetron sputtering (for AZO) and ion sputtering (for Au). The properties of the tri-layer films are investigated at different Au layer thicknesses (5–20 nm). The effects of Au layer thickness and the role of Au on the transmission properties of the tri-layer films were investigated. The very low resistivity of 1.01 × 10{sup −5} Ω cm, mobility of 27.665 cm{sup 2} V{sup −1} s{sup −1}, and carrier concentration of 4.563 × 10{sup 22} cm{sup −3} were obtained at an Au layer thickness of 20 nm. The peak transmittance of 86.18% at 650-nm wavelength was obtained at an Au layer thickness of 8 nm. These results show the films to be a good candidate for high-quality electrode scheme in various display applications.

  17. Ultra-Thin Atomic Layer Deposited TiN Films: Non-Linear I–V Behaviour and the Importance of Surface Passivation

    NARCIS (Netherlands)

    Van Hao, B.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2011-01-01

    We report the electrical resistivity of atomic layer deposited TiN thin films in the thickness range 2.5-20 nm. The measurements were carried out using the circular transfer length method structures. For the films with thickness in the range of 10-20 nm, the measurements exhibited linear

  18. Characterizing the structural degradation in a PEMFC cathode catalyst layer : carbon corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.; Stumper, J. [Ballard Power Systems, Burnaby, BC (Canada); Gyenge, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    The structural degradation resulting from carbon corrosion of a cathode catalyst layer in a polymer electrolyte membrane fuel cell (PEMFC) was investigated in this study. In order to oxidize the catalyst carbon support, the PEMFC catalyst layer was subjected to a 30 hour accelerated stress test that cycled the cathode potential from 0.1 to 1.5 VRHE at 30 and 150 second intervals. The rate and amount of carbon loss was determined by measuring the carbon dioxide in the exhaust gas. The structural degradation of the catalyst layer was characterized and correlated to the PEMFC performance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and polarization analyses. This analysis revealed a clear thinning of the cathode catalyst layer and gas diffusion layer carbon sub-layer, and a reduction in the effective platinum surface area due to the carbon support oxidation. The thinned cathode catalyst layer changed the water management, and increased the voltage loss associated with the oxygen mass transport and catalyst layer ohmic resistance. In order to further develop and verify this methodology for other degradation mechanisms, emphasis was placed on EIS measurements.

  19. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  20. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  1. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    International Nuclear Information System (INIS)

    Guermat, N.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2009-01-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  2. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    Science.gov (United States)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  3. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  4. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  5. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Directory of Open Access Journals (Sweden)

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  6. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    Science.gov (United States)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  7. Residual stress analysis of a multi-layer thin film structure by destructive (curvature) and non-destructive (x-ray) methods

    International Nuclear Information System (INIS)

    Chen, P.C.; Oshida, Y.

    1989-01-01

    Multi-layer thin film which has structure of Cu/Cr/K/Cr/Cu prepared by sputtering process was analyzed for interfacial stresses for as-deposited conditions. This structure was also annealed at 150 degrees C, and 350 degrees C for around 15 min. in a vacuum and cooled slowly down for stress analyses. Equations for residual stress estimations for homogeneous material system using layer removal technique (stress relief) is now applied for inhomogeneous system (multi-layer structure). The results are compared with the data obtained from x-ray diffraction technique by using sin 2 Ψ - 2 θ method, for Cu layer. From the present analyses, the data obtained using layer removal seem to be qualitatively consistent with but not quantitatively in agreement with x-ray method

  8. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  9. Ultra-thin Metal and Dielectric Layers for Nanophotonic Applications

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Leandro, Lorenzo; Malureanu, Radu

    2015-01-01

    In our talk we first give an overview of the various thin films used in the field of nanophotonics. Then we describe our own activity in fabrication and characterization of ultra-thin films of high quality. We particularly focus on uniform gold layers having thicknesses down to 6 nm fabricated by......-beam deposition on dielectric substrates and Al-oxides/Ti-oxides multilayers prepared by atomic layer deposition in high aspect ratio trenches. In the latter case we show more than 1:20 aspect ratio structures can be achieved....

  10. Performance improvement inpolymer-based thin film transistor using modified bottom-contact structures with etched SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo [R and D Center, Samsung Corning Precision Materials Co., Ltd, Asan (Korea, Republic of); You, Young Jun; Shim, Jae Won [Dept. of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of)

    2017-02-15

    Polymer-based thin film transistors (TFTs) with a modified bottom-contact structure and etched SiO{sub 2} layer were developed and investigated. An increase in the field-effect mobility in the developed TFTs compared to TFTs with a normal bottom-contact structure was ascertained. A bottom-contact structure and the photolithographic processing method were used to ensure that the developed TFTs were suitable for commercial applications. Increased mobility of the modified bottom-contact structure was attributed to direct contact of the Au electrode with the active polymer layer.

  11. Stable self-compliance resistive switching in AlOδ/Ta2O5−x/TaOy triple layer devices

    International Nuclear Information System (INIS)

    Wu, Huaqiang; Li, Xinyi; Huang, Feiyang; Yu, Zhiping; Qian, He; Chen, An

    2015-01-01

    Stable self-compliance property was observed in the AlO δ /Ta 2 O 5−x /TaO y triple-layer resistive random access memory structure. The impact of AlO δ barrier layer was studied with different thicknesses. Endurance of more than 10 10 cycles and data retention for more than 3 h at 125 °C were demonstrated. All the measurements were carried out without external current compliance and no hard breakdown was observed. Systematic analysis reveals the self-compliance property is due to the built-in series resistance of the thin AlO δ barrier layer. A model is proposed to explain this self-compliance property. (paper)

  12. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  13. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  14. Fabrication of graphene-nanoflake/poly(4-vinylphenol) polymer nanocomposite thin film by electrohydrodynamic atomization and its application as flexible resistive switching device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Hyun; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Na, Kyoung-Hoan, E-mail: khna@dankook.ac.kr [College of Engineering, Dankook University, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2015-10-15

    This paper describes synthesis of graphene/poly(4-vinylphenol) (PVP) nanocomposite and deposition of thin film by electrohydrodynamic atomization (EHDA) for fabrication flexible resistive switching device. EHDA technique proved its viability for thin film deposition after surface morphology analyses by field emission scanning electron microscope (FESEM) and non-destructive 3D Nano-profilometry, as the deposited films were, devoid of abnormalities. The commercially available graphene micro-flakes were exfoliated and broken down to ultra-small (20 nm–200 nm) nano-flakes by ultra-sonication in presence of N-methyl-pyrrolidone (NMP). These graphene nanoflakes with PVP nanocomposite, were successfully deposited as thin films (thickness ~140±7 nm, R{sub a}=2.59 nm) on indium–tin-oxide (ITO) coated polyethylene terephthalate (PET) substrate. Transmittance data revealed that thin films are up to ~87% transparent in visible and NIR region. Resistive switching behaviour of graphene/PVP nanocomposite thin film was studied by using the nanocomposite as active layer in Ag/active layer/ITO sandwich structure. The resistive switching devices thus fabricated, showed characteristic OFF to ON (high resistance to low resistance) transition at low voltages, when operated between ±3 V, characterized at 10 nA compliance currents. The devices fabricated by this approach exhibited a stable room temperature, low power current–voltage hysteresis and well over 1 h retentivity, and R{sub OFF}/R{sub ON}≈35:1. The device showed stable flexibility up to a minimum bending diameter of 1.8 cm.

  15. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  16. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    Science.gov (United States)

    Zhao, Zhao

    is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.

  17. Photodiode Based on CdO Thin Films as Electron Transport Layer

    Science.gov (United States)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  18. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  19. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  20. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    Energy Technology Data Exchange (ETDEWEB)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia)

    2015-08-28

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.

  1. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  2. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  3. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Science.gov (United States)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  4. Fabrication and Performance Study of Uniform Thin Film Integrated ...

    African Journals Online (AJOL)

    The transmission line model of a uniform rectangular thin film R-C-KR structure consisting of a dielectric layer of constant per unit shunt capacitance C sandwiched between two resistive thin films of constant per unit length resistances R and KR has been analysed using the concept of matrix parameter functions. The above ...

  5. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  6. Electrical resistivity of thin metal films and multilayers

    International Nuclear Information System (INIS)

    Fenn, M.

    1999-01-01

    The electrical resistivity and temperature coefficient of resistivity (TCR) of thin films and multilayers of Cu, Nb and Zr have been measured over a wide range of layer thicknesses. The structure of the films has been characterised using transmission electron microscopy (TEM) and x-ray reflectivity. The experimental results have been compared with the semiclassical theory due to Dimmich. The values of the grain boundary reflectivity, R, in the single films has been found to be approximately 0.35 for Cu in agreement with the literature. The value of R for Nb and Zr has been found to vary with grain size, although it is approximately 0.55 for Nb and 0.925 for Zr over a wide range of grain sizes, and this is believed to be presented for the first time. The value of the interfacial specularity parameter, p, is not found to have a significant effect compared to R in the single films. Dimmich's theoretical expression for the TCR does not match experiment, but by adapting the resistivity expression of the theory to different temperatures a satisfactory fit has been obtained. It has been concluded that the assumption of the free electron model in the presence of grain boundary scattering is in error. The adapted theory predicts negative TCR in sufficiently thin films with experimentally plausible values of the input parameters, and this is believed to be demonstrated for the first time. The experimental resistivity of the multilayers was much lower than expected from the resistivity of the single films. A theoretical fit to the experimental resistivity and TCR of the multilayers was obtained by adjusting the parameter values obtained from single films, and the value of p was found to be significant. This procedure leads to a contradiction in the value of R for Nb. With a view to extending the above work to magnetic multilayers, an AC susceptometer has been designed, built and tested. The results indicate that this instrument would be suitable for work on magnetic

  7. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the

  8. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Shen, Wan

    2010-01-01

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO 3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10 4 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO x layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of

  9. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  10. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  11. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    International Nuclear Information System (INIS)

    Schaefer, Michael; Schlaf, Rudy

    2015-01-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru 0 ) and its oxide (RuO 2 ) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru 0 and RuO 2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO 2 and 0.04 Å/cycle for Ru. 0 An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO 2 /OH compound whose surface is saturated with hydroxyl groups

  12. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  13. Studies on transient characteristics of unipolar resistive switching processes in TiO2 thin film grown by atomic layer deposition

    Science.gov (United States)

    Sahu, Vikas Kumar; Das, Amit K.; Ajimsha, R. S.; Misra, P.

    2018-05-01

    The transient characteristics of resistive switching processes have been investigated in TiO2 thin films grown by atomic layer deposition (ALD) to study the temporal evolution of the switching processes and measure the switching times. The reset and set switching times of unipolar Au/TiO2/Pt devices were found to be ~250 µs and 180 ns, respectively in the voltage windows of 0.5–0.9 V for reset and 1.9–4.8 V for set switching processes, obtained from quasi-static measurements. The reset switching time decreased exponentially with increasing amplitude of applied reset voltage pulse, while the set switching time remained insensitive to the amplitude of the set voltage pulse. A fast reset process with a switching time of ~400 ns was achieved by applying a reset voltage of ~1.8 V, higher than that of the quasi-static reset voltage window but below the set voltage window. The sluggish reset process in TiO2 thin film and the dependence of the reset switching time on the amplitude of the applied voltage pulse was understood on the basis of a self-accelerated thermal dissolution model of conducting filaments (CFs), where a higher temperature of the CFs owing to enhanced Joule heating at a higher applied voltage imposes faster diffusion of oxygen vacancies, resulting in a shorter reset switching time. Our results clearly indicate that fast resistive switching with switching times in hundreds of nanoseconds can be achieved in ALD-grown TiO2 thin films. This may find applications in fast non-volatile unipolar resistive switching memories.

  14. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  15. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...

  16. Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2001-01-01

    Theoretical calculations have been performed for the temperature stability of the c-axis oriented LiNbO 3 thin film layered structures on passivated silicon (SiO 2 /Si) substrate with and without a non-piezoelectric SiO 2 overlayer. The phase velocity, electromechanical coupling coefficient and temperature coefficient of delay (TCD) have been calculated. The thicknesses of various layers have been determined for optimum SAW performance with zero TCD. The presence of a non-piezoelectric SiO 2 overlayer on LiNbO 3 film is found to significantly enhance the coupling coefficient. The optimized results reveal that a high coupling coefficient of K 2 =3.45% and a zero TCD can be obtained in the SiO 2 /LiNbO 3 /SiO 2 /Si structure with a 0.235λ thick LiNbO 3 layer sandwiched between 0.1λ thick SiO 2 layers. (author)

  17. Layer-by-layer assembly of thin film oxygen barrier

    International Nuclear Information System (INIS)

    Jang, Woo-Sik; Rawson, Ian; Grunlan, Jaime C.

    2008-01-01

    Thin films of sodium montmorillonite clay and cationic polyacrylamide were grown on a polyethylene terephthalate film using layer-by-layer assembly. After 30 clay-polymer layers are deposited, with a thickness of 571 nm, the resulting transparent film has an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation ( 2 /day/atm). This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a brick wall nanostructure comprised of completely exfoliated clay in polymeric mortar. With an optical transparency greater than 90% and potential for microwaveability, this thin composite is a good candidate for foil replacement in food packaging and may also be useful for flexible electronics packaging

  18. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  19. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  20. Layer-controllable graphene by plasma thinning and post-annealing

    Science.gov (United States)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  1. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  2. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  3. Structural, optical and electrical properties of quasi-monocrystalline silicon thin films obtained by rapid thermal annealing of porous silicon layers

    International Nuclear Information System (INIS)

    Hajji, M.; Khardani, M.; Khedher, N.; Rahmouni, H.; Bessais, B.; Ezzaouia, H.; Bouchriha, H.

    2006-01-01

    Quasi-mono-crystalline silicon (QMS) layers have a top surface like crystalline silicon with small voids in the body. Such layers are reported to have a higher absorption coefficient than crystalline silicon at the interesting range of the solar spectrum for photovoltaic application. In this work we present a study of the structural, optical and electrical properties of quasimonocrystalline silicon thin films. Quasimonocrystalline silicon thin films were obtained from porous silicon, which has been annealed at a temperature ranging from 950 to 1050 deg. C under H 2 atmosphere for different annealing durations. The porous layers were prepared by conventional electrochemical anodization using a double tank cell and a HF / Ethanol electrolyte. Porous silicon is formed on highly doped p + -type silicon substrates that enable us to prevent back contacts for the anodization. Atomic Force Microscope (AFM) was used to study the morphological quality of the prepared layers. Optical properties were extracted from transmission and reflectivity spectra. Dark I-V characteristics were used to determine the electrical conductivity of quasimonocrystalline silicon thin films. Results show an important improvement of the absorption coefficient of the material and electrical conductivity reaches a value of twenty orders higher than that of starting mesoporous silicon

  4. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    International Nuclear Information System (INIS)

    Khamseh, S.; Ghahari, M.; Araghi, H.; Faghihi Sani, M.A.

    2016-01-01

    W-doped VO 2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO X -WO X -VO X ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO 2 (M) and VO 2 (B) was formed in VO X -WO X -VO X ceramic thin films. Tungsten content of VO X -WO X -VO X ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R sq ) of VO X -WO X -VO X ceramic thin films increased from 65 to 86 kΩ/sq. The VO X -WO X -VO X ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  5. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  6. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    Energy Technology Data Exchange (ETDEWEB)

    Rozouvan, Tamara; Poperenko, Leonid [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine); Kravets, Vasyl, E-mail: vasyl_kravets@yahoo.com [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Shaykevich, Igor [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine)

    2017-02-28

    Highlights: • The optical properties and surface structure of graphene films. • Chemical vapour deposition method. • Scanning tunneling microscopy revealed vertical crystal lattice structure of graphene layer. • We report a significant enhancement of the absorption band in the vertically-oriented graphene sheets. - Abstract: The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene’s electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  7. Conducting atomic force microscopy studies on doped CulnO2 thin films for resistive memory device applications

    International Nuclear Information System (INIS)

    Mehta, B.R.

    2009-01-01

    Full text: Delafosite thin films have interesting structural, optical and electronic properties due to the highly anisotropic crystal structure and possibility of bipolar conductivity. In this presentation, optical, structural and electrical properties of Sn (n type) and Ca (p type) doped CulnO 2 layers grown by rf magnetron sputtering technique will be discussed. Depending on doping and deposition temperature, these films show nanocolumnar structure with (110) and (006) preferred orientations. The observed decrease in activation energy from 0.9 eV to about 0.10 eV and a large decrease in conductivity from 2.11 x 10 -10 Scm -1 to 1.66 x 10 -1 Scm -1 on Sn doping has been explained due to the change in preferred orientation along with efficient doping. Our results show that crystallite orientation is the most important factor controlling the electrical conduction in delafossite thin films. The anisotropy of electrical conduction along (006) and (110) directions in tin doped samples has been further established using conducting atomic force microscopy (CAFM) measurements. The CAFM measurements shows the presence of nanoconducting region when the current flow direction is aligned along the BO 6 layer and complete absence of conducting regions when the current direction is perpendicular to the film surface. Resistive memory devices based on Sn and Ca doped CulnO 2 films show stable and reproducible 'on' and 'off' states. CAFM measurement on these devices carried out before and after 'forming' show the growth of nanoconducting filaments on the application of a threshold voltage. It is possible to control resistance in the 'on' and 'off' states and magnitude of the forming and switching voltages by controlling the doping concentration and crystallite orientation in CulnO 2 layers

  8. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  9. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  10. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  11. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  12. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  13. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  14. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  15. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  16. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  17. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  18. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  19. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  20. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  1. Three dimensional simulation of giant magneto-impedance effect in thin film structures

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2011-01-01

    In this paper, a three dimensional model for the giant magneto-impedance (GMI) effect in thin film structures is developed using the finite element method(FEM) with a GMI permeability model embedded. One-layer, three-layer, and five-layer thin film structures are simulated. The GMI effect and the sensitivity are calculated as a function of the external magnetic field, driving frequency, and the thickness of the magnetic layers. The results show that the five-layer structure has the best performance, which is in accordance with experimental results. The GMI ratio and the sensitivity first improve with the increasing thickness of the magnetic layer but reach saturation at a certain value of the thickness. In a five-layer structure,saturation of the GMI effect becomes effective at about 3 μm thickness of the magnetic layers, where a GMI ratio of 1125% was obtained, with a corresponding sensitivity of 0.37%/A/m (29.6%/Oe).

  2. Three dimensional simulation of giant magneto-impedance effect in thin film structures

    KAUST Repository

    Li, Bodong

    2011-04-04

    In this paper, a three dimensional model for the giant magneto-impedance (GMI) effect in thin film structures is developed using the finite element method(FEM) with a GMI permeability model embedded. One-layer, three-layer, and five-layer thin film structures are simulated. The GMI effect and the sensitivity are calculated as a function of the external magnetic field, driving frequency, and the thickness of the magnetic layers. The results show that the five-layer structure has the best performance, which is in accordance with experimental results. The GMI ratio and the sensitivity first improve with the increasing thickness of the magnetic layer but reach saturation at a certain value of the thickness. In a five-layer structure,saturation of the GMI effect becomes effective at about 3 μm thickness of the magnetic layers, where a GMI ratio of 1125% was obtained, with a corresponding sensitivity of 0.37%/A/m (29.6%/Oe).

  3. Critical current, pinning and resistive state of superconducting single-crystal niobium with different types of defect structure

    International Nuclear Information System (INIS)

    Sokolenko, V.I.; Starodubov, Ya.D.

    2005-01-01

    Critical current pinning and resistive state of single crystal niobium of texture orientation are studied for different structural states obtained by rolling at 20 K by 42% and polishing the surface layers. It is found that the heterogeneous structures typical of the strained sample even after its thinning down to approx 10% display a lower current-carrying capability due to an increase of the thermomagnetic instability within the fragmented structure sections in the near-surface layers. For a homogeneous defect structure of the sample core with the density of equilibrium distributed dislocations of 1.3 centre dot 10 11 cm -2 , a correlation between the normal current density and the critical current density in the resistive state is found, in agreement with the concepts of flux creep due to the scatter of local values of J c

  4. Piggyback resistive Micromegas

    CERN Document Server

    Attié, D; Durand, D; Desforge, D; Ferrer-Ribas, E; Galán, J; Giomataris, Y; Gongadze, A; Iguaz, F J; Jeanneau, F; de Oliveira, R; Papaevangelou, T; Peyaud, A; Teixeira, A

    2013-01-01

    Piggyback Micromegas consists in a novel readout architecture where the anode element is made of a resistive layer on a ceramic substrate. The resistive layer is deposited on the thin ceramic substrate by an industrial process which provides large dynamic range of resistivity (10$^6$ to 10$^{10}$\\,M$\\Omega$/square). The particularity of this new structure is that the active part is entirely dissociated from the read-out element. This gives a large flexibility on the design of the anode structure and the readout scheme. Without significant loss, signals are transmitted by capacitive coupling to the read-out pads. The detector provides high gas gain, good energy resolution and the resistive layer assures spark protection for the electronics. This assembly could be combined with modern pixel array electronic ASICs. First tests with different Piggyback detectors and configurations will be presented. This structure is adequate for cost effective fabrication and low outgassing detectors. It was designed to perform ...

  5. Characterization of thin films with synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    Komiya, Satoshi

    2005-01-01

    Many studies about thin films by using synchrotron radiation in SPring-8 were reviewed. Structural analyses and assessment of thin films used for electronics, and also assessment of insulating films for the gate used in LSI were carried out. Film thickness, unevenness, and density of SiO 2 films in order of nanomer thickness were determined by interference fringes of x-ray reflection curves. The interface structure of (SiO 2 /Si) films was studied by x-ray crystal truncation rod scattering, and the correlation between leakage character depending on nitrogen concentration and interface structure was clarified on SiON film. The oxygen concentration in HfO films in nanometer thickness was determined by x-ray fluorescence analysis, and the interface reaction for HfO 2 /SiO 2 was clearly observed by electron spectroscopy. The structure of amorphous thin films with large dielectric constant was analyzed by x-ray absorption fine structure (XAFS) spectrum. Devices fabricated from multi-layer films showing giant magnetic resistance were developed for hard disk with a large memory. The character of giant magnetic resistance was governed by multi-layer thin film structure piled up by magnetic and nonmagnetic polycrystalline thin metals. For the multi-layer structure, the concentration distribution of constituent elements was determined to the direction of film thickness by x-ray reflection analysis and grazing incident x-ray fluorescence analysis. In the semiconductor laser source, Ga 1-x In x N, used for DVD, the local structure around In ions was studied by XAFS since constituent instability, especially overpopulation of In element, caused the deterioration of lifetime and light emission of the laser. The lattice constant of the light emission layer in InGaAs was measured by x-ray micro-beams. (author)

  6. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  7. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  8. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  9. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  10. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification

    Science.gov (United States)

    Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei

    2018-04-01

    We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.

  11. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  12. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  13. UV light induced insulator-metal transition in ultra-thin ZnO/TiO{sub x} stacked layer grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2016-08-28

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality

  14. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    Science.gov (United States)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  15. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    Science.gov (United States)

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  16. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    Science.gov (United States)

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  17. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  18. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  19. Atomic Layer Control of Thin Film Growth Using Binary Reaction Sequence Chemistry

    National Research Council Canada - National Science Library

    George, Steven

    1997-01-01

    Our research is focusing on the atomic layer control of thin film growth. Our goal is to deposit films with precise control of thickness and conformality on both flat and high aspect ratio structures...

  20. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers

    Science.gov (United States)

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-04-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  1. Layer-by-layer thinning of MoSe_2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF_6 + N_2 as precursors for layer-by-layer thinning of MoSe_2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe_2 were also demonstrated. • Equal numbers of MoSe_2 layers can be removed uniformly without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe_2) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe_2 can be changed from the indirect band gap to the direct band gap when MoSe_2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe_2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe_2 nanaosheets down to monolayer by using SF_6 + N_2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe_2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. By adjusting the etching rates we can achieve complete MoSe_2 removal and any disired number of MoSe_2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  2. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  3. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  4. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors

    International Nuclear Information System (INIS)

    Kang, S.M.; Yoon, S.G.; Suh, S.J.; Yoon, D.H.

    2008-01-01

    Tantalum nitride thin films were deposited by radio frequency (RF) reactive sputtering at various N 2 /Ar gas flow ratios and working pressures to examine the change of their electrical resistivity. From the X-ray diffraction (XRD) and four-point probe sheet resistance measurements of the TaN x films, it was found that the change of the crystalline structures of the TaN x films as a function of the N 2 partial pressure caused an abrupt change of the electrical resistivity. When the hexagonal structure TaN thin films changed to an f.c.c. structure, the sheet resistance increased from 16 Ω/sq to 1396 Ω/sq. However, we were able to control the electrical resistivity of the TaN thin film in the range from 69 Ω/sq to 875 Ω/sq, with no change in crystalline structure, within a certain range of working pressures. The size of the grains in the scanning electron microscopy (SEM) images seemed to decrease with the increase of working pressure

  5. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    Science.gov (United States)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  6. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    International Nuclear Information System (INIS)

    Dewald, Wilma; Sittinger, Volker; Szyszka, Bernd; Säuberlich, Frank; Stannowski, Bernd; Köhl, Dominik; Ries, Patrick; Wuttig, Matthias

    2013-01-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al 2 O 3 target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm 2 /Vs and electron density of 4.3 · 10 20 cm −3 from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm 2 /Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current

  8. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, Wilma, E-mail: wilma.dewald@ist.fraunhofer.de [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Sittinger, Volker; Szyszka, Bernd [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Säuberlich, Frank; Stannowski, Bernd [Sontor GmbH, OT Thalheim, Sonnenallee 7-11, 06766 Bitterfeld-Wolfen (Germany); Köhl, Dominik; Ries, Patrick; Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen, Sommerfeldstraße 14, 52074 Aachen (Germany)

    2013-05-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al{sub 2}O{sub 3} target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm{sup 2}/Vs and electron density of 4.3 · 10{sup 20} cm{sup −3} from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm{sup 2}/Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current.

  9. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  10. Influence of illumination and decay of electrical resistance of ITO nanoscale layers

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Erdelyi, K.; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Indium tin oxide (ITO) is known as a transparent oxide with n-type electrical conductivity. However, the as grown ITO layers have high resistivity and the transparency is also limited. In this work, thin ITO layers were deposited by evaporation and then underwent a post-growth annealing. Annealing leads to a low electrical resistivity and to an enhanced transparency. Annealed samples show n-type conductivity. In this work, ITO layers of typically 10 nm thicknesses were deposited onto Si{sub 1-x}Ti{sub x}O{sub 2} covered glass substrates and then annealed. First the conductivity was evaluated after the annealing. The rough, quick estimation was performed by simple two point direct resistance measurement, and then van der Pauw configuration and collinear four-point probe method were applied. The light sensitivity and storage time dependent stability were studied. It is demonstrated that the resistance decreases due to illumination, though only in a small extent. The measure and speed of the decrease depend on the wavelength of the light and the process is very slow (up to hours). The recovery of the starting resistance is also a slow process.

  11. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  12. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  13. Temperature stability of c-axis oriented LiNbO{sub 3}/SiO{sub 2}/Si thin film layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Monika [Department of Physics and Astrophysics, University of Delhi, Delhi (India)]. E-mail: mtomar@physics.du.ac.in; monikatomar@rediffmail.com; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi (India)

    2001-08-07

    Theoretical calculations have been performed for the temperature stability of the c-axis oriented LiNbO{sub 3} thin film layered structures on passivated silicon (SiO{sub 2}/Si) substrate with and without a non-piezoelectric SiO{sub 2} overlayer. The phase velocity, electromechanical coupling coefficient and temperature coefficient of delay (TCD) have been calculated. The thicknesses of various layers have been determined for optimum SAW performance with zero TCD. The presence of a non-piezoelectric SiO{sub 2} overlayer on LiNbO{sub 3} film is found to significantly enhance the coupling coefficient. The optimized results reveal that a high coupling coefficient of K{sup 2}=3.45% and a zero TCD can be obtained in the SiO{sub 2}/LiNbO{sub 3}/SiO{sub 2}/Si structure with a 0.235{lambda} thick LiNbO{sub 3} layer sandwiched between 0.1{lambda} thick SiO{sub 2} layers. (author)

  14. Relaxation of stresses in polystyrene–carbon microcomposite resistive layers

    International Nuclear Information System (INIS)

    Łukasik, Andrzej; Sibiński, Maciej; Walczak, Sylwia

    2012-01-01

    This paper presents the investigation results on thermoresistive elements made with a styrene–butadiene–styrene (SBS) modified polystyrene binder and carbon filler. Resistive layers were deposited by screen-printing method onto a polyethylene terephthalate (PET) foil. The temperature–resistance dependence of the examined layers was observed. The carbon filler content was precisely selected to obtain high values of TCR, such as 70,000 ppm/°C, for resistive layers with a SBS-modified polystyrene binder in the temperature range from 24 to 100 °C. Because of high TCR the influence of mechanical stresses, which is unfavorable feature of the examined layers, may be omitted. The highest TCR value and stability of electrical parameters during operation were observed for layers containing 42.9% of carbon filler by mass content. The measurements were carried out with the aid of an infrared camera and an oscilloscope because of very fast changes of resistive elements parameters. The analysis of the obtained results allows to draw conclusions about the carbon layer properties and to determine the stress–relaxation rate of the polymer structures.

  15. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    International Nuclear Information System (INIS)

    Norwood, D.P.

    1989-01-01

    A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure

  16. Chemically robust carbon nanotube–PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Institute of Scientific and Technical Information of China (English)

    Kewei Wang; Pan Xiong; Xiuping Xu; Kan Wang; YanLong Li; Yufeng Zheng

    2017-01-01

    A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE) and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1° ± 2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  17. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.

    Science.gov (United States)

    Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre

    2010-08-01

    Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  19. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  20. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  1. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  2. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  3. Optical properties and band structure of atomically thin MoS2

    Science.gov (United States)

    Shan, Jie; Mak, Kin Fai; Lee, Changgu; Hone, James; Heinz, Tony

    2010-03-01

    Atomically thin layers of materials can be expected to exhibit distinct electronic structure and novel properties compared to their bulk counterparts. Layered compounds, for which stable atomically thin samples can be produced, are ideal candidates for such studies. Graphene, a monolayer slice of the graphite crystal, is an illustrative example of both the stability and of the interest and importance of such materials. Here we report a study of thin layers of MoS2, a hexagonal layered bulk semiconductor with an indirect band gap of 1.3 eV. MoS2 samples with layer thickness N down to a monolayer were obtained by mechanical exfoliation. We observed an enhancement of the luminescence quantum yield by more than a factor of 100 in monolayer MoS2 compared to the bulk material. The combination of absorption, photoluminescence, and photoconductivity measurements indicates that a transition to a direct-gap material occurs in the limit of the single MoS2 layer. This result is supported by an earlier first-principles calculation [J. Phys. Chem. C 2007, 111, 16192]. Further, by varying the thickness of the samples, we were able to probe the evolution of the electronic structure for N = 1 -- 6 layers.

  4. Study of Local and Distortional Stability of Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    Imene Mahi

    2018-01-01

    Full Text Available Thin-walled structures have an increasingly large and growing field of application in the engineering sector, the goal behind using this type of structure is efficiency in terms of resistance and cost, however the stability of its components (the thin walls remains the first aspect of the behavior, and a primordial factor in the design process. The hot rolled sections are known by a consequent post-buckling reserve, cold-formed steel sections which are thin-walled elements also benefit, in this case, it seems essential to take into account the favorable effects of this reserve in to the verification procedure of the resistance with respect to the three modes of failures of this type of structure. The design method that takes into account this reserve of resistance is inevitably the effective width method. The direct strength method has been developed to improve the speed and efficiency of the design of thin-walled profiles. The latter mainly uses the buckling loads (for Local, Distortional and Global mode obtained from a numerical analysis and the resistance curves calibrated experimentally to predict the ultimate load of the profile. Among those, the behavior of a set of Cshaped profiles (highly industrialized is studied, this type of section is assumed to be very prone to modes of local and distortional instability. The outcome of this investigation revealed very relevant conclusions both scientifically and practically.

  5. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  6. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    Science.gov (United States)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  7. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  8. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  9. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  10. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  12. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  13. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  14. Adjusting White OLEDs with Yellow Light Emission Phosphor Dye and Ultrathin NPB Layer Structure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available High efficiency white organic light emission devices were demonstrated with phosphor material dye bis[2-(4-tertbutylphenylbenzothiazolato-N,C2′]iridium (acetylacetonate and ultrathin layer structure. The ultra thin layer be composed of 4,4′-bis[N-1-naphthyl-N-phenyl-amino]biphenyl (NPB or 4,4′-N,N′-dicarbazole-biphenyl : NPB mixed layer with blue light emission. The emission spectra of devices could be adjusted by different phosphor doping concentrations and ultra thin layer structure. Warm white light emitting device could be obtained with 5 wt% doping concentration and power efficiency of 9.93 lm/W at 5 V. Pure white light with Commission Internationale de l'Eclairage (CIE coordinates of (0.33, 0.30 and external quantum efficiency of 4.49% could be achieved with ultra thin layer device structure and 3 wt% phosphor doped device.

  15. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  16. Physical property improvement of IZTO thin films using a hafnia buffer layer

    Science.gov (United States)

    Park, Jong-Chan; Kang, Seong-Jun; Choi, Byeong-Gyun; Yoon, Yung-Sup

    2018-01-01

    Hafnia (HfO2) has excellent mechanical and chemical stability, good transmittance, high dielectric constant, and radiation resistance property; thus, it can prevent impurities from permeating into the depositing films. So, we deposited hafnia films with various thicknesses in the range of 0-60 nm on polyethylene naphthalate (PEN) substrates before depositing indium-zinc-tin oxide (IZTO) thin films on them using RF magnetron sputtering, and their structural, morphological, optical, and electrical properties were evaluated. All IZTO thin films were successfully deposited without cracks or pinholes and had amorphous structures. As the thickness of the hafnia film increased to 30 nm, the overall properties improved; a surface roughness of 2.216 nm, transmittance of 82.59% at 550 nm, resistivity of 5.66 × 10-4 Ω cm, sheet resistance of 23.60 Ω/sq, and figure of merit of 6.26 × 10-3 Ω-1 were realized. These results indicate that the structure and materials studied in this research are suitable for application in flexible transparent electronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, and solar cells.

  17. Electrically conductive aluminum oxide thin film used as cobalt catalyst-support layer in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Azam, Mohd Asyadi; Ismail, Syahriza; Mohamad, Noraiham; Isomura, Kazuki; Shimoda, Tatsuya

    2015-01-01

    This paper will present the unique characteristics of aluminum oxide (Al–O) and cobalt catalyst included in aligned carbon nanotube (CNT) electrode system of energy storage device, namely electrochemical capacitor. Electrical conductivity and nanostructure of the thermally oxidized Al–O used as catalyst-support layer in vertically grown single-walled CNTs were studied. Al–O films were characterized by means of current–voltage measurement and high resolution transmission electron microscopy analysis. The Al–O support layer was found to be conductive, with a relatively low resistance and, approximately 20 nm film thickness of Al–O is suggested to be too thin to form insulating barrier. The scanning TEM—annular dark field analysis confirmed that the nanosized cobalt catalyst particles distributed on Al–O surfaces and also embedded inside the Al–O film structure. (paper)

  18. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    Science.gov (United States)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  19. Tunneling and Origin of Large Access Resistance in Layered-Crystal Organic Transistors

    Science.gov (United States)

    Hamai, Takamasa; Arai, Shunto; Minemawari, Hiromi; Inoue, Satoru; Kumai, Reiji; Hasegawa, Tatsuo

    2017-11-01

    Layered crystallinity of organic semiconductors is crucial to obtaining high-performance organic thin-film transistors (OTFTs), as it allows both smooth-channel-gate-insulator interface formation and efficient two-dimensional carrier transport along the interface. However, the role of vertical transport across the crystalline molecular layers in device operations has not been a crucial subject so far. Here, we show that the interlayer carrier transport causes unusual nonlinear current-voltage characteristics and enormous access resistance in extremely high-quality single-crystal OTFTs based on 2-decyl-7-phenyl[1]-benzothieno[3 ,2 -b ][1]benzothiophene (Ph -BTBT -C10 ) that involve inherent multiple semiconducting π -conjugated layers interposed, respectively, by electrically inert alkyl-chain layers. The output characteristics present layer-number (n )-dependent nonlinearity that becomes more evident at larger n (1 ≤n ≤15 ), demonstrating tunneling across multiple alkyl-chain layers. The n -dependent device mobility and four-probe measurements reveal that the alkyl-chain layers generate a large access resistance that suppresses the device mobility from the intrinsic value of about 20 cm2 V-1 s-1 . Our findings clarify the reason why device characteristics are distributed in single-crystal OTFTs.

  20. Structural characterization of amorphous Fe-Si and its recrystallized layers

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2006-01-01

    We have synthesized amorphous Fe-Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe + ions to a fluence of 4.0 x 10 17 cm -2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe-Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi 2 thin layer

  1. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  2. Estimation of apparent soil resistivity for two-layer soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)

    2013-07-01

    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.

  3. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    Back contact; molybdenum; DC sputtering; dye-sensitized solar cell. 1. Introduction ... Structure and operation mechanism of a DSSC. Figure 2. Mo layers were .... to a better efficiency. In this work, the Mo thin films obtained by implying different.

  4. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  5. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Birkett, Martin, E-mail: martin.birkett@northumbria.ac.uk; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-07-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al{sub 2}O{sub 3} and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance.

  6. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Birkett, Martin; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-01-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al 2 O 3 and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance

  7. Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental–numerical approach

    NARCIS (Netherlands)

    Sluis, van der O.; Abdallah, Amir; Bouten, P.C.P.; Timmermans, P.H.M.; Toonder, den J.M.J.; With, de G.

    2011-01-01

    Layer buckling and delamination is a common interfacial failure phenomenon in thin film multi-layer structures that are used in flexible display applications. Typically, the substrate is coated on both sides with a hybrid coating, calleda hard coat (HC), which acts as a gas barrier and also

  8. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  9. Resistivity profiling for mapping gravel layers that may control contaminant migration at the Amargosa Desert Research Site, Nevada

    Science.gov (United States)

    Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.

    2008-01-01

    Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.

  10. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    Science.gov (United States)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  11. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  12. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  13. In situ determination of the dynamic properties of thinly-layered rock to evaluate rock-structure interaction at a nuclear power plant site

    International Nuclear Information System (INIS)

    Johnson, William J.; Rizzo, Paul C.

    1988-01-01

    The presence of layers of weak sedimentary rock in a column of otherwise competent rock can significantly affect the seismic response of nuclear power plant structures due to rock-structure interaction effects. The determination of the dynamic properties of thinly-layered rock is, however, difficult. When borings are placed close enough to allow for a characterization of refracted waves, other potential problems such as the identification of clear P- and S-wave arrivals, extremely short duration of records, near-field waves, instrumental stability, and overall record resolution become magnified. Other problems such as cultural noise and signal amplitude can become critical when high resolution is required. Conventional storage oscilloscopes and seismographs are inadequate under these conditions, but modern digital recording systems with the application of stringent calibration and recording procedures can yield successful results. A case history of a high-precision cross-hole survey to a depth of 150 meters in thinly-bedded sedimentary rock at a nuclear power plant site is presented in order to illustrate the systems and procedures necessary to obtain successful results under adverse conditions. (author)

  14. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  15. Beam Studies of the Segmented Resistive WELL: a Potential Thin Sampling Element for Digital Hadron Calorimetry

    CERN Document Server

    Arazi, Lior; Breskin, Amos; Bressler, Shikma; Moleri, Luca; Natal da Luz, Hugo; Oliveri, Eraldo; Pitt, Michael; Rubin, Adam; Marques Ferreira dos Santos, Joaquim; Calapez Albuquerque Veloso, João Filipe; White, Andrew Paul

    2013-01-01

    Thick Gas Electron Multipliers (THGEMs) have the potential of constituting thin, robust sampling elements in Digital Hadron Calorimetry (DHCAL) in future colliders. We report on recent beam studies of new single- and double-THGEM-like structures; the multiplier is a Segmented Resistive WELL (SRWELL) - a single-faced THGEM in contact with a segmented resistive layer inductively coupled to readout pads. Several 10$\\times$10 cm$^2$ configurations with a total thickness of 5-6 mm (excluding electronics) with 1 cm$^2$ pads coupled to APV-SRS readout were investigated with muons and pions. Detection efficiencies in the 98$%$ range were recorded with average pad-multiplicity of $\\sim$1.1. The resistive anode resulted in efficient discharge damping, with potential drops of a few volts; discharge probabilities were $\\sim10^{-7}$ for muons and $\\sim10^{-6}$ for pions in the double-stage configuration, at rates of a few kHz/cm$^2$. Further optimization work and research on larger detectors are underway.

  16. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  17. Performance of μ-RWELL detector vs resistivity of the resistive stage

    Science.gov (United States)

    Bencivenni, G.; De Oliveira, R.; Felici, G.; Gatta, M.; Morello, G.; Ochi, A.; Lener, M. Poli; Tskhadadze, E.

    2018-04-01

    The μ-RWELL is a compact spark-protected single amplification stage Micro-Pattern-Gaseous-Detector (MPGD). The detector amplification stage is realized with a polyimide structure, micro-patterned with a dense matrix of blind-holes, integrated into the readout structure. The anode is formed by a thin Diamond Like Carbon (DLC) resistive layer separated by an insulating glue layer from the readout strips. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to be efficiently operated in high particle fluxes. In this work we present the results of a systematic study of the μ-RWELL performance as a function of the DLC resistivity. The tests have been performed either with collimated 5.9 keV X-rays or with pion and muon beams at the SPS Secondary Beamline H4 and H8 at CERN.

  18. Surface morphology modelling for the resistivity analysis of low temperature sputtered indium tin oxide thin films on polymer substrates

    International Nuclear Information System (INIS)

    Yin Xuesong; Tang Wu; Weng Xiaolong; Deng Longjiang

    2009-01-01

    Amorphous or weakly crystalline indium tin oxide (ITO) thin film samples have been prepared on polymethylmethacrylate and polyethylene terephthalate substrates by RF-magnetron sputtering at a low substrate temperature. The surface morphological and electrical properties of the ITO layers were measured by atomic force microscopy (AFM) and a standard four-point probe measurement. The effect of surface morphology on the resistivity of ITO thin films was studied, which presented some different variations from crystalline films. Then, a simplified film system model, including the substrate, continuous ITO layer and ITO surface grain, was proposed to deal with these correlations. Based on this thin film model and the AFM images, a quadratic potential was introduced to simulate the characteristics of the ITO surface morphology, and the classical Kronig-Penney model, the semiconductor electrical theory and the modified Neugebauer-Webb model were used to expound the detailed experimental results. The modelling equation was highly in accord with the experimental variations of the resistivity on the characteristics of the surface morphology.

  19. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  20. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  1. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  2. Microprobe metrology for direct sheet resistance and mobility characterization

    DEFF Research Database (Denmark)

    Nielsen, Peter Folmer; Petersen, Dirch Hjorth; Lin, Rong

    2012-01-01

    The M4PP measurement technique has gained increased interest from the semiconductor industry for direct sheet resistance measurements on ultra thin layers and small structures/pads. Several fully automatic microRSP probing tools are today in use for in-line sheet resistance measurements on blanket...

  3. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  4. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  5. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  6. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  7. Application of thin-layer chromatography in radiochemistry

    International Nuclear Information System (INIS)

    Maki, Yasuyuki; Murakami, Yukio.

    1976-01-01

    In relation to the experimental procedures of thin-layer chromatography (TLC) in radiochemistry, the authors explained the preparation and development of radioactive test solutions, the methods of detection by autoradiography of isolated spots and by the calculation of measuring apparatus, and the identification of isolated spots. Next they outlined the carrier-free isolation and purification of nuclides, the quantification in combination with γ-ray spectrum, confirmation of the purity of RI-labeled medical supplies, their application to RI generator, thin-layer electrophoresis, in which electrophoresis and TLC were combined, and the application of this electrophoresis to isolation in recoil chemistry and to analysis and identification in carrier-free chemistry. (Kanao, K.)

  8. Electrical resistivity determination of subsurface layers, subsoil ...

    African Journals Online (AJOL)

    Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at and engineering site location in Akungba-Akoko, ... The study concluded that the characteristics of the earth materials in the site would be favourable to normal engineering structures/materials that may be located on it.

  9. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  10. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  11. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  12. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

    Science.gov (United States)

    Jang, Wonjun; Chung, Il Jun; Kim, Junwoo; Seo, Seongmin; Park, Yong Tae; Choi, Kyungwho

    2018-05-01

    In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

  13. Thin-film magneto-impedance structures with very large sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    García-Arribas, A., E-mail: alf@we.lc.ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Fernández, E. [BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Svalov, A. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Kurlyandskaya, G.V.; Barandiaran, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain)

    2016-02-15

    Thin film-based Magneto-Impedance (MI) structures are well suited for developing highly sensitive magnetic microsensors, which can be directly integrated into microelectronic circuits. Permalloy (Py) based structures benefit from well-established preparation procedures and enhanced structural stability over amorphous based sensors. In this work we use Finite Element Method calculations to complement our previous studies on high permeability Py multilayers, in order to determine the combination of magnetic and non-magnetic layers that maximizes the MI performance in sandwiched structures. The results indicate that optimum behavior is expected when the thickness of the non-magnetic layer equals the magnetic ones. The study is performed with an open flux configuration (Py not enclosing the central non-magnetic conductor), which permits the fabrication of the complete stack of layers in a single deposition process. On the outcome of that analysis, samples with a sandwiched multilayer structure defined as [Py(100 nm)/Ti(6 nm)]{sub 4}/Cu(400 nm)/[Ti(6 nm)/Py(100 nm)]{sub 4} have been prepared by magnetron sputtering and photolithography, having different dimensions. They were magnetically characterized by magneto-optical Kerr effect, displaying a well-defined transversal anisotropy, and the MI was measured in a network analyzer using a microstrip test-fixture. The measured MI ratio, defined as (Z-Zmin)/Zmin×100, reaches extraordinary values of 350%, while the sensitivity, calculated as the field derivative of the MI ratio, goes up to 300%/Oe (27 kΩ/T in absolute units). The MI ratio is lower than the best reported previously for amorphous CoSiB/Ag/CoSiB thin-film samples with closed-flux structure, but the sensitivity, which is the key parameter for the performance of sensors, is six times larger. These figures can be compared favorably with the ones obtained in wire-based samples, and definitely opens the way to incorporate thin-film structures in low-field MI

  14. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  15. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi; Stovas, Alexey

    2017-01-01

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer

  16. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  17. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    Science.gov (United States)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  18. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  19. Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory.

    Science.gov (United States)

    Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk

    2017-07-27

    An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.

  20. Microstructure and thermochromic properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khamseh, S.; Ghahari, M. [Institute for Color Science and Technology, Department of Nanomaterial and Nanocoatings, Tehran (Iran, Islamic Republic of); Araghi, H. [Islamic Azad University, Department of Materials Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Faghihi Sani, M.A. [Sharif University of Technology, Department of Materials Science and Engineering, Tehran (Iran, Islamic Republic of)

    2016-03-15

    W-doped VO{sub 2} films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO{sub 2} (M) and VO{sub 2} (B) was formed in VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films. Tungsten content of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R{sub sq}) of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased from 65 to 86 kΩ/sq. The VO{sub X}-WO{sub X}-VO{sub X} ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  1. Effects of hydrophilic solvent and oxidation resistance post surface treatment on molecular structure and forward osmosis performance of polyamide thin-film composite (TFC) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qibo; Xu, Yangyu [School of Environment, Tsinghua University, Beijing 100084 (China); Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Haijun, E-mail: yanghj@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Lu, E-mail: zhoulu@tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-30

    Graphical abstract: - Highlights: • NMP promotes swelling of polyamide, which enhances the TFC FO membrane water flux. • Electron-withdrawing carboxyl groups reduce the activity of polyamide molecules. • TMC and oxalic acid can improve the oxidation resistance properties of the FO membrane. • Oxalic acid and EDC improve the FO membrane separation performance significantly. - Abstract: In this article, novel hydrophilic solvents and antioxidants were used to post-treat aromatic polyamide thin-film composite (TFC) hollow fiber forward osmosis (FO) membranes. The effects of trimesoyl chloride (TMC) and oxalic acid on the structure of polyamide skin layer were investigated using ATR-FTIR and XPS analyses. Pure water flux and rejection of salts were detected using 2 M NaCl solution as draw solutions in FO processes. The results demonstrated that hydrophilic solvent N-methyl pyrrolidone (NMP) enhanced the water flux and kept a high salt retention of the TFC FO membrane. TMC and oxalic acid were both found to improve the oxidation resistance properties of the skin layer of TFC membrane because the electron-withdrawing carboxyl groups reduced the activity of polyamide molecular. The effects of the oxalic acid and carbodiimide on the molecular structures and the FO water flux of the polyamide TFC membranes were more marked than those of TMC. The novel TFC FO membrane treated by oxalic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) exhibited a high level of water flux (20.33 L m{sup −2} h{sup −1}), and the rates of salt rejection and salt reverse rejection were higher by 50% and 83%, respectively.

  2. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  3. Study on the Preparation and Properties of Colored Iron Oxide Thin Films

    International Nuclear Information System (INIS)

    Zhao Xianhui; Li Changhong; Liu Qiuping; He Junjing; Wang Hai; Liang Song; Duan Yandong; Liu Su

    2013-01-01

    Colored iron oxide thin films were prepared using Sol-gel technique. The raw materials were tetraethyl orthosilicate (TEOS), etoh ehanol (EtOH), iron nitrate, and de-ionized water. Various properties were measured and analysed, including the colour of thin films, surface topography, UV-Visible spectra, corrosion resistance and hydrophobicity. To understand how these properties influenced the structural and optical properties of Fe 2 O 3 thin films, Scanning Electron Microscope (SEM), UV Spectrophotometer and other facilities were employed. Many parameters influence the performance of thin films, such as film layers, added H 2 O content, and the amount of polydimethylsiloxane (PDMS). When the volume ratio of TEOS, EtOH and H 2 O was 15: 13: 1, the quality of Fe(NO 3 ) 3 ·9H 2 O was 6g, and pH value was 3, reddish and uniform Fe 2 O 3 thin films with excellent properties were produced. Obtained thin films possessed corrosion resistance in hydrochloric acid with pH=l and the absorption edge wavelength was ∼350.2nm. Different H 2 O contents could result in different morphologies of Fe 2 O 3 nanoparticles. When 1.5 ml PDMS was added into the Sol, thin films possessed hydrophobiliry without dropping. Coating with different layers, thin films appeared different morphologies. Meanwhile, with the increment of film layers, the absorbance increased gradually.

  4. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  5. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  6. Shadowgraph studies of laser-assisted non-thermal structuring of thin layers on flexible substrates by shock-wave-induced delamination processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre, E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Smausz, Tomi [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamas [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, Martin; Zimmer, Klaus [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Hopp, Bela [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The shock-wave-induced film delamination (SWIFD) is a laser patterning process. • The SWIFD process of CIGS solar cells was studied by shadowgraph measurements. • The study presented that SWIFD allows the structuring of CIGS solar cells. • The dynamics of the delamination process was analyzed. - Abstract: The laser-assisted microstructuring of thin films especially for electronic applications without damaging the layers or the substrates is a challenge for the laser micromachining techniques. The laser-induced thin-film patterning by ablation of the polymer substrate at the rear side that is called ‘SWIFD’ – shock-wave-induced film delamination patterning has been demonstrated. This study focuses on the temporal sequence of processes that characterize the mechanism of this SWIFD process on a copper indium gallium selenide (CIGS) solar cell stacks on polyimide. For this purpose high-speed shadowgraph experiments were performed in a pump probe experimental set-up using a KrF excimer laser for ablating the rear side of the polyimide substrate and measuring the shock wave generation at laser ablation of the polymer substrate as well as the thin-film delamination. The morphology and size of the thin-film structures were studied by scanning electron microscopy (SEM). Furthermore, the composition after the laser treatment was analyzed by energy dispersive X-ray (EDX) spectroscopy. The shadowgraph experiments allow the time-dependent identification and evaluation of the shock wave formation, substrate bending, and delamination of the thin film in dependence on the laser parameters. These results will contribute to improve the physical understanding of the laser-induced delamination effect for thin-film patterning.

  7. A general analytical equation for phase diagrams of an N-layer ferroelectric thin film with two surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z X; Teng, B H; Rong, Y H; Lu, X H; Yang, X [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: phytbh@163.com

    2010-03-15

    Within the framework of effective-field theory with correlations, the phase diagrams of an N-layer ferroelectric thin film with two surface layers are studied by the differential operator technique based on the spin-1/2 transverse Ising model. A general analytical equation for the phase diagram of a ferroelectric thin film with arbitrary layer number as well as exchange interactions and transverse fields is derived, and then the effects of exchange interactions and transverse fields on phase diagrams are discussed for an arbitrary layer number N. Meanwhile, the crossover features, from the ferroelectric-dominant phase diagram (FPD) to the paraelectric-dominant phase diagram (PPD), for various parameters of an N-layer ferroelectric thin film with two surface layers are investigated. As a result, an N-independent common intersection point equation is obtained, and the three-dimensional curved surfaces for the crossover values are constructed. In comparison with the usual mean-field approximation, the differential operator technique with correlations reduces to some extent the ferroelectric features of a ferroelectric thin film.

  8. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  9. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  10. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  11. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  12. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    Science.gov (United States)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  13. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  14. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  15. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  16. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  17. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  18. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  19. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kale, R.B.; Lokhande, C.D.

    2004-01-01

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E g ' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10 7 Ω cm

  20. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  1. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  2. Visible light dynamical diffraction in a 1-D photonic crystal-based interferometer with an extremely thin spacer layer

    International Nuclear Information System (INIS)

    Prudnikov, I.R.

    2016-01-01

    Properties of light diffraction in a Fabry–Pérot-like interferometer composed of two 1-D photonic crystals and a nanometer-thick spacer layer are analytically investigated. It is shown that the resonant enhancement of light wave intensity in such a layer is possible because of light dynamical diffraction from the photonic crystals of the interferometer. Numerical simulations of (i) light reflectivity and transmittance curves of the interferometer having an ultra-thin spacer layer (its thickness changes from less than 1 nm to about 10 nm) and (ii) the resonant distribution of the light wave intensity in the vicinity of the layer are performed. Based on the numerical simulations, potentialities for the determination of the structural parameters (e.g., thicknesses and refraction indexes) of ultra-thin spacer films are discussed. A difference is found to appear in resonant intensity enhancements inside the ultra-thin spacer layers between s- and p-polarized light waves.

  3. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  4. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti-Au-Ti-Au Thin-Film Stack

    Science.gov (United States)

    Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-04-01

    We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

  5. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  6. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  7. Thin layer activation techniques in research and industry

    International Nuclear Information System (INIS)

    Conlon, T.W.

    1993-01-01

    The following key application of thin layer activation technique (TLA) are discussed: ion-erosion in fusion tokamaks, bio-engineering technology, automobile industry. Future developments of the techniques, such as fission fragment TLA, multi-layer TLA and recoil implantation are discussed as well. 7 refs, 6 figs, 1 tab

  8. Finite difference method for inner-layer equations in the resistive MagnetoHydroDynamic stability analysis

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1996-08-01

    The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)

  9. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  10. Studies on morphology, electrical and optical characteristics of Al-doped ZnO thin films grown by atomic layer deposition

    Science.gov (United States)

    Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan

    2018-03-01

    Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).

  11. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  12. Mathematical modeling of thin layer drying of pistachio by using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering

    2003-05-01

    This paper presents a mathematical modeling of thin layer forced and natural solar drying of shelled and unshelled pistachio samples. In order to estimate and select the suitable form of solar drying curves, eight different mathematical models, which are semi-theoretical and/or empirical, were applied to the experimental data and compared according to their coefficients of determination (r,{chi}{sup 2}), which were predicted by non-linear regression analysis using the Statistical Computer Program. It was deduced that the logarithmic model could sufficiently describe thin layer forced solar drying of shelled and unshelled pistachio, while the two term model could define thin layer natural solar drying of these products in evaluation by considering the coefficients of determination, r{sub sfsd}=0.9983, {chi}{sup 2}{sub sfsd}=2.697x10{sup -5}; r{sub ufsd}=0.9990, {chi}{sup 2}{sub ufsd}=1.639x10{sup -5} for thin layer forced solar drying and r{sub snsd}=0.9990, {chi}{sup 2}{sub snsd}=3.212x10{sup -6}; r{sub unsd}=0.9970, {chi}{sup 2}{sub unsd}=4.590x10{sup -5} for thin layer natural solar drying. (Author)

  13. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  14. Low-frequency features of the ultrasound echo from an adhesively bonded layer-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaomin; LI Mingxuan; MAO Jie; LIAN Guoxuan

    2005-01-01

    The low-frequency features of the ultrasound reflection spectra from the structure of a single layer on a substrate bonded by a thin adhesive layer are theoretically studied; the low-frequency here means the frequency of the interrogating ultrasonic wave is less than the quart-wavelength resonance frequency of the adhesive layer. The possibility of the inversion of the thickness and the evaluation of the cohesion strength of the adhesive layer from the resonance frequency shifts of the layered system is indicated. An analytic solution to the nonlinear equation satisfied by the resonance frequency is presented by Taylor expansion method showing satisfactory agreement with the numerical results by Newton iterative method. The results indicate larger range for application than the traditional spring model for the thin adhesive layer. In a much lower frequency range the thin adhesive layer may be regarded to be a spring.

  15. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  16. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  17. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  18. Relationship of Estimated SHIV Acquisition Time Points During the Menstrual Cycle and Thinning of Vaginal Epithelial Layers in Pigtail Macaques.

    Science.gov (United States)

    Kersh, Ellen N; Ritter, Jana; Butler, Katherine; Ostergaard, Sharon Dietz; Hanson, Debra; Ellis, Shanon; Zaki, Sherif; McNicholl, Janet M

    2015-12-01

    HIV acquisition in the female genital tract remains incompletely understood. Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to vaginal infection during and after progesterone-dominated periods in the menstrual cycle. Nucleated and nonnucleated (superficial) epithelial layers were quantitated throughout the menstrual cycle of 16 macaques. We examined the relationship with previously estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals repeatedly exposed to low virus doses. In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% of mean follicular thickness (days 1-16; P = 0.007, Mann-Whitney test). Analyzing 4-day segments, the epithelium was thickest on days 9 to 12 and thinned to 31% thereof on days 29 to 32, with reductions of nucleated and nonnucleated layers to 36% and 15% of their previous thickness, respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment correlated with nonnucleated layer thinning (Pearson r = 0.7, P layer thinning (Pearson r = 0.6, P = 0.15). These data provide a detailed picture of dynamic cycle-related changes in the vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, nonnucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue architecture as susceptibility factor for infection and contribute to our understanding of innate resistance to SHIV infection.

  19. Critical Transitions in Thin Layer Turbulence

    Science.gov (United States)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  20. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  1. Multi-Dimensional Damage Detection for Surfaces and Structures

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  2. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  3. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  4. Structure and tribological properties of MoS2 low friction thin films

    Directory of Open Access Journals (Sweden)

    Paradecka Agnieszka

    2017-01-01

    Full Text Available The main aim of the studies was the deposition of the AlCrN film, covered by molybdenum disulphide (MoS2 – based lubricant, on the austenitic steel substrate. The AlCrN and MoS2 layers were deposited by PVD lateral rotating ARC-cathodes (LARC and magnetron sputtering technology on the X6CrNiMoTi17-12-2 respectively. Structural characterizations of the MoS2 thin films have been carried out using SEM (scanning electron microscopy and AFM (atomic force microscopy to determine the surface topography as well as HRTEM (high-resolution transmission electron microscopy and Raman spectroscopy for structural investigations. The tribological wear relationships using ball-on-disc test were specified for surface layers, determining the friction co-efficient and mass loss of the investigated surfaces. Tests of the coatings’ adhesion to the substrate material were made using the scratch test. HRTEM investigation shows an amorphous character of the MoS2 layer. In sliding dry friction conditions, the friction co-efficient for the investigated elements is set in the range between 0.4-0.5. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. The good properties of the PVD AlCrN+MoS2 coatings make them suitable in various engineering and industrial applications.

  5. Thin layer settling - a promising method for purifying industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Perevalov, V G; Kolokhmatova, N M; Malkina, I I; Smyslov, A I

    1979-01-01

    Proposed for removing oil and suspended substances from waste waters is a thin layer, tubular settler, whose elements are made from polyethylene pipes. The operational effectiveness of the settler on the average is 90-95%, the duration of the purification is 10-11 min, which is 1/12 of that in the most common and contemporary oil traps. The volume of the settler structure with this productivity may be reduced by 12 times.

  6. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  7. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  8. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  9. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy

    International Nuclear Information System (INIS)

    Barrès, T.; Tribollet, B.; Stephan, O.; Montigaud, H.; Boinet, M.; Cohin, Y.

    2017-01-01

    Silicon nitride thin films are widely used as diffusion barriers within stacks in the glass industry but turn out to be porous at the nanometric scale. EIS measurements were conducted on SiNx thin layers deposited on a gold layer. An electrochemical model was established to fit the EIS measurements making use of data from other complementary techniques. In particular, Transmission Electron Microscopy was performed on these thin layers to determine the diameter and the qualitative morphology of the pores. A quantitative determination of the through-porosity of the layer was deduced from the EIS model and was in good agreement with TEM measurements. Moreover, combining EIS with local observations enabled inhomogeneities in the layer to be probed by highlighting a specific region in the layer.

  10. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  11. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle

    2016-01-01

    Full Text Available This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC- bioautography and gas chromatography-mass spectrometry (GC-MS. Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethylphosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenylphenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  12. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  13. Resistive switching phenomenon and hole wind effect in YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Truchly, Martin; Plecenik, Tomas [Department of Experimental Physics, Comenius University, Bratislava (Slovakia); Zhitlukhina, Elena [Donetsk Institute for Physics and Engineering, Kyiv (Ukraine)

    2016-07-01

    We present an overview of our experimental and theoretical activities aimed to clarify the mechanism of resistive memory effects in YBCO thin layers. The phenomenon was studied by scanning spreading resistance microscopy (SSRM) and scanning tunneling microscopy (STM) techniques. The most striking feature uncovered (in contrast to previous experiments on planar bilayers with YBCO films) was the opposite voltage-bias polarity of the switching effect in all SSRM and a number of STM measurements. Observed hysteresis in current-voltage characteristics is interpreted as a movement of oxygen vacancies in the vicinity of the tip-YBCO contact. Since the charge distribution in YBCO samples is expected to be strongly inhomogeneous, the balance between the direct electrostatic force on activated oxygen ions and that caused by momentum exchange with the current carriers (holes) hitting them determines direction in which the oxygen vacancies are moving. We propose a minimalist model with the only fitting parameter that accounts for the resistance hysteresis phenomenon in the YBCO films studied.

  14. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  15. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  16. Structural parameters and resistive switching phenomenon study on Cd0.25Co0.75Fe2O4 ferrite thin film

    International Nuclear Information System (INIS)

    Chhaya, U.V.; Gadhvi, M.R.; Mistry, B.V.; Bhavsar, K.H.; Joshi, U.S.; Lakhani, V.K.; Modi, K.B.

    2011-01-01

    Cadmium substituted cobalt ferrite thin film with nominal composition Cd 0.25 Co 0.75 Fe 2 O 4 , has been grown on quartz substrate by chemical solution deposition and their structural and electrical properties have been investigated. Grazing incidence X-ray diffraction (XRD) confirmed single phase spine) structure with nanometer grain size. Atomic force microscopic analysis revealed uniform nano structured growth of about 70 nm average crystallite size. The XRD data have been used to determine the distribution of cations among the tetrahedral and octahedral sites of the spinel lattice and various structural parameters. The cation distribution determined from X-ray diffraction line intensity calculations revealed, 60% octahedral sites occupancy of Cd 2+ -ions in the composition. Four terminal I-V measurements show hysteretic curves, suggesting high resistance state (HRS) and low resistance state (LRS) in the film with polarity dependence. Maximum resistance ratio, R high /R low of 57% was observed at room temperature in the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 /Ag planar structure. Observed resistance switching is attributed to combined effects, viz., in the LRS, the major fraction of cadmium occupation and electron exchange between Fe 3+ and Fe 2+ at the B-sites, whereas the HRS shows Schottky-like conduction mechanism at the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 interface. (author)

  17. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  18. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  19. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  20. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    International Nuclear Information System (INIS)

    Pathan, H.M.; Lokhande, C.D.; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan

    2005-01-01

    Indium sulphide (In 2 S 3 ) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In 2 S 3 thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study

  1. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  2. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  3. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  4. Physicochemical, thin layer and gas-liquid chromatographic ...

    African Journals Online (AJOL)

    DELL

    2012-05-22

    May 22, 2012 ... PEG (3 m × 3 mm I. D.) was used for gas chromatography. Physicochemical analysis ... subjected to thin layer chromatography on plates (20 × 20 cm) having 0.25 mm thick silica gel ..... Headspace solid- phase microextraction ...

  5. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  6. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  7. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  8. Characterization of Ultra thin chromium layers deposited ou to SiO2 using the Le-PIXE and the RB S techniques

    International Nuclear Information System (INIS)

    Zahraman, K.; Nsouli, B.; Roumie, M.

    2007-01-01

    In this paper, we demonstrate the ability of the Le-PIXE (Low Energy PIXE) technique, using proton energies < 1 MeV, for the monitoring of the thickness and the thickness uniformity of ultra thin (0.5 nm < t < 20 nm) chromium layers deposited onto quartz substrates. Chromium is a good candidate for obtaining conductive ultra thin layers on insulator substrates such as quartz (SiO2). The resistivity of such layers is highly related to the quality of the deposited chromium film. In order to optimize the deposition process, there is a need for rapid and accurate monitoring of such films (film thickness, thickness uniformity over a big surface...). The acquisition time needed to obtain results with less than 3-4 % precision was 5 minutes for the thinnest layers. The validation for the use of the Le-PIXE technique was checked by means of conventional RB S technique.

  9. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  10. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    Science.gov (United States)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  11. Resistive foil edge grading for accelerator and other high voltage structures

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  12. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  13. Depth profiling of marker layers using x-ray waveguide structures

    International Nuclear Information System (INIS)

    Gupta, Ajay; Rajput, Parasmani; Saraiya, Amit; Reddy, V. R.; Gupta, Mukul; Bernstorff, Sigrid; Amenitsch, H.

    2005-01-01

    It is demonstrated that x-ray waveguide structures can be used for depth profiling of a marker layer inside the guiding layer with an accuracy of better than 0.2 nm. A combination of x-ray fluorescence and x-ray reflectivity measurements can provide detailed information about the structure of the guiding layer. The position and thickness of the marker layer affect different aspects of the angle-dependent x-ray fluorescence pattern, thus making it possible to determine the structure of the marker layer in an unambiguous manner. As an example, effects of swift heavy ion irradiation on a Si/M/Si trilayer (M=Fe, W), forming the cavity of the waveguide structure, have been studied. It is found that in accordance with the prediction of thermal spike model, Fe is much more sensitive to swift heavy ion induced modifications as compared to W, even in thin film form. However, a clear evidence of movement of the Fe marker layer towards the surface is observed after irradiation, which cannot be understood in terms of the thermal spike model alone

  14. Depth profiling of marker layers using x-ray waveguide structures

    Science.gov (United States)

    Gupta, Ajay; Rajput, Parasmani; Saraiya, Amit; Reddy, V. R.; Gupta, Mukul; Bernstorff, Sigrid; Amenitsch, H.

    2005-08-01

    It is demonstrated that x-ray waveguide structures can be used for depth profiling of a marker layer inside the guiding layer with an accuracy of better than 0.2 nm. A combination of x-ray fluorescence and x-ray reflectivity measurements can provide detailed information about the structure of the guiding layer. The position and thickness of the marker layer affect different aspects of the angle-dependent x-ray fluorescence pattern, thus making it possible to determine the structure of the marker layer in an unambiguous manner. As an example, effects of swift heavy ion irradiation on a Si/M/Si trilayer ( M=Fe , W), forming the cavity of the waveguide structure, have been studied. It is found that in accordance with the prediction of thermal spike model, Fe is much more sensitive to swift heavy ion induced modifications as compared to W, even in thin film form. However, a clear evidence of movement of the Fe marker layer towards the surface is observed after irradiation, which cannot be understood in terms of the thermal spike model alone.

  15. Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance

    International Nuclear Information System (INIS)

    Wang, X.Y.; Zhang, Z.S.; Bai, T.

    2010-01-01

    The sputtering target for high-resistance thin film resistors plays a decisive role in temperature coefficient of resistance (TCR). Silicon-rich chromium (Cr)-silicon (Si) target was designed and smelted for high-resistance thin film resistors with low TCR. Valve metal tantalum (Ta) and aluminum (Al) were introduced to the Cr-Si target to improve the performance of the target prepared. The measures for grain refining in smelting Cr-Si-Ta-Al target were taken to improve the performance of the prepared target. The mechanism and role of grain refinement were discussed in the paper. The phase structure of the prepared target was detected by X-ray diffraction (XRD). Rate of temperature drop was studied to reduce the internal stress of alloy target and conquer the easy cracking disadvantage of silicon-rich target. The electrical properties of sputtered thin film resistors were tested to evaluate the performance of the prepared target indirectly.

  16. Analysis of influence of buffer layers on microwave propagation through high-temperature superconducting thin films

    International Nuclear Information System (INIS)

    Ceremuga, J.; Barton, M.; Miranda, F.

    1994-01-01

    Methods of analysis of microwave propagation through superconducting thin films with buffer layers on dielectric substrates have been discussed. Expressions describing the transmission coefficient S 21 through the structure and the complex conductivity sigma of a superconductor in an analytical form have been derived. The derived equations are valid for microwave propagation in waveguides as well as in free space with relevant definition of impedances. Using the obtained solutions, the influences of buffer layers' parameters (thickness, relative permittivity and loss tangent) on the transmission coefficient has been investigated using MATLAB. Simulations have been performed for 10 GHz transmission through YBa 2 Cu 3 O 7 films on sapphire with SrTiO 3 and CeO 2 buffer layers and on silicon with CaF 2 and YSZ buffer layers. To illustrate the simulations, measurements of the transmission through YBCO film on sapphire with SrTiO 3 buffer layer have been performed. It has been shown that even lossy buffer layers have very little impact (smaller than 1% in magnitude and 0.3% in phase) on the transmission coefficient through superconducting thin films, providing their thickness is below 10 mu m. (author)

  17. Thin stillage fractionation using ultrafiltration: resistance in series model.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2009-02-01

    The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).

  18. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    International Nuclear Information System (INIS)

    Pan Feng; Qian Xian-Rui; Huang Li-Zhen; Wang Hai-Bo; Yan Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5‴-bis(4-fluorophenyl)-2,2':5',2″:5″,2‴-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F 16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit, which are fabricated at different substrate temperatures, as a buffer layer. The highest mobility of 4.08cm 2 /Vs is achieved using a F 16 CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature. Compared with the random small grain-like morphology of the room-temperature buffer layer, the high-temperature organic heterojunction presents a large-sized fiber-like film morphology, resulting in an enhanced conductivity. Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained. (cross-disciplinary physics and related areas of science and technology)

  19. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  20. Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance

    KAUST Repository

    Phuoc, Duong

    2017-11-10

    Copolyamide films with a thickness from 50 to 780 nm were fabricated by interfacial polymerization between mixtures of m-phenylene diamine and primary amine-terminated polyamidoamine dendrimers (PAMAM) in the aqueous phase and trimesoyl chloride (TMC) in the organic phase. Different PAMAM generations (G0, d = 15 Å, Z = 4; G3, d = 36 Å, Z = 32; and G5, d = 54, Z = 128, where d is the measured diameter and Z is the number of terminal groups) and concentrations were used to obtain copolyamide films with different crosslinked structures. The influences of the concentration and degree of branching (PAMAM generation) on free volume were analysed via positon annihilation spectroscopy (PAS) and correlated with the separation properties of copolyamide films. Besides, surface and intrinsic properties of copolyamide films under different conditions were compared. The high hydrophilicity of PAMAM in the copolyamide network leads to the formation of a hydration layer on the copolyamide surface, which minimizes fouling. The separation performance of copolyamide membranes with various PAMAM networks was investigated in forward osmosis (FO) experiments. Understanding the correlation between the PAMAM structure/concentration, free volume, thickness, and surface intrinsic properties leads to the design of suitable fouling resistant thin-film composite membranes in a single interfacial polymerization process.

  1. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  2. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  3. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  4. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  5. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  6. Atomic layer deposition of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  7. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu_2ZnSnS_4 thin films

    International Nuclear Information System (INIS)

    Yu, Ruei-Sung; Hung, Ta-Chun

    2016-01-01

    Highlights: • Oxygen incorporation in Cu_2ZnSnS_4 changes the energy band structure. • The material has a comparatively high-absorptive capacity for short wavelength. • Absorption coefficients of the film increase from 10"4 to 10"5 cm"−"1. • The oxygen-containing CZTS film has a mixture of crystallite and crystalline states. • The material could be a candidate as an absorber layer in multi-junction solar cells. - Abstract: This study used the sol–gel method to prepare Cu_2ZnSnS_4 thin films containing oxygen and explored the composition, structural, and optoelectronic properties of the films. The non-vacuum process enabled the oxygen content of the Cu_2ZnSnS_4 films to be 8.89 at% and 10.30 at% for two different annealing conditions. In the crystal structure, oxygen was substituted at the positions of sulfur and appeared in the interstitial sites of the lattice. The compositions of the thin films deviated from the stoichiometric ratio. Both films had kesterite structures with no secondary phase structure. The kesterite CZTS film possessed a composite microstructure of crystallite and crystalline states. The microstructure of the Cu_2ZnSnS_4 film with higher oxygen content was denser and the average grain size was smaller. Incorporating oxygen atoms into crystalline Cu_2ZnSnS_4 changed the energy band structure: the direct energy band gaps were, respectively, 2.75 eV and 2.84 eV; the thin films mainly adsorbed photons with wavelengths less than 500 nm; and the absorption coefficients increased from 10"4 cm"−"1 to 10"5 cm"−"1. The films had a comparatively high absorptive capacity for photons less than 350 nm. Increasing the oxygen content of the film lowered the resistivity. Thus, the oxygen-containing Cu_2ZnSnS_4 thin film could be a candidate for the p-type absorber layer material required in multi-junction solar cells.

  8. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  9. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    Science.gov (United States)

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  10. Enhancement of Endurance in HfO2-Based CBRAM Device by Introduction of a TaN Diffusion Blocking Layer

    KAUST Repository

    Chand, Umesh

    2017-08-05

    We propose a new method to improve resistive switching properties in HfO2 based CBRAM crossbar structure device by introducing a TaN thin diffusion blocking layer between the Cu top electrode and HfO2 switching layer. The Cu/TaN/HfO2/TiN device structure exhibits high resistance ratio of OFF/ON states without any degradation in switching during endurance test. The improvement in the endurance properties of the Cu/TaN/HfO2/TiN CBRAM device is thus attributed to the relatively low amount of Cu migration into HfO2 switching layer.

  11. Optimization of SMA layers in composite structures to enhance damping

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  12. Thin Film Structure of Tetraceno(2,3-B)thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    International Nuclear Information System (INIS)

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.

    2008-01-01

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno(2,3-b)thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  13. Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication

    International Nuclear Information System (INIS)

    Wang, Michael C.P.; Li Yunchao; Merbouh, Nabyl; Yu, Hua-Zhong

    2008-01-01

    Three arylferrocene derivatives, ferrocenylbenzene (MFcB), 1,3-diferrocenylbenzene (DFcB), and 1,3,5-triferrocenylbenzene (TFcB), were prepared and their redox properties systematically explored by thin-layer cyclic voltammetry (CV) and differential-pulse voltammetry (DPV). In contrast to conventional CV measurements that produced only a single pair of redox waves for all three compounds, the thin-layer technique discriminated between the multistep electron-transfer processes of DFcB and TFcB. In particular, two and three pairs of symmetric peaks were observed, respectively, when CV curves were recorded at a graphite electrode coated with a DFcB-containing and a TFcB-containing thin film of nitrobenzene and immersed in aqueous sodium perchlorate solution. These results demonstrate that the ferrocenyl moieties attached to the meta-positions of a benzene ring communicate electronically with each other, as a result of their distinct face-to-face orientations

  14. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    Science.gov (United States)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  15. RESISTANCE TEST OF DEPOSITED ALUMINIUM LAYER ON PARABOLIC PARTS OF VEHICLE HEADLIGHT

    Directory of Open Access Journals (Sweden)

    Michal ADAMIK

    2014-10-01

    Full Text Available This paper documents a basic quality measurement in an automotive light industry. The experiment is based on a verification of reflective aluminium layer resistance against 100% humidity and higher temperature. This simulates the lifetime of a headlight on vehicle. The goal of this test is to prove that the reflective aluminium layer is able to resist to this environment without any changes in its structure. If any change occurs, the modification of production process will be needed.

  16. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    Science.gov (United States)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  17. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  18. An optimized multilayer structure of CdS layer for CdTe solar cells application

    International Nuclear Information System (INIS)

    Han Junfeng; Liao Cheng; Jiang Tao; Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V.; Zhao Kui; Klein, A.; Jaegermann, W.

    2011-01-01

    Research highlights: → Two different methods to prepare CdS films for CdTe solar cells. → A new multilayer structure of window layer for the CdTe solar cell. → Thinner CdS window layer for the solar cell than the standard CdS layer. → Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer (∼80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  19. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  20. Improved conductivity of infinite-layer LaNiO{sub 2} thin films by metal organic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2013-12-15

    Highlights: •LaNiO{sub 2} films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO{sub 2}. •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO{sub 2} thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO{sub 2} is isostructural to SrCuO{sub 2}, the parent compound of high-T{sub c} Sr{sub 0.9}La{sub 0.1}CuO{sub 2} with T{sub c} = 44 K, and has 3d{sup 9} configuration, which is very rare in oxides but common to high-T{sub c} copper oxides. The bulk synthesis of LaNiO{sub 2} is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO{sub 2} is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO{sub 2}. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  1. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Ruiz-Morales, J.C.; Pena-Martinez, J.; Canales-Vazquez, J.; Nunez, P.

    2008-01-01

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range. - Graphical abstract: Thin films materials of mixed oxides with potential application in SOFC devices have been prepared with macroporous microstructure using PMMA microspheres as pore formers. Display Omitted

  2. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  3. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shui-Hsiang, E-mail: shsu@isu.edu.tw; Wu, Chung-Ming; Kung, Shu-Yi; Yokoyama, Meiso

    2013-06-01

    Organic thin-film transistors (OTFTs) with various buffer layers between the active layer and source/drain electrodes were investigated. The structure was polyethylene terephthalate/indium-tin oxide/poly(methyl methacrylate) (PMMA)/pentacene/buffer layer/Au (source/drain). V{sub 2}O{sub 5}, 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine (m-MTDATA) and m-MTDATA-doped V{sub 2}O{sub 5} films were utilized as buffer layers. The electrical performances of OTFTs in terms of drain current, threshold voltage, mobility and on/off current ratio have been determined. As a result, the saturation current of − 40 μA is achieved in OTFTs with a 10% m-MTDATA-doped V{sub 2}O{sub 5} buffer layer at a V{sub GS} of − 60 V. The on/off current ratio reaches 2 × 10{sup 5}, which is approximately double of the device without a buffer layer. The energy band diagrams of the electrode/buffer layer/pentacene were measured using ultra-violet photoelectron spectroscopy. The improvement in electrical characteristics of the OTFTs is attributable to the weakening of the interface dipole and the lowering of the barrier to enhance holes transportation from the source electrode to the active layer. - Highlights: • A buffer layer enhances the performance of organic thin-film transistors (OTFTs). • The buffer layer consists of organic-doped inorganic material. • Interface dipole is weakened at the active layer/electrodes interface of OTFTs.

  4. Structural, optical and NO{sub 2} gas sensing properties of ZnMgO thin films prepared by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: chbil.widad@live.fr [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Boukadhaba, M.A. [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Madhi, I. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif (Tunisia); and others

    2017-01-15

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO{sub 2} for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  5. Using COMSOL Multiphysics Software to Analyze the Thin Film Resistance Model of a Conductor on PET

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Merced-Sanabria, Milzaida; Vedrine-Pauléus, Josee

    2015-03-01

    In this research work, we will develop a virtual model to analyze the electrical conductivity of a thin film with three layers, one of graphene or conducting metal film, polyethylene terephthalate (PET) and Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS). COMSOL Multiphysics will be the software use to develop the virtual model to analyze the thin-film layers. COMSOL software allows simulation and modelling of physical phenomena represented by differential equations such as that of heat transfer, fluid movement, electromagnetism and structural mechanics. In the work, we will define the geometry of the model; in this case we want three layers-PET, the conducting layer and PEDOT:PSS. We will then add the materials and assign PET as the lower layer, the above conductor as the middle layer and the PEDOT:PSS as the upper layer. We will analyze the model with varying thickness of the top conducting layer. This simulation will allow us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates.

  6. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  7. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Zhang Jian; Yang Hui; Zhang Qilong; Dong Shurong; Luo, J. K.

    2013-01-01

    ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10 3 , better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

  8. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors

    International Nuclear Information System (INIS)

    Choi, Yuri; Kim, Gun Hee; Jeong, Woong Hee; Kim, Hyun Jae; Chin, Byung Doo; Yu, Jae-Woong

    2010-01-01

    Characteristics of oxide semiconductor thin film transistor prepared by gravure printing technique were studied. This device had inverted staggered structure of glass substrate/MoW/SiNx/ printed active layer. The active layer was printed with precursor of indium gallium zinc oxide solution and then annealed at 550 o C for 2 h. Influences of printing parameters (i.e. speed and force) were studied. As the gravure printing force was increased, the thickness of printed film was decreased and the refractive index of printed active layer was increased. The best printed result in our study was obtained with printing speed of 0.4 m/s, printing force of 400 N and the thickness of printed active layer was 45 nm. According to AFM image, surface of printed active layer was quite smooth and the root-mean square roughness was approximately 0.5 nm. Gravure printed active layer had a field-effect mobility of 0.81 cm 2 /Vs and an on-off current ratio was 1.36 x 10 6 .

  9. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  10. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  11. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  12. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Bolat, Sami; Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-01

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N 2 /H 2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH 3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N 2 :H 2 ambient

  13. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  15. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  16. Thin hybrid pixel assembly fabrication development with backside compensation layer

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R., E-mail: richard.bates@glasgow.ac.uk [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F. [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Pares, G.; Vignoud, L.; Kholti, B. [CEA Leti, MINATEC, 17 rue des Martyrs, F38054, Grenoble (France); Vahanen, S. [Advacam Oy, Tietotie 3, 02150 Espoo (Finland)

    2017-02-11

    The ATLAS and CMS experiments will both replace their entire tracking systems for operation at the HL-LHC in 2026. This will include a significantly larger pixel systems, for example, for ATLAS approximately 15 m{sup 2}. To keep the tracker material budget low it is crucial to minimize the mass of the pixel modules via thinning both the sensor and readout chip to about 150 μm each. The bump yield of thin module assemblies using solder based bump bonding can be problematic due to wafer bowing during solder reflow at high temperature. A new bump-bonding process using backside compensation on the readout chip to address the issue of low yield will be presented. The objective is to compensate dynamically the stress of the front side stack by adding a compensating layer to the backside of the wafer. A SiN and Al:Si stack has been chosen for the backside layer. The bow reducing effect of applying a backside compensation layer will be demonstrated using the FE-I4 wafer. The world's first results from assemblies produced from readout wafers thinned to 100 μm with a stress compensation layer are presented with bond yields close to 100% measured using the FE-I4 readout chip.

  17. Extraction of oxytetracycline starting from the meats of chickens and identifications by thin layer chromatography

    International Nuclear Information System (INIS)

    Elghozzi, Amira

    2007-01-01

    Use of antibiotics in the poultry also suspected as one of the cause of the emergence of resistance to antibiotics of some bacteria what causes risks on human health continuation of persistence of the residues in the foodstuffs. We were interested in detected the presence qualitatively of oxytetracyclin in samples of muscle and liver of chicken by the use of the techniques of thin layer chromatography. Although, These results are satisfactory, it is always necessary to prevent the dangers which cause the risks of the residues of oxytetracycline on health. (Author). 20 refs

  18. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  19. TiO{sub 2} nanofiber solid-state dye sensitized solar cells with thin TiO{sub 2} hole blocking layer prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinwei; Chen, Xi; Xu, Weihe [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Nam, Chang-Yong, E-mail: cynam@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Shi, Yong, E-mail: Yong.Shi@stevens.edu [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2013-06-01

    We incorporated a thin but structurally dense TiO{sub 2} layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO{sub 2} nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO{sub 2} layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO{sub 2} precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO{sub 2} layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO{sub 2} blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO{sub 2} layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime.

  20. Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays

    Science.gov (United States)

    Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.

    2018-04-01

    This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical

  1. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  2. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction

    International Nuclear Information System (INIS)

    Akaltun, Yunus

    2015-01-01

    CuO thin films were synthesised on glass substrates at room temperature using successive ionic layer adsorption and reaction (SILAR) method. The effect of film thickness on characteristic parameters such as the structural, morphological and optical properties of the films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all of the films exhibited polycrystalline structure with monoclinic phases and covered the glass substrates well. The crystalline and morphology of the films improved with increasing film thickness. The optical band gap decreased from 2.03 to 1.79 eV depending on the film thickness. The refractive index (n), electron effective mass (m_e"⁎/m_o) and static and frequency dielectric constants (ε_o, ε_∞) were determined using the energy band gap values. - Highlights: • CuO thin films were deposited using SILAR method. • The electron effective mass, refractive index, dielectric constant values were calculated. • Characterisation of the films has been performed using XRD, SEM, Raman and optical measurements. • The d values of the planes of with thickness show no variation.

  3. Structural and electrical properties of Nb doped TiO{sub 2} films prepared by the sol–gel layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Duta, M., E-mail: mduta@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Simeonov, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Teodorescu, V. [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Bucharest, Magurele (Romania); Predoana, L.; Preda, S.; Nicolescu, M.; Marin, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Spasov, D. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Gartner, M.; Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2016-02-15

    Highlights: • TiO{sub 2}:Nb (1.2 at.%) multilayer films were deposited by sol–gel method on glass and Si. • 5 and 10 layers TiO{sub 2}:Nb films crystallize only in the anatase phase. • E{sub g} values are within 3.24–3.32 eV showing a decrease with increasing the layer number. • The specific resistivity, effective donor and sheet energy densities were obtained. • Nb donor compensation by acceptor levels in TiO{sub 2}:Nb film was suggested. - Abstract: Thin films of 5 and 10-layered sol–gel TiO{sub 2} were doped with 1.2 at.% Nb and their structural, optical and electrical properties were investigated. The films crystallized only in anatase phase, as evidenced by X-ray diffraction and selected area electron diffraction analyses. High resolution transmission electron microscopy revealed nanosized crystallites with amorphous boundaries. Current-voltage measurements on metal-TiO{sub 2}–Si structures showed the formation of n{sup +}–n heterojunction at the TiO{sub 2}–Si interface with a rectification ratio of 10{sup 4}. The effective donor density varies between 10{sup 16} and 10{sup 17} cm{sup −3}, depending on film thickness. The sheet energy densities under forward and reverse bias are in the order of 10{sup 12} and 10{sup 10} cm{sup −2} eV{sup −1}, respectively. These values and the high specific resistivity (10{sup 4} Ω cm) support the existence of compensating acceptor levels in these films. It was established that the conduction mechanism is based on space charge limited current via deep levels with different energy positions in the band gap.

  4. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  5. Atomic layer deposition of Ru thin film using N{sub 2}/H{sub 2} plasma as a reactant

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Eun [Busan Center, Korea Basic Science Institute, 1275 Jisadong, Gangseogu, Busan, 618-230 (Korea, Republic of); Mun, Ki-Yeung; Choi, Sang-Kyung; Park, Ji-Yoon [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Cheon, Taehoon [Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu (Korea, Republic of); Kim, Woo Kyoung [School of Chemical Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Lim, Byoung-Yong; Kim, Sunjung [School of Materials Science and Engineering, University of Ulsan, Mugeo-dong, Nam-go, Ulsan, 680-749 (Korea, Republic of)

    2012-07-31

    Ruthenium (Ru) thin films were grown by atomic layer deposition using IMBCHRu [({eta}6-1-Isopropyl-4-MethylBenzene)({eta}4-CycloHexa-1,3-diene)Ruthenium(0)] as a precursor and a nitrogen-hydrogen mixture (N{sub 2}/H{sub 2}) plasma as a reactant, at the substrate temperature of 270 Degree-Sign C. In the wide range of the ratios of N{sub 2} and total gas flow rates (fN{sub 2}/N{sub 2} + H{sub 2}) from 0.12 to 0.70, pure Ru films with negligible nitrogen incorporation of 0.5 at.% were obtained, with resistivities ranging from {approx} 20 to {approx} 30 {mu} Ohm-Sign cm. A growth rate of 0.057 nm/cycle and negligible incubation cycle for the growth on SiO{sub 2} was observed, indicating the fast nucleation of Ru. The Ru films formed polycrystalline and columnar grain structures with a hexagonal-close-packed phase. Its resistivity was dependent on the crystallinity, which could be controlled by varying the deposition parameters such as plasma power and pulsing time. Cu was electroplated on a 10-nm-thick Ru film. Interestingly, it was found that the nitrogen could be incorporated into Ru at a higher reactant gas ratio of 0.86. The N-incorporated Ru film ({approx} 20 at.% of N) formed a nanocrystalline and non-columnar grain structure with the resistivity of {approx} 340 {mu} Ohm-Sign cm. - Highlights: Black-Right-Pointing-Pointer Atomic layer deposition (ALD) of Ru and N-incorporated Ru film using N{sub 2}/H{sub 2} plasma. Black-Right-Pointing-Pointer The growth rate of 0.057 nm/cycle and negligible incubation cycle. Black-Right-Pointing-Pointer A low resistivity of Ru ({approx} 16.5 {mu} Ohm-Sign cm) at the deposition temperature of 270 Degree-Sign C. Black-Right-Pointing-Pointer Electroplating of Cu on a 10-nm-thick ALD-Ru film.

  6. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  7. (AJST) THIN- LAYER DRYING OF DICED CASSAVA ROOTS

    African Journals Online (AJOL)

    opiyo

    effect of drying temperature on thin-layer drying was high, followed by initial moisture .... The moisture content was converted to moisture ratio (MR) using the non-exponential part .... The Potential of Cassava As a Cash. Crop For Small Holder ...

  8. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  9. Modification of thin-layer systems by swift heavy ions

    International Nuclear Information System (INIS)

    Bolse, W.; Schattat, B.; Feyh, A.

    2003-01-01

    The electronic energy loss of swift heavy ions (MeV/amu) within a solid results in a highly excited cylindrical zone of some nm in diameter, within which all atoms may be in motion for some tens of ps (transient local melting). After cooling down, a defect-rich or even amorphous latent track is left in many cases, especially in insulating materials. The resulting property alterations (density, micro-structure, morphology, phase composition, etc.) have been investigated for many bulk materials, while only very few experiments have been carried out with thin-film systems. In the present paper, a summary will be given of our studies on the transport of matter in thin-film packages induced by irradiation with high-energy ions. These is, on the one hand, atomic mixing at the interfaces, which is especially pronounced in ceramic systems and which seems to occur by interdiffusion in the molten ion track. On the other hand, we have discovered a self-organisation phenomenon in swift-heavy-ion-irradiated NiO layers, which at low fluences first showed periodic cracking perpendicular to the projected beam direction. After application of high fluences, the NiO layer was reorganised in 100-nm-thick and 1-μm-high NiO lamellae of the same separation distance (1-3 μm) and orientation as found for the cracks. Both effects can be attributed to transient melting of the material surrounding the ion trajectory. (orig.)

  10. Resistance switching in epitaxial SrCoOx thin films

    Science.gov (United States)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO2.5) and conducting perovskite (SrCoO3-δ) depending on the oxygen content. The current-voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoOx thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO2.5.

  11. Resistance switching in epitaxial SrCoOx thin films

    International Nuclear Information System (INIS)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-01-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO 3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO 2.5 ) and conducting perovskite (SrCoO 3−δ ) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO x thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO 2.5

  12. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  13. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  14. Si(Li) detectors with thin dead layers for low energy x-ray detection

    International Nuclear Information System (INIS)

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or ''dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si Kα absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO 2 at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab

  15. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  16. A simplified computing method of pile group to seismic loads using thin layer element

    International Nuclear Information System (INIS)

    Masao, T.; Hama, I.

    1995-01-01

    In the calculation of pile group, it is said that the results of response by thin layer method give the correct solution with the isotropic and homogeneous soil material in each layer, on the other hand this procedure spends huge computing time. Dynamic stiffness matrix of thin layer method is obtained from inversion of flexibility matrix between pile-i and pile-j. This flexibility matrix is full matrix and its size increase in proportion to the number of piles and thin layers. The greater part of run time is taken into the inversion of flexibility matrix against point loading. We propose the method of decreasing the run time for computing by reducing to banded matrix of flexibility matrix. (author)

  17. Integration of atomic layer deposition CeO2 thin films with functional complex oxides and 3D patterns

    International Nuclear Information System (INIS)

    Coll, M.; Palau, A.; Gonzalez-Rosillo, J.C.; Gazquez, J.; Obradors, X.; Puig, T.

    2014-01-01

    We present a low-temperature, < 300 °C, ex-situ integration of atomic layer deposition (ALD) ultrathin CeO 2 layers (3 to 5 unit cells) with chemical solution deposited La 0.7 Sr 0.3 MnO 3 (LSMO) functional complex oxides for multilayer growth without jeopardizing the morphology, microstructure and physical properties of the functional oxide layer. We have also extended this procedure to pulsed laser deposited YBa 2 Cu 3 O 7 (YBCO) thin films. Scanning force microscopy, X-ray diffraction, aberration corrected scanning transmission electron microscopy and macroscopic magnetic measurements were used to evaluate the quality of the perovskite films before and after the ALD process. By means of microcontact printing and ALD we have prepared CeO 2 patterns using an ozone-robust photoresist that will avoid the use of hazardous lithography processes directly on the device components. These bilayers, CeO 2 /LSMO and CeO 2 /YBCO, are foreseen to have special interest for resistive switching phenomena in resistive random-access memory. - Highlights: • Integration of atomic layer deposition (ALD) CeO 2 layers on functional complex oxides • Resistive switching is identified in CeO 2 /La 0.7 Sr 0.3 MnO 3 and CeO 2 /YBa 2 Cu 3 O 7 bilayers. • Study of the robustness of organic polymers for area-selective ALD • Combination of ALD and micro-contact printing to obtain 3D patterns of CeO 2

  18. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    Science.gov (United States)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  19. Tomographic Structural Changes of Retinal Layers after Internal Limiting Membrane Peeling for Macular Hole Surgery.

    Science.gov (United States)

    Faria, Mun Yueh; Ferreira, Nuno P; Cristóvao, Diana M; Mano, Sofia; Sousa, David Cordeiro; Monteiro-Grillo, Manuel

    2018-01-01

    To highlight tomographic structural changes of retinal layers after internal limiting membrane (ILM) peeling in macular hole surgery. Nonrandomized prospective, interventional study in 38 eyes (34 patients) subjected to pars plana vitrectomy and ILM peeling for idiopathic macular hole. Retinal layers were assessed in nasal and temporal regions before and 6 months after surgery using spectral domain optical coherence tomography. Total retinal thickness increased in the nasal region and decreased in the temporal region. The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) showed thinning on both nasal and temporal sides of the fovea. The thickness of the outer plexiform layer (OPL) increased. The outer nuclear layer (ONL) and outer retinal layers (ORL) increased in thickness after surgery in both nasal and temporal regions. ILM peeling is associated with important alterations in the inner retinal layer architecture, with thinning of the RNFL-GCL-IPL complex and thickening of OPL, ONL, and ORL. These structural alterations can help explain functional outcome and could give indications regarding the extent of ILM peeling, even though peeling seems important for higher rate of hole closure. © 2017 S. Karger AG, Basel.

  20. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  1. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  2. Thermal Effect on a CIGS Thin-Film Solar Cell P2 Layer by Using a UV Laser

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-07-01

    Full Text Available This study used ANSYS simulation software for analyzing an ultraviolet (UV (355 nm laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to SiO2 layer, molybdenum electrode, CIGS absorbed layer, CdS buffered layer, i-ZnO penetrate light layer, TCO front electrode, MgF resist reflected materials, andelectrode materials. The simulation and experimental results were compared to obtain a laser-delineated P2 laser with a low melting and vaporization temperature. According to the simulation results, the laser function time was 135 μs, the UV laser was 0.5 W, and the P2 layer thin films were removed. The experimental results indicated that the electrode pattern of the experiment was similar to that of the simulation result, and the laser process did not damage the base plate. The analysis results confirm that the laser apparatus is effective when applied to a stainless steel CIGS solar cell P2 layer.

  3. A 680 V LDMOS on a thin SOI with an improved field oxide structure and dual field plate

    International Nuclear Information System (INIS)

    Wang Zhongjian; Cheng Xinhong; Xia Chao; Xu Dawei; Cao Duo; Song Zhaorui; Yu Yuehui; Shen Dashen

    2012-01-01

    A 680 V LDMOS on a thin SOI with an improved field oxide (FOX) and dual field plate was studied experimentally. The FOX structure was formed by an 'oxidation-etch-oxidation' process, which took much less time to form, and had a low protrusion profile. A polysilicon field plate extended to the FOX and a long metal field plate was used to improve the specific on-resistance. An optimized drift region implant for linear-gradient doping was adopted to achieve a uniform lateral electric field. Using a SimBond SOI wafer with a 1.5 μm top silicon and a 3 μm buried oxide layer, CMOS compatible SOI LDMOS processes are designed and implemented successfully. The off-state breakdown voltage reached 680 V, and the specific on-resistance was 8.2 Ω·mm 2 . (semiconductor devices)

  4. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Science.gov (United States)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  5. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  6. The Recovery of a Magnetically Dead Layer on the Surface of an Anatase (Ti,CoO2 Thin Film via an Ultrathin TiO2 Capping Layer

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2017-03-01

    Full Text Available The effect of an ultrathin TiO2 capping layer on an anatase Ti0.95Co0.05O2−δ (001 epitaxial thin film on magnetism at 300 K was investigated. Films with a capping layer showed increased magnetization mainly caused by enhanced out-of-plane magnetization. In addition, the ultrathin capping layer was useful in prolonging the magnetization lifetime by more than two years. The thickness dependence of the magnetic domain structure at room temperature indicated the preservation of magnetic domain structure even for a 13 nm thick film covered with a capping layer. Taking into account nearly unchanged electric conductivity irrespective of the capping layer’s thickness, the main role of the capping layer is to prevent surface oxidation, which reduces electron carriers on the surface.

  7. Application of thin-layer Navier-Stokes equations near maximum lift

    Science.gov (United States)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  8. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  9. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  10. Highway pavement performance test for colored thin anti-skidding layers

    Science.gov (United States)

    Gao, Wei; Cui, Wei; Xu, Ming

    2018-03-01

    Based on the actual service condition of highway pavement colored thin anti-skidding layers, with materials of color quartz sand and two-component acrylic resin as basis, we designed such tests as the bond strength, shearing strength, tear strength, fatigue performance and aggregate polished value, and included the freeze-thaw cycle and de-icing salt and other factors in the experiment, connecting with the climate characteristics of circumpolar latitude and low altitude in Heilongjiang province. Through the pavement performance test, it is confirmed that the colored thin anti-skidding layers can adapt to cold and humid climate conditions, and its physical mechanical properties are good.

  11. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  12. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  13. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  14. Modeling growth kinetics of thin films made by atomic layer deposition in lateral high-aspect-ratio structures

    Science.gov (United States)

    Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.

    2018-05-01

    The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.

  15. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    Science.gov (United States)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  16. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  17. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  18. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...

  19. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  20. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  1. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    Wu, L L; Zhao, D G; Jiang, D S; Chen, P; Le, L C; Li, L; Liu, Z S; Zhang, S M; Zhu, J J; Wang, H; Zhang, B S; Yang, H

    2013-01-01

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρ c ). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  2. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers

    International Nuclear Information System (INIS)

    Jou, D.; Cimmelli, V.A.; Sellitto, A.

    2009-01-01

    It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.

  3. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Long Zhong; Liu Kezhao; Bai Bin; Yan Dongxu

    2010-01-01

    Nitrogen ion was implanted into uranium surface using plasma immersion ion implantation, and the corrosion resistance of modified layer was studied by corrosion experiment. SEM was used to observe variety of samples surface. In atmosphere, the sample surface had not changed during five months. In heat-humid environment, there was dot-corrosion appearing after two months, but it did not influence the integrity of the modified layer. AES was used to study the diffusion of oxygen and nitrogen during hot-humid corrosion, in three months, both of two elements diffused to the substrate, but the diffusion was weak. The structure of modified layer was not changed. Experimental results show that the modified layer formed by plasma immersion ion implantation has good corrosion resistance.

  4. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Long Zhong, E-mail: long2001@163.co [China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Liu Kezhao; Bai Bin; Yan Dongxu [China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2010-02-18

    Nitrogen ion was implanted into uranium surface using plasma immersion ion implantation, and the corrosion resistance of modified layer was studied by corrosion experiment. SEM was used to observe variety of samples surface. In atmosphere, the sample surface had not changed during five months. In heat-humid environment, there was dot-corrosion appearing after two months, but it did not influence the integrity of the modified layer. AES was used to study the diffusion of oxygen and nitrogen during hot-humid corrosion, in three months, both of two elements diffused to the substrate, but the diffusion was weak. The structure of modified layer was not changed. Experimental results show that the modified layer formed by plasma immersion ion implantation has good corrosion resistance.

  5. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  6. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  7. Bipolar and unipolar resistive switching behaviors of sol–gel-derived SrTiO3 thin films with different compliance currents

    International Nuclear Information System (INIS)

    Tang, M H; Wang, Z P; Zeng, Z Q; Xu, X L; Wang, G Y; Zhang, L B; Xiao, Y G; Yang, S B; Jiang, B; Li, J C; He, J

    2011-01-01

    The SrTiO 3 (STO) thin films on a Pt/Ti/SiO 2 /Si substrate were synthesized using a sol–gel method to form a metal–insulator–metal structure. This device shows the bipolar resistance switching (BRS) behavior for a compliance current I cc of less than 0.1 mA but exhibits soft breakdown at a higher level of compliance current. A transition from the BRS behavior to the stable unipolar resistive switching behavior (URS) was also observed. We found that the BRS behavior may be controlled by the structure interface while the URS behavior is likely bulk controlled. Our study indicates that the external compliance current is a key factor in resistance switching phenomenon of STO thin films

  8. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  9. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  10. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  11. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  12. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  13. Tuning the resistive switching memory in a metal–ferroelectric–semiconductor capacitor by field effect structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Y., E-mail: shouyu.wang@yahoo.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300074 (China); Guo, F.; Wang, X. [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300074 (China); Liu, W.F., E-mail: wfliu@tju.edu.cn [Department of Applied Physics, Faculty of Science, Tianjin University, Weijin Road, Nankai District, Tianjin 300072 (China); Gao, J., E-mail: jugao@hku.hk [Department of Physics, the University of Hong Kong, Pokfulam Road (Hong Kong)

    2015-11-30

    Highlights: • Bistable or tristable electrically conducting state is observed. • Coefficient can be tuned in situ by modulating carrier's density. • The RS effects may be of significance for multi-source controlled memory devices. - Abstract: Resistive switching (RS) effects based on a correlation between ferroelectric polarization and conductivity might become of particular interest for nonvolatile memory applications, because they are not subjected to the scaling restrictions. Here we report on RS behaviors modulated by a reversal of ferroelectric polarization in heterostructures comprising of a ferroelectric layer and a semiconducting manganite film. It is found that electrically conducting state is bistable or even tristable; and via the polarization flipping, a maximum resistive switching coefficient (R{sub max}/R{sub min}) is found to be larger than 3000 with bias of 6 V in Ag/BaTiO{sub 3}/La{sub 0.8}Ca{sub 0.2}MnO{sub 3} at room temperature. More importantly, employing field-effect structure with ferroelectric PMN-PT as substrate, we found that the resistive switching behaviors can be tuned in situ by modulating the concentration of carriers in the semiconducting manganite layer. Possible mechanisms are discussed on the basis of the interplay of bound ferroelectric charges, charged defects in ferroelectric layer and mobile carriers in manganite thin films. The giant RS effects observed here may be of significance for memory devices by combing electronic conduction with magnetic, spintronic, and optical functionalities.

  14. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  15. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  16. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Science.gov (United States)

    Gułkowski, Sławomir; Krawczak, Ewelina

    2017-10-01

    Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  17. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  18. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    Science.gov (United States)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  19. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  20. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  1. The split-cross-bridge resistor for measuring the sheet resistance, linewidth, and line spacing of conducting layers

    Science.gov (United States)

    Buehler, M. G.; Hershey, C. W.

    1986-01-01

    A new test structure was developed for evaluating the line spacing between conductors on the same layer using an electrical measurement technique. This compact structure can also be used to measure the sheet resistance, linewidth, and line pitch of the conducting layer. Using an integrated-circuit fabrication process, this structure was fabricated in diffused polycrystalline silicon and metal layers and measured optically and electrically. For the techniques used, the optical measurements were typically one-quarter micron greater than the electrical measurements. Most electrically measured line pitch values were within 2 percent of the designed value. A small difference between the measured and designed line pitch is used to validate sheet resistance, linewidth, and line spacing values.

  2. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Akaltun, Yunus, E-mail: yakaltun@erzincan.edu.tr

    2015-11-02

    CuO thin films were synthesised on glass substrates at room temperature using successive ionic layer adsorption and reaction (SILAR) method. The effect of film thickness on characteristic parameters such as the structural, morphological and optical properties of the films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all of the films exhibited polycrystalline structure with monoclinic phases and covered the glass substrates well. The crystalline and morphology of the films improved with increasing film thickness. The optical band gap decreased from 2.03 to 1.79 eV depending on the film thickness. The refractive index (n), electron effective mass (m{sub e}{sup ⁎}/m{sub o}) and static and frequency dielectric constants (ε{sub o}, ε{sub ∞}) were determined using the energy band gap values. - Highlights: • CuO thin films were deposited using SILAR method. • The electron effective mass, refractive index, dielectric constant values were calculated. • Characterisation of the films has been performed using XRD, SEM, Raman and optical measurements. • The d values of the planes of with thickness show no variation.

  3. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  4. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  5. Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Matei, A.; Ion, V.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2016-09-01

    Layered double hydroxides (LDHs) are a class of layered materials consisting of positively charged brucite-like layers and exchangeable interlayer anions. Layered double hydroxides containing a transition metal which undergoes a reversible redox reaction in the useful potential range have been proposed as electrode coating materials due to their properties of charge transport and redox catalysts in basic solutions. Ni–Al,(Ni,Mg)–Al and, as reference, non-electronically conductive Mg–Al double hydroxides thin films were obtained via pulsed laser deposition technique. The thin films were deposited on different substrates (Si, glass) by using a Nd:YAG laser (1064 nm) working at a repetition rate of 10 Hz. X-ray diffraction, Atomic Force Microscopy, Energy Dispersive X-ray spectroscopy, Fourier Transform Infra-Red Spectroscopy, Secondary Ions Mass Spectrometry, Impedance Analyzer and ellipsometry were the techniques used for the as deposited thin films investigation. The optical properties of Ni based LDH thin films and the effect of the Ni amount on the structural, morphological and optical response are evidenced. The optical band gap values, covering a domain between 3.84 eV and 4.38 eV, respond to the Ni overall concentration: the higher Ni amount the lower the band gap value. - Highlights: • Ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films were deposited. • The effect of the nickel is evidenced. • The possibility to tailor the materials accompanied by an optical response is shown.

  6. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  7. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  8. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  9. Thin Layer Drying Kinetics of Pineapple: Effect of Blanching ...

    African Journals Online (AJOL)

    Four thin-layer drying models were fitted to the experimental drying data. The .... MATLAB software package (version 6.5). The correlation ... to evaluate the goodness of fit of the simulation ... during the oven-drying process of pineapple slices.

  10. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  11. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  12. Reversed-phase thin-layer chromatography behavior of aldopentose derivatives

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available Quantitative structure-retention relationships (QSRR have been used to study the chromatographic behavior of some aldopentose. The behavior of aldopentose derivatives was investigated by means of the reversed-phase thin-layer chromatography (RP TLC on the silica gel impregnated with paraffin oil stationary phases. Binary mixtures of methanol-water, acetone-water and dioxane-water were used as mobile phases. Retention factors, RM0, corresponding to zero percent organic modifier in the aqueous mobile phase was determined. Lipophilicity C0 was calculated as the ratio of the intercept and slope values. There was satisfactory correlation between them and log P values calculated using different theoretical procedures. Some of these correlations offer very good predicting models, which are important for a better understanding of the relationships between chemical structure and retention. The study showed that the hydrophobic parameters RM0 and C0 can be used as a measures of lipophilicity of investigated compounds.

  13. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  14. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankir, Nurdan Demirci, E-mail: nsankir@etu.edu.tr; Aydin, Erkan; Ugur, Esma; Sankir, Mehmet

    2015-08-15

    Highlights: • Substrate structure of spray pyrolyzed CuInS{sub 2}/In{sub 2}S{sub 3} heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS{sub 2} based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO was studied as a function of the In{sub 2}S{sub 3} buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 10{sup 6} times. Electrical measurements under illumination revealed that short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), fill factor (FF) and efficiency (η) of the Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In{sub 2}S{sub 3} layer. The maximum J{sub sc} of 9.20 mA/cm{sup 2}, V{sub oc} of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In{sub 2}S{sub 3} layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed

  15. Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary); Beke, Szabolcs [Italian Institute of Technology, Department of Nanophysics, Genova (Italy); Pecz, Bela; Horvath, Robert; Petrik, Peter; Agocs, Emil [Research Institute for Technical Physics and Materials Science, Budapest (Hungary)

    2012-05-15

    Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol-gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550 {sup circle} C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of {proportional_to}170-330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0-13.7 k{omega}/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors. (orig.)

  16. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  17. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  18. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  19. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  20. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  1. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  2. Development of Ultrafast Laser Flash Methods for Measuring Thermophysical Properties of Thin Films and Boundary Thermal Resistances

    Science.gov (United States)

    Baba, Tetsuya; Taketoshi, Naoyuki; Yagi, Takashi

    2011-11-01

    Reliable thermophysical property values of thin films are important to develop advanced industrial technologies such as highly integrated electronic devices, phase-change memories, magneto-optical disks, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), semiconductor lasers (LDs), flat-panel displays, and power electronic devices. In order to meet these requirements, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed ultrafast laser flash methods heated by picosecond pulse or nanosecond pulse with the same geometrical configuration as the laser flash method, which is the standard method to measure the thermal diffusivity of bulk materials. Since these pulsed light heating methods induce one-dimensional heat diffusion across a well-defined length of the specimen thickness, the absolute value of thermal diffusivity across thin films can be measured reliably. Using these ultrafast laser flash methods, the thermal diffusivity of each layer of multilayered thin films and the boundary thermal resistance between the layers can be determined from the observed transient temperature curves based on the response function method. The thermophysical properties of various thin films important for modern industries such as the transparent conductive films used for flat-panel displays, hard coating films, and multilayered films of next-generation phase-change optical disks have been measured by these methods.

  3. Band gap determination of thin praseodymium oxide layers on aluminium oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Bergholz, Matthias; Schmeisser, Dieter [Brandenburgische Technische Universitaet, Cottbus (Germany). Angewandte Physik - Sensorik

    2008-07-01

    High-k dielectrics are important as never before in semiconductor industry. We investigate Pr{sub 2}O{sub 3} as one representative of this group on silicon and silicon-aluminium oxynitride substrates. In earlier work we observed the positive influence of this AlO{sub x}N{sub y} intermediate layer on the electrical properties of the Pr{sub 2}O{sub 3} layer. Now we present in-situ EELS, XPS and UPS measurements of gradually grown thin Pr{sub 2}O{sub 3} on AlO{sub x}N{sub y}. From these measurements we determine the band structure and find a very fast change of the band gap for the first few A, coupled with n-type behaviour for the Pr{sub 2}O{sub 3} film. These results are compared with RIXS measurements of a 5 nm Pr{sub 2}O{sub 3} on a 1 nm thick AlO{sub x}N{sub y} layer.

  4. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  5. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    Science.gov (United States)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  6. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    International Nuclear Information System (INIS)

    Fan, W.; Kabius, B.; Hiller, J.M.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 deg. C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlO x , while the oxide layer at the TiAl/Cu interface is an Al 2 O 3 -rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlO x interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 deg. C followed by a rapid thermal annealing at 700 deg. C. This process significantly reduced the thickness of the TiAlO x layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high

  7. Use of a wedge cuvette in thin layer photometry and its application to oximetry

    NARCIS (Netherlands)

    Spaan, J. A.; Garred, L. J.; van de Borne, P.

    1977-01-01

    A wedge cuvette was constructed by fixing 2 glass plates at a known angle with a spacer at one end. This resulted in a thin layer with thickness varying from 0 to 250 micrometer. By measuring the intensity of a beam of light through the thin layer as a function of distance along the wedge (and thus

  8. A simple model for quantifying the degree of layer-by-layer growth in low energy ion deposition of thin films

    International Nuclear Information System (INIS)

    Huhtamaeki, T.; Jahma, M.O.; Koponen, I.T.

    2007-01-01

    Layer-by-layer growth of thin films can be promoted by using low energy ion deposition (LEID) techniques. The basic process affecting the growth are often quite diverse, but often the ion impact induced inter layer mass transfer processes due to adatom insertion to lower step edges or pile-ups to step edges above dominate. In this paper we propose a simple phenomenological model which describes the growth of thin films in LEID under these conditions. The model makes possible to distinguish the dominant growth, the detection of the transition from the 3D growth to 2D growth, and it can be used to quantify the degree of layer-by-layer growth. The model contains only two parameters, which can be phenomenologically related to the properties of the bombarding ion beam

  9. Corrosion of thin, magnetron sputtered Nb_2O_5 films

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser; Geribola, Guilherme Altomari; Scheidt, Guilherme; Gonçalves de Araújo, Edval; Lopes de Oliveira, Mara Cristina; Antunes, Renato Altobelli

    2016-01-01

    Highlights: • Niobium oxide based films were obtained by DC magnetron sputtering. • Different deposition times were tested. • The best corrosion resistance was obtained for the Nb_2O_5 film produced at 15′. • Film porosity determines the corrosion resistance. - Abstract: Niobium oxide based thin films were deposited on AISI 316 stainless steel substrates using reactive DC magnetron sputtering. Structure, composition and corrosion resistance of the niobium oxide films were studied. The corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The concentration of niobium and oxygen in the films was obtained by Rutherford backscattering spectroscopy (RBS). The film structure was analyzed by X-ray diffractometry. The corrosion resistance of the substrate was improved by the Nb_2O_5 layers. The best protective performance was achieved for the deposition time of 15 min.

  10. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  11. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  12. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  13. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  14. Use of a Fabry-Perot resonator at millimeter wave frequencies in the determination of thin-film resistivities

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, S. J.

    1979-08-01

    A novel contact-free method of measuring resistivity of thin semiconducting films on highly conductive substrates is described. The material structure studied is commonly encountered in thin-film solar cell development. The microwave technique that involves using a semiconfocal Fabry-Perot cavity at a wavelength of 3 mm is discussed in detail. The sample consists o a thin film of CdS on a brass substrate and is mounted on the flat reflector of the cavity. Using field perturbation methods, an expression is derived that relates the film resistivity to the cavity quality factor Q. The cavity quality factor is an easily measured parameter and, by comparing measurements of Q with and without the sample mounted, an accurate measure of the resistivity is obtained. Accuracy of measurements and necessary sample constraints are discussed in detail. Three samples of CdS were measured on brass substrates spanning an order of magnitude in resistivity difference. The results of the method described agree with those of another method that involves current voltage measurement after application of a metallic contact. Unlike the latter method, however, the new technique provides a nondestructive way of measuring the resistivity of semiconductor films on conducting substrates and is amenable to automation.

  15. Fluid-structure-interaction analysis for welded pipes with flow-accelerated corrosion wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Ding, Y., E-mail: lan.sun@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The flow-accelerated corrosion (FAC) entrance effect results in enhanced wall thinning immediately downstream of a weld if the weld connects an upstream FAC-resistant material with a downstream less resistant material. The weld regions, especially those with local repairs, are susceptible to cracking due to the high residual stresses induced by fabrication. The combined effects of the FAC entrance effect and high stresses at a weld might compromise the structural integrity of the piping and lead to a failure. Weld degradation by FAC entrance effect has been observed at nuclear and fossil power plants. This paper describes an application using fluid-structure-interaction (FSI) modelling to study the combined effects of FAC wall thinning, weld residual stresses, and in-service loads on welded structures. Simplified cases analyzed were based on CANDU outlet feeder conditions. The analysis includes the flow and mass transfer modelling of the FAC entrance effect using computational fluid dynamics (CFD) and nonlinear structural analyses of the welded structures with wall thinning and an assumed weld residual stress and strain distribution. The FSI analyses were performed using ANSYS Workbench, an integrated platform that enables the coupling of CFD and structural analysis solutions. The obtained results show that the combination of FAC, weld residual stresses, in-service loads (including the internal pressure) and (or) extreme loads could cause high stresses and affect the integrity of the welded pipes. The present work demonstrated that the FSI modelling can be used as an effective approach to assess the integrity of welded structures. (author)

  16. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  17. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  18. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  19. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-03-02

    Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO{sub 2}) into the host oxide to tune the resistivity. We demonstrate Sn{sub x}Zr{sub 1−x}O{sub 2}:F films with tunable resistivities varying from 0.001 to 10 Ω cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact.

  20. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  1. Characterization of nanostructured photosensitive cadmium sulphide thin films grown by SILAR deposition technique

    International Nuclear Information System (INIS)

    Ubale, A.U.; Bargal, A.N.

    2010-01-01

    This paper reports the preparation of photosensitive nanostructured CdS thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature. To obtain good quality CdS thin films, preparative conditions such as concentration of cationic and anionic precursors, adsorption and rinsing time durations etc. are optimized. The structural, optical and electrical characterizations of the as-deposited and annealed CdS thin films were carried out using X-ray diffraction, scanning electron microscopy, optical absorption and electrical resistivity methods. The photoconductivity studies showed that the annealed films are more than that photosensitive. The TEP measurement shows that deposited films are of n-type. (author)

  2. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    Science.gov (United States)

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  3. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    Science.gov (United States)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-12-01

    Infinite-layer LaNiO2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO2 is isostructural to SrCuO2, the parent compound of high-Tc Sr0.9La0.1CuO2 with Tc = 44 K, and has 3d9 configuration, which is very rare in oxides but common to high-Tc copper oxides. The bulk synthesis of LaNiO2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO2. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  4. Method for the manufacture of a thin-layer battery stack on a three-dimensional substrate

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manufacture of a thin-layer battery stack on a three-dimensional substrate. The invention further relates to a thin-layer battery stack on a three-dimensional substrate obtainable by such a method. Moreover, the invention relates to a device comprising such

  5. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics

    International Nuclear Information System (INIS)

    Kim, Namsu; Graham, Samuel

    2013-01-01

    A flexible thin-film encapsulation architecture for organic electronics was built and consisted of a silicon oxide/alumina and parylene layer deposited over Ca sensors on a barrier-coated polyethylene terephthalate substrate. The film's effective water vapor transmission rate was 2.4 ± 1.5 × 10 −5 g/m 2 /day at 20 °C and 50% relative humidity. Flexural tests revealed that for films deposited on the polyethylene terephthalate substrate, the barrier layer failed due to cracking at a curvature radius of 6.4 mm, corresponding to a strain of 0.8%. Adding an epoxy top coat of suitable thickness shifted the neutral axis toward the encapsulation layer, reducing the induced strain. Barrier performance was maintained under the 6.4 mm radius of curvature in this encapsulation structure. Thus, shifting the neutral axis via device structural design is an effective method of extending the flexibility of thin-film encapsulation structure without compromising the performance loss as a barrier layer. - Highlights: • High performance barrier is fabricated on flexible substrate. • The water vapor transmission rate is 2.4 ± 1.5 × 10 −5 g/m 2 /day. • The structure maintains its performance under a small radius of bending curvature

  6. Resistivity Effects of Cation Ordering in Highly-Doped La2-xSrxCu4 Epitaxial Thin Films

    Science.gov (United States)

    Burquest, Franklin; Marmol, Rodrigo; Cox, Nicholas; Nelson-Cheeseman, Brittany

    Highly-doped La2-xSrxCuO4 (LSCO) films (0.5 causes internal polar electrostatic forces, which have been shown to cause stretching of the apical oxygen bond in analogous epitaxial nickelate films. Thin film samples are grown concurrently to minimize extraneous effects on film structure and properties. Atomic force microscopy and x-ray reflectivity demonstrate that the films are single crystalline, epitaxial, and smooth. X-ray diffraction is used to measure the c-axis of the films as a function of doping and dopant cation ordering. Electrical transport data of the ordered samples is compared with transport data of conventional disordered cation samples. Preliminary data indicates significant differences in resistivity at both 300K and 10K between the cation-ordered and cation-disordered samples. This work indicates that dopant cation ordering within the layered cuprates could significantly modify the conduction mechanisms at play in these materials.

  7. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    Science.gov (United States)

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  8. Estimation of the Influence of Thin Air Layers on Structures by the Use of Qualitative One-Dimensional Models

    Science.gov (United States)

    Chimeno Manguan, M.; Roibas Millan, E.; Simon Hidalgo, F.

    2014-06-01

    Air layers are regions of air between structural elements than can be found in numerous spacecraft structures. The space between folded solar panels and between antennas and a satellite's body are cases of air layers. For some cases, depending on the flexibility of the contiguous structures, the contribution of air layers can modify noticeably the dynamic response of a spacecraft structure. The analysis of these problems in detailed numerical models as Finite and Boundary Element models are characterised by a very small element size because of the requirements imposed by the thickness of the air layers and the fluid-structure interface. Then, a preliminary assessment of the influence of the air layer allows optimizing the development work flow of these elements. This work presents a methodology to preliminarily assess the influence of air layers in the structural response. The methodology is based on the definition of simplified one-dimensional models for the structure and the air gaps. The study of these simple models can be a useful tool to determine the degree of influence of the air layers in the system. Along with the introduction of the methodology a study on several of the model parameters as the number of degrees of freedom for the air layer or the structure is presented. The performance of the methodology is illustrated with results for several cases including actual spacecraft structures.

  9. Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te, E-mail: stchen@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chen, Giin-Shan [Department of Materials Science and Engineering, Feng Chia University, Seatwen 407, Taichung, Taiwan (China)

    2015-11-05

    Previous studies have typically used sputter deposition to fabricate Cu–Mn alloy thin films with concentrated solute additions which have exceeded several atomic percentages, and the electrical resistivity values of the resultant films from previous studies are relatively high, ranging from 2.5 to 3.5 μΩ-cm. Herein, we proposed a different approach by using electroless process to plate dilute Cu–Mn (0.1 at.%) alloy thin films on dielectric layers (SiO{sub 2}). Upon forming-gas annealing, the Mn incorporated into Cu–Mn films was segregated toward the SiO{sub 2} side, eventually converting itself into a few atomic layer thickness at the Cu/SiO{sub 2} interface, and forming films with a low level of resistivity the same as that of pure Cu films (2.0 μΩ-cm). The interfacial layer served as not only a diffusion barrier, but also an adhesion promoter that prevented the film’s agglomeration during annealing at elevated temperatures. The mechanism for the dual-function performance by the Mn addition was elucidated by interfacial bonding analysis, as well as dynamic (adhesive strength) and thermodynamic (surface-tension) measurements. - Highlights: • Electroless plating is proposed to grow dilute (0.1%) Cu–Mn films on SiO{sub 2} layers. • Adequate annealing results in a self-forming of MnO{sub x} at the Cu/SiO{sub 2} interface. • The role of interfacial MnO{sub x} as a barrier and adhesion promoter is demonstrated. • The treated dilute film has a low ρ level of pure Cu, in contrast to concentrated films. • Its potential as a single entity replacement of Cu interconnect is presented.

  10. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  11. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  12. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  13. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  14. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  15. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  16. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    Science.gov (United States)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  17. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  18. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino acid-producing strains. Key words: Thin layer chromatography, pre-staining, amino acid detection. INTRODUCTION. Several analytical techniques have been often used for.

  19. Unusual ZFC and FC magnetic behavior in thin Co multi-layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dor, Oren; Yochelis, Shira [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel); Felner, Israel [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Paltiel, Yossi [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel)

    2017-04-15

    The observation of unusual magnetic phenomena in a Ni -based magnetic memory device ( O. Ben-Dor et al., 2013) encouraged us to conduct a systematic research on Co based multi-layered structure which contains a α-helix L polyalanine (AHPA-L) organic compound. The constant Co thickness is 7 nm and AHPA-L was also replaced by non-chiral 1-Decanethiol organic molecules. Both organic compounds were chemisorbed on gold by a thiol group. The dc magnetic field (H) was applied parallel and perpendicular to the surface layers. The perpendicular direction is the easy magnetization axis and along this orientation only, the zero-field-cooled (ZFC) plots exhibit a pronounced peak around 55–58 K. This peak is suppressed in the second ZFC and field-cooled (FC) runs performed shortly after the virgin ZFC one. Thus, around the peak position ZFC>FC a phenomenon seldom observed. This peak reappears after measuring the same material six months later. This behavior appears in layers with the non-chiral 1-Decanethiol and it is very similar to that obtained in sulfur doped amorphous carbon. The peak origin and the peculiar ZFC>FC case are qualitatively explained. - Highlights: • FC curve crosses ZFC curve in a 7 nm Co and thiol-based organic molecules multi-layered structure. • The ZFC>FC phenomena occurs for H perpendicular along the easy axis. • This phenomenon disappears in the second FC-ZFC run performed shortly after. • The unusual behavior reappears after six months.

  20. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  1. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  2. A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Grooteman, F.P.

    2000-01-01

    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means

  3. Application of an Al-doped zinc oxide subcontact layer on vanadium-compensated 6H-SiC photoconductive switches

    Science.gov (United States)

    Zhou, Tian-Yu; Liu, Xue-Chao; Huang, Wei; Dai, Chong-Chong; Zheng, Yan-Qing; Shi, Er-Wei

    2015-04-01

    Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the on-state resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials. Project supported by the Innovation Program of the Shanghai Institute of Ceramics (Grant No. Y39ZC1110G), the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), the Natural Science Foundation of Shanghai (Grant No. 14ZR1419000), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404146), and the National High-tech R & D Program of China (Grant Nos. 2013AA031603 and 2014AA032602).

  4. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  5. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  6. Study of structural and optical properties of PbS thin films

    Science.gov (United States)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  7. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu{sub 2}ZnSnS{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruei-Sung, E-mail: rsyu@asia.edu.tw [Department of Photonics and Communication Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan (China); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan (China); Hung, Ta-Chun [Department of Photonics and Communication Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan (China)

    2016-02-28

    Highlights: • Oxygen incorporation in Cu{sub 2}ZnSnS{sub 4} changes the energy band structure. • The material has a comparatively high-absorptive capacity for short wavelength. • Absorption coefficients of the film increase from 10{sup 4} to 10{sup 5} cm{sup −1}. • The oxygen-containing CZTS film has a mixture of crystallite and crystalline states. • The material could be a candidate as an absorber layer in multi-junction solar cells. - Abstract: This study used the sol–gel method to prepare Cu{sub 2}ZnSnS{sub 4} thin films containing oxygen and explored the composition, structural, and optoelectronic properties of the films. The non-vacuum process enabled the oxygen content of the Cu{sub 2}ZnSnS{sub 4} films to be 8.89 at% and 10.30 at% for two different annealing conditions. In the crystal structure, oxygen was substituted at the positions of sulfur and appeared in the interstitial sites of the lattice. The compositions of the thin films deviated from the stoichiometric ratio. Both films had kesterite structures with no secondary phase structure. The kesterite CZTS film possessed a composite microstructure of crystallite and crystalline states. The microstructure of the Cu{sub 2}ZnSnS{sub 4} film with higher oxygen content was denser and the average grain size was smaller. Incorporating oxygen atoms into crystalline Cu{sub 2}ZnSnS{sub 4} changed the energy band structure: the direct energy band gaps were, respectively, 2.75 eV and 2.84 eV; the thin films mainly adsorbed photons with wavelengths less than 500 nm; and the absorption coefficients increased from 10{sup 4} cm{sup −1} to 10{sup 5} cm{sup −1}. The films had a comparatively high absorptive capacity for photons less than 350 nm. Increasing the oxygen content of the film lowered the resistivity. Thus, the oxygen-containing Cu{sub 2}ZnSnS{sub 4} thin film could be a candidate for the p-type absorber layer material required in multi-junction solar cells.

  8. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    Science.gov (United States)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  9. Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment

    Science.gov (United States)

    Swidinsky, Andrei

    Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would

  10. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  11. Electrical characteristics of vapor deposited amorphous MoS2 two-terminal structures and back gate thin film transistors with Al, Au, Cu and Ni-Au contacts

    International Nuclear Information System (INIS)

    Kouvatsos, Dimitrios N.; Papadimitropoulos, Georgios; Spiliotis, Thanassis; Vasilopoulou, Maria; Davazoglou, Dimitrios; Barreca, Davide; Gasparotto, Alberto

    2015-01-01

    Amorphous molybdenum sulphide (a-MoS 2 ) thin films were deposited at near room temperature on oxidized silicon substrates and were electrically characterized with the use of two-terminal structures and of back-gated thin film transistors utilizing the substrate silicon as gate. Current-voltage characteristics were extracted for various metals used as pads, showing significant current variations attributable to different metal-sulphide interface properties and contact resistances, while the effect of a forming gas anneal was determined. With the use of heavily doped silicon substrates and aluminum backside deposition, thin film transistor (TFT) structures with the a-MoS 2 film as active layer were fabricated and characterized. Transfer characteristics showing a gate field effect, despite a leakage often present, were extracted for these devices, indicating that high mobility devices can be fabricated. SEM and EDXA measurements were also performed in an attempt to clarify issues related to material properties and fabrication procedures, so as to achieve a reliable and optimized a-MoS 2 TFT fabrication process. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Directory of Open Access Journals (Sweden)

    Gułkowski Sławomir

    2017-01-01

    Full Text Available Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  13. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  14. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.; Mannsfeld, Stefan C. B.; Kaushik, Ananth P.; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P.; Saathoff, Jonathan D.; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alá n; Toney, Michael F.; Clancy, Paulette; Bao, Zhenan

    2013-01-01

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  15. Structural characteristics of the acquired optic disc pit and the rate of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma.

    Science.gov (United States)

    Lee, Seung Hyen; Lee, Eun Ji; Kim, Tae-Woo

    2015-10-01

    The optic disc pit (ODP) has been considered a region of localized susceptibility to the damage of glaucoma. To determine whether the rate of retinal nerve fiber layer (RNFL) thinning differs according to the presence and structural characteristics of an ODP in primary open-angle glaucoma. We performed a prospective case-control study that included 163 eyes with primary open-angle glaucoma (83 with an ODP and 80 without an ODP) from Glaucoma Clinic of Seoul National University Bundang Hospital. Participants were enrolled from the ongoing Investigating Glaucoma Progression Study from January 1, 2012, through May 31, 2014. Mean (SD) follow-up was 3.32 (0.49) years (through May 31, 2014). Optic nerve heads underwent swept-source optical coherence tomography (OCT) to determine the presence of focal lamina cribrosa alteration and its structural characteristics. Eyes with and without photographic ODPs and corresponding microscopic laminar alterations were assigned to the ODP and non-ODP groups, respectively. The rates of progressive thinning of global and 6 sectoral spectral-domain OCT RNFL thicknesses were determined by linear regression and compared between the 2 groups. We used a general linear model to determine the factors associated with the rate of RNFL thinning; data obtained from September 21, 2009, through May 31, 2014, were used to calculate the rate of RNFL thinning. The relationship between the presence and structural characteristics of ODPs and the rate of progressive OCT RNFL thinning. Thinning of the RNFL was faster in the ODP group than in the non-ODP group in the global (mean [SD], -1.44 [1.31] vs -0.93 [1.10] [95% CI, -0.97 to -0.19] μm/y; P = .008), temporoinferior (mean [SD], -4.17 [4.15] vs -1.97 [3.26] [95% CI, -3.36 to -1.04] μm/y; P < .001), and temporal (mean [SD], -1.92 [2.62] vs -0.89 [1.62] [95% CI, -1.70 to -0.35] μm/y; P = .003) sectors. The rate of RNFL thinning was maximum in the temporoinferior sector (mean [SD], -4

  16. Ion implantation induced structural changes in reactively sputtered Cr-N layers on Si substrates

    International Nuclear Information System (INIS)

    Novakovic, M.; Popovic, M.; Perusko, D.; Milinovic, V.; Radovic, I.; Bibic, N.; Mitric, M.; Milosavljevic, M.

    2007-01-01

    This paper presents a study of the structure and composition of reactively sputtered Cr-N layers as a function of deposition parameters, and the effects of ion implantation on these structures. The layers were deposited on (1 0 0) Si substrates to a thickness of 240-280 nm, at different nitrogen partial pressure, and subsequently irradiated with 120 keV Ar ions. Structural characterisation of the samples was performed with Rutherford backscattering spectroscopy, transmission electron microscopy and X-ray diffraction analysis. We also measured their electrical resistivity with a four point probe. It was found that the layers grow in form of columnar structures, and their composition, Cr 2 N or CrN, strongly depends on the nitrogen partial pressure during deposition. Ion irradiation induces local micro-structural changes, formation of nano-particles and defects, which can be nicely correlated to the measured electrical resistivity

  17. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  18. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  19. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  20. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  1. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  2. Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates

    International Nuclear Information System (INIS)

    Morlier, Arnaud; Cros, Stéphane; Garandet, Jean-Paul; Alberola, Nicole

    2014-01-01

    Perhydropolysilazane (PHPS) conversion to silica through high energy ultraviolet irradiation has been studied. Precursor conversion speed and structural properties of the UV cured PHPS have been investigated and showed that this conversion method is fast but that complete conversion into silica is not achieved in an oxygen depleted atmosphere for layer thicknesses higher than 30 nm, resulting in a composite structure with concentration gradients. We further show that Fourier transform infrared spectroscopy data allow investigating the local structure and composition over the depth of the obtained layers. Gas permeability of the thin UV cured PHPS layers deposited on polymers has been studied. We used a high sensitivity permeation measurement technique to determine water vapor and oxygen permeabilities of the barrier layers and show the correlation between helium, oxygen and water permeability of these materials. Oxygen and water vapor transmission rates of respectively 0.06 cm 3 /m 2 /day/bar and 0.2 g/m 2 /day have been obtained with layers deposited on a polymer substrate. - Highlights: • Perhydropolysilazane has been converted into dense layers by vacuum UV irradiation. • Cured perhydropolysilazane layers have an inhomogeneous structure. • The cured material consists in 3 spontaneously formed layers. • Oxygen and water transmission rates of 0.06 cm 3 /m 2 /day/bar and 0.02 g/m 2 /day are reached

  3. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.

    Science.gov (United States)

    Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2017-01-03

    This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.

  4. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  5. Structure and morphology of ultrathin NiO layers on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Giovanardi, C.; Di Bona, A.; Altieri, S.; Luches, P.; Liberati, M.; Rossi, F.; Valeri, S

    2003-03-20

    The structure and morphology of thin NiO films prepared on Ag(001) by reactive growth at 460 K has been investigated as a function of the film thickness in the 3-20 monolayers range. Emphasis was on the study of the oxide layer misfit strain. Primary beam diffraction modulated electron emission and low energy electron diffraction experiments allowed the determination of the in-plane and out-of-plane strain in the oxide layer, while scanning tunneling microscopy, X-ray photoelectron spectroscopy and secondary electron imaging have been used to monitor the film morphology, stoichiometry and structure, respectively. The film strain begins to be removed at a critical thickness of 10 ML, while at 20 ML the film is fully relaxed. Strain analysis indicates that the Poisson ratio of the oxide layer is nearly equal to that of the bulk material.

  6. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  7. Orientation-dependent physical properties of layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Li-Wei; Guo, Bing; Chen, Chang-Le, E-mail: chenchl@nwpu.edu.cn; Luo, Bing-Cheng; Dong, Xiang-Lei; Jin, Ke-Xin

    2017-04-01

    In this paper, the resistivity and magnetization of orientation-engineered layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films have been investigated. Epitaxial thin films were deposited on single-crystalline LaAlO{sub 3} (LAO) (001), (110) and (111) substrates by pulse laser deposition (PLD) technique. It is found that only the (100)-oriented thin film performs insulator behavior, whereas the (110) and (111)-oriented thin films exhibit obvious metal-insulator transition at 70 K and between 85 and 120 K, respectively. Moreover, the same spin freezing temperature and different spin-glass-like transition temperatures have been observed in various oriented films. The observed experimental results were discussed according to the electron-transport mechanism and spin dynamics.

  8. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  9. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  10. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  11. Inverted fractal analysis of TiO{sub x} thin layers grown by inverse pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Égerházi, L., E-mail: egerhazi.laszlo@gmail.com [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary); Smausz, T. [University of Szeged, Faculty of Science, Department of Optics and Quantum Electronics, Dóm tér 9., H-6720 Szeged (Hungary); Bari, F. [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary)

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed f{sub D} = 1.83 ± 0.01 for TiO{sub x} layers grown at 5–50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of f{sub D} not only confirms the fractal structure of TiO{sub x} IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  12. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  13. Influence of gas-powder laser cladding’s technological parameters on structural characteristics of corrosion-resistant steels’ restored surface layer

    Science.gov (United States)

    Krylova, S. E.; Oplesnin, S. P.; Goltyapin, M. I.

    2018-03-01

    The results of the developed industrial technology for surface restoration of corrosion-resistant steels by laser surfacing are presented in the article. A comparative analysis of the microstructure of the welded wear-resistant layer, the fusion zone with the base material and the diffusion zone for different technological surfacing regimes are given. Dyrometric studies and nondestructive testing of the deposited layer for defects were performed

  14. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  15. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  16. Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy

    International Nuclear Information System (INIS)

    Rehman, Saif-ur-; Hayashi, Shinji; Sekkat, Zouheir; Mumtaz, Huma; Shaukat, S F

    2014-01-01

    We estimate the optical constants of a biological thin layer (Allium cepa) by surface plasmon resonance (SPR) spectroscopy. For this study, the fresh inner thin epidermis of an onion bulb was used and stacked directly on gold (Au) and silver (Ag) film surfaces in order to identify the shift in SPR mode of each metal film at an operating wavelength of 632.8 nm. The thickness and dielectric constants of the biological thin layer were determined by matching the experimental SPR curves to theoretical ones. The thickness and roughness of bare Au and Ag thin films were also measured by atomic force microscopy (AFM); the results of which are in good agreement with those obtained through experiment. Due to the high surface roughness of the natural onion epidermis layer, AFM could not measure the exact thickness of an onion epidermis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is between the dielectric constants of water and air. (paper)

  17. Etching characteristics and application of physical-vapor-deposited amorphous carbon for multilevel resist

    International Nuclear Information System (INIS)

    Kim, H. T.; Kwon, B. S.; Lee, N.-E.; Park, Y. S.; Cho, H. J.; Hong, B.

    2008-01-01

    For the fabrication of a multilevel resist (MLR) based on a very thin, physical-vapor-deposited (PVD) amorphous carbon (a-C) layer, the etching characteristics of the PVD a-C layer with a SiO x hard mask were investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in O 2 /N 2 /Ar plasmas: high-frequency/low-frequency combination (f HF /f LF ), HF/LF power ratio (P HF /P LF ), and O 2 and N 2 flow rates. The very thin nature of the a-C layer helps to keep the aspect ratio of the etched features low. The etch rate of the PVD a-C layer increased with decreasing f HF /f LF combination and increasing P LF and was initially increased but then decreased with increasing N 2 flow rate in O 2 /N 2 /Ar plasmas. The application of a 30 nm PVD a-C layer in the MLR structure of ArF PR/BARC/SiO x /PVD a-C/TEOS oxide supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the TEOS-oxide layer

  18. A study on the dissymmetrical microporous layer structure of a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang Tongtao; Lin Caishun; Fang Yong; Ye Feng; Miao Ruiying; Wang Xindong

    2008-01-01

    The effect of carbon type, carbon loading and microporous layer structure in the microporous layer on the performance of a direct methanol fuel cell (DMFC) at low temperature was investigated using electrochemical polarization techniques, electrochemical impedance spectroscopy, scanning electron microscope and other methods. Vulcan XC-72 carbon was found to be most suitable as a microporous layer for low temperature DMFC. Maximum fuel cell performance was obtained utilizing a microporous layer with carbon loading of 1.0 mg cm -2 when air was used as an oxidant. A membrane electrode assembly with 1.0 mg cm -2 Vulcan XC-72 carbon with 20 wt.% Teflon in the cathode and no microporous layer in the anode showed a maximum power density of 36.7 mW cm -2 at 35 deg. C under atmospheric pressure. The AC impedance study proved that a cell with a dissymmetrical microporous layer structure had lower internal resistance and mass transfer resistance, thus obtaining better performance

  19. Preparation and characterisation of Al-doped Zn O thin films

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.; Nounou, F.

    2010-12-01

    Al-doped Zn O thin films were prepared using RF magnetron sputtering under several preparation conditions (deposition pressure, RF power, substrate temperature). The films were optically and electrically characterized by measuring their transmission and resistance. Furthermore, x-ray diffraction spectroscopy was used in order to study the structural properties of these films. As a result of this study, the preparation conditions suitable for the highly conductive part of the window layer in solar cells were determined. (author)

  20. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.