WorldWideScience

Sample records for thin-film phosphor zn2geo4-mn

  1. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  2. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    Science.gov (United States)

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  3. Highly efficient transparent Zn2SiO4:Mn2+ phosphor film on quartz glass

    International Nuclear Information System (INIS)

    Seo, K.I.; Park, J.H.; Kim, J.S.; Kim, G.C.; Yoo, J.H.

    2009-01-01

    Highly efficient transparent Zn 2 SiO 4 :Mn 2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn 2 SiO 4 :Mn 2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn 2 SiO 4 : Mn 2+ crystals.

  4. Long afterglow properties of Eu2+/Mn2+ doped Zn2GeO4

    International Nuclear Information System (INIS)

    Wan, Minhua; Wang, Yinhai; Wang, Xiansheng; Zhao, Hui; Li, Hailing; Wang, Cheng

    2014-01-01

    Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized via a high temperature solid state reaction. X-ray diffraction (XRD), afterglow spectra, decay curves and thermoluminescence curves were utilized to characterize the samples. The X-ray diffraction phases indicate that the doping of small amount of transition metal ions or rare earth ions has no significant influence on the crystal structure of Zn 2 GeO 4 . According to the afterglow spectra, we found that the Zn 2 GeO 4 :Eu 2+ 0.01 exhibits a broad band emission with a peak at 474 nm, which could be ascribed to Eu 2+ transition between 4f 6 5d 1 and 4f 7 electron configurations. The Zn 2 GeO 4 :Mn 2+ 0.01 shows a narrow band emission peaking at 532 nm corresponding to the characteristic transition of Mn 2+ ( 4 T 1 → 6 A 1 ). The thermoluminescence (TL) curves above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence. The results indicate that Zn 2 GeO 4 may be an excellent host material for the rare earth ions or transition metal ions long afterglows. -- Highlights: • Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized. • Found that these phosphors possess a persistent luminescence property. • The long afterglow spectra were measured. • Found that these phosphors possess a trap level by thermoluminescence

  5. Excellent Brightness with Shortening Lifetime of Textured Zn2SiO4:Mn2+ Phosphor Films on Quartz Glass

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Kim, Seongsin Margaret; Kung, Patrick

    2010-04-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor films were fabricated by the thermal diffusion of ZnO:Mn on quartz glass. The Zn2SiO4:Mn2+ phosphor films became textured along several hexagonal directions and their chemical composition was continuously graded at the interface. The decay time of Mn2+ was as short as 4.4 ms, and the optical transition probability of the films defined as the inverse of decay time showed a strong correlation with film texture degree as a function of annealing temperature. The brightest Zn2SiO4:Mn2+ film showed a photoluminescent brightness as high as 65% compared with a commercial Zn2SiO4:Mn2+ phosphor powder screen and a maximum absolute transparency of 70%. These excellent optical properties are explained by the combination of the unique textured structure and continuous grading of the Zn2SiO4:Mn2+ chemical composition at the interface.

  6. Super-bright and short-lived photoluminescence of textured Zn2SiO4:Mn2+ phosphor film on quartz glass

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.

    2010-02-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.

  7. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    Science.gov (United States)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  8. Electroluminescence of Zn{sub 2}GeO{sub 4}:Mn through SiC whisker electric field enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaff, Brandon, E-mail: wagstabj@mcmaster.ca [McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada); Kitai, Adrian, E-mail: kitaia@mcmaster.ca [McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada); McMaster University, Department of Materials Science and Engineering, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada)

    2015-11-15

    Alternating current (AC) electroluminescence of thin film oxide phosphors is well known. However in this work electroluminescence of bulk oxide powder phosphors is achieved. A new type of AC Electroluminescent (ACEL) device has been created and developed by integrating SiC whiskers into a phosphor matrix composed of manganese-activated zinc germanate (Zn{sub 2}GeO{sub 4}:Mn{sup 2+}). The conductive SiC whiskers enhance the average electric field in specific regions of the phosphor such that localized breakdown of the phosphor occurs, thus emitting green light. This field enhancement allows light emission to occur in thick film oxide powder phosphors and is notably the first time that bright and reasonably efficient electroluminescence of zinc germanate has been observed without using expensive thin film deposition techniques. Light emission has been achieved in thick pressed pellets using surface-deposited electrodes and the brightness-voltage characteristics of light emission are shown to be consistent with field emission of carriers from the embedded whiskers. - Highlights: • A new electroluminescent phosphor, Zn{sub 2}GeO{sub 4}Mn{sup 2+}+SiC whiskers, is proposed. • A procedure is described to fabricate a solid sample of this composite material. • Under an AC voltage, green light is emitted only in samples containing the SiC whiskers. • A brightness of 25 Cd/m{sup 2} and efficiency of 0.25 Lm/W is observed 9.6×10{sup 6} V/m. • This is notably the first time that ACEL has been observed in bulk Zn{sub 2}GeO{sub 4}Mn{sup 2+}.

  9. Low-temperature synthesis of Zn{sub 2}SiO{sub 4}:Mn green photoluminescence phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, V. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Lakshmanan, Arunachalam, E-mail: arunachalamlakshmanan@yahoo.com [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Kalpana, S.; Sangeetha Rani, R.; Satheesh Kumar, R. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Jose, M.T. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-08-15

    Zn{sub 2}SiO{sub 4}:Mn green phosphor having comparable photoluminescence (PL) efficiency with commercial phosphor has been synthesized at 1000 Degree-Sign C using solid state reactions involving ZnO, silicic acid and manganese acetate. The water of crystallization attached to SiO{sub 2} in silicic acid whose dissociation at 1000 Degree-Sign C seem to promote the sintering efficiency of Zn{sub 2}SiO{sub 4}:Mn. Incremental ZnO addition and re-firing at 1000 Degree-Sign C promote the diffusion rate of ZnO and SiO{sub 2}. The formation of a single crystalline phase of willemite structure in the samples was confirmed by powder XRD measurements. The phosphor exhibit an intense excitation band centered around 275 nm and a relatively weak excitation centered around 380 nm while the broad band green emission peaks at 524 nm. Other parameters studied include PL spectra, grain morphology, ZnO/SiO{sub 2} molar ratio, Mn concentration, co-dopant/flux and the effect of chemical forms of Mn dopant as well as silica on the PL efficiency. - Highlights: Black-Right-Pointing-Pointer Synthesis of Zn{sub 2}SiO{sub 4}:Mn by solid state sintering at a low temperature of 1000 Degree-Sign C in air. Black-Right-Pointing-Pointer Dissociation of water of crystallization in silicic acid promote sintering efficiency. Black-Right-Pointing-Pointer Photoluminescence efficiency comparable with that of the commercial phosphor. Black-Right-Pointing-Pointer Enhancement in luminescence with MgCO{sub 3} co-doping and refiring as well as ZnO addition. Black-Right-Pointing-Pointer XRD confirm single phase willemite structure (rhombohedral) of Zn{sub 2}SiO{sub 4}:Mn.

  10. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films

    International Nuclear Information System (INIS)

    Tong, Y.H.; Tang, Q.X.; Liu, Y.C.; Shao, C.L.; Xu, C.S.; Liu, Y.X.

    2005-01-01

    Mn-passivated nanocrystalline ZnO:S thin films were fabricated by thermally oxidizing Mn-doped ZnS (ZnS:Mn) films prepared by electron beam evaporation. Mn was introduced to passivate the surface defects of ZnO and to improve the optical properties. X-ray diffraction (XRD) and photoluminescence (PL) spectra at 81.9 K indicated the S content in ZnO thin film gradually decreased with increasing annealing temperature. The fitted result of the temperature-dependent PL spectra in the range from 81.9 to 302.2 K showed that S dopant could broaden the optical band gap energy of ZnO. Room temperature PL spectra confirmed that the ultraviolet peak shifted to lower energy with the decrease of S content in the thin film because of the Burstein-Moss effect

  11. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  12. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  13. Synthesis and characterization of Mn2+-doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Keywords. Nanoparticles; nanocomposite; Mn2+-doped ZnS; annealing; X-ray diffrac- tion; FTIR; ultra violet. ... is an important wide band gap semiconductor, has attracted much attention owing to its wide applications ... semiconductor nanoparticles ZnS : Mn2+ is used as phosphors and also in thin film electroluminescent ...

  14. Transitions of microstructure and photoluminescence properties of the Ge/ZnO multilayer films in certain annealing temperature region

    International Nuclear Information System (INIS)

    Zheng Tianhang; Li Ziquan; Chen Jiankang; Shen Kai; Sun Kefei

    2006-01-01

    The Ge/ZnO multilayer films have been prepared by rf magnetron sputtering. The effects of annealing on the microstructure and photoluminescence properties of the multilayers have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectrometry and photoluminescence (PL) spectrometry. The investigation of structural properties indicates that Zn 2 GeO 4 has been formed with (220) texture and Zn deficiency from Ge/ZnO multilayer films in the process of annealing. However, lower Zn/Ge ratio can be improved by annealing. The annealed multilayers show three main emission bands at 532, 700, and 761nm, which originate from the transition between oxygen vacancy (V o * ) and Zn vacancies (V Zn ), the radiative recombination of quantum-confined excitons (QCE) in Ge nanocrystals, and the optical transition in the GeO color centers, respectively. Finally, the fabrication of thin film Zn 2 GeO 4 from Ge/ZnO multilayer films by annealing at low temperature provides another approach to prepare the green-emitting oxide phosphor film:Zn 2 GeO 4 :Mn

  15. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  16. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    Science.gov (United States)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  17. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    Science.gov (United States)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  18. Pyrolysis synthesis of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} phosphors – effect of fuel, flux and co-dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, V.; Lakshmanan, Arunachalam, E-mail: arunachalamlakshmanan@yahoo.com

    2014-01-15

    Green emitting α-Zn{sub 2}SiO{sub 4}:Mn{sup 2+} phosphors were made by pyrolysis route at 600 °C followed by sintering at a moderate temperature of 1000 °C for 1 h duration. The effects of different fuels (urea, citric acid, polyethylene glycol and glycine), flux materials (H{sub 3}BO{sub 3}, NH{sub 4}Cl, NH{sub 4}F, NH{sub 4}Br, BaCl{sub 2}, BaBr{sub 2}, CaF{sub 2} and BaF{sub 2}), divalant co-dopants (Ca{sup 2+}, Ba{sup 2+}, Mg{sup 2+} and Sr{sup 2+}), trivalent co-dopants (Al{sup 3+}, Y{sup 3+} and Gd{sup 3+}) and sintering temperature (800–1000 °C) on the photoluminescence (PL) efficiency of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} were studied. Among the fuels, urea and among the flux, H{sub 3}BO{sub 3} gave a maximum broad band green PL emission peak at 525 nm on excitation at 254 nm. Divalent co-dopants improved the PL intensity much more than the trivalent co-dopants used. Highest PL efficiency was observed with Sr{sup 2+} co-doped Zn{sub 2}SiO{sub 4}:Mn{sup 2+} sintered at 1000 °C in reducing atmosphere which was 20% higher than that of the commercial Zn{sub 2}SiO{sub 4}:Mn{sup 2+}. The formation of a single crystalline phase of willemite structure in the α-Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples synthesized was confirmed by powder XRD measurements. -- Highlights: • Zn{sub 2}SiO{sub 4}:Mn{sup 2+} green phosphors were made by pyrolysis route. • Effect of fuel, flux and co dopant on PL intensity. • Enhancement in luminescence with divalent co-dopants, notably Sr. • PL efficiency 20% higher than that of the commercial phosphor. • XRD confirm single phase willemite structure of Zn{sub 2}SiO{sub 4}:Mn{sup 2+}.

  19. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Choo, D.C.; Ahn, S.D.; Jung, H.S.; Kim, T.W.; Lee, J.Y.; Park, J.H.; Kwon, M.S.

    2010-01-01

    Zn 2 SiO 4 :Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn 2 SiO 4 :Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn 2 SiO 4 :Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn 2 SiO 4 :Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4 T 1 - 6 A 1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn color-conversion layer are described on the basis of the EL and PL spectra.

  20. Red electroluminescent process excited by hot holes in SrGa2S4:Ce, Mn thin film

    International Nuclear Information System (INIS)

    Tanaka, Katsu; Okamoto, Shinji

    2009-01-01

    This paper reports the first observation of red electroluminescence (EL) in SrGa 2 S 4 :Ce, Mn thin film. The EL spectrum consists of single broad emission band having a peak wavelength of 665 nm. The dominant EL decay time was 31 μs. The relationship between the applied voltage and the EL waveform was measured in single insulating thin film electroluminescent (TFEL) devices. An asymmetric EL waveform was observed in SrGa 2 S 4 :Ce, Mn TFEL devices under a rectangular applied voltage. The polarity of the EL waveform in these devices was different from the waveform in manganese-activated zinc sulfide ZnS:Mn devices. This indicates that hot holes excite the Mn 2+ ions to cause the red EL.

  1. Luminescent properties of CaTiO3:Pr thin-film phosphor deposited on ZnO/ITO/glass substrate

    International Nuclear Information System (INIS)

    Chung, Sung Mook; Han, Sang Hyuk; Song, Kuk Hyun; Kim, Eung Soo; Kim, Young Jin

    2005-01-01

    Red-emitting CaTiO 3 :Pr phosphor thin films were deposited on glass, ZnO/ITO/glass, and ITO/glass substrates by RF magnetron sputtering. The effects of various substrates and heat treatment on the structural and luminous properties were investigated. The films deposited on ZnO/ITO/glass exhibited superior crystallinity and more enhanced PL and CL properties compared with those on ITO/glass. The intermediate ZnO layer between phosphor film and ITO contributed to the growing behaviors and the roughening of CaTiO 3 :Pr phosphor thin films, and consequently, to the excellent luminescence. The luminescent properties of the films were improved by following heat-treatment due to a combination of factors, namely the transformation from amorphous to poly crystalline phases, the activation of the activators, and the elimination of microdefects

  2. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency

    International Nuclear Information System (INIS)

    Ilyas, Usman; Rawat, R.S.; Roshan, G.; Tan, T.L.; Lee, P.; Springham, S.V.; Zhang, Sam; Fengji Li; Chen, R.; Sun, H.D.

    2011-01-01

    The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 deg. C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter 'c'. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.

  3. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds

    International Nuclear Information System (INIS)

    Mimouni, R.; Kamoun, O.; Yumak, A.; Mhamdi, A.; Boubaker, K.; Petkova, P.; Amlouk, M.

    2015-01-01

    Highlights: • Proposing an original explanation to the difference between manganese-doped zinc oxide and undoped behavior. • Presenting an original effective electrical and fluorescence-related calculation scheme. • Outlining original AC–DC investigation protocol. - Abstract: Manganese-doped zinc oxide thin films (ZnO:Mn) at different percentages (0–3%) were deposited on glass substrates using a chemical spray technique. The effects of manganese element content on structural, optical, opto-thermal and electrical conductivity of ZnO:Mn thin films were investigated by means of X-ray diffraction, optical measurement, Photoluminescence spectroscopy and impedance spectroscopy. XRD analysis revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. Doping manganese resulted in a slight decrease in the optical band gap energy of the films and a noticeably change in optical constants. The UV peak positions for ZnO:Mn samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Mn 2+ and the band-gap narrowing of ZnO with the Mn dopant. We have performed original AC and DC conductivity studies inspired from Jonscher and small polaron models. These studies helped establishing significant correlation between temperature and activation energy and Mn content. From the spectroscopy impedance analysis we investigated the frequency relaxation phenomenon and the circuit equivalent circuit of such thin films. Finally, all results have been discussed, as an objective of the actual work, in terms of the manganese doping concentration

  4. Phosphorescence behavior and photoluminescence mechanism of Dy{sup 3+} sensitized β-Zn{sub 3}(PO{sub 4}){sub 2}: Mn{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ting; Guo, Hongxu [School of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, Fujian (China); Zhang, Junying [Department of Physics, Beihang University, Beijing 100191 (China); Odetola, Christopher [Department of Chemistry, University of Ontario Institute of Technology, Ontario L1H 7K4 (Canada); He, Yuneng; Lin, Heng; Chen, Guoliang [School of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, Fujian (China); Zheng, Zishan, E-mail: Z.Zheng@mnnu.edu.cn [School of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, Fujian (China)

    2015-09-05

    Highlights: • A red long persistent phosphor of β-Zn{sub 3}(PO{sub 4}){sub 2}: Mn{sup 2+}, Dy{sup 3+} was synthesized. • Dy{sup 3+} as a sensitizer transfers its energy to the luminescent center of Mn{sup 2+}. • The three factors are responsible for the improvement of LPP properties. - Abstract: A red long persistent phosphor (LPP) of β-Zn{sub 3}(PO{sub 4}){sub 2}: Mn{sup 2+}, Dy{sup 3+} was synthesized conventionally via homogeneous coprecipitation and conventional solid-state sintering methods. The emission peak of phosphor was found at 620 nm, which can be assigned to the {sup 4}T{sub 1g} → {sup 6}A{sub 1g} transition of Mn{sup 2+}. The decay curves of phosphors show that Dy{sup 3+} ions co-doping can largely improve the performance of the red LLP of β-Zn{sub 3}(PO{sub 4}){sub 2}: Mn{sup 2+}. This red long-persistent luminescence was observed for about 4 h in the limit of light perception for naked eyes when excited under 254 nm UV light for 5 min. Thermoluminescence analysis indicates that the dopant of Dy{sup 3+} ions produced suitable trap depth of defects that enhanced the luminescence of LPP. It is hypothesized that Dy{sup 3+} as a sensitizer transfers its energy to the luminescent center of Mn{sup 2+}. We propose that the emission mechanism of LPP experiences a series process of electron–hole pairs: production, release, movement and combination. The decay time of LPP has close relationship with the life span of electron–hole pairs during their releasing time from traps and moving length on their path.

  5. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  6. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    Science.gov (United States)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  7. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    Science.gov (United States)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  8. A Novel Synthetic Route for Green-emitting Zn{sub 2-x}Mn{sub x}SiO{sub 4} Phosphor using Colloidal Silica

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Gu [Hoseo University, Asan (Korea, Republic of); Park, Jung Chul [Silla University, Busan (Korea, Republic of)

    2010-11-15

    We have synthesized Mn-doped Zn{sub 2}SiO{sub 4} phosphors by solgel method using colloidal silica. The adsorption characteristics of the citric acid molecules onto the silica surfaces enables us to use colloidal silica as a Si-source instead of TEOS which is generally utilized for the fine particle synthesis of the silicate based compounds. At a very low temperature (800 .deg. C), we could obtain the single phase of Zn{sub 2}SiO{sub 4}, which is remarkable compared to that of the solid state reaction (about 1300 .deg. C). The mean size of particles prepared at 800 .deg. C, 900 .deg. C, and 1000 .deg. C is 100 nm, 200 nm, and 400 nm, respectively. The PL intensity of Zn{sub 1.92}Mn{sub 0.08}SiO{sub 4} prepared at different temperature between 800 .deg. C and 1200 .deg. C, increases as the synthetic temperature rises up. Moreover, the PL intensity of Zn{sub 1.92}Mn{sub 0.08}SiO{sub 4} prepared at 1200 .deg. C is remarkable compared to that of the commercial Zn{sub 2}SiO{sub 4} : Mn (Kasei company, Japan). The PL intensity for Zn{sub 1.92}Mn{sub 0.08}SiO{sub 4} as a function of colloidal silica content, do not induces a considerable change in PL intensity, but a considerable modification in the morphology of particles. It might be said that colloidal silica is a promising chemical as a Si-source for the synthesis of fine particle of silicate compounds, instead of TEOS. The Mn{sup 2+}-doped Zn{sub 2}SiO{sub 4} phosphor has been used as a luminescent material for lamp and plasma panel display because of its high-luminescent efficiency and chemical stability. The emission of the Zn{sub 2-x}Mn{sub x}SiO{sub 4} at 520 nm is attributed to d-level spin-forbidden transition for Mn(II). According to the earlier literatures, the photoluminescence (PL) process of Zn{sub 2-x}Mn{sub x}SiO{sub 4} phosphors has been characterized by the transition of 3d{sup 5} electrons in the manganese ion acting as an activation center in the willemite structure. In particular, the transition

  9. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Garcia, F.N. [Departamento de Fisica y Matematicas, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas (Colombia); Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Espinosa-Arbelaez, D.G. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Posgrado en Ciencia e Ingenieria Materiales, Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Vargas-Hernandez, C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Real, A. del [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Rodriguez-Garcia, M.E., E-mail: marioga@fata.unam.mx [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico)

    2011-09-01

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl{sub 2} complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl{sub 2}, 0.1 M MnCl{sub 2,} and a second solution of 0.1 ml of NH{sub 4}OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  10. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Jimenez-Garcia, F.N.; Espinosa-Arbelaez, D.G.; Vargas-Hernandez, C.; Real, A. del; Rodriguez-Garcia, M.E.

    2011-01-01

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl 2 complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl 2 , 0.1 M MnCl 2, and a second solution of 0.1 ml of NH 4 OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  11. Improved electrochemical performances of oxygen plasma treated LiMn2O4 thin films

    International Nuclear Information System (INIS)

    Chen, C C; Chiu, K-F; Lin, K M; Lin, H C; Yang, C-R; Wang, F M

    2007-01-01

    LiMn 2 O 4 spinel thin films were deposited by radio frequency (rf) magnetron sputtering followed by annealing at 600 0 C in air.The films were then post-treated with an rf driven oxygen plasma. The crystallization and surface morphology of LiMn 2 O 4 thin films were seen to change with rf power. The treated samples were tested under harsh conditions such as deep discharge to 1.5 V and cycling at elevated temperature of 60 0 C to verify the electrochemical performances of LiMn 2 O 4 cathodes. The oxygen plasma treatments improved the electrochemical properties of LiMn 2 O 4 thin films significantly. As the cells were cycled in the range of 4.5-2.0 V at 60 0 C, the samples treated at a proper rf power of 50 W exhibited an initial capacity greater than ∼400 mAh g -1 with reasonable cycling stability. The results were attributed to the change of morphology and the formation of a surface layer induced by the oxygen plasma irradiation

  12. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  13. Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harish Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Katiyar, R S [Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343 (Puerto Rico); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2007-10-07

    We study the influence of Mn doping on the vibrational properties of rf sputtered ZnO thin films. Raman spectra of the Mn doped ZnO samples reveal two additional vibrational modes, in addition to the host phonon modes, at 252 and 524 cm{sup -1}. The intensity of the additional modes increases continuously with Mn concentration in ZnO and can be used as an indication of Mn incorporation in ZnO. The modes are assigned to the activation of ZnO silent modes due to relaxation of Raman selection rules produced by the breakdown of the translational symmetry of the crystal lattice with the incorporation of Mn at the Zn site. Furthermore, the A{sub 1} (LO) mode is observed with very high intensity in the Raman spectra of undoped ZnO thin film and is attributed to the built-in electric field at the grain boundaries.

  14. Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Sreenivas, K; Katiyar, R S; Gupta, Vinay

    2007-01-01

    We study the influence of Mn doping on the vibrational properties of rf sputtered ZnO thin films. Raman spectra of the Mn doped ZnO samples reveal two additional vibrational modes, in addition to the host phonon modes, at 252 and 524 cm -1 . The intensity of the additional modes increases continuously with Mn concentration in ZnO and can be used as an indication of Mn incorporation in ZnO. The modes are assigned to the activation of ZnO silent modes due to relaxation of Raman selection rules produced by the breakdown of the translational symmetry of the crystal lattice with the incorporation of Mn at the Zn site. Furthermore, the A 1 (LO) mode is observed with very high intensity in the Raman spectra of undoped ZnO thin film and is attributed to the built-in electric field at the grain boundaries

  15. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  16. Magnetization of correlated electron systems. MnSi thin films, CrB2 single crystals and two-dimensional electron systems in MgZnO/ZnO

    International Nuclear Information System (INIS)

    Brasse, Matthias

    2014-01-01

    Torque magnetometry at low temperature is performed to investigate the magnetic properties of MnSi thin films, of a CrB 2 single crystal and of a two-dimensional electron system (2DESs) formed at the interface of MgZnO/ZnO. The magnetic anisotropy and phase diagram of MnSi as well as information on the electronic structure of CrB 2 are obtained. The MgZnO/ZnO 2DESs exhibits the de Haas-van Alphen effect and non-equilibrium currents which are analyzed in order to determine ground state properties and excited states, respectively.

  17. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  18. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  19. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    Science.gov (United States)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  20. Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery

    International Nuclear Information System (INIS)

    Karthick, S.N.; Richard Prabhu Gnanakan, S.; Subramania, A.; Kim, Hee-Je

    2010-01-01

    Nanocrystalline cubic spinel lithium manganese oxide thin film was prepared by a polymer spray pyrolysis method using lithium acetate and manganese acetate precursor solution and polyethylene glycol-4000 as a polymeric binder. The substrate temperature was selected from the thermogravimetric analysis by finding the complete crystallization temperature of LiMn 2 O 4 precursor sample. The deposited LiMn 2 O 4 thin films were annealed at 450, 500 and 600 o C for 30 min. The thin film annealed at 600 o C was found to be the sufficient temperature to form high phase pure nanocrystalline LiMn 2 O 4 thin film. The formation of cubic spinel thin film was confirmed by X-ray diffraction study. Scanning electron microscopy and atomic force microscopy analysis revealed that the thin film annealed at 600 o C was found to be nanocrystalline in nature and the surface of the films were uniform without any crack. The electrochemical charge/discharge studies of the prepared LiMn 2 O 4 film was found to be better compared to the conventional spray pyrolysed thin film material.

  1. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  2. Growth and giant coercive field of spinel-structured Co3- x Mn x O4 thin films

    Science.gov (United States)

    Kwak, Yongsu; Song, Jonghyun; Koo, Taeyeong

    2016-08-01

    We grew epitaxial thin films of CoMn2O4 and Co2MnO4 on Nb-doped SrTiO3(011) and SrTiO3(001) single crystal substrates using pulsed laser deposition. The magnetic Curie temperature ( T c ) of the Co2MnO4 thin films was ~176 K, which is higher than that of the bulk whereas CoMn2O4 thin films exhibited a value of T c (~151 K) lower than that of the bulk. For the Co2MnO4 thin films, the M - H loop showed a coercive field of ~0.7 T at 10 K, similar to the value for the bulk. However, the M -H loop of the CoMn2O4(0 ll) thin film grown on a Nb-doped SrTiO3(011) substrate exhibited a coercive field of ~4.5 T at 30 K, which is significantly higher than those of the Co2MnO4 thin film and bulk. This giant coercive field, only observed for the CoMn2O4(0 ll) thin film, can be attributed to the shape anisotropy and strong spin-orbit coupling.

  3. Structure and cation distribution of (Mn0.5Zn0.5)Fe2O4 thin films on SrTiO3(001)

    Science.gov (United States)

    Welke, M.; Brachwitz, K.; Lorenz, M.; Grundmann, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.

    2017-06-01

    A comprehensive study on growth of ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) films on single crystalline strontium titanate(001) (SrTiO3) substrates was carried out. Under the optimized conditions, a thin film with a layer thickness of 200 nm was deposited, and the structural properties were investigated. Contrary to data published in literature, no buffer layer was necessary to achieve epitaxial growth of a poorly lattice-matched layer. This was confirmed for Mn0.5Zn0.5Fe2O4(001) on SrTiO3(001) by x-ray diffraction and the adjoined phi scans, which also revealed a lattice compression of 1.2% of the manganese zinc ferrite film in the out-of-plane direction. Using x-ray photoelectron spectroscopy, the near surface stoichiometry of the film could be shown to agree with the intended one within the uncertainty of the method. X-ray absorption spectroscopy showed an electronic structure close to that published for bulk samples. Additional x-ray magnetic circular dichroism investigations were performed to answer detailed structural questions by a comparison of experimental data with the calculated ones. The calculations took into account ion sites (tetrahedral vs. octahedral coordination) as well as the charge of Fe ions (Fe2+ vs. Fe3+). Contrary to the expectation for a perfect normal spinel that only Fe3+ ions are present in octahedral sites, hints regarding the presence of additional Fe2+ in octahedral sites as well as Fe3+ ions in tetrahedral sites have been obtained. Altogether, the layer could be shown to be mostly in a normal spinel configuration.

  4. Design Of A Bi-Functional α-Fe2O3/Zn2SiO4:Mn2+ By Layer-By-Layer Assembly Method

    Directory of Open Access Journals (Sweden)

    Yu Ri

    2015-06-01

    Full Text Available This work describes the design of bi-functional α-Fe2O3/Zn2SiO4:Mn2+ using a two-step coating process. We propose a combination of pigments (α-Fe2O3 and phosphor (Zn2SiO4:Mn2+ glaze which is assembled using a layer-by-layer method. A silica-coated α-Fe2O3 pigment was obtained by a sol-gel method and a Zn2+ precursor was then added to the silica-coated α-Fe2O3 to create a ZnO layer. Finally, the Zn2SiO4:Mn2+ layer was prepared with the addition of Mn2+ ions to serve as a phosphor precursor in the multi-coated α-Fe2O3, followed by annealing at a temperature above 1000°C. Details of the phase structure, color and optical properties of the multi-functional α-Fe2O3/Zn2SiO4:Mn2+ were characterized by transmission electron microscopy and X-ray diffraction analyses.

  5. Reactive pulsed laser deposition of Cu2ZnSnS4 thin films in H2S

    International Nuclear Information System (INIS)

    Surgina, G.D.; Zenkevich, A.V.; Sipaylo, I.P.; Nevolin, V.N.; Drube, W.; Teterin, P.E.; Minnekaev, M.N.

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) thin films have been grown by reactive pulsed laser deposition in H 2 S atmosphere, combining the alternate ablation from the metallic (Cu) and alloyed (Zn x Sn) targets at room temperature. The morphological, structural and optical properties of as grown CZTS thin films with varying compositions as well as upon annealing in N 2 atmosphere are investigated by Rutherford backscattering spectrometry, X-ray diffraction, Raman spectroscopy and optical spectrophotometry. The chemical bonding in the “bulk” of the CZTS films is elucidated via hard X-ray photoemission spectroscopy measurements. The formation of the good quality stoichiometric polycrystalline CZTS films is demonstrated upon optimization of the growth parameters. - Highlights: ► The new method of Cu 2 ZnSnS 4 (CZTS) thin films growth in H 2 S was realized. ► CZTS films were grown by pulsed laser deposition from Cu and alloyed Zn–Sn targets. ► The effect of the processing parameters on the CZTS properties was investigated. ► The chemical bonding in the “bulk” of CZTS films was studied

  6. Photoluminescence and phosphorescence properties of Sr1-xZn2-y(PO4)2:Eux2+,Mny2+ phosphor for UV-based white-LEDs

    International Nuclear Information System (INIS)

    Jeong, Junho; Jayasimhadri, M.; Sueb Lee, Ho; Jang, Kiwan; Soo Yi, Soung; Hyun Jeong, Jung; Kim, Changdae

    2009-01-01

    Sr 1-x Zn 2-y (PO 4 ) 2 :Eu x 2+ ,Mn y 2+ (SZP: Eu x 2+ ,Mn y 2+ ) phosphors (x=0, 0.01 and y=0, 0.01) were prepared by using a stoichiometric solid-state reaction method and their photoluminescence and phosphorescence decay properties were investigated. The emission spectrum of SrZn 2 (PO 4 ) 2 :Eu 0.01 2+ , Mn 0.01 2+ measured under 400 nm excitation was composed of the violettish blue and the emerald green emissioins centered at 421 and 547 nm, respectively. The excitation wavelength of the emission peak at 547 nm was about 421 nm in the excitation spectrum of SZP:Mn 0.01 2+ . Since, this value is equal to the transition energy of Eu 2+ , the energy transfer from Eu 2+ to Mn 2+ in SZP:Eu 0.01 2+ ,Mn 0.01 2+ phosphor has been demonstrated. The CIE chromaticity coordinates of SZP:Eu 0.01 2+ ,Mn 0.01 2+ phosphor were (0.330, 0.328) under the excitation wavelength 375 nm at room temperature. The phosphorescence from SZP:Eu 0.01 2+ ,Mn 0.01 2+ could be seen by naked eyes for few seconds and it has persisted for about 4.4 h while monitoring by using a PMT spectrometer. Therefore, SZP:Eu x 2+ ,Mn y 2+ phosphor may be a potential candidate for the UV-based white light-emitting diodes (LEDs).

  7. Cu2ZnSnS4 thin films grown by flash evaporation and subsequent annealing in Ar atmosphere

    International Nuclear Information System (INIS)

    Caballero, R.; Izquierdo-Roca, V.; Merino, J.M.; Friedrich, E.J.; Climent-Font, A.; Saucedo, E.; 2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain))" >Pérez-Rodríguez, A.; León, M.

    2013-01-01

    A study of Cu 2 ZnSnS 4 thin films grown by flash evaporation and subsequently annealed in Ar atmosphere has been carried out. Prior to thin film deposition, Cu 2 ZnSnS 4 bulk compounds with stoichiometric and Zn-rich compositions were synthesized as evaporation sources. The characteristics of the bulk compounds and thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and elastic back scattering. Cu 2 ZnSnS 4 deposited films contain lower concentrations of Zn than the bulk compounds used as evaporation sources, which is related to a preferential Zn re-evaporation during the deposition process. The desired kesterite composition for solar cell applications was achieved by using a Zn-rich compound as the evaporation source plus a thermal treatment at 620 °C in Ar atmosphere. - Highlights: ► Cu 2 ZnSnS 4 (CZTS) thin films by flash evaporation + annealing in Ar atmosphere ► Difficulty of growing a single phase kesterite material ► X-ray diffraction and Raman spectroscopy to identify the different phases ► Importance of the starting film composition to get the desired CZTS material ► Annealing treatment to obtain the optimum material to be used for CZTS solar cells

  8. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  9. Defect luminescence and lattice strain in Mn{sup 2+} doped ZnGa{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, K.; Abhilash, K.P. [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Christopher Selvin, P., E-mail: pcsphyngmc@rediffmail.com [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-06-15

    Undoped and Mn{sup 2+} doped ZnGa{sub 2}O{sub 4} phosphors were prepared by solution combustion method and characterized by XRD, SEM, luminescence and electron paramagnetic resonance (EPR) techniques. Based on XRD results, it is inferred that, strain in ZnGa{sub 2}O{sub 4} host lattice increases with incorporation of Mn{sup 2+} ions in the lattice. Mn{sup 2+} doping at concentration levels investigated, lead to significant reduction in the defect emission and this has been attributed to the formation of higher oxidation states of Mn ions in the lattice. Electron Paramagnetic Resonance studies confirmed that majority of Mn ions exist as Mn{sup 2+} species and they occupy tetrahedral Zn{sup 2+} site in ZnGa{sub 2}O{sub 4} lattice with an average hyperfine coupling constant, A{sub iso}∼82 G.

  10. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  11. Photoluminescence and phosphorescence properties of Sr{sub 1-x}Zn{sub 2-y}(PO{sub 4}){sub 2}:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+} phosphor for UV-based white-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Junho; Jayasimhadri, M. [Research Institute of Basic Science, Changwon National University, Changwon 641-773 (Korea, Republic of); Sueb Lee, Ho [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.k [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Soo Yi, Soung [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Hyun Jeong, Jung [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Changdae [Department of Physics, Mokpo National University, Mokpo 534-729 (Korea, Republic of)

    2009-07-01

    Sr{sub 1-x}Zn{sub 2-y}(PO{sub 4}){sub 2}:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+} (SZP: Eu{sub x}{sup 2+},Mn{sub y}{sup 2+}) phosphors (x=0, 0.01 and y=0, 0.01) were prepared by using a stoichiometric solid-state reaction method and their photoluminescence and phosphorescence decay properties were investigated. The emission spectrum of SrZn{sub 2}(PO{sub 4}){sub 2}:Eu{sub 0.01}{sup 2+}, Mn{sub 0.01}{sup 2+} measured under 400 nm excitation was composed of the violettish blue and the emerald green emissioins centered at 421 and 547 nm, respectively. The excitation wavelength of the emission peak at 547 nm was about 421 nm in the excitation spectrum of SZP:Mn{sub 0.01}{sup 2+}. Since, this value is equal to the transition energy of Eu{sup 2+}, the energy transfer from Eu{sup 2+} to Mn{sup 2+} in SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} phosphor has been demonstrated. The CIE chromaticity coordinates of SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} phosphor were (0.330, 0.328) under the excitation wavelength 375 nm at room temperature. The phosphorescence from SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} could be seen by naked eyes for few seconds and it has persisted for about 4.4 h while monitoring by using a PMT spectrometer. Therefore, SZP:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+}phosphor may be a potential candidate for the UV-based white light-emitting diodes (LEDs).

  12. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    Science.gov (United States)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  13. Physical processes in thin-film electroluminescent structures based on ZnS:Mn showing self-organized patterns

    International Nuclear Information System (INIS)

    Zuccaro, S.; Raker, Th.; Niedernostheide, F.-J.; Kuhn, T.; Purwins, H.-G.

    2003-01-01

    Physical processes in thin ZnS:Mn films and their relation to the formation of dynamical patterns in the electroluminescence of AC driven films are investigated. The technique of photo-depolarization-spectroscopy is used to investigate defect states in these films and it is shown that specific features in the spectra correlate with the observed self-organized patterns. Furthermore, the time dependence of the dissipative current is measured at the same samples and compared with current waveforms obtained from numerical simulations of a drift-diffusion model. The results are used to discuss the origin of the self-organized processes in ZnS:Mn-films

  14. Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications

    International Nuclear Information System (INIS)

    Thiyagarajan, P; Kottaisamy, M; Rao, M S Ramachandra

    2006-01-01

    A bright red colour emitting Mn doped Ba 2 ZnS 3 phosphor was prepared by an ecologically acceptable carbothermal reduction method without an inert gas or hazardous gas (H 2 S) environment. The phosphor can be excited with UV wavelength radiation to realize emission in the visible range. X-ray diffraction studies confirm an orthorhombic structure with phase group, pnam. The photoluminescence (PL) emission spectrum shows a broad band with emission maximum at 625 nm under the host excitation of 358 nm, which lies in the near UV region. The concentration of Mn was varied from 0.0025 to 0.20 mole with respect to Zn and the optimum PL emission intensity was obtained at the concentration of 0.01 mole of Mn. The CIE (Commission Internationale de l'Eclairage) colour coordinates measurement (x = 0.654 and y = 0.321) shows that the primary emission is in the red region. The triband phosphors blend containing Sr 5 (PO 4 ) 3 Cl : Eu 2+ (blue), ZnS : Cu,Al (green) and Ba 2 ZnS 3 : Mn (red) shows white light emission under 365 nm excitation having CIE chromaticity (x = 0.292 and y = 0.251). Since phosphor excitation lies in the near UV excitable region, giving a bright red emission, it can be used for applications in near UV phosphor converted white LED lighting and display devices

  15. Optical and structural properties of natural MnSeO{sub 4} mineral thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, Ishak Afsin, E-mail: akariper@gmail.com [Erciyes University, Education Faculty, Kayseri (Turkey)

    2017-05-15

    Manganese selenite (MnSeO{sub 4}) crystalline thin film has been produced with chemical bath deposition on substrates (commercial glass). Properties of the thin film, such as transmittance, absorption, and optical band gap and refraction index have been investigated via UV/VIS Spectrum. The structural properties of orthorhombic form have been observed in XRD. The structural and optical properties of MnSeO{sub 4} thin films, deposited at different pH levels were analyzed. Some properties of the films have been changed with the change of pH level, which has been deeply investigated. The grain size of MnSeO{sub 4} thin film has reached its highest value at pH 9. The refraction index and extinction coefficient of MnSeO{sub 4} thin films were measured to be 1.53, 2.86, 2.07, 1.53 (refraction index) and 0.005, 0.029, 0.014, 0.005 (extinction coefficient) for grain sizes 21, 13, 26, and 5 nm respectively. The band gaps (Eg) of the films were measured to be 2.06, 2.57, 2.04, and 2.76 eV for the grain sizes mentioned above. The value of dielectric constant at pH 10 was calculated as 1.575. (author)

  16. Effect of Annealing Temperature and Spin Coating Speed on Mn-Doped ZnS Nanocrystals Thin Film by Spin Coating

    Directory of Open Access Journals (Sweden)

    Noor Azie Azura Mohd Arif

    2017-01-01

    Full Text Available ZnS:Mn nanocrystals thin film was fabricated at 300°C and 500°C via the spin coating method. Its sol-gel was spin coated for 20 s at 3000 rpm and 4000 rpm with metal tape being used to mold the shape of the thin film. A different combination of these parameters was used to investigate their influences on the fabrication of the film. Optical and structural characterizations have been performed. Optical characterization was analyzed using UV-visible spectroscopy and photoluminescence spectrophotometer while the structural and compositional analysis of films was measured via field emission scanning electron microscopy and energy dispersive X-ray. From UV-vis spectra, the wavelength of the ZnS:Mn was 250 nm and the band gap was within the range 4.43 eV–4.60 eV. In room temperature PL spectra, there were two emission peaks centered at 460 nm and 590 nm. Under higher annealing temperature and higher speed used in spin coating, an increase of 0.05 eV was observed. It was concluded that the spin coating process is able to synthesize high quality spherical ZnS:Mn nanocrystals. This conventional process can replace other high technology methods due to its synthesis cost.

  17. Mn{sup 2+} ions distribution in doped sol–gel deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Mariana, E-mail: mstefan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V. [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Plugaru, Rodica [National Institute for R & D in Microtechnologies (IMT), Erou Iancu Nicolae Str. 126A, 077190 Bucharest (Romania)

    2017-02-28

    Highlights: • Several Mn{sup 2+} centers observed by EPR in sol–gel ZnO films. • Mn{sup 2+} ions localized at Zn{sup 2+} sites in ZnO grains and disordered ZnO phase. • Sixfold coordinated Mn{sup 2+} ions localized in inter-grain region. • Aggregated Mn in insular-like regions between ZnO grains in the ZnO:5%Mn film. • Aggregated Mn phase presence and distribution observed by EPR and EDX-STEM. - Abstract: The localization and distribution of the Mn{sup 2+} ions in two sol–gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn{sup 2+} ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn{sup 2+} sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn{sup 2+} in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn{sup 2+} ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn{sup 2+} ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  18. Electrodeposited ZnIn{sub 2}S{sub 4} onto TiO{sub 2} thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Assaker, Ibtissem Ben, E-mail: ibtissem.ben-assaker@laposte.net [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia); Gannouni, Mounir; Naceur, Jamila Ben [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia); Almessiere, Munirah Abdullah; Al-Otaibi, Amal Lafy; Ghrib, Taher [Laboratory of Physical Alloys (LPA), College of Science, University of Dammam (Saudi Arabia); Shen, Shouwen [Advanced Analysis Unit, Technical Service Division Research & Development Center Saudi Aramco, Dhahran (Saudi Arabia); Chtourou, Radhouane [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia)

    2015-10-01

    Graphical abstract: - Highlights: • ZnIn{sub 2}S{sub 4} thin films was grown using electrodeposition route onto TiO{sub 2}/ITO coated glass substrate. • Study of the heterostructure ZnIn{sub 2}S{sub 4}/TiO{sub 2} thin films. • Photocatalytic activity of ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure under visible light irradiation. • High performance of Photoelectrochemical properties in the presence of the junction ZnIn{sub 2}S{sub 4}/TiO{sub 2}. - Abstract: In this study, ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure was successfully synthesized on ITO-coated glass substrates via a facile two-step process from aqueous solution. First, TiO{sub 2} thin film was prepared by sol–gel and deposited onto ITO coated glass substrate by spin-coating method. Then the zinc indium sulfide semiconductor was fabricated via electrodeposition technique onto TiO{sub 2}/ITO coated glass electrode. The X-ray diffraction patterns confirm that the heterostructure is mixed of both Anatase TiO{sub 2} and Rhombohedric ZnIn{sub 2}S{sub 4}. The scanning electron microscopy (SEM) images show that the morphology change with the deposition of ZnIn{sub 2}S{sub 4} over TiO{sub 2} thin film and a total coverage of the electrode surface was obtained. Optical absorption spectroscopy study of ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure exhibits a remarkable red-shift compared to the TiO{sub 2} and ZnIn{sub 2}S{sub 4} achieve the best efficiency of visible light absorption. Therefore, it is expected to apply to visible-light photocatalysis and solar cells. To investigate the effect of the heterojunction on the photocatalytic activity of ZnIn{sub 2}S{sub 4}/TiO{sub 2} thin films, photodegradation of methylene blue in the presence of ZnIn{sub 2}S{sub 4} was performed. ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure exhibited strong photocatalytic activity, and the degradation of methylene blue eached 91% after irradiation only for 4 h. Also, the study of the photocurrent density produced

  19. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  20. Magnetic and magneto-optical characteristics of spin coated Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} thin films on Pt (1 1 1) coated Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Arti, E-mail: artigupta80@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi110007 (India); Dutta, Shankar [Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi110054 (India); Tandon, Ram Pal [Department of Physics and Astrophysics, University of Delhi, Delhi110007 (India)

    2016-05-15

    Highlights: • Properties of Co{sub 0.6}Zn{sub 0.4}Mn{sub 0.3}Fe{sub 1.7}O{sub 4} thin films on Pt-Si substrate are reported. • Reduction in thickness ∼27% with increased annealing temperature was found. • Partial (3 3 3) plane textured orientation was noted for these films. - Abstract: This paper reports magnetic and magneto-optical properties of Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} nanocrystalline thin films (thickness ∼140–200 nm) deposited on Pt (1 1 1)/Ti/SiO{sub 2}/Si substrates by spin coating technique. Deposited films are then annealed at 600 °C and 700 °C for 60 min (significant reduction in film thickness from 200 nm to 140 nm was noted with the increase in post deposition annealing temperature). The X ray diffraction patterns confirmed the spinel cubic structure of Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} films with polycrystalline phase and also indicated a partial <3 3 3> texture orientation. Deposited films showed magnetic anisotropy as evidenced from magnetic and magneto-optical measurements. Higher in plane remnant magnetization and low coercivity values as compared to out of plane ones were observed for both samples, indicating in plane alignment of easy axis of magnetization.

  1. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    Science.gov (United States)

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  2. Preparation and characterization of co-evaporated Cu{sub 2}ZnGeSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uday Bhaskar, P.; Suresh Babu, G.; Kishore Kumar, Y.B.; Sundara Raja, V., E-mail: sundararajav@rediffmail.com

    2013-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGSe), a member of Cu{sub 2}–II–IV–VI{sub 4} family, is a promising material for solar cell absorber layer in thin film heterojunction solar cells like Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} which have been explored in recent years as alternate to CuInGaSe{sub 2} solar cells. The effect of substrate temperature (523 K–723 K) on the growth of CZGSe films is investigated by studying their structural, morphological and optical properties. Raman spectroscopy studies have been done to identify the phases in addition to X-ray diffraction studies. CZGSe films deposited at different substrate temperatures and annealed at 723 K in selenium atmosphere are Cu-rich and Ge-poor and contained secondary phases Cu{sub (2−x)}Se and ZnSe. CZGSe films obtained by reducing the starting Cu mass by 10% were found to be single phase with stannite structure, the lattice parameters being a = 0.563 nm, c = 1.101 nm. The direct optical band gap of CZGSe films is found to be 1.63 eV which is close to ideal band gap of 1.50 eV for the highest photovoltaic conversion efficiency. The films are found to be p-type. - Highlights: • Synthesis of Cu{sub 2}ZnGeSe{sub 4} films for solar cell absorber layer • Effect of substrate temperature on the growth of co-evaporated Cu{sub 2}ZnGeSe{sub 4} films • X-ray diffraction, Raman and morphological studies of Cu{sub 2}ZnGeSe{sub 4} thin films.

  3. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    International Nuclear Information System (INIS)

    Sima, M.; Mihut, L.; Vasile, E.; Sima, Ma.; Logofatu, C.

    2015-01-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn 2+ ions into the Zn 2+ site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn 2+ ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A 1 (LO) vibrational modes, from 482 and 567 cm −1 to 532 and 580 cm −1 , respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm −1 spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm −1 confirms the insertion of Mn 2+ ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn 2+ ions into Zn 2+ site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm −1 at high Mn concentration • Compensation of the oxygen vacancy at higher Mn concentration in ZnO lattice

  4. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  5. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sima, M., E-mail: msima@infim.ro [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Mihut, L. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Vasile, E. [University “Politehnica”of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Oxide Materials and Nanomaterials, No. 1-7 Gh. Polizu Street, 011061 Bucharest (Romania); Sima, Ma.; Logofatu, C. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania)

    2015-09-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn{sup 2+} ions into the Zn{sup 2+} site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn{sup 2+} ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A{sub 1} (LO) vibrational modes, from 482 and 567 cm{sup −1} to 532 and 580 cm{sup −1}, respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm{sup −1} spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm{sup −1} confirms the insertion of Mn{sup 2+} ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn{sup 2+} ions into Zn{sup 2+} site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm{sup −1} at high Mn concentration • Compensation of the oxygen vacancy at higher

  6. Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequent annealing in Ar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@uam.es [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Izquierdo-Roca, V. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Merino, J.M.; Friedrich, E.J. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Climent-Font, A. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); CMAM, Universidad Autónoma de Madrid, C/Faraday 3, E-28049, Madrid (Spain); Saucedo, E. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Pérez-Rodríguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); IN" 2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain); León, M. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain)

    2013-05-01

    A study of Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequently annealed in Ar atmosphere has been carried out. Prior to thin film deposition, Cu{sub 2}ZnSnS{sub 4} bulk compounds with stoichiometric and Zn-rich compositions were synthesized as evaporation sources. The characteristics of the bulk compounds and thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and elastic back scattering. Cu{sub 2}ZnSnS{sub 4} deposited films contain lower concentrations of Zn than the bulk compounds used as evaporation sources, which is related to a preferential Zn re-evaporation during the deposition process. The desired kesterite composition for solar cell applications was achieved by using a Zn-rich compound as the evaporation source plus a thermal treatment at 620 °C in Ar atmosphere. - Highlights: ► Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films by flash evaporation + annealing in Ar atmosphere ► Difficulty of growing a single phase kesterite material ► X-ray diffraction and Raman spectroscopy to identify the different phases ► Importance of the starting film composition to get the desired CZTS material ► Annealing treatment to obtain the optimum material to be used for CZTS solar cells.

  7. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu_2ZnSnS_4 thin films

    International Nuclear Information System (INIS)

    Yu, Ruei-Sung; Hung, Ta-Chun

    2016-01-01

    Highlights: • Oxygen incorporation in Cu_2ZnSnS_4 changes the energy band structure. • The material has a comparatively high-absorptive capacity for short wavelength. • Absorption coefficients of the film increase from 10"4 to 10"5 cm"−"1. • The oxygen-containing CZTS film has a mixture of crystallite and crystalline states. • The material could be a candidate as an absorber layer in multi-junction solar cells. - Abstract: This study used the sol–gel method to prepare Cu_2ZnSnS_4 thin films containing oxygen and explored the composition, structural, and optoelectronic properties of the films. The non-vacuum process enabled the oxygen content of the Cu_2ZnSnS_4 films to be 8.89 at% and 10.30 at% for two different annealing conditions. In the crystal structure, oxygen was substituted at the positions of sulfur and appeared in the interstitial sites of the lattice. The compositions of the thin films deviated from the stoichiometric ratio. Both films had kesterite structures with no secondary phase structure. The kesterite CZTS film possessed a composite microstructure of crystallite and crystalline states. The microstructure of the Cu_2ZnSnS_4 film with higher oxygen content was denser and the average grain size was smaller. Incorporating oxygen atoms into crystalline Cu_2ZnSnS_4 changed the energy band structure: the direct energy band gaps were, respectively, 2.75 eV and 2.84 eV; the thin films mainly adsorbed photons with wavelengths less than 500 nm; and the absorption coefficients increased from 10"4 cm"−"1 to 10"5 cm"−"1. The films had a comparatively high absorptive capacity for photons less than 350 nm. Increasing the oxygen content of the film lowered the resistivity. Thus, the oxygen-containing Cu_2ZnSnS_4 thin film could be a candidate for the p-type absorber layer material required in multi-junction solar cells.

  8. A novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications

    International Nuclear Information System (INIS)

    Yang Hongmei; Shi Jianxin; Liang Hongbin; Gong Menglian

    2006-01-01

    A novel red emitting phosphor, Eu 3+ -doped Mg 2 GeO 4 , was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Mg 2 GeO 4 :Eu 3+ . Field-emission-scanning electron microscopy (FE-SEM) observation indicated a narrow size-distribution of about 0.5-2 μm nm for the particles with spindle-like shape. Photoluminescence (PL) and vacuum ultraviolet (VUV) excitation characteristics of the phosphor Mg 2 GeO 4 :Eu 3+ were studied. We have also studied the effect of preparation conditions such as temperature, heating time on the PL data. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 609 nm under UV excitation. And the vacuum ultraviolet spectra present that the novel red phosphor Mg 2 GeO 4 :Eu 3+ shows strong absorption in the VUV region, which ensures the efficient absorption of the Xe plasma emission lines. The phosphor Mg 2 GeO 4 :Eu 3+ shows the strongest emission at 613 nm corresponding to the electric dipole 5 D - 7 F 2 transition of Eu 3+ excited at 147 nm. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application

  9. Physical characterization of Cu{sub 2}ZnGeSe{sub 4} thin films from annealing of Cu-Zn-Ge precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: buffiere@imec.be [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium); ElAnzeery, H. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Microelectronics System Design department, Nile University, Cairo (Egypt); Oueslati, S.; Ben Messaoud, K. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Department of Physics, Faculty of Sciences of Tunis, El Manar (Tunisia); Brammertz, G.; Meuris, M. [Imec Division IMOMEC — Partner in Solliance, Diepenbeek (Belgium); Institute for Material Research (IMO) Hasselt University, Diepenbeek (Belgium); Poortmans, J. [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium)

    2015-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) can be considered as a potential alternative for wide band gap thin film devices. In this work, CZGeSe thin films were deposited on Mo-coated soda lime glass substrates by sequential deposition of sputtered Cu, Zn and e-beam evaporated Ge layers from elemental targets followed by annealing at high temperature using H{sub 2}Se gas. We report on the effect of the precursor stack order and composition and the impact of the annealing temperature on the physical properties of CZGeSe thin films. The optimal layer morphology was obtained when using a Mo/Cu/Zn/Ge precursor stack annealed at 460 °C. We have observed that the formation of secondary phases such as ZnSe can be prevented by tuning the initial composition of the stack, the stack order and the annealing conditions. This synthesis process allows synthesizing CZGeSe absorber with an optical band gap of 1.5 eV. - Highlights: • Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) thin films were deposited using a two-step process. • CZGeSe dense layers were obtained using a Mo/Cu/Zn/Ge precursor annealed at 460 °C. • Formation of ZnSe can be avoided by tuning the composition and order of the initial stack. • P-type CZGeSe absorber with an optical band gap of 1.5 eV was obtained.

  10. Synthesis and Luminescence Properties of Yellow-emitting SiO2/Zn2SiO4: Mn Nanocomposite

    Directory of Open Access Journals (Sweden)

    Karim OMRI

    2014-05-01

    Full Text Available Yellow light emitting Mn2+-doped b-Zn2SiO4 phosphor nanoparticles embedded in SiO2 host matrix, were prepared by a simple solid-phase reaction under natural atmosphere at 1500 °C for 2 hours after the incorporation of manganese doped zinc oxide nanoparticles in silica using sol-gel method. The SiO2/Zn2SiO4:Mn nanocomposite was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM and photoluminescence (PL. The nanopowder was crystallized in triclinic b-Zn2SiO4 phase with a particles size varies between 70 nm and 84 nm. The SiO2/b-Zn2SiO4:Mn nanocomposite exhibited a broad yellow emission band at 575 nm under UV excitation light. The dependence of the intensity and energy position of the obtained PL band on measurement temperature and power excitation will be discussed.

  11. Preparation of manganese-doped ZnO thin films and their ...

    Indian Academy of Sciences (India)

    Various physical and chemical techniques that has been used to deposit Mn:ZnO thin films .... appearance and Mn-doped films were slightly brownish with a good adherence to the ..... shows a constantly decreasing trend with increasing man-.

  12. Fabrication and characterization of thin-film phosphor combinatorial libraries

    Science.gov (United States)

    Mordkovich, V. Z.; Jin, Zhengwu; Yamada, Y.; Fukumura, T.; Kawasaki, M.; Koinuma, H.

    2002-05-01

    The laser molecular beam epitaxy method was employed to fabricate thin-film combinatorial libraries of ZnO-based phosphors on different substrates. Fabrication of both pixel libraries, on the example of Fe-doped ZnO, and spread libraries, on the example of Eu-doped ZnO, has been demonstrated. Screening of the Fe-doped ZnO libraries led to the discovery of weak green cathodoluminescence with the maximum efficiency at the Fe content of 0.58 mol %. Screening of the Eu-doped ZnO libraries led to the discovery of unusual reddish-violet cathodoluminescence which is observed in a broad range of Eu concentration. No photoluminescence was registered in either system.

  13. Characterization of nanostructured Mn3O4 thin films grown by SILAR method at room temperature

    International Nuclear Information System (INIS)

    Ubale, A.U.; Belkhedkar, M.R.; Sakhare, Y.S.; Singh, Arvind; Gurada, Chetan; Kothari, D.C.

    2012-01-01

    A novel successive ionic layer adsorption and reaction method has been successfully employed to grow nanostructured conducting nearly transparent thin films of Mn 3 O 4 on to glass substrates at room temperature using MnCl 2 and NaOH as cationic and anionic precursors. The structural and morphological characterizations of the as deposited Mn 3 O 4 films have been carried out by means of X-ray diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), EDAX, Atomic Fore Microscopy (AFM) and Fourier Transform Infrared Spectrum (FTIR) analysis. The optical absorption and electrical resistivity measurements were carried out to investigate optical band gap and activation energy of Mn 3 O 4 films deposited by SILAR method. The optical band gap and activation energy of the as deposited film is found to be 2.70 and 0.14 eV respectively. The thermo-emf measurements of Mn 3 O 4 thin film confirm its p-type semiconducting nature. Highlights: ► Nanostructured Mn 3 O 4 thin film is prepared by SILAR method at room temperature. ► The film is nanocrystalline with orthorhombic structure of Mn 3 O 4 . ► The XRD, FTIR, FESEM, EDX and AFM characterization confirms nanocrystalline nature. ► Optical band gap, electrical resistivity and activation energy of film is reported. ► A thermo-emf measurement confirms p-type conductivity of Mn 3 O 4 films.

  14. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  15. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  16. Growth and in-plane magnetic anisotropy of inverse spinel Co{sub 2}MnO{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Taeyeong; Kim, Jaeyeong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Song, Jonghyun [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    Epitaxial Co{sub 2}MnO{sub 4} thin films were grown on Nb(0.1wt.)-doped SrTiO{sub 3} single-crystal substrates with (100) and (110) crystal orientations by using pulsed laser deposition. Their crystal structures and magnetic properties were investigated. Both samples exhibited ferrimagnetic transitions with enhanced transition temperatures. Isotropic M-H loops were observed on the in-plane surface of Co{sub 2}MnO{sub 4}(00l) grown on Nb(0.1wt)-doped SrTiO{sub 3}(100). Strong magnetic anisotropy was observed on the in-plane surface for Co{sub 2}MnO{sub 4} (ll0) grown on Nb(0.1wt)-doped SrTiO{sub 3}(110). A magnetic easy axis existed along the elongated tetragonal direction. This was attributed to the strong interplay between the spin and lattice degrees of freedom in the Co{sub 2}MnO{sub 4} thin film.

  17. Synthesis and photoluminescence spectroscopy of BaGeF6:Mn4+ red phosphor

    Science.gov (United States)

    Sekiguchi, Daisuke; Adachi, Sadao

    2015-04-01

    We synthesized Mn4+-activated BaGeF6 red phosphor by the chemical reaction method from HF, H2SiF6, BaF2, KMnO4, and GeO2 powder. The structural and optical properties of BaGeF6:Mn4+ were investigated using X-ray diffraction analysis, secondary electron microscopy observation, electron spin resonance measurement, photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopies, and luminescence decay time measurement. Temperature dependence of the PL intensity was measured from T = 20 to 500 K and analyzed by taking into consideration the Bose-Einstein phonon occupation number. The PLE spectra measured at T = 20 and 300 K and luminescence decay time at T = 20-460 K were also analyzed based on the Franck-Condon and conventional thermal quenching models, respectively. Comprehensive discussion was given on the Mn4+-related PL properties and Raman scattering behaviors in a family of the barium hexafluorometallate phosphors.

  18. Growth of LiMn{sub 2}O{sub 4} thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C. [Univ. Pierre et Marie Curie, Paris (France). LMDH; Haro-Poniatowski, E. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico); Camacho-Lopez, M.A. [LMDH, UMR 7603, Universite Pierre et Marie Curie, 4 place Jussieu, 75252, Paris (France); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico (Mexico); Jimenez-Jarquin, J. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico)

    2000-03-01

    Films of LiMn{sub 2}O{sub 4} were grown by pulsed-laser deposition (PLD) onto silicon wafers using sintered targets which consisted in the mixture of LiMn{sub 2}O{sub 4} and Li{sub 2}O powders. The film formation has been studied as a function of the preparation conditions, i.e. composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Composition, morphology and structural properties of PLD films have been investigated using Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray diffraction and Raman scattering spectroscopy. The films deposited from target LiMn{sub 2}O{sub 4}+15% Li{sub 2}O have an excellent crystallinity when deposited onto silicon substrate maintained at 300 C in an oxygen partial pressure of 100 mTorr. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by X-ray diffraction. Well-textured polycrystalline films exhibit crystallite size of 300 nm. Pulsed-laser deposited LiMn{sub 2}O{sub 4} thin films obtained with a polycrystalline morphology were successfully used as cathode materials in lithium microbatteries. The Li//LiMn{sub 2}O{sub 4} thin film cells have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. Specific capacity as high as 120 mC/cm{sup 2} {mu}m was measured on polycrystalline films. The chemical diffusion coefficients for the Li{sub x}Mn{sub 2}O{sub 4} thin films appear to be in the range of 10{sup -11}-10{sup -12} cm{sup 2}/s. Electrochemical measurements show a good cycleability of PLD films when cells are charged-discharged at current densities of 5-25 {mu}A/cm{sup 2}. (orig.)

  19. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2016-03-24

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  20. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, S.; Baras, A.; Roqan, I. S., E-mail: Iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Lee, J.-S. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-15

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaron percolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  1. Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films

    International Nuclear Information System (INIS)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G.

    2014-01-01

    Highlights: • Spray deposited undoped and Mn-doped CeO 2 thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO 2 thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO 2 films were studied. It was found that both the undoped and doped CeO 2 films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO 2 film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported

  2. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environ......We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user......- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering. We find that particularly beneficial...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  3. Substrates effect on Zn1-xMnxO thin films grown by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Elanchezhiyan, J.; Bhuvana, K.P.; Gopalakrishnan, N.; Balasubramanian, T.

    2008-01-01

    In this paper, we have presented the surface effect of the substrates on Mn doped ZnO (Zn 1-x Mn x O) thin films grown on Si(1 0 0) and sapphire [i.e. Al 2 O 3 (0 0 0 1)] by RF magnetron sputtering. These grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL) and vibrating sample magnetometer (VSM) to know its structural, optical and magnetic properties. All these properties have been found to be strongly influenced by the substrate surface on which the films have been deposited. The XRD results show that the Mn doped ZnO films deposited on Si(1 0 0) exhibit a polycrystalline nature whereas the films on sapphire substrate have only (0 0 2) preferential orientations indicating that the films are single crystalline. The studies of room temperature PL spectra reveal that the Zn 1-x Mn x O/Si(1 0 0) system is under severe compressive strain while the strain is almost relaxed in Zn 1-x Mn x O/Al 2 O 3 (0 0 0 1) system. It has been observed from VSM studies that Zn 1-x Mn x O/Al 2 O 3 (0 0 0 1) system shows ferromagnetic nature while the paramagnetic behaviour observed in Zn 1-x Mn x O/Si(1 0 0) system

  4. Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Li, Kai; Chen, Daqin; Xu, Ju; Zhang, Rui; Yu, Yunlong; Wang, Yuansheng

    2014-01-01

    Graphical abstract: We have synthesized Eu 2+ doped and Eu 2+ /Mn 2+ co-doped Ca 3 (PO 4 ) 2 phosphors. The emitting color varies from blue to green with increasing of Eu 2+ content for the Eu 2+ -doped phosphor, and the quantum yield of the 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 sample reaches 56.7%. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer. - Highlights: • A series of novel Eu 2+ : Ca 3 (PO 4 ) 2 phosphors were successfully synthesized. • Phase transition of Ca 3 (PO 4 ) 2 from orthorhombic to rhombohedral occurred when Mn 2+ ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu 2+ : Ca 3 (PO 4 ) 2 and tunable multicolor-emitting Eu 2+ /Mn 2+ : Ca 3 (PO 4 ) 2 phosphors are prepared via a solid-state reaction route. Eu 2+ -doped orthorhombic Ca 3 (PO 4 ) 2 phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu 2+ doping content. Broad excitation spectrum (250–420 nm) of Eu 2+ : Ca 3 (PO 4 ) 2 matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer, under 365 nm UV lamp excitation

  5. Liquid flow deposited spinel (Ni,Mn){sub 3}O{sub 4} thin films for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Le, Duc Thang, E-mail: ducthang36@skku.edu [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeon, Chang Jun; Lee, Kui Woong; Jeong, Young Hun; Yun, Ji Sun [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Yoon, Dae Ho, E-mail: dhyoon@skku.edu [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jeong Ho, E-mail: goedc@kicet.re.kr [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2015-03-01

    Highlights: • Highly quality (Ni,Mn){sub 3}O{sub 4} thin films were grown using liquid flow deposited (LFD) technique. • It is possible to deposit multi–component manganite–oxide thin films by LFD at low temperatures. • Nickel–manganite films showed a good negative temperature coefficient (NTC) characteristic. • Liquid flow deposited (Ni,Mn){sub 3}O{sub 4} thin films are very potential for microbolometer applications. - Abstract: A liquid flow deposition (LFD) technique was initially used for the fabrication of single-component Mn{sub 3}O{sub 4} thin films onto Si wafer substrates at a range of substrate temperatures of 30–80 °C, with the introduction of an oxidizing reagent (H{sub 2}O{sub 2}). As a result, solid thin films were well formed from an aqueous solution. An X-ray diffraction (XRD) analysis showed typical characteristics of hausmannite Mn{sub 3}O{sub 4} with a spinel tetragonal phase. Field-emission scanning electron microscopy (FE-SEM) observations revealed nano-sized grains arranged uniformly on a dense and smooth surface for all of the as-deposited films. On the other hand, the LFD method was then extended to prepare two-component nickel–manganite films according to the binary chemical composition of Ni{sub x}Mn{sub 3−x}O{sub 4} with x = 0.02–0.2. The as-grown nickel–manganite films showed a surface with a good quality with a spherical bead-like architecture when x ≤ 0.10, while a conversion from spherical grains into highly porous nanowalls in the microstructure was noted in films when x ≥ 0.12. These results signify that it is possible to fabricate various multi-component manganite-oxide thin films at a low temperature. In addition, the dependences of the room-temperature electrical resistivity (ρ) and the temperature coefficient of resistance (TCR) on the Ni substitution level (x) were investigated on films annealed at 400 °C.

  6. Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jaison, E-mail: jaisonjosephp@gmail.com [Department of Physics, Goverment College, Khandola, Goa 403107 India (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 India (India); Pillai, V.P. Mahadevan [Department of Optoelectronics, University of Kerala,Thiruvananthapuram, Kerala 695581 India (India); Choudhary, R.J.; Phase, D.M.; Ganeshan, V. [UGC-DAE-CSR Indore, Madhya Pradesh 452017 India. (India)

    2015-01-01

    Nanoparticles of Mn{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} were chemically synthesized by co-precipitating the metal ions in aqueous solutions in a suitable alkaline medium. The identified XRD peaks confirm single phase spinal formation. The nanoparticle size authentication is carried out from XRD data using Debye Scherrer equation. Thin film fabricated from this nanomaterial by pulse laser deposition technique on quartz substrate was characterized using XRD and Raman spectroscopic techniques. XRD results revealed the formation of high degree of texture in the film. AFM analysis confirms nanogranular morphology and preferred directional growth. A high deposition pressure and the use of a laser plume confined to a small area for transportation of the target species created certain level of porosity in the deposited thin film. Magnetic property measurement of this highly textured nanocrystalline Mn–Zn ferrite thin film revealed enhancement in properties, which are explained on the basis of texture and surface features originated from film growth mechanism.

  7. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO2 matrix

    International Nuclear Information System (INIS)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm 3 at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm 3 at 300 K). The increased exchange integral of J 1 /k B = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J 1 /k B = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO 2 -capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  8. Photoluminescence analysis of Ce3+:Zn2SiO4 & Li++ Ce3+:Zn2SiO4: phosphors by a sol-gel method

    Science.gov (United States)

    Babu, B. Chandra; Vandana, C. Sai; Guravamma, J.; Rudramadevi, B. Hemalatha; Buddhudu, S.

    2015-06-01

    Here, we report on the development and photoluminescence analysis of Zn2SiO4, Ce3+:Zn2SiO4 & Li+ + Ce3+: Zn2SiO4 novel powder phosphors prepared by a sol-gel technique. The total amount of Ce3+ ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn2SiO4) and Ce3+ doped Zn2SiO4 and 0.05 mol% Li+ co-doped samples have been investigated. Cerium doped Zn2SiO4 powder phosphors had broad blue emission corresponding to the 2D3/22FJ transition at 443nm. Stable green-yellow-red emission has been observed from Zn2SiO4 host matrix and also we have been observed the enhanced luminescence of Li+ co-doped Zn2SiO4:Ce3+. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.

  9. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  10. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    Science.gov (United States)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  11. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR

    International Nuclear Information System (INIS)

    Patel, Kinjal; Shah, Dimple V.; Kheraj, Vipul

    2015-01-01

    Highlights: • Optimisation of Cu 2 ZnSnS 4 (CZTS) thin film deposition using SILAR method. • Study on effects of annealing at different temperature under two different ambients, viz. sulphur and tin sulphide. • Formation of CZTS thin films with good crystalline quality confirmed by XRD and Raman spectra. - Abstract: Cu 2 ZnSnS 4 (CZTS) thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) technique at the room-temperature. The deposition parameters such as concentration of precursors and number of cycles were optimised for the deposition of uniform CZTS thin films. Effects of annealing at different temperature under two different ambient, viz. sulphur and tin sulphide have also been investigated. The structural and optical properties of the films were studied using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV-visible spectra in light with the deposition parameters and annealing conditions. It is observed that a good quality CZTS film can be obtained by SILAR at room temperature followed by annealing at 500 °C in presence of sulphur

  12. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  13. Magnetic and transport properties of Zn0.4Fe2.6O4 thin films with highly preferential orientation

    International Nuclear Information System (INIS)

    Lu, Z.L.; Zou, W.Q.; Liu, X.C.; Lin, Y.B.; Lu, Z.H.; Wang, J.F.; Xu, J.P.; Lv, L.Y.; Zhang, F.M.; Du, Y.W.

    2007-01-01

    Highly preferentially oriented Zn 0.4 Fe 2.6 O 4 thin films have been fabricated on Si, SrTiO 3 and ZrO 2 substrates, respectively, using RF magnetron sputtering. All the films show a large saturation magnetization of about 4.2μ B and low coercive field at 300 K and a spin (cluster) glass transition at about 60 K due to the non-magnetic Zn 2+ ions substitution. Moreover, the fairly high spin polarization of the carrier at 300 K has been confirmed by both the giant magnetoresistance and anomalous Hall coefficient measurements

  14. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    Science.gov (United States)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  15. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  16. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu{sub 2}ZnSnS{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruei-Sung, E-mail: rsyu@asia.edu.tw [Department of Photonics and Communication Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan (China); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan (China); Hung, Ta-Chun [Department of Photonics and Communication Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan (China)

    2016-02-28

    Highlights: • Oxygen incorporation in Cu{sub 2}ZnSnS{sub 4} changes the energy band structure. • The material has a comparatively high-absorptive capacity for short wavelength. • Absorption coefficients of the film increase from 10{sup 4} to 10{sup 5} cm{sup −1}. • The oxygen-containing CZTS film has a mixture of crystallite and crystalline states. • The material could be a candidate as an absorber layer in multi-junction solar cells. - Abstract: This study used the sol–gel method to prepare Cu{sub 2}ZnSnS{sub 4} thin films containing oxygen and explored the composition, structural, and optoelectronic properties of the films. The non-vacuum process enabled the oxygen content of the Cu{sub 2}ZnSnS{sub 4} films to be 8.89 at% and 10.30 at% for two different annealing conditions. In the crystal structure, oxygen was substituted at the positions of sulfur and appeared in the interstitial sites of the lattice. The compositions of the thin films deviated from the stoichiometric ratio. Both films had kesterite structures with no secondary phase structure. The kesterite CZTS film possessed a composite microstructure of crystallite and crystalline states. The microstructure of the Cu{sub 2}ZnSnS{sub 4} film with higher oxygen content was denser and the average grain size was smaller. Incorporating oxygen atoms into crystalline Cu{sub 2}ZnSnS{sub 4} changed the energy band structure: the direct energy band gaps were, respectively, 2.75 eV and 2.84 eV; the thin films mainly adsorbed photons with wavelengths less than 500 nm; and the absorption coefficients increased from 10{sup 4} cm{sup −1} to 10{sup 5} cm{sup −1}. The films had a comparatively high absorptive capacity for photons less than 350 nm. Increasing the oxygen content of the film lowered the resistivity. Thus, the oxygen-containing Cu{sub 2}ZnSnS{sub 4} thin film could be a candidate for the p-type absorber layer material required in multi-junction solar cells.

  17. Synthesis and characterisation of Cu{sub 2}ZnSnSe{sub 4} thin films prepared via a vacuum evaporation-based route

    Energy Technology Data Exchange (ETDEWEB)

    Volobujeva, O., E-mail: v.olga@staff.ttu.ee; Bereznev, S.; Raudoja, J.; Otto, K.; Pilvet, M.; Mellikov, E.

    2013-05-01

    Different sequentially stacked binary chalcogenide layers (CuSe, ZnSe, and SnSe) deposited by vacuum evaporation onto molybdenum covered soda-lime glass substrates were used as precursors to form Cu{sub 2}ZnSnSe{sub 4} films. The influence of the stacked binary layer sequence, substrate temperature, both the duration and speed of deposition and the post deposition treatment atmosphere on the structural and the morphological parameters of the Cu{sub 2}ZnSnSe{sub 4} thin films was studied. Our results indicate the possibility of replacing the Se{sub 2} selenisation with a thermal treatment in an SnSe{sub 2} atmosphere to avoid the selenisation of the Mo substrate and MoSe{sub 2} formation. This SnSe{sub 2} treatment forms p-type Cu{sub 2}ZnSnSe{sub 4} films with an optical band-gap of 1.14 eV and a solar cell structure with an efficiency of up to 3%. - Highlights: ► Cu{sub 2}ZnSnSe{sub 4} thin films were grown using binary precursors and selenisation. ► Composition and morphology were studied in dependence of selenisation atmosphere. ► The use of SnSe{sub 2} selenisation allows to avoid Mo substrate selenisation. ► The high quality of films is indicated by the value of their E{sub g} = 1.14 eV. ► Cu{sub 2}ZnSnSe{sub 4} thin films were in p-type conductivity and were realized as solar cells.

  18. Cu2ZnSnS4 thin films by simple replacement reaction route for solar photovoltaic application

    International Nuclear Information System (INIS)

    Tiwari, Devendra; Chaudhuri, Tapas K.; Ray, Arabinda; Tiwari, Krishan Dutt

    2014-01-01

    A process for deposition of Cu 2 ZnSnS 4 (CZTS) films using replacement of Zn 2+ in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10 17 cm −3 and 1.4 cm 2 V −1 s −1 respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO 2 :In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm 2 , respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu 2 ZnSnS 4 thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm 2 S −1 V −1 • Fabrication of Graphite/Cu 2 ZnSnS 4 /CdS/ZnO/SnO 2 :In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62

  19. Characterization of nanostructured Mn{sub 3}O{sub 4} thin films grown by SILAR method at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Nanostructure Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, VMV Road, Amravati 444604, Maharashtra (India); Belkhedkar, M.R. [Department of Physics, Shri Shivaji College, Akola 444003, Maharashtra (India); Sakhare, Y.S. [Nanostructure Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, VMV Road, Amravati 444604, Maharashtra (India); Singh, Arvind [National Centre for Nanomaterials and Nanotechnology, University of Mumbai, Santacruz, Mumbai, Maharashtra (India); Gurada, Chetan; Kothari, D.C. [Department of Physics, University of Mumbai, Santacruz, Mumbai, Maharashtra (India)

    2012-10-15

    A novel successive ionic layer adsorption and reaction method has been successfully employed to grow nanostructured conducting nearly transparent thin films of Mn{sub 3}O{sub 4} on to glass substrates at room temperature using MnCl{sub 2} and NaOH as cationic and anionic precursors. The structural and morphological characterizations of the as deposited Mn{sub 3}O{sub 4} films have been carried out by means of X-ray diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), EDAX, Atomic Fore Microscopy (AFM) and Fourier Transform Infrared Spectrum (FTIR) analysis. The optical absorption and electrical resistivity measurements were carried out to investigate optical band gap and activation energy of Mn{sub 3}O{sub 4} films deposited by SILAR method. The optical band gap and activation energy of the as deposited film is found to be 2.70 and 0.14 eV respectively. The thermo-emf measurements of Mn{sub 3}O{sub 4} thin film confirm its p-type semiconducting nature. Highlights: Black-Right-Pointing-Pointer Nanostructured Mn{sub 3}O{sub 4} thin film is prepared by SILAR method at room temperature. Black-Right-Pointing-Pointer The film is nanocrystalline with orthorhombic structure of Mn{sub 3}O{sub 4}. Black-Right-Pointing-Pointer The XRD, FTIR, FESEM, EDX and AFM characterization confirms nanocrystalline nature. Black-Right-Pointing-Pointer Optical band gap, electrical resistivity and activation energy of film is reported. Black-Right-Pointing-Pointer A thermo-emf measurement confirms p-type conductivity of Mn{sub 3}O{sub 4} films.

  20. Synthesis of nanocrystalline nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, D.K. [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India); Pawar, S.M. [Department of Materials Science and Engineering, Chonnam National University, 500 757 (Korea, Republic of); Patil, P.S. [Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.) (India); Kolekar, S.S., E-mail: kolekarss2003@yahoo.co.in [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India)

    2011-02-24

    Graphical abstract: Display Omitted Research highlights: > We have successfully synthesized nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films on stainless steel substrates using a low temperature chemical bath deposition method. > The surface morphological study showed the compact flakes like morphology. > The as-deposited thin films are hydrophilic (10{sup o} < {theta} < 90{sup o}) whereas the annealed thin films are super hydrophilic ({theta} < 10{sup o}) in nature. > Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm{sup -1} which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness {approx}1.8 {mu}m after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle ({theta}) of 5{sup o}.The electrochemical supercapacitor study of Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm{sup -2} and 19 F g{sup -1}, respectively.

  1. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  2. Structural, morphological and optical properties of spray deposited Mn-doped CeO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G., E-mail: jp@ece.sastra.edu

    2014-07-25

    Highlights: • Spray deposited undoped and Mn-doped CeO{sub 2} thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO{sub 2} thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO{sub 2} films were studied. It was found that both the undoped and doped CeO{sub 2} films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO{sub 2} film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported.

  3. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  4. Thin film solar cells from earth abundant materials growth and characterization of Cu2(ZnSn)(SSe)4 thin films and their solar cells

    CERN Document Server

    Kodigala, Subba Ramaiah

    2013-01-01

    The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further developm

  5. The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition

    International Nuclear Information System (INIS)

    Su, Hui-Chia; Dai, Jeng-Yi; Liao, Yen-Fa; Wu, Yu-Han; Huang, J.C.A.; Lee, Chih-Hao

    2010-01-01

    A new method to grow a well-ordered epitaxial ZnFe 2 O 4 thin film on Al 2 O 3 (0001) substrate is described in this work. The samples were made by annealing the ZnO/Fe 3 O 4 multilayer which was grown with low energy ion beam sputtering deposition. Both the Fe 3 O 4 and ZnO layers were found grown epitaxially at low temperature and an epitaxial ZnFe 2 O 4 thin film was formed after annealing at 1000 o C. X-ray diffraction shows the ZnFe 2 O 4 film is grown with an orientation of ZnFe 2 O 4 (111)//Al 2 O 3 (0001) and ZnFe 2 O 4 (1-10)//Al 2 O 3 (11-20). X-ray absorption spectroscopy studies show that Zn 2+ atoms replace the tetrahedral Fe 2+ atoms in Fe 3 O 4 during the annealing. The magnetic properties measured by vibrating sample magnetometer show that the saturation magnetization of ZnFe 2 O 4 grown from ZnO/Fe 3 O 4 multilayer reaches the bulk value after the annealing process.

  6. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  7. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  8. Surfactant assisted electrodeposition of MnO2 thin films: Improved supercapacitive properties

    International Nuclear Information System (INIS)

    Dubal, D.P.; Kim, W.B.; Lokhande, C.D.

    2011-01-01

    Highlights: → Effect of Triton X-100 on physico-chemical properties of MnO 2 films. → High supercapacitance of 345 F g -1 . → Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO 2 thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO 2 films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO 2 in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO 2 film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO 2 thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO 2 films deposited in presence of Triton X-100 is 345 F g -1 .

  9. Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors

    International Nuclear Information System (INIS)

    Lin, Xianzhong; Kavalakkatt, Jaison; Kornhuber, Kai; Levcenko, Sergiu; Lux-Steiner, Martha Ch.; Ennaoui, Ahmed

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se 2 due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu 3 SnS 4 and ZnS NPs and annealing in Ar/H 2 S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy

  10. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    Science.gov (United States)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  11. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    Science.gov (United States)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  12. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  13. Properties of Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4 as Nanocatalyst for Ammonia Production

    Directory of Open Access Journals (Sweden)

    Puspitasari Poppy

    2017-01-01

    Full Text Available Ammonia synthesis requires high pressure and high temperature process. Unfortunately, the capital intensive cost resulting low yield of ammonia by using recent catalyst which is iron oxide. Therefore, manganese zinc ferrite as a soft ferrite material will be introduced as a new nanocatalyst to enhance the ammonia yield. As a new nanocatalyst for ammonia production, study of comparasion two different concentration of MnZn Ferrite is very important. This paper will compare the yield of ammonia by using two different nanocatalyst which are Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4. Both were synthesized by sol-gel method and has been characterize by using FESEM (morphology, XRD (phase identification, EDX (elemental analysis and TPR (oxide reduction. The ammonia was produce with and without magnetic field applied. The result shows that the ammonia yield is higher for Mn0.4Zn0.6Fe2O4 nanocatalyst than Mn0.6Zn0.4Fe2O4 by using magnetic field applied. 67.2% of yield has been achieved by using new nanocatalyst Mn0.6Zn0.4Fe2O4 and magnetic field applied at ambient environment.

  14. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  15. A novel chemical synthesis and characterization of Mn{sub 3}O{sub 4} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, D.P.; Dhawale, D.S.; Salunkhe, R.R. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S) (India); Pawar, S.M. [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S) (India)

    2010-05-01

    Mn{sub 3}O{sub 4} thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), field emission scanning electron microscopy (FESEM), wettability test and optical absorption studies. The XRD pattern showed that the Mn{sub 3}O{sub 4} films exhibit tetragonal hausmannite structure. Formation of manganese oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.30 eV. Mn{sub 3}O{sub 4} film surface showed hydrophilic nature with water contact angle of 55{sup o}. The supercapacitive properties of Mn{sub 3}O{sub 4} thin film investigated in 1 M Na{sub 2}SO{sub 4} electrolyte showed maximum supercapacitance of 314 F g{sup -1} at scan rate 5 mV s{sup -1}.

  16. Regulating effect of SiO2 interlayer on optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Miao, Juhong; Su, Jing; Zhang, Chengyi; Shen, Hua; Zhao, Lilong

    2013-01-01

    ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. Regulating effect of SiO 2 interlayer with various thicknesses on the optical properties of ZnO/SiO 2 thin films was investigated deeply. The analyses of X-ray diffraction show that the ZnO layers in ZnO/SiO 2 nanocomposite films have a wurtzite structure and are preferentially oriented along the c-axis while the SiO 2 layers are amorphous. The scanning electron microscope images display that the ZnO layers are composed of columnar grains and the thicknesses of ZnO and SiO 2 layers are all very uniform. The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films, which is reflected in the following two aspects: (1) the transmittance of ZnO/SiO 2 nanocomposite films is increased; (2) the photoluminescence (PL) of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays. -- Highlights: ► ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. ► The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films. ► The photoluminescence of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. ► The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays

  17. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  18. Preparation and optical properties of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films derived by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China); Li Yuan; Chen Ziyu; Wang Tianmin [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China)

    2010-05-01

    ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films with bright red emission were synthesized using a sol-gel process, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and UV-vis and fluorescence spectrophotometry measurements. Effects of calcining temperature, film thickness, calcining duration and substrates on the crystal structure and photoluminescent property have been investigated. It is found that the crystallinity, Ga/Zn ratio and band gap energy (E{sub g}) are significant factors influencing optical characteristics, while the nature of substrates affect the surface morphologies of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films.

  19. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  20. A photochemical proposal for the preparation of ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films from β-diketonate complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, G., E-mail: gerardocabelloguzman@hotmail.com [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Lillo, L.; Caro, C.; Seguel, M.; Sandoval, C. [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Buono-Core, G.E. [Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso (Chile); Chornik, B.; Flores, M. [Deparamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370415 (Chile)

    2016-05-15

    Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperature using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.

  1. First report on synthesis of ZnFe_2O_4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device

    International Nuclear Information System (INIS)

    Raut, Shrikant S.; Sankapal, Babasaheb R.

    2016-01-01

    Highlights: • First report on synthesis of ZnFe_2O_4 thin film using SILAR method. • ZnFe_2O_4 electrode yields the specific capacitance of 471 Fg"−"1 at a scan rate of 5 mV s"−"1 in 1 M NaOH aqueous solution. • Solid-state symmetric supercapacitor device based on ZnFe_2O_4 sandwiched in polyvinyl alcohol (PVA)–LiClO_4 gel electrolyte exhibits voltage windows of 1.0 V. • ZnFe_2O_4-SSS supercapacitor device shows good energy and power density with long cycle life. - Abstract: ZnFe_2O_4 thin film has been synthesized by a simple and low cost successive ionic layer adsorption and reaction (SILAR) method without the use of surfactant or template. The nanoplate composed of nanoparticles with porous surface morphology has been revealed which is beneficial towards supercapacitor application. Formed ZnFe_2O_4 thin film has been tested as an electrode material for supercapacitor through electrochemical analysis. First attempt for SILAR synthesized ZnFe_2O_4 thin film exhibited a specific capacitance of 471 Fg"−"1 at a scan rate of 5 mVs"−"1 in 1 M NaOH aqueous solution. Further, ZnFe_2O_4 solid-state symmetric (SSS) supercapacitor device demonstrated voltage window of 1.0 V with specific capacitance of 32 Fg"−"1, energy density of 4.47 Whkg"−"1 and power density of 277 Wkg"−"1 at 1 Ag"−"1 current density. Such high performance capacitive behavior indicates ZnFe_2O_4 thin film is promising and low cost electrode material towards energy storage devices for various portable electronic systems.

  2. Surfactant assisted electrodeposition of MnO{sub 2} thin films: Improved supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, D.P. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, W.B. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India)

    2011-10-13

    Highlights: > Effect of Triton X-100 on physico-chemical properties of MnO{sub 2} films. > High supercapacitance of 345 F g{sup -1}. > Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO{sub 2} thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO{sub 2} films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO{sub 2} in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO{sub 2} film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO{sub 2} thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO{sub 2} films deposited in presence of Triton X-100 is 345 F g{sup -1}.

  3. Enhancing the photovoltaic performance of CdTe/CdS solar cell via luminescent downshifting using K{sub 2}SiF{sub 6}:Mn{sup 4+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Talewar, R. A., E-mail: talewarrupesh@gmail.com; Joshi, C. P. [Physics Department, Shri Ramdeobaba College of Engineering & Management, Katol Road, Nagpur 440013 (India); Moharil, S. V. [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440010 (India)

    2016-05-23

    The efficiency of CdTe/CdS solar cell can be significantly improved by using luminescent down-shifting material on their front surface. Taking this into account a red emitting phosphor K{sub 2}Si{sub 1-x}F{sub 6}:xMn{sup 4+} (x=10 to 25 mol %) has been synthesized through wet chemical method. The as-synthesized materials were characterized by powder x-ray diffraction (XRD) and photoluminescence (PL) techniques. The photoluminescence studies of K{sub 2}SiF{sub 6}:Mn{sup 4+} revealed enhancement in the emission intensity, when Mn{sup 4+} concentration was increased from 10 mol % to 25 mol %. This red emitting phosphor efficiently absorbs the photons typically in the region 300-500 nm and re-emits in the region where the photovoltaic device exhibits significantly better response. The results show the possibility of enhancing the photovoltaic conversion efficiency of CdTe thin film solar cell by modifying the absorption spectra and utilising the energy in the UV-blue part of the solar spectrum.

  4. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  5. Effect of alkali elements in thin-film Cu2ZnSnS4 solar cells produced by solution-processing

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Canulescu, Stela; Schou, Jørgen

    The effect of adding Li, Na, and K to Cu2ZnSnS4 nanoparticle thin-film absorber layers has been investigated. Among them, K is found to enhance grain growth as well as increase the photoluminescence of the films....

  6. Mechanical responses of Zn{sub 1-x}Mn{sub x}O epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Teng-Ruey [Department of Industrial Engineering and Management, Nan Kai University of Techonology, Nantou 54243, Taiwan (China); Tsai, Chien-Huang, E-mail: chtsai12@gmail.com [Department of Automation Engineering, Nan Kai University of Techonology, Nantou 54243, Taiwan (China)

    2011-10-15

    In this study, we used nanoindentation to investigate the effect of the doping of Mn into ZnO buffer layers on the epitaxial growth of ZnO through plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. We characterized the variation of the mechanical properties of Zn{sub 1-x}Mn{sub x}O alloys as a function of the Mn content in the range (x) from 0 to 0.16, as well as analyzing their microstructures using high-resolution transmission electron microscopy. The presence of the Mn-doped ZnO buffer layer enhanced the nanomechanical properties of the ZnO epilayers significantly. From their Berkovich indenter responses, plots of the Young's modulus (E) and hardness (H) of these films revealed that the value of E increased relatively steadily upon increasing the Mn composition, whereas the value of H reached its maximum when x was equal to 0.16. This discrepancy suggests that Zn{sub 1-x}Mn{sub x}O epilayers of higher Mn contents had higher shear resistances.

  7. Facile Synthesis of Novel Nanostructured MnO2Thin Films and Their Application in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xia H

    2009-01-01

    Full Text Available Abstract Nanostructured α-MnO2thin films with different morphologies are grown on the platinum substrates by a facile solution method without any assistance of template or surfactant. Microstructural characterization reveals that morphology evolution from dandelion-like spheres to nanoflakes of the as-grown MnO2is controlled by synthesis temperature. The capacitive behavior of the MnO2thin films with different morphologies are studied by cyclic voltammetry. The α-MnO2thin films composed of dandelion-like spheres exhibit high specific capacitance, good rate capability, and excellent long-term cycling stability.

  8. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    Science.gov (United States)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  9. Structural and optical properties of ZnO–SnO{sub 2} mixed thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Sabri, M.F.M., E-mail: faizul@um.edu.my

    2014-05-02

    Nanocrystalline ZnO–SnO{sub 2} mixed thin films were deposited by the spray pyrolysis technique at various substrate temperatures during deposition. The mixed films were prepared in the range of 20.9 at.% to 73.4 at.% by altering the Zn/(Sn + Zn) atomic ratio in the starting solution. Morphology, crystal structures, and optical properties of the films were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet–visible and photoluminescence (PL) spectroscopy. XRD analysis reveals that the crystallinity of the Sn-rich mixed thin films increases with increasing substrate temperatures. FESEM images show that the grain size of mixed thin films is smaller compared to that of pure ZnO and SnO{sub 2} thin films. A drop in the thickness and optical bandgap of the film was observed for films fabricated at high temperatures, which coincided with the increased crystallinity of the films. The average optical transmission of mixed thin films increased from 70% to 95% within the visible range (400–800 nm) as the substrate temperature increases. Optical bandgap of the films was determined to be in the range of 3.21–3.96 eV. The blue shift in the PL spectra from the films was supported by the fact that grain size of the mixed thin films is much smaller than that of the pure ZnO and SnO{sub 2} thin films. Due to the improved transmission and reduced grain size, the ZnO–SnO{sub 2} mixed thin films can have potential use in photovoltaic and gas sensing applications. - Highlights: • ZnO–SnO{sub 2} mixed thin films were deposited on glass substrate by spray pyrolysis. • Crystallinity of the thin films increases with substrate temperature. • Grain size of the mixed thin films is smaller than that of the pure thin films. • Reduction of grain size depends on mixed atomic ratios of precursor solution. • Optical band gap of films could be engineered by changing substrate temperature.

  10. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi; Fukano, Tatsuo; Ohta, Shingo; Seno, Yoshiki; Katagiri, Hironori; Jimbo, Kazuo

    2012-01-01

    Highlights: ► Cu 2 ZnSnS 4 thin films as a solar cell material were synthesized. ► The wavelength dependences of the diffraction intensity were measured. ► The crystal structures were clearly identified as kesterite structure for all samples. ► Crystal structure analysis revealed that the atomic compositions were Cu/(Zn + Sn) = 0.97 and Zn/Sn = 1.42 for the sample synthesized using stoichiometric amount of starting materials. - Abstract: The crystal structure of Cu 2 ZnSnS 4 (CZTS) thin films fabricated by vapor-phase sulfurization was determined using X-ray anomalous dispersion. High statistic synchrotron radiation X-ray diffraction data were collected from very small amounts of powder. By analyzing the wavelength dependencies of the diffraction peak intensities, the crystal structure was clearly identified as kesterite. Rietveld analysis revealed that the atomic composition deviated from stoichiometric composition, and the compositions were Cu/(Zn + Sn) = 0.97, and Zn/Sn = 1.42.

  11. Investigation of optimum annealing parameters for formation of dip coated Cu{sub 2}ZnSnS{sub 4} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Sushmita; Kannan, P.K.; Dey, Suhash R., E-mail: suhash@iith.ac.in

    2016-08-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is most attractive absorber material for inorganic solar cell applications because of its cost effective and ecofriendly nature. To obtain phase pure CZTS film, effects of annealing parameters on synthesis of CZTS thin film are investigated. CZTS films are deposited through dip coating method followed by heat treatment to form crystalline CZTS thin films. Factors influencing the crystallinity, morphology and composition of the films such as annealing temperature, time, rate and atmosphere are studied through X-Ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. After numerous experiments of synthesis of CZTS in different annealing conditions and its characterization, it is observed that 1.4 eV band gap CZTS thin film of kesterite structure is obtained by annealing the film in nitrogen atmosphere for 60 min at 300 °C with 10 °C/min ramping rate. - Highlights: • Dip coated Cu{sub 2}ZnSnS{sub 4} film is developed using non-hydrazine based precursor solution. • Optimum annealing condition to achieve best crystalline film is studied. • Optimal condition is 300 °C in N{sub 2} atmosphere for 60 min at 10 °C/min ramping rate. • Bandgap of prepared films is 1.4 eV, suitable for solar cell applications.

  12. Influence of deposition parameters and annealing on Cu{sub 2}ZnSnS{sub 4} thin films grown by SILAR

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kinjal; Shah, Dimple V. [Department of Applied Physics, S.V. National Institute of Technology, Surat 395007 (India); Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, S.V. National Institute of Technology, Surat 395007 (India); Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-02-15

    Highlights: • Optimisation of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film deposition using SILAR method. • Study on effects of annealing at different temperature under two different ambients, viz. sulphur and tin sulphide. • Formation of CZTS thin films with good crystalline quality confirmed by XRD and Raman spectra. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) technique at the room-temperature. The deposition parameters such as concentration of precursors and number of cycles were optimised for the deposition of uniform CZTS thin films. Effects of annealing at different temperature under two different ambient, viz. sulphur and tin sulphide have also been investigated. The structural and optical properties of the films were studied using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV-visible spectra in light with the deposition parameters and annealing conditions. It is observed that a good quality CZTS film can be obtained by SILAR at room temperature followed by annealing at 500 °C in presence of sulphur.

  13. Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film

    Science.gov (United States)

    Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy

    2002-02-01

    Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.

  14. Structural and luminescence properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wako, A.H., E-mail: wakoah@ufs.ac.za [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA-9300 (South Africa)

    2016-01-01

    Thin films of Eu{sup 2+} doped and Dy{sup 3+},Nd{sup 3+} co-doped Strontium Aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+}) phosphors were grown on Si(100) substrates by a pulsed laser deposition (PLD) technique using a 266 nm Nd:YAG pulsed laser under varying substrate temperature and the working atmosphere during the film deposition process. The effect of substrate temperatures and argon partial pressure on the structure and luminescence properties of the as-deposited SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films were analysed. XRD patterns showed that with increasing substrate temperature and argon partial pressure the peaks in the direction (220) shifted to the lower 2-theta angles. Photoluminescence (PL) data collected in air at room temperature revealed a slight shift in the peak wavelength of the PL spectra observed from the thin films when compared to the PL spectra of the phosphor in powder form, which is probably due to a change in the crystal field. The PL intensity of the samples was highest for 100 °C substrate temperature and 20 mTorr argon partial pressure. Due to this, the effect of argon partial pressure was studied at a constant substrate temperature of 100 °C while the effect of Substrate temperatures recorded at 20 mTorr argon pressure respectively.

  15. Structural transformation of sputtered o-LiMnO2 thin-film cathodes induced by electrochemical cycling

    International Nuclear Information System (INIS)

    Fischer, J.; Chang, K.; Ye, J.; Ulrich, S.; Ziebert, C.; Music, D.; Hallstedt, B.; Seifert, H.J.

    2013-01-01

    Orthorhombic LiMnO 2 (o-LiMnO 2 ) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm 3 using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO 2 half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO 2 and c-LiMn 2 O 4 were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO 2 half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO 2 /c-LiMn 2 O 4 phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO 2 thin films • Synthesis of o-LiMnO 2 planar model systems for protective coating and SEI development

  16. Cu{sub 2}ZnSnS{sub 4} thin films by simple replacement reaction route for solar photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Devendra, E-mail: devendratiwari.rnd@ecchanga.ac.in [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Chaudhuri, Tapas K. [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Ray, Arabinda [P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Tiwari, Krishan Dutt [Powerdeal Energy Systems - India, Private Limited, Nashik 422010, Maharashtra (India)

    2014-01-31

    A process for deposition of Cu{sub 2}ZnSnS{sub 4} (CZTS) films using replacement of Zn{sup 2+} in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10{sup 17} cm{sup −3} and 1.4 cm{sup 2}V{sup −1} s{sup −1} respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO{sub 2}:In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm{sup 2}, respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu{sub 2}ZnSnS{sub 4} thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm{sup 2} S{sup −1} V{sup −1} • Fabrication of Graphite/Cu{sub 2}ZnSnS{sub 4}/CdS/ZnO/SnO{sub 2}:In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62.

  17. Optical constants correlated electrons-spin of micro doughnuts of Mn-doped ZnO films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-09-01

    Full Text Available Diluted magnetic semiconductor (DMS) Mn:ZnO thin films with “ring-like or doughnut-like” structures were grown using aerosol spray pyrolysis for 20 and 30 min. Electron paramagnetic resonance revealed the ferromagnetic ordering which varies with Mn...

  18. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  19. Influence of S/Mn molar ratio on the morphology and optical property of γ-MnS thin films prepared by microwave hydrothermal

    International Nuclear Information System (INIS)

    Yu, Xin; Li-yun, Cao; Jian-feng, Huang; Jia, Liu; Jie, Fei; Chun-yan, Yao

    2013-01-01

    Highlights: ► The influence of the precursor solution molar ratio of S/Mn. ► The degree of orientation of the γ-MnS film decrease slightly with increasing the S/Mn from 2.0 to 4.0. ► Film quality is strongly affected by the initial nucleation. ► The absorption edge obviously shifts to a higher wavelength with the increase of the S/Mn molar ratio from 2.0 to 4.0. - Abstract: Well crystallized γ-MnS thin films were successfully synthesized at low temperature and short processing time via a novel microwave hydrothermal (M-H) process without any complexing agent by using manganese chloride and thioacetamide as source materials. The influence of different S/Mn molar ratio in the precursor solution on the phase compositions, morphologies and optical properties of the as-deposited films was investigated. The as-deposited γ-MnS thin films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and ultraviolet–visible (UV–vis). Results show that the wurtzite phase γ-MnS thin films with good crystallization can be achieved when S/Mn molar ratio is controlled at 2.0–4.0. The deposited γ-MnS thin films exhibit (1 0 0) orientation growth with the thickness of 300–500 nm. With the increase of S/Mn molar ratio from 2.0 to 4.0, the orientation growth is weakened while the dense and uniform of the as-deposited γ-MnS thin films are obviously improved and the corresponding band gap of the thin films increase from 3.88 to 3.97 eV.

  20. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Hideaki; Kubo, Yuki; Jimbo, Kazuo; Maw, Win Shwe; Katagiri, Hironori; Yamazaki, Makoto; Oishi, Koichiro; Takeuchi, Akiko [Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2009-05-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were prepared by sulfurization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were deposited on Mo-coated glass substrates in a one-step process from an electrolyte containing copper (II) sulfate pentahydrate, zinc sulfate heptahydrate, tin (II) chloride dehydrate and tri-sodium citrate dehydrate. The precursors were sulfurized by annealing with sulfur at temperatures of 580 C and 600 C in an N{sub 2} atmosphere. X-ray diffraction peaks attributable to CZTS were detected in the sulfurized films. Photovoltaic cells with the structure glass/Mo/CZTS/ CdS/ZnO:Al/Al were fabricated using the CZTS films by sulfurizing the electrodeposited precursors. The best photovoltaic cell performance was obtained with Zn-rich samples. An open-circuit voltage of 540 mV, a short-circuit current of 12.6 mA/cm{sup 2} and an efficiency of 3.16% were achieved. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors

    CSIR Research Space (South Africa)

    Raleaooa, PV

    2018-01-01

    Full Text Available stream_source_info Raleaooa_20160_2018.pdf.txt stream_content_type text/plain stream_size 1286 Content-Encoding UTF-8 stream_name Raleaooa_20160_2018.pdf.txt Content-Type text/plain; charset=UTF-8 Optik - International... journal for Light and Electron Optics Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors Raleaooa PV Roodt A Mhlongo GH Motaung DE Ntwaeaborwa OM ABSTRACT: The structure...

  2. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  3. Preferential orientation relationships in Ca2MnO4 Ruddlesden-Popper thin films

    International Nuclear Information System (INIS)

    Lacotte, M.; David, A.; Prellier, W.; Rohrer, G. S.; Salvador, P. A.

    2015-01-01

    A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca 2 MnO 4 Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr 2 TiO 4 substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship (OR) for each substrate-film grain pair. Two preferred epitaxial ORs accounted for more than 90% of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell OR ([100][001] film ∥ [100][001] substrate , or OR1) accounted for approximately 30% of each film. The OR that accounted for 60% of each film ([100][001] film ∥ [100][010] substrate , or OR2) corresponds to a rotation from OR1 by 90° about the a-axis. OR2 is strongly favored for substrate orientations in the center of the stereographic triangle, and OR1 is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While OR1 should be lower in energy, the majority observation of OR2 implies kinetic hindrances decrease the frequency of OR1. Persistent grain over grain growth and the absence of variations of the OR frequencies with thickness implies that the growth competition is finished within the first few nm, and local epitaxy persists thereafter during growth

  4. Effect of sulfurization temperature on the property of Cu2ZnSnS4 thin film by eco-friendly nanoparticle ink method

    Science.gov (United States)

    Wang, Wei; Shen, Honglie; Yao, Hanyu; Shang, Huirong; Tang, ZhengXia; Li, Yufang

    2017-09-01

    Cu2ZnSnS4 (CZTS) thin films were fabricated by a low-cost nanoparticle ink method. The eco-friendly hydrophilic CZTS nanoparticles were mixed with low-cost n-propanol to form nanoparticle ink. To improve crystallinity and remove oxygen element, the CZTS thin films were sulfurized further. The effects of sulfurization temperature on the structure, morphologies, and photovoltaic performances of CZTS thin films were investigated. The results showed that the crystallinity of CZTS thin film was improved with increasing sulfurization temperature. The surface morphology studies demonstrated the formation of compact and homogenous CZTS thin film at a sulfurization temperature of 600 °C. By optimizing thickness of CZTS thin film, the CZTS thin-film solar cell with an optimal efficiency of 2.1% was obtained.

  5. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films

    Science.gov (United States)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun

    The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

  6. Study and fabrication of ZnNb2O6 thin films by sol-gel method

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Yang, Pai-Chuan; Yang, Hsi-Wen; Yan, Shu-Fong; Tung, Hsin-Han

    2011-01-01

    Zinc niobium oxide (ZnNb 2 O 6 ) thin films were grown on ITO/glass substrate by sol-gel process. Microstructure and surface morphology of the ZnNb 2 O 6 thin films have been studied by X-ray diffraction and scanning electron microscopy. Optical properties of the ZnNb 2 O 6 thin films were obtained by UV-visible recording spectrophotometer. The dependence of the microstructure, optical transmittance spectra, optical band gap on annealing temperature was also investigated.

  7. Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films

    Science.gov (United States)

    Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang

    2018-04-01

    In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.

  8. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  9. Crystallographic Investigation of Ag (4 mol%) Doped ZnO (SZO) Thin Films by XRD

    International Nuclear Information System (INIS)

    Lwin Lwin Nwe; Sandar Dwe; Khant Khant Lin; Khin Thuzar; Than Than Win; Ko Ko Kyaw Soe

    2008-03-01

    Silver doped ZnO(SZO) thin films are prepared by sol-based method. The silver dopant concentration is 4 mol % in this case. XRD analysis carried out to determine, crystallographic properties such as lattice parameters and crystallite size of SZO thin films.

  10. Tunable-color luminescence via energy transfer in NaCa13/18Mg5/18PO4:A (A = Eu2+/Tb3+/Mn2+, Dy3+) phosphors for solid state lighting.

    Science.gov (United States)

    Li, Kai; Fan, Jian; Mi, Xiaoyun; Zhang, Yang; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2014-11-17

    A series of NaCa13/18Mg5/18PO4(NCMPO):A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) phosphors have been prepared by the high-temperature solid-state reaction method. The X-ray diffraction (XRD) and Rietveld refinement, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), cathodoluminescence (CL), decay lifetimes, and PL quantum yields (QYs) were utilized to characterize the phosphors. The pure crystalline phase of as-prepared samples has been demonstrated via XRD measurement and Rietveld refinements. XPS reveals that the Eu(2+)/Tb(3+)/Mn(2+) can be efficiently doped into the crystal lattice. NCMPO:Eu(2+)/Tb(3+)/Mn(2+) phosphors can be effectively excited under UV radiation, which show tunable color from purple-blue to red including white emission based on energy transfer from Eu(2+) to Tb(3+)/Mn(2+) ions. Under low-voltage electron beam bombardment, the NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) display their, respectively, characteristic emissions with different colors, and the CL spectrum of NCMPO:0.04Tb(3+) has the comparable intensity to the ZnO:Zn commercial product. In addition, the calculated CIE coordinate of NCMPO:0.04Tb(3+) (0.252, 0.432) is more saturated than it (0.195, 0.417). These results reveal that NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) may be potential candidate phosphors for WLEDs and FEDs.

  11. One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing

    Science.gov (United States)

    Tang, Aiyue; Li, Zhilin; Wang, Feng; Dou, Meiling; Pan, Youya; Guan, Jingyu

    2017-04-01

    Cu2ZnSnS4 (CZTS) is a quaternary kesterite compound with suitable band gap for thin film solar cells. In most electrodeposition-anneal routes, sulfurization is inevitable because the as-deposited film is lack of S. In this work, a novel green electrolyte was designed for synthesizing CZTS thin films with high S content. In the one-step electrodeposition, K4P2O7 and C7H6O6S were added to form complex with metallic ions in the electrolyte, which could attribute to co-deposition. The as-deposited film obtained high S content satisfying stoichiometry. After a sulfurization free annealing, the continuous and uniform CZTS thin film was obtained, which had pure kesterite structure and a suitable band gap of 1.53 eV. Electrodeposition mechanism investigation revealed that the K4P2O7 prevented the excessive deposition of Cu2+ and Sn2+. The C7H6O6S promoted the reduction of Zn2+. So the additives narrowed the co-deposition potentials of the metallic elements through a synergetic effect. They also promoted the reduction of S2O32- to ensure the co-deposition of the four elements and the stoichiometry. The sulfurization free annealing process can promote the commercialization of CZTS films and the successful design principle of environmental friendly electrolytes could be applied in other electrodeposition systems.

  12. Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs

    Science.gov (United States)

    Lu, Zuizhi; Huang, Tianjiao; Deng, Ruopeng; Wang, Huan; Wen, Lingling; Huang, Meixin; Zhou, Liya; Yao, Chunying

    2018-05-01

    A novel Mn4+-doped Ca2GdNbO6 (CGN) phosphor was prepared by high-temperature solid-state reaction. The crystal structure was investigated by X-ray diffraction patterns and unit cell structure. Mn4+ replaced the location of Nb5+ in the CGN lattice, and the value of energy gap (Egap) decreased from 2.16 eV to 1.13 eV, indicating that Mn4+ ions play a great influence on the absorption of CGN hosts. The broad excitation band from 250 nm to 550 nm matches well with commercial near-UV light emitting diodes, and the emission peak centered at 680 nm is due to 2E→4A2g transition in Mn4+ ions. The CIE chromaticity coordinates (0.698, 0.303) of CGN:Mn4+ phosphor was close to standard red color coordinates (0.666, 0.333). These investigations demonstrate CGN:Mn4+ phosphor as an efficient red phosphor for potential applications.

  13. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2013-09-01

    Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

  14. Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporation

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Canulescu, Stela; Schou, Jørgen

    2018-01-01

    The effect of adding LiCl, NaCl, and KCl to Cu2ZnSnS4 (CZTS) nanoparticle thin-film samples annealed in a nitrogen and sulfur atmosphere is reported. We demonstrate that the organic ligand-free nanoparticles previously developed can be used to produce an absorber layer of high quality. The films...

  15. Nanocrystalline Cu{sub 2}ZnSnSe{sub 4} thin films for solar cells application: Microdiffraction and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Heiddy P., E-mail: hpquirozg@unal.edu.co; Dussan, A., E-mail: adussanc@unal.edu.co [Departmento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 11001 (Colombia)

    2016-08-07

    This work presents a study of the structural characterization of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films by X-ray diffraction (XRD) and microdiffraction measurements. Samples were deposited varying both mass (M{sub X}) and substrate temperature (T{sub S}) at which the Cu and ZnSe composites were evaporated. CZTSe samples were deposited by co-evaporation method in three stages. From XRD measurements, it was possible to establish, with increased Ts, the presence of binary phases associated with the quaternary composite during the material's growth process. A stannite-type structure in Cu{sub 2}ZnSnSe{sub 4} thin films and sizes of the crystallites varying between 30 and 40 nm were obtained. X-ray microdiffraction was used to investigate interface orientations and strain distributions when deposition parameters were varied. It was found that around the main peak, 2ϴ = 27.1°, the Cu{sub 1.8}Se and ZnSe binary phases predominate, which are formed during the subsequent material selenization stage. A Raman spectroscopy study revealed Raman shifts associated with the binary composites observed via XRD.

  16. Structural transformation of sputtered o-LiMnO{sub 2} thin-film cathodes induced by electrochemical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Ye, J.; Ulrich, S.; Ziebert, C. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-12-31

    Orthorhombic LiMnO{sub 2} (o-LiMnO{sub 2}) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm{sup 3} using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO{sub 2} half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO{sub 2} and c-LiMn{sub 2}O{sub 4} were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO{sub 2} half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO{sub 2}/c-LiMn{sub 2}O{sub 4} phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO{sub 2} thin films • Synthesis of o-LiMnO{sub 2} planar model systems for protective coating and SEI development.

  17. Structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin film absorbers from ZnS and Cu{sub 3}SnS{sub 4} nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xianzhong, E-mail: lin.xianzhong@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Kavalakkatt, Jaison [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Kornhuber, Kai; Levcenko, Sergiu [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Ennaoui, Ahmed, E-mail: ennaoui@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2013-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se{sub 2} due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu{sub 3}SnS{sub 4} and ZnS NPs and annealing in Ar/H{sub 2}S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy.

  18. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  19. A high power ZnO thin film piezoelectric generator

    Science.gov (United States)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  20. Electrodeposition synthesis and electrochemical properties of nanostructured {gamma}-MnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2006-11-08

    The thin films of carambola-like {gamma}-MnO{sub 2} nanoflakes with about 20nm in thickness and at least 200nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO{sub 2} nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO{sub 2} batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO{sub 2} nanoflake films displayed high potential plateau (around 1.0V versus Zn) in primary Zn/MnO{sub 2} batteries at the discharge current density of 500mAg{sup -1} and high specific capacitance of 240Fg{sup -1} at the current density of 1mAcm{sup -2}. This indicated the potential application of carambola-like {gamma}-MnO{sub 2} nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO{sub 2} was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films. (author)

  1. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    Science.gov (United States)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  2. Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors

    Science.gov (United States)

    Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao

    2018-02-01

    Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.

  3. Effect of Mn doping on the structural and optical properties of ZrO2 thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Berlin, I. John; Lekshmy, S. Sujatha; Ganesan, V.; Thomas, P.V.; Joy, K.

    2014-01-01

    Homogeneous and transparent Mn doped ZrO 2 thin films were prepared by sol–gel dip coating method. The films were annealed in air atmosphere at 500 °C. The X-ray diffraction pattern of the undoped ZrO 2 thin film revealed a mixed phase of tetragonal and monoclinic ZrO 2 with preferred orientations along T(111) and M(− 111). Grazing Incidence X-ray Diffraction of Mn doped ZrO 2 thin films reveals the introduction of Mn interstitial in ZrO 2 which stabilize the mixed phase of ZrO 2 into tetragonal phase. Atomic force microscope image shows the addition of catalyst (Mn) which stops isotropic agglomeration of particles, instead of anisotropic agglomeration that occurred resulting in growth of particles in certain direction. Average transmittances of > 70% (in UV–vis region) were observed for all samples. The optical band gap decreased from 5.72 to 4.52 eV with increase in Mn doping concentration. The reduced band gap is due to the introduction of impurity levels in the band gap, by incorporation of the metal ions into the ZrO 2 lattice. The d-electron of Mn (t 2g level) can easily overlap with the ZrO 2 's valence band (VB) because t 2g of Mn is very close to VB of ZrO 2 . This overlap caused a wide VB and consequently decreases the band gap of ZrO 2 . The photoluminescence (PL) spectrum of undoped zirconia thin film exhibits an intense near band edge emission peak at 392.5 nm (3.15 eV) and weak emission peaks at 304 (4.07 eV), 604 nm (2.05 eV) and 766 nm (1.61 eV). Additional PL peaks were observed for Mn doped ZrO 2 located at around 420, 447 (blue), 483 (blue) and 529 (green) nm respectively. These peaks were due to the redox properties of various valence state of Mn in ZrO 2 . The prepared Mn doped ZrO 2 thin films can be applied in optical devices. - Highlights: • Mn-doped ZrO 2 thin films were prepared by sol–gel dip coating method. • Introduction of Mn interstitial in ZrO 2 stabilizes ZrO 2 into tetragonal phase. • The optical band gap

  4. (0 0 2-oriented growth and morphologies of ZnO thin films prepared by sol-gel method

    Directory of Open Access Journals (Sweden)

    Guo Dongyun

    2016-09-01

    Full Text Available Zinc acetate was used as a starting material to prepare Zn-solutions from solvents and ligands with different boiling temperature. The ZnO thin films were prepared on Si(1 0 0 substrates by spin-coating method. The effect of baking temperature and boiling temperature of the solvents and ligands on their morphologies and orientation was investigated. The solvents and ligands with high boiling temperature were favorable for relaxation of mechanical stress to form the smooth ZnO thin films. As the solvents and ligands with low boiling temperature were used to prepare Zn-solutions, the prepared ZnO thin films showed (0 0 2 preferred orientation. As n-propanol, 2-methoxyethanol, 2-(methylaminoethanol and monoethanolamine were used to prepare Zn-solutions, highly (0 0 2-oriented ZnO thin films were formed by adjusting the baking temperature.

  5. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  6. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO₂ matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung [Dongguk University, Seoul (Korea, Republic of)

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm³ at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm³ at 300 K). The increased exchange integral of J₁/k{sub B} = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J₁/k{sub B} = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO₂-capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  7. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    International Nuclear Information System (INIS)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun; Seo, Jong Hyun; Choe, HeeHwan; Jeon, Jae-Hong; Hong, Munpyo; Lee, Yong Uk; Winkler, Joerg

    2011-01-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm 2 to 26 mA/cm 2 , indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO 2 passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  8. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Seo, Jong Hyun, E-mail: jhseo@kau.ac.kr [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Choe, HeeHwan; Jeon, Jae-Hong [School of Electronics, Telecommunications and Computer Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Hong, Munpyo [Display and Semiconductor Physics, Korea University (Korea, Republic of); Lee, Yong Uk [PETEC (The Printable Electronics Technology Centre) (United Kingdom); Winkler, Joerg [PLANSEE Metal GmbH, Metallwerk-Plansee-Str. 71A-6600, Reutte (Austria)

    2011-08-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm{sup 2} to 26 mA/cm{sup 2}, indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO{sub 2} passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  9. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  10. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  11. Piezoelectric Response Evaluation of ZnO Thin Film Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Cheng Da-Long

    2017-01-01

    Full Text Available The most important parameter of piezoelectric materials is piezoelectric coefficient (d33. In this study, the piezoelectric ZnO thin films were deposited on the SiNx/Si substrate. The 4 inches substrate is diced into 8 cm× 8 cm piece. During the deposition process, a zinc target (99.999 wt% of 2 inches diameter was used. The vertical distance between the target and the substrate holder was fixed at 5 cm. The piezoelectric response of zinc oxide (ZnO thin films were obtained by using a direct measurement system. The system adopts a mini impact tip to generate an impulsive force and read out the piezoelectric signals immediately. Experimentally, a servo motor is used to produce a fixed quantity of force, for giving an impact against to the piezoelectric film. The ZnO thin films were deposited using the reactive radio frequency (RF magnetron sputtering method. The electric charges should be generated because of the material’s extrusion. This phenomenon was investigated through the oscilloscope by one shot trigger. It was apparent that all ZnO films exhibit piezoelectric responses evaluated by our measurement system, however, its exhibit a significant discrepancy. The piezoelectric responses of ZnO thin film at various deposition positions were measured and the crystal structures of the sputtering pressure were also discussed. The crystalline characteristics of ZnO thin films are investigated through the XRD and SEM. The results show the ZnO thin film exhibits good crystalline pattern and surface morphology with controlled sputtering condition. The ZnO thin films sputtered using 2 inches target present various piezoelectric responses. With the exactly related position, a best piezoelectric response of ZnO thin film can be achieved.

  12. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  13. Structure and soft magnetic properties of sputter deposited MnZn-ferrite films

    NARCIS (Netherlands)

    Gillies, M.F.; Coehoorn, R.; van Zon, J.B.A.D.; Alders, D.

    1998-01-01

    In this paper we report the soft magnetic properties of thin films of sputtered MnZn ferrite deposited on thermally oxidized Si substrates. A high deposition temperature, 600¿°C, together with the addition of water vapor to the sputtering gas was found to improve the initial ac permeability, µ. The

  14. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    Science.gov (United States)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  15. Size control of nanocrystals in InGaZnO4 thin films fabricated by using the sol-gel method

    International Nuclear Information System (INIS)

    Seo, S. J.; Cho, J. H.; Jang, Y. H.; Kim, C. H.

    2012-01-01

    We report the structural properties of InGaZnO 4 (IGZO) thin films prepared by using the sol-gel method. The structural properties of IGZO thin films were controlled by using the film thickness and thermal annealing temperature. In this study, the crystallization temperature of amorphous IGZO thin films was observed to be about 700 .deg. C. Also, we observed that the crystal size of IGZO thin films increased as the thickness and the annealing temperature were increased. In addition, we could observe that the atomic ratio of In, Ga and Zn of the IGZO thin film was slightly different from the molar ratio of a previous IGZO sol-gel solution (In:Ga:Zn = 1:1:1) post-annealed at 900 .deg. C because In and Zn are more volatile than Ga. The study of the crystallization of amorphous IGZO thin films provides an understanding of the growth mechanisms and thermal annealing effects for IGZO nanocrystals.

  16. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film

    International Nuclear Information System (INIS)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira; Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-01-01

    We report the electrical transport properties of ferrimagnetic Mn 4 N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn 4 N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m 3 , which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  17. Magnetic and electronic properties of SrMnO3 thin films

    Science.gov (United States)

    Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.

  18. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  19. Facile chemical synthesis of nanoporous layered δ-MnO{sub 2} thin film for high-performance flexible electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu; Wang, Jun; Jiang, Xionghua; Zheng, Yanfeng [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen, Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-04-15

    Layered δ-MnO{sub 2} thin films with a three-dimensional nanostructure are successfully fabricated on stainless steel foil substrates for flexible electrochemical capacitors by a facile and effective chemical bath deposition technology from ethanol and potassium permanganate solution at 15 °C. The as-prepared thin films display nanoporous morphology and a water contact angle of 20°. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses reveal that the thin films are composed of δ-MnO{sub 2}. Electrochemical data demonstrate that the δ-MnO{sub 2} thin film electrodes can deliver a high special capacitance of 447 F/g at 2 mV/s, and provide a good capacitance retention ratio of 87% after 1000 continuous cycles at 10 mV/s in 0.5 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that the as-prepared electrodes can steadily work over a wide range of applied curvatures between −2.5 cm{sup −1} (tension) and 2.5 cm{sup −1} (compression). Only a small decrease in special capacitance (0.9% at a curvature of 2.5 cm{sup −1} under compressive strain, or 1.2% at a curvature of −2.5 cm{sup −1} under tensile strain) is observed even after bending for 200 cycles, indicating the excellent mechanical flexibility and electrochemical stability of the δ-MnO{sub 2} thin film electrodes.

  20. Photoelectrochemical performance of Mn-TiO{sub 2} thin films mounted on FTO prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.C.; Song, G.H. [National Central Univ., Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lu, C.W. [Jen-Teh Junior College, Hou- Lung, Taiwan (China). Dept. of Information Management; Tseng, C.J. [National Central Univ., Chung-Li, Taoyuan County, Taiwan (China). Dept. of Mechanical Engineering; Cheng, K.W. [Chang Gung Univ., Tao-Yuan, Taiwan (China). Dept. of Chemical and Materials Engineering

    2009-07-01

    Tin oxide (TiO{sub 2}) sol-gels with Mn{sup 2+} molar ratios ranging from 0 to 0.1 per cent were used to form nano-structured Mn(x)Ti(1-x)O(2) thin films. A layer-by-layer spincoating (LLSC) technique was used, in which 10 very thin and uniform coating layers of Mn(x)Ti(1-x)O(2) were deposited on fluorine doped tin oxide (FTO) glass. Properties of the thin films were determined as a function of annealing temperature and molar ratio of the Mn{sup 2+} ions by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and photoelectrochemical (PEC) measurements. The PEC measurements were obtained in a dry-type three-electrode cell consisting of sample, platinized and reference Ag/AgCl electrodes. The results revealed that the Mn(x)Ti(1-x)O(2) thin films have better structure and electrochemical characteristics when the annealing temperature is 550 degrees C. The TiO{sub 2} thin films with Mn{sup 2+} ions also had higher photocurrent than undoped TiO{sub 2}. The optimum Mn{sup 2+} loading in this study was found to be 0.1 ml per cent. The maximum photocurrent of Mn(0.1)Ti(0.9)O(2) thin films is about 0.68 mA/cm2 when the bias potential is 0.8 V (vs.Ag/AgCl).

  1. Synthesis and property of spinel porous ZnMn2O4 microspheres

    Science.gov (United States)

    Guo, N.; Wei, X. Q.; Deng, X. L.; Xu, X. J.

    2015-11-01

    Mesoporous ternary zinc manganese oxides on the Ti sheet substrate are prepared by easy and fast hydrothermal method for the first time. The obtained ZnMn2O4 materials with homogenously distributed pores have been characterized by XRD, SEM and Raman spectra, which show the good crystal phase and particles for improving supercapacitive performance. XRD and SEM images show that the as-prepared samples have good crystallinity, and ZnMn2O4 microsphere has an average diameter of 10 μm. In addition, ZnMn2O4 are also characterized in 2 M KOH solution using three-electrode system. In the work, we study that different substrates (Ti, carbon and nickel foam) have an important effect on the electrochemical performance of the samples. The research of cyclic voltammogram (CV) indicates that the obtained specific capacitance (155 F g-1) values on nickel foam substrate for the ZnMn2O4 microspheres are higher than the values reported for some inexpensive oxides. However, the specific capacitance of all ZnMn2O4 samples has almost no change at two different scan rates which shows good long-term cycling stability. The electrochemical impedance spectroscopy with a small resistance reveals that the as-synthesized samples have good frequency response characteristics. These results indicate that the unique ZnMn2O4 electrode would be a promising electrode for high-performance supercapacitor applications.

  2. Effect of annealing on structural and optical properties of Cu_2ZnSnS_4 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Surgina, G.D.; Nevolin, V.N.; Sipaylo, I.P.; Teterin, P.E.; Medvedeva, S.S.; Lebedinsky, Yu.Yu.; Zenkevich, A.V.

    2015-01-01

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu_2ZnSnS_4 (CZTS) thin films grown by reactive Pulsed Laser Deposition in H_2S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N_2 at the optimized conditions. - Highlights: • Cu_2ZnSnS_4 (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H_2S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N_2 effectively inhibits the formation of Sn_xS secondary phases.

  3. Effect of Mn doping on the structural, magnetic, optical and electrical properties of ZrO_2–SnO_2 thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Anitha, V.S.; Sujatha Lekshmy, S.; Joy, K.

    2016-01-01

    Manganese doped ZrO_2–SnO_2 (ZrO_2–SnO_2: Mn) nanocomposite thin films were prepared using sol – gel dip coating technique. The structural, morphological, magnetic, optical and electrical properties of the films were studied for undoped and different (15 mol %) manganese doping concentrations. X-ray diffraction pattern (XRD) of films showed the formation of tetragonal phase of SnO_2 and orthorhombic ZrSnO_4. Decrease in crystallinity with increase of Mn concentration was observed for the films. Scanning electron microscopy (SEM) showed the formation of grain growth with an increase in Mn concentration. X-ray photo electron spectroscopy (XPS) confirmed the presence of Zr"4"+, Sn"4"+ and Mn"2"+ ion in ZrO_2–SnO_2: Mn films. Vibrating sample magnetometer (VSM) measurements reveal the presence of magnetic properties in Mn doped nanocomposite thin films. Antiferromagnetic interactions were observed for 5 mol % Mn doping. An average transmittance >80% (UV - Vis region) was observed for all the films. Band gap of the films decreased from 4.78 to 4.41 eV with increase in Mn concentration. Photoluminescence (PL) spectra of the films exhibited emission peaks in visible region of the electromagnetic spectra. Conductivity of the film increased up to 3 mol % Mn doping and then decreased. - Highlights: • ZrO_2–SnO_2: Mn films were deposited onto quartz substrates by Sol –Gel dip coating. • Structural, magnetic, optical and electrical properties of the films were analyzed. • Optical band gap decreased with increase in manganese concentration. • Ferromagnetic behavior was observed for Mn doped films. • These ferromagnetic ZrO_2–SnO_2: Mn films find application in spintronic devices.

  4. Single-phased white-light-emitting Sr3NaLa(PO4)3F: Eu2+,Mn2+ phosphor via energy transfer

    International Nuclear Information System (INIS)

    Shanshan, Hu; Wanjun, Tang

    2014-01-01

    Single-phased white-light-emitting Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphor is synthesized via the combustion-assisted synthesis technique. Upon excitation of 344 nm ultraviolet (UV) light, two intense broad bands have clearly been obtained due to the allowed 5d–4f transition of Eu 2+ and the forbidden 4 T 1 − 6 A 1 transition of Mn 2+ , respectively. As a result of fine-tuning of the emission composition of the Eu 2+ and Mn 2+ ions, white-light emission can be realized by combining the emission of Eu 2+ and Mn 2+ in a single host lattice under UV light excitation. The obtained phosphor exhibits a strong excitation band between 250 and 420 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip, which could be a promising candidate for UV-converting white-light-emitting diodes (LEDs). -- Highlights: • Single-phased Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphors are synthesized. • Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ shows a blue emission band and a yellow emission band. • White-emitting can be obtained by tuning the compositions of the Eu 2+ and Mn 2+

  5. High quality antireflective ZnS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Tec-Yam, S.; Rojas, J.; Rejón, V.; Oliva, A.I.

    2012-01-01

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl 2 , NH 4 NO 3 , and CS(NH 2 ) 2 were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 °C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300–800 nm wavelength range, and a reflectance below 25% in the UV–Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: ► High quality ZnS thin films were prepared by chemical bath deposition (CBD). ► Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. ► Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  6. Effects of diethanolamine on sol–gel–processed Cu{sub 2}ZnSnS{sub 4} photovoltaic absorber thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, S., E-mail: suleymanmku@gmail.com; Çetinkaya, S.; Çetinkara, H.A.; Güder, H.S.

    2014-02-01

    Highlights: • DEA content significantly affected the crystal structure and the phase purity. • The films’ crystallite sizes increased with increasing DEA content. • Two different impurity levels were found for each film via R-T characteristics. • Under different illuminations, the n-Si/CZTS exhibited good photo-response. • The light on/off current ratios confirmed the photo-sensitivity of the junction. - Abstract: As a promising solar absorber, the Cu{sub 2}ZnSnS{sub 4} compound has been popular recently for the production of green and economical thin-film solar cells owing to the abundancy and non-toxicity of all the constituents. In this study, we have produced Cu{sub 2}ZnSnS{sub 4} films via the sol–gel technique. As a stabilizer, the effects of the diethanolamine on the properties of the films were investigated. The amount of diethanolamine significantly affected the crystal structure, crystallite sizes and phase purity of the films. X-ray diffraction and Raman spectroscopy analyses confirmed the formation of phase-pure CZTS films. It was found that the film produced by using 2 ml of diethanolamine in sol exhibited pure CZTS phase, compact and dense morphology and enhanced photo-sensitivity. Light on/off current ratio of the n-Si/Cu{sub 2}ZnSnS{sub 4} junction was found to be 47 under 100 mW/cm{sup 2} of illumination. Electrical activation energies of the films were investigated and the variations were attributed to delocalized phonon states generating from the presence of other phases and lattice defects.

  7. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  8. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process.

    Science.gov (United States)

    Kim, Gee Yeong; Kim, Ju Ri; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-01-08

    Stacked precursors of Cu-Zn-Sn-S were grown by radio frequency sputtering and annealed in a furnace with Se metals to form thin-film solar cell materials of Cu2ZnSn(S,Se)4 (CZTSSe). The samples have different absorber layer thickness of 1 to 2 μm and show conversion efficiencies up to 8.06%. Conductive atomic force microscopy and Kelvin probe force microscopy were used to explore the local electrical properties of the surface of CZTSSe thin films. The high-efficiency CZTSSe thin film exhibits significantly positive bending of surface potential around the grain boundaries. Dominant current paths along the grain boundaries are also observed. The surface electrical parameters of potential and current lead to potential solar cell applications using CZTSSe thin films, which may be an alternative choice of Cu(In,Ga)Se2.PACS number: 08.37.-d; 61.72.Mm; 71.35.-y.

  9. Ca8NaY(PO4)6F2:Eu2+,Mn2+: a potential color-tunable phosphor for white LEDs applications

    International Nuclear Information System (INIS)

    Fen, Zhang; Wanjun, Tang

    2015-01-01

    Eu 2+ - and/or Mn 2+ -activated Ca 8 NaY(PO 4 ) 6 F 2 phosphors have been prepared via a combustion-assisted synthesis route. The powder X-ray diffraction measurement revealed that Ca 8 NaY(PO 4 ) 6 F 2 crystallized in a hexagonal crystal system with the space group P6 3 /m (176). The photoluminescence spectrum of the Eu 2+ single-doped phosphor shows a broad blue emission band peaking at 451 nm under the excitation of UV irradiation. The Eu 2+ -/Mn 2+ -codoped phosphors show a blue emission band and an orange emission band, and the corresponding CIE coordinates intuitively indicate the tunable colors from blue to yellow area. The energy transfer from the Eu 2+ to Mn 2+ ions is demonstrated to be a quadrupole-quadrupole mechanism in terms of the experimental results and analysis of PL spectra and decay curves of the phosphors. The developed phosphors can be efficiently excited in the UV region and exhibit a tunable white-light emission, making them attractive as single-component white-light-emitting conversion phosphors for UV-based white LEDs. (orig.)

  10. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xi; Shigematsu, Kei [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, Tomoteru [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  11. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective

    International Nuclear Information System (INIS)

    Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Koetschau, I.; Schock, H.-W.; Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.

    2009-01-01

    Thin-film solar cells based on Cu 2 ZnSnS 4 (CZTS) absorbers were fabricated successfully by solid-state reaction in H 2 S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn (II) and Sn (IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm 2 ) efficiency of 3.4% is achieved (V oc = 563 mV, j sc = 14.8 mA/cm 2 , FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 μm. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu 2 SnS 3 , close to the interface Mo/CZTS

  12. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  13. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  14. Postdeposition Annealing Effect on Cu2ZnSnS4 Thin Films Grown at Different Substrate Temperature

    Directory of Open Access Journals (Sweden)

    Samia Ahmed Nadi

    2014-01-01

    Full Text Available Cu2ZnSnS4 (CZTS thin films were deposited on top of Molybdenum (Mo coated soda lime glass (SLG substrates using a single target rf magnetron sputtering technique. The sputtering parameters such as base pressure, working pressure, rf power, argon (Ar gas flow rate, and deposition time were kept consistent throughout the experiment. The effect of different substrate temperatures, for example, room temperature (RT, 300°C, 350°C, 370°C, 400°C, and 450°C, was analyzed by studying their structural, electrical, and optical properties. As-sputtered films were then annealed at 460°C. X-ray diffraction (XRD measurement revealed the structure to be kesterite with peak of (112 plane in both annealed and as-sputtered CZTS thin films. The crystallinity of the films improved with the increasing substrate temperature until 370°C. Secondary phases of MoS2, CuxMoSx, CuxSnSx, CuxS, and Cu6MoSnS8 (hemusite were also observed in the annealed CZTS films. Scanning electron microscopy (SEM shows crystallite size of deposited CZTS thin film to be proportionally related to deposition temperature. The highest surface roughness of 67.318 nm is observed by atomic force microscopy (AFM. The conductivity type of the films was found to be p-type by Hall effect measurement system.

  15. Magnetic and photocatalytic properties of nanocrystalline ZnMn2 O4

    Indian Academy of Sciences (India)

    Decomposition of oxalate precursors at low temperature (∼ 450°C) yielded phase pure ZnMn2O4 nanoparticles. The size of the nanoparticles of ZnMn2O4 obtained from reverse micellar method is relatively much smaller (20–30 nm) as compared to those made by the co-precipitation (40–50 nm) method. Magnetic studies ...

  16. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    Science.gov (United States)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  17. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film

    Science.gov (United States)

    Huang, Yuanqi; Chen, Zhengwei; Zhang, Xiao; Wang, Xiaolong; Zhi, Yusong; Wu, Zhenping; Tang, Weihua

    2018-05-01

    High quality epitaxial single phase (Ga0.96Mn0.04)2O3 and Ga2O3 thin films have been prepared on sapphire substrates by using laser molecular beam epitaxy (L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a ≤ft( {\\bar 201} \\right) preferable orientation. Room temperature (RT) ferromagnetism appears and the magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films. Project supported by the National Natural Science Foundation of China (Nos. 11404029, 51572033, 51172208) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).

  18. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  19. Preferential orientation relationships in Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lacotte, M.; David, A.; Prellier, W., E-mail: wilfrid.prellier@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Rohrer, G. S.; Salvador, P. A. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2015-07-28

    A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr{sub 2}TiO{sub 4} substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship (OR) for each substrate-film grain pair. Two preferred epitaxial ORs accounted for more than 90% of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell OR ([100][001]{sub film} ∥ [100][001]{sub substrate}, or OR1) accounted for approximately 30% of each film. The OR that accounted for 60% of each film ([100][001]{sub film} ∥ [100][010]{sub substrate}, or OR2) corresponds to a rotation from OR1 by 90° about the a-axis. OR2 is strongly favored for substrate orientations in the center of the stereographic triangle, and OR1 is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While OR1 should be lower in energy, the majority observation of OR2 implies kinetic hindrances decrease the frequency of OR1. Persistent grain over grain growth and the absence of variations of the OR frequencies with thickness implies that the growth competition is finished within the first few nm, and local epitaxy persists thereafter during growth.

  20. Nanostructured ZnO thin films prepared by sol–gel spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, E., E-mail: heredia.edu@gmail.com [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Bojorge, C.; Casanova, J.; Cánepa, H. [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, A. [Instituto de Física, Universidade de São Paulo, Cidade Universitária, 66318 São Paulo, SP (Brazil); Kellermann, G. [Universidade Federal do Paraná, 19044 Paraná (Brazil)

    2014-10-30

    Highlights: • ZnO films synthesized by sol–gel were deposited by spin-coating on flat substrates. • Structural features of ZnO films with several thicknesses were characterized by means of different techniques. • The thicknesses of different ZnO thin films were determined by means of FESEM and AFM. • The nanoporous structures of ZnO thin films were characterized by GISAXS using IsGISAXS software. • The average densities of ZnO thin films were derived from (i) the critical angle in 1D XR patterns, (ii) the angle of Yoneda peak in 2D GISAXS images, (iii) minimization of chi2 using IsGISAXS best fitting procedure. - Abstract: ZnO thin films deposited on silica flat plates were prepared by spin-coating and studied by applying several techniques for structural characterization. The films were prepared by depositing different numbers of layers, each deposition being followed by a thermal treatment at 200 °C to dry and consolidate the successive layers. After depositing all layers, a final thermal treatment at 450 °C during 3 h was also applied in order to eliminate organic components and to promote the crystallization of the thin films. The total thickness of the multilayered films – ranging from 40 nm up to 150 nm – was determined by AFM and FESEM. The analysis by GIXD showed that the thin films are composed of ZnO crystallites with an average diameter of 25 nm circa. XR results demonstrated that the thin films also exhibit a large volume fraction of nanoporosity, typically 30–40 vol.% in thin films having thicknesses larger than ∼70 nm. GISAXS measurements showed that the experimental scattering intensity is well described by a structural model composed of nanopores with shape of oblate spheroids, height/diameter aspect ratio within the 0.8–0.9 range and average diameter along the sample surface plane in the 5–7 nm range.

  1. Microstructural and optical properties of spinel oxide M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Ly; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe, E-mail: tenailleau@chimie.ups-tlse.fr

    2016-08-01

    Spinel oxide nanoparticles of M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn, Cu; 0 < x < 1) were prepared at 120 °C by the inorganic polycondensation method. Phase composition and microstructure of each sample powder thus obtained were characterized by X-ray diffraction, X-ray fluorescence and scanning electron microscopy. Nanoparticles are well crystallized and uniformly distributed in both shape and size. Colloidal dispersions were stabilized in a low cost and environmentally friendly solvent solution. Spinel oxide thin films were then deposited on glass substrates by using the dip-coating technique. Their optical properties were measured in the 300–1100 nm wavelength range. Thin films show extremely good absorbance in the ultra-violet and blue regions. The highest absorbance observed in the red region was for x = 0.15 in zinc. A smaller direct band gap was determined when a low amount of doping M element was introduced in the cobalt and manganese spinel oxide material. - Highlights: • Pure complex spinel oxide nanoparticles synthesis at low T • Low cost method used to stabilize colloidal dispersions • Preparation of homogenous light absorber thin films by dip-coating • Adjustable optical properties and band gaps with the dopants.

  2. K{sub 2}MnF{sub 5}·H{sub 2}O as reactant for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors by a modified cation exchange approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tao, E-mail: danbaiht@126.com; Wang, Jun; Lang, Tianchun; Tu, Mingjing; Peng, Lingling

    2016-11-01

    As reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors, the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O powders were prepared by the simple chemical method. Based on the reaction mechanism, oxidizing K{sub 2}MnF{sub 5}·H{sub 2}O (Mn{sup 3+}) to Mn{sup 4+} by KMnO{sub 4} (Mn{sup 7+}), a modified cation exchange approach for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphor was proposed. The obtained K{sub 2}TiF{sub 6}:Mn{sup 4+} (2.7–5.3 at.%) phosphors have the size of 30–80 μm with a rough surface, their emission spectra consist of five narrow bands extending from 580 to 660 nm with the strongest peak at 634.8 nm, whose relative emitting intensity depends on the molar ratio of KMnO{sub 4} to K{sub 2}MnF{sub 5}·H{sub 2}O (the platform value = 3.2), and two broad excitation bands are peaking at ∼365 nm and ∼460 nm. The internal quantum yield of our synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors is up to 82.5%, which is higher than the commercial CaAlSiN{sub 3}:Eu{sup 2+} value, their excitation bands peak at ∼460 and ∼365 nm are consistent with those of Y{sub 3}A{sub 5}O{sub 12}:Ce{sup 3+} phosphors and their emission bands are more suitable for the sensitivity curve of photopic human vision. In addition, our synthesized phosphors show better thermal quenching properties. These findings show a large potential of the synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors for commercialization. - Highlights: • We synthesize the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O. • K{sub 2}MnF{sub 5}·H{sub 2}O is as a reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors. • K{sub 2}TiF{sub 6}:Mn{sup 4+} will improve the current white LED with high CRI for indoor lighting.

  3. Synthesis and electrochemical properties of ZnMn_2O_4 anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Chuanqi; Wang, Wei; Chen, Xiao; Wang, Shiquan; Guo, Zaiping

    2015-01-01

    Graphical abstract: ZnMn_2O_4 nanoparticles were prepared through the rheological phase reaction method (R-ZMO) or the mixed solvothermal method(M-ZMO). The particles of M-ZMO were clustered together to form uniform microspheres morphology. The M-ZMO behaved higher reversible capacity and better cycle performance than that of R-ZMO. - Highlights: • ZnMn_2O_4 nanoparticles were prepared through the rheological phase reaction method (R-ZMO) or the mixed solvothermal method (M-ZMO). • The M-ZMO behaved higher reversible capacity and better cycle performance than that of R-ZMO. • The morphology and cell parameters of ZnMn_2O_4 are important effects on its electrochemical properties. • The diffusion coefficient of Li"+ in M-ZMO is beneficial for M-ZMO to be used an anode. - Abstract: The precursors of ZnMn_2O_4 were synthesized by different methods (the rheological phase reaction method or the mixed solvothermal method). The precursors were heat-treated at a suitable temperature to obtain the expected product (ZnMn_2O_4). The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the samples were also investigated. The results show that ZnMn_2O_4 was synthesized successfully. The particles of ZnMn_2O_4 were irregular quasi-spheres with sizes of about 50 nm. The ZnMn_2O_4 nanoparticles synthesized through the mixed solvothermal method were clustered together to form microspheres about 1 μm in diameter. The electrochemical testing results showed that the ZnMn_2O_4 synthesized through the mixed solvothermal method featured higher reversible capacity and better cycling performance than the sample synthesized by the rheological phase reaction method. The ZnMn_2O_4 synthesized through the mixed solvothermal method could be a promising anode material for lithium ion battery application.

  4. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  5. Synthesis and characterization of spin-coated ZnS thin films

    Science.gov (United States)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  6. Defect mediated optical properties in ZnAl2O4 phosphor

    Science.gov (United States)

    Pathak, Nimai; Saxena, Suryansh; Kadam, R. M.

    2018-04-01

    The present work describes defect mediated optical properties in ZnAl2O4 phosphor material, synthesized through sol-gel combustion method, which has potential to be used both as a blue emitting phosphor material as well as white emitting, depending upon the annealing temperature during the synthesis procedure. Various defect centers such as anionic vacancy, cationic vacancy, antisite defects etc. create different electronic states inside the band gap, which are responsible for the multicolour emission. The interesting colour tunable emission characteristics can be linked with the various defect centers and their changes upon annealing.

  7. Effect of annealing on structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Surgina, G.D., E-mail: silvereye@bk.ru [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Nevolin, V.N. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Sipaylo, I.P.; Teterin, P.E. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Medvedeva, S.S. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Lebedinsky, Yu.Yu.; Zenkevich, A.V. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation)

    2015-11-02

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films grown by reactive Pulsed Laser Deposition in H{sub 2}S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N{sub 2} at the optimized conditions. - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H{sub 2}S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N{sub 2} effectively inhibits the formation of Sn{sub x}S secondary phases.

  8. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  9. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  10. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla, Sweden and Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Sterner, Jan [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte [Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.

  11. Luminescence Properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) Phosphors with Abundant Colors: Abnormal Coexistence of Ce4+/3+-Eu3+ and Energy Transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2.

    Science.gov (United States)

    Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun

    2017-06-05

    A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

  12. Preparation of acid salt M(HPO4)2.nH2 O thin films

    International Nuclear Information System (INIS)

    Kassem, M.

    1998-01-01

    The layered crystalline powders of Titanium Phosphate with the formula Ti(HPO 4 ) 2 .nH 2 O (phase α when n=2, phase γ when n=1) were prepared by reaction of titanium three chloride with phosphoric acid under specific thermal conditions. Starting from these powders thin films have been prepared using some methods such as: Thermal evaporation, sol-gel and vapor phase transport. The results of X-ray diffraction and differential thermal deferential analysis show that the temperature plays an important role in the determination of the crystalline phases and the phase transition of the prepared films. (author). 7 refs

  13. Synthesis and characterization of ZnO thin film by low cost modified SILAR technique

    Directory of Open Access Journals (Sweden)

    Haridas D. Dhaygude

    2016-03-01

    Full Text Available The ZnO thin film is prepared on Fluorine Tin Oxide (FTO coated glass substrate by using SILAR deposition technique containing ZnSO4.7H2O and NaOH as precursor solution with 150 deeping cycles at 70 °C temperature. Nanocrystalline diamond like ZnO thin film is characterized by different characterization techniques such as X-ray diffraction (XRD, Fourier transform (FT Raman spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM with Energy dispersive X-Ray Analysis (EDAX, optical absorption, surface wettability and photoelectrochemical cell performance measurement. The X-ray diffraction analysis shows that the ZnO thin film is polycrystalline in nature having hexagonal crystal structure. The FT-Raman scattering exhibits a sharp and strong mode at 383 cm−1 which confirms hexagonal ZnO nanostructure. The surface morphology study reveals that deposited ZnO film consists of nanocrystalline diamond like morphology all over the substrate. The synthesized thin film exhibited absorption wavelength around 309 nm. Optical study predicted the direct band gap and band gap energy of this film is found to be 3.66 eV. The photoelectrochemical cell (PEC parameter measurement study shows that ZnO sample confirmed the highest values of, short circuit current (Isc - 629 mAcm−2, open circuit voltage (Voc - 878 mV, fill factor (FF - 0.48, and maximum efficiency (η - 0.89%, respectively.

  14. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  15. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  16. Engineering helimagnetism in MnSi thin films

    Directory of Open Access Journals (Sweden)

    S. L. Zhang

    2016-01-01

    Full Text Available Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  17. Engineering helimagnetism in MnSi thin films

    Science.gov (United States)

    Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  18. Engineering helimagnetism in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Chalasani, R.; Kohn, A. [Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv (Israel); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Steinke, N.-J. [ISIS, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom)

    2016-01-15

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  19. Synthesis, microstructural characterization and optical properties of undoped, V and Sc doped ZnO thin films

    International Nuclear Information System (INIS)

    Amezaga-Madrid, P.; Antunez-Flores, W.; Ledezma-Sillas, J.E.; Murillo-Ramirez, J.G.; Solis-Canto, O.; Vega-Becerra, O.E.; Martinez-Sanchez, R.; Miki-Yoshida, M.

    2011-01-01

    Research highlights: → Undoped, V and Sc doped ZnO thin films by Aerosol Assisted Chemical Vapour Deposition. → Optimum substrate temperatures of 673 K and 623 K for Sc and V doped films. → Around one third of the dopants in solution were deposited into the films. → Crystallite and grain size decreased with the increase of dopant concentration. → Optical band gap increased from 3.29 to 3.32 eV for undoped to 7 Sc/Zn at. %. - Abstract: Many semiconductor oxides (ZnO, TiO 2 , SnO 2 ) when doped with a low percentage of non-magnetic (V, Sc) or magnetic 3d (Co, Mn, Ni, Fe) cation behave ferromagnetically. They have attracted a great deal of interest due to the integration of semiconducting and magnetic properties in a material. ZnO is one of the most promising materials to carry out these tasks in view of the fact that it is optically transparent and has n or p type conductivity. Here, we report the synthesis, microstructural characterization and optical properties of undoped, V and Sc doped zinc oxide thin films. ZnO based thin films with additions of V and Sc were deposited by the Aerosol Assisted Chemical Vapour Deposition method. V and Sc were incorporated separately in the precursor solution. The films were uniform, transparent and non-light scattering. The microstructure of the films was characterized by Grazing Incidence X-ray Diffraction, Scanning Electron Microscopy, and Scanning Probe Microscopy. Average grain size and surface rms roughness were estimated by the measurement of Atomic Force Microscopy. The microstructure of doped ZnO thin films depended on the type and amount of dopant material incorporated. The optical properties were determined from specular reflectance and transmittance spectra. Results were analyzed to determine the optical constant and band gap of the films. An increase in the optical band gap with the content of Sc dopant was obtained.

  20. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be

  1. ZnO Thin Film Electronics for More than Displays

    Science.gov (United States)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  2. Synthesis and luminescence properties of ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu, Sm) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-01-15

    ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu or Sm) phosphor powders were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and luminescent properties of zinc aluminate phosphors were investigated. The X-ray diffraction patterns revealed that the phosphors synthesized with different concentrations of activator ions showed mixed phases of ZnAl{sub 2}O{sub 4}, ZnO, and Al{sub 2}O{sub 3}. The crystallite size was estimated using the Scherrer formula, and the maximum size was obtained for 0.20 mol of Eu{sup 3+} ions. The emission spectra of of Eu{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors under excitation at 303 nm exhibited one intense green band at approximately 520 nm and three weak bands centered at 590, 621, and 701 nm, respectively. The intensity of all the emission bands reached a maximum for 0.05 mol of Eu{sup 3+} ions. For the Sm{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors, a broad emission band peak at 526 nm and several weak lines in the range 470 - 700 nm were observed. The results suggest that the luminescent intensity of the phosphors can be enhanced by controlling the amount of activator ions incorporated into the host lattice.

  3. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  4. Physical properties of Fe doped Mn3O4 thin films synthesized by SILAR method and their antibacterial performance against E. coli

    Directory of Open Access Journals (Sweden)

    M.R. Belkhedkar

    2016-09-01

    Full Text Available Nanocrystalline Fe doped Mn3O4 thin films were deposited by successive ionic layer adsorption and reaction method onto glass substrates. The X-ray diffraction study revealed that Fe doped Mn3O4 films are nanocrystalline in nature. The morphological investigations were carried out by using field emission scanning electron and atomic force microscopy studies. The optical absorption measurements showed that Mn3O4 films exhibit direct band gap energy of the order of 2.78 eV and it increased to 2.89 eV as the percentage of Fe doping in it increases from 0 to 8 wt.%. The room temperature electrical resistivity of Mn3O4 increases from 1.84 × 103 to 2.64 × 104 Ω cm as Fe doping increases from 0 to 8 wt.%. The SILAR grown Mn3O4 showed antibacterial performance against Escherichia coli bacteria which improved remarkably with doping.

  5. Luminescence characteristic of YVO{sub 4}:Eu{sup 3+} thin film phosphors by Li doping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyoung; Shim, Kyoo Sung; Moon, Byung Kee; Choi, Byung Chun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of)], E-mail: jhjeong@pknu.ac.kr; Yi, Soung Soo [Department of Electronic Materials Engineering, Silla University, Busan 608-736, Republic Korea (Korea, Republic of); Kim, Jung Hwan [Department of Physics, Dong Eui University, Busan 614-714, Republic Korea (Korea, Republic of)

    2008-06-30

    YVO{sub 4}:Eu{sup 3+} and Li-doped YVO{sub 4}:Eu{sup 3+} thin film phosphors have been deposited on Al{sub 2}O{sub 3} (0001) substrate using a pulsed laser deposition technique. The Li{sup +} ions concentration was varied from 0 to 3 wt.% and Li{sup +} doping influenced crystallinity and surface morphology of YVO{sub 4}:Eu{sup 3+} films.. As Li{sup +} content increases from 0 wt.% to 2 wt.%, not only crystallinity was improved, but also the shape of grains was rounded. However, Li{sup +} content, increases further to 3 wt.% the shape of grains was changed to elliptical. The emitted radiation was dominated by a red emission peak at 619 nm radiated from the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+} ions. In particular, the incorporation of Li{sup +} ions into YVO{sub 4} lattice could induce an increase of photoluminescence. The enhanced luminescence results not only from the improved crystallinity but also from the enhanced surface roughness. The luminescent intensity and surface roughness exhibited similar behavior as a function of Li{sup +} ions concentration.

  6. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    Science.gov (United States)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  7. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, S.I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Georgieva, V. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Yordanov, R. [Department of Microelectronics, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia (Bulgaria); Raicheva, Z. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Szilágyi, I.M. [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-11-30

    Highlights: • For the first time the gas sensing towards NO{sub 2} of very thin ALD ZnO films is studied. • The very thin ALD ZnO films showed excellent sensitivity to NO{sub 2} at room temperature. • These very thin film ZnO-based QCM sensors very well register even low concentrations. • The sensors have fully reversible sorption and are able to be recovered in short time. • Described fast and cost-effective ALD deposition of ZnO thin films for QCM gas sensor. - Abstract: Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO{sub 2} was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO{sub 2} already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO{sub 2}.

  8. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  9. Ab initio understanding of magnetic properties in Zn2+ substitution of Fe3O4 ultra-thin film with dilute Zn substitution

    Science.gov (United States)

    Huang, Zhaocong; Chen, Qian; Jiang, Sheng; Dong, Shuai; Zhai, Ya

    2018-05-01

    The mechanism of the magnetic properties on the Zn2+ substituted Fe3O4 film have been investigated based on first principle calculations. It is found that the surface effect plays an important role in the occupation of Zn ion, and in turn changes the magnetic moment. It may also destroy the half metallic behavior of Fe3O4 film even if the Zn2+ concentration only is one Zn2+ per unit cell (4%), which is different from that in bulk material.

  10. Comprehensive study of growth mechanism and properties of low Zn content Cd_1_-_xZn_xS thin films by chemical bath

    International Nuclear Information System (INIS)

    Rodriguez, Carlos Anibal; Sandoval-Paz, Myrna Guadalupe; Saavedra, Renato; De la Carrera, Francisco; Trejo-Cruz, Cuauhthemoc; Aragon, Luis E.; Sirena, Martin; Delplancke, Marie-Paule; Carrasco, Claudia

    2016-01-01

    Cd_1_-_xZn_xS thin films have been studied extensively as window layers for solar cell applications. However, a mismatch between the Cd_1_-_xZn_xS and copper-indium-gallium-selenide absorber layers increases with Zn film concentration, which reduces the device efficiency. In this work, Cd_1_-_xZn_xS thin films with low Zn concentrations were analyzed. The effect of the addition of different molar Zn concentrations to the reaction mixture on the growth mechanism of Cd_1_-_xZn_xS thin films and the influence of these mechanisms on structural, optical and morphological properties of the films has been studied. Cd_1_-_xZn_xS thin films were synthesized by chemical bath deposition using an ammonia-free alkaline solution. Microstructural analysis by X-ray diffraction showed that all deposited films grew with hexagonal structure and crystallite sizes decreased as the Zn concentration in the film increased. Optical measurements indicated a high optical transmission between 75% and 90% for wavelengths above the absorption edge. Band gap value increased from 2.48 eV to 2.62 eV, and the refractive index values for Cd_1_-_xZn_xS thin films decreased as the Zn increased. These changes in films and properties are related to a modification in growth mechanism of the Cd_1_-_xZn_xS thin films, with the influence of Zn(OH)_2 formation being more important as Zn in solution increases. (author)

  11. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film

    International Nuclear Information System (INIS)

    Mani, Ganesh Kumar; Rayappan, John Bosco Balaguru

    2015-01-01

    Graphical abstract: - Highlights: • Cobalt doped nanostructured ZnO thin films were spray deposited on glass substrates. • Co-doped ZnO film was highly selective towards ammonia than ethanol, methanol, etc. • The range of ammonia detection was improved significantly by doping cobalt in ZnO. - Abstract: Ammonia sensing characteristics of undoped and cobalt (Co)-doped nanostructured ZnO thin films were investigated. Polycrystalline nature with hexagonal wurtzite structure and high crystalline quality with dominant (0 0 2) plane orientation of Co-doped ZnO film were confirmed by the X-ray diffractogram. Scanning electron micrographs of the undoped film demonstrated the uniform deposition of sphere-shaped grains. But, smaller particles with no clear grain boundaries were observed for Co-doped ZnO thin film. Band gap values were found to be 3.26 eV and 3.22 eV for undoped and Co-doped ZnO thin films. Ammonia sensing characteristics of Co-doped ZnO film at room temperature were investigated in the concentration range of 15–1000 ppm. Variation in the sensing performances of Co-doped and pure ZnO thin films has been analyzed and compared

  12. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    Science.gov (United States)

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    Science.gov (United States)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  14. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-01-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM -1 cm -2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  15. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    Liu, Y.; Li, Y.; Zeng, H.

    2013-01-01

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  16. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    International Nuclear Information System (INIS)

    Kao, Kuo-Sheng; Shih, Wei-Che; Ye, Wei-Tsuen; Cheng, Da-Long

    2016-01-01

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD_U_V is influenced by SAW types and ZnO film characteristics.

  17. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Sheng [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Shih, Wei-Che [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ye, Wei-Tsuen [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Cheng, Da-Long, E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China)

    2016-04-30

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD{sub UV} is influenced by SAW types and ZnO film characteristics.

  18. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  19. Cu{sub 2}ZnSnS{sub 4} thin film solar cells from electroplated precursors: Novel low-cost perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienickerstrasse 100, D-14109 Berlin (Germany)], E-mail: ennaoui@helmholtz-berlin.de; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Koetschau, I.; Schock, H.-W. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienickerstrasse 100, D-14109 Berlin (Germany); Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R. [Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstr. 20, D-10553 Berlin (Germany)

    2009-02-02

    Thin-film solar cells based on Cu{sub 2}ZnSnS{sub 4} (CZTS) absorbers were fabricated successfully by solid-state reaction in H{sub 2}S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn (II) and Sn (IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm{sup 2}) efficiency of 3.4% is achieved (V{sub oc} = 563 mV, j{sub sc} = 14.8 mA/cm{sup 2}, FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 {mu}m. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu{sub 2}SnS{sub 3}, close to the interface Mo/CZTS.

  20. Structural evolution of bias sputtered LiNi0.5Mn1.5O4 thin film cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Su, Shih-Hsuan; Chiu, Kuo-Feng; Leu, Hoang-Jyh

    2014-01-01

    LiNi 0.5 Mn 1.5 O 4 (LNMO) thin films have been deposited on stainless steel substrates using radio frequency (f = 13.56 MHz) magnetron sputtering, followed by thermal annealing in ambient atmosphere. Various negative biases were applied on the substrates during deposition. The structural evolution of LNMO thin films under different negative biases has been investigated and characterized by X-ray diffraction. All of the deposited films exhibit a crystalline spinel structure with a space group of Fd-3m, which is a so-called disordered phase. The results also indicate that particle size decreases with increasing negative bias. The electrochemical properties of the LNMO thin films as cathode materials for lithium ion batteries were investigated. Two distinctive voltage plateaus at ∼ 4.7 V and at ∼ 4.0 V (vs. Li + /Li) can be observed in the discharge curves, corresponding to the reactions of the disordered phase. The capacity of LNMO thin film electrodes under suitable negative bias can be optimized. - Highlights: • LiNi 0.5 Mn 1.5 O 4 thin films have been deposited on stainless steel substrates. • Various negative biases were applied on the substrates during deposition. • The particle sizes of LNMO thin films decrease with increasing negative bias

  1. Luminescence properties of Ag-, Ga-doped ZnO and ZnO-ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, V.I.; Khomchenko, V.S.; Zavyalova, L.V. [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauki 45, 03028 Kiev (Ukraine); Zashivailo, T.V. [National Technical University of Ukraine ' ' KPI' ' , Pr. Pobedy 37, 03056 Kiev (Ukraine)

    2012-08-15

    Thin films of ZnS were grown by metal-organic chemical vapor deposition (MOCVD) method under atmospheric pressure onto glass substrates. ZnO-ZnS:[Ag, Ga] and ZnO:[Ag, Ga] thin films were prepared by oxidation and Ag, Ga doping of ZnS films at temperatures of 700-775 C for 0.5-1 h. Crystalline quality and luminescent properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence. It is found that the doped films have a polycrystalline structure without preferred orientation and consist of small grains gathered into conglomerates. The shape of photoluminescence (PL) spectra of the films depends strongly on the preparation conditions. The ZnO-ZnS:[Ag, Ga] films exhibited the blue and green emission connected with the presence of silver and oxygen, respectively. The ZnO:[Ag, Ga] films revealed the white emission originated from different defect-related transitions. The possible origin of radiative centers is discussed (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Wet chemical preparation of YVO{sub 4}:Eu thin films as red-emitting phosphor layers for fully transparent flat dielectric discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Klausch, A. [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany); Althues, H. [Fraunhofer Institute for Material and Beam Technology Winterbergstr. 28, 01309 Dresden (Germany); Freudenberg, T. [Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany); Kaskel, S., E-mail: Stefan.Kaskel@chemie.tu-dresden.de [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany)

    2012-04-30

    Highly transparent YVO{sub 4}:Eu thin films were deposited via dip coating of liquid nanoparticle dispersions on glass substrates. Annealing of the nanoparticle layers resulted in restructuring of the material into oriented crystalline films. The crystallinity was confirmed using powder X-ray diffraction. Film thickness was adjusted to 467 nm by multiple deposition. The resulting coatings show > 99% absorbance for wavelength below 300 nm and > 90% transmission in the visible spectral range. Under UV-light excitation a bright red photoluminescence with a quantum efficiency of 20% is observed. A planar, transparent dielectric barrier discharge lamp was constructed using YVO{sub 4}:Eu coated glasses and transparent electrodes made from antimony-doped tin dioxide thin films. - Highlights: Black-Right-Pointing-Pointer Preparation of highly transparent Eu{sup 3+} doped YVO{sub 4} phosphor thin films. Black-Right-Pointing-Pointer Improved crystallinity and optical properties through heat treatment. Black-Right-Pointing-Pointer Red emitting films on glass substrates were combined with antimony tin oxide thin films. Black-Right-Pointing-Pointer Fully transparent, planar gas discharge lamp as prototype for a light emitting window.

  3. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  4. Investigations of structural, morphological and optical properties of Cu:ZnO/TiO2/ZnO and Cu:TiO2/ZnO/TiO2 thin films prepared by spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available The aim of this research work is presented a comparison study of Cu:ZnO/TiO2/ZnO (Cu:ZTZ and Cu:TiO2/ZnO/TiO2 (Cu:TZT thin films deposited by spray pyrolysis technique on FTO substrates. After deposition, these films are annealed at 500 °C. XRD confirms the anatase phase of TiO2 and Hexagonal wurtzite phase of ZnO. SEM shows that Cu:TZT has more porous surface than Cu:ZTZ and also the root mean square (RMS roughness of Cu:TZT film is 48.96 and Cu:ZTZ film is 32.69. The calculated optical band gaps of Cu:TZT and Cu:ZTZ thin films are 2.65 eV and 2.6 eV respectively, measured by UV–Vis spectrophotometer. This work provides an environment friendly and low cost use of an abundant material for highly efficient dye sensitized solar cells (DSSCs. Keywords: Multilayer films, ZnO, TiO2, Cu

  5. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  6. Checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) by RF magnetron sputtering on a stainless steel in all-solid-state thin film battery

    Science.gov (United States)

    Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.

    2018-03-01

    All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).

  7. Aqueous chemical growth of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films: Air annealing and photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.M.; Deshmukh, P.R.; Patil, S.V. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2013-05-15

    Highlights: ► Facile and efficient route for synthesis of CZTS film. ► Effect of annealing on structural, morphological and electrical properties of CZTS films. ► Solar cell study. - Abstract: In present investigation, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been deposited on to glass substrates by novel chemical successive ionic layer adsorption and reaction (SILAR) method. The effect of air annealing in the temperature range between 573 and 773 K on the structural, morphological, optical and electrical properties has been studied. The X-ray diffraction studies revealed the formation of polycrystalline CZTS films. The surface morphological study showed smooth, compact and uniform film formation after annealing formation. The band gap was in between range from 1.5 to 1.8 eV depending on annealing temperature. The thermo emf measurement revealed that the CZTS exhibits p-type electrical conductivity. Further, photoactivity of CZTS thin films was tested by forming the photoelectrochemical cell.

  8. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungho; Kim, Kyoungun; Moon, Young-Min; Park, Byung-Yoon; Jung, Ha-Kyun

    2010-01-01

    Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa 2 O 4 :Mn 2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N 2 + H 2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.

  9. Structural and optical properties of (Sr,Ba)2SiO4:Eu2+ thin films grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Li, Leliang; Zheng, Jun; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2014-01-01

    (Sr,Ba) 2 SiO 4 :Eu 2+ thin films were deposited on Si at different substrate temperatures by magnetron sputtering. The morphology and crystalline phases of the films were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements, respectively. The silicate crystal phase was presented when films were annealed above 900 °C and the annealing temperature had great impact on the film morphology. The samples annealed at 1000 °C in a non-reducing atmosphere for 30 s show intense room temperature Eu 2+ emission. These findings may open a promising way to prepare efficient phosphor thin films for on-chip light emitting diodes application. - Highlights: • The (Sr, Ba) 2 SiO 4 :Eu 2+ films are fabricated by magnetron sputtering. • A very strong RT PL emission at 540 nm is achieved. • The morphology and optical properties dependent on temperature are studied

  10. Enhancement of photocurrents due to the oxidation of water and organic compounds at BiZn2VO6 particulate thin film electrodes by treatment with a TiCl4 solution

    International Nuclear Information System (INIS)

    Liu Haimei; Imanishi, Akihito; Yang Wensheng; Nakato, Yoshihiro

    2010-01-01

    Photocurrents due to water oxidation at BiZn 2 VO 6 (E g 2.4 eV) particulate thin film electrodes were largely enhanced by pre-treatment with an aqueous TiCl 4 solution. Photocurrents for BiZn 2 VO 6 electrodes with no TiCl 4 treatment were also enhanced by the addition of organic compounds such as methanol and trimethyl amine to the aqueous electrolyte. Interestingly, such enhanced photocurrents by organic compounds were further enhanced by the TiCl 4 pre-treatment. EDAX and SEM investigations showed the formation of a flock-like TiO 2 overlayer on BiZn 2 VO 6 particles after the TiCl 4 treatment. The photocurrent enhancement by the TiCl 4 pre-treatment is thus mainly attributed to the necking effect of the flock-like TiO 2 overlayer, which facilitates the transport of photogenerated electrons within the BiZn 2 VO 6 particulate thin film electrode.

  11. Morphology and growth behavior of O_2-free chemical bath deposited ZnS thin films

    International Nuclear Information System (INIS)

    Jet Meitzner, K.; Tillotson, Brock M.; Siedschlag, Amanda T.; Moore, Frederick G.; Kevan, Stephen D.; Richmond, Geraldine L.

    2015-01-01

    We investigate the role of reagent concentrations and ambient O_2 on the morphology and growth behavior of ZnS thin films grown with the chemical bath deposition method. We investigate the role of substrate on film morphology, and find significant differences between films deposited on SiO_2 versus Si. The films are also sensitive to dissolved O_2 in the bath, as it causes a layer of SiO_2 to form at the ZnS/Si interface during deposition. Degassing of solutions and an N_2 atmosphere are effective to minimize this oxidation, allowing deposition of ZnS films directly onto Si. Under these conditions, we examine film properties as they relate to reagent bath concentrations. As the reagent concentrations are decreased, both the film roughness and growth rate decrease linearly. We also observe deformation and shifting of X-ray diffraction peaks that increases with decreasing reagent concentrations. The shifts are characteristic of lattice compression (caused by the substitution of oxygen for sulfur), and the deformation is characteristic of distortion of the lattice near crystal grain interfaces (caused by tensile stress from interatomic forces between neighboring crystal grains). At the weakest concentrations, the low roughness suggests a mixed growth mode in which both clusters and individual ZnS nanocrystallites contribute to film growth. With increasing reagent concentrations, the growth mode shifts and becomes dominated by deposition of clusters. - Highlights: • We deposit ZnS thin films by chemical bath deposition in an O_2-free environment. • The O_2-free environment is effective to minimize oxidation of the Si substrate. • The dominant growth mechanism changes with reagent concentrations. • Film morphology and composition change with reagent concentrations. • X-ray diffraction reveals tensile stress between ZnS crystal grains.

  12. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates

    International Nuclear Information System (INIS)

    Zhang, R H; Slamovich, E B; Handwerker, C A

    2013-01-01

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl − ) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl − ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl − to dominate. By optimizing the growth conditions, a dense ∼100 nm thickness film was fabricated in 15 min from a solution of [Cl − ]/[Zn 2+ ] = 1.5 and pH= 4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm 2 V −1 s −1 at zero back-gate bias. (paper)

  13. Synthesis and photoluminescence properties of LaAlO3:Mn4+, Na+ deep red-emitting phosphor

    Science.gov (United States)

    Cao, Renping; Ceng, Dong; Liu, Pan; Yu, Xiaoguang; Guo, Siling; Zheng, Guotai

    2016-04-01

    LaAlO3:Mn4+ and LaAlO3:Mn4+, Na+ deep red-emitting phosphors are synthesized by a solid-state reaction method in air. Their crystal structures, lifetimes, and luminescence properties are investigated, respectively. PLE spectrum monitored at 730 nm contains three PLE bands peaking at ~276, 325, and 500 nm within the range 200-550 nm, and PL spectrum with excitation 325 nm exhibits two PL band peaks located at ~703 and 730 nm owing to anti-stokes vibronic sidebands associated with the excited state 2E of Mn4+ ion and the 2E → 4A2 transition of Mn4+ ion, respectively. The optimal Mn4+ doping concentration is ~0.8 mol%. Lifetime of LaAl0.992O3:0.8 %Mn4+ phosphor is ~0.92 ms. Na+ ion as charge compensator can improve obviously the luminescence properties of LaAlO3:Mn4+ phosphor due to the charge compensation. The luminous mechanism of Mn4+ ion is explained by using Tanabe-Sugano diagram of Mn4+ ion in octahedral crystal field. The contents of this paper will be helpful to develop novel Mn4+-doped materials and improve their luminescence properties.

  14. CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry

    Science.gov (United States)

    Bahl, Shaila; Lochab, S. P.; Kumar, Pratik

    2016-02-01

    With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.

  15. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films

    Directory of Open Access Journals (Sweden)

    L. J. Collins-McIntyre

    2014-12-01

    Full Text Available We report the growth of Mn-doped Bi2Se3 thin films by molecular beam epitaxy (MBE, investigated by x-ray diffraction (XRD, atomic force microscopy (AFM, SQUID magnetometry and x-ray magnetic circular dichroism (XMCD. Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS, and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 μB/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μB/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L2,3 edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  16. Effect of small addition of Mn on the passivation of Zn in 0.1 M NaOH solution

    International Nuclear Information System (INIS)

    Shang Xiuling; Zhang Bo; Han Enhou; Ke Wei

    2011-01-01

    The passivation of pure Zn (99.995 wt%) and Zn-0.4Mn (0.4 wt% Mn) alloy in a deaerated 0.1 M NaOH solution (pH 12.9) was investigated by electrochemical measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The potentiodynamic polarization and electrochemical impedance measurements show that addition of 0.4 wt% Mn can decrease the passive current density of Zn in the passive region. XPS surface analysis indicates that there is approximately 1.0-2.0 at% Mn 2+ being incorporated into the passive film on Zn-0.4Mn alloy with Mn content being higher in the outer layers. Mott-Schottky analysis shows that the incorporated Mn can decrease concentration of defects in the film. AFM observations disclose that Mn can decrease the grain size of the film. The mechanism by which Mn additions improve the passivity of Zn is that the incorporated Mn can inhibit ions transportation in the film and inhibit its growth. Meanwhile, Mn can also promote the nucleation of Zn oxides and decrease film porosity.

  17. An Investigation of Nanocrystalline and Electrochemically Grown Cu2ZnSnS4 Thin Film Using Redox Couples of Different Band Offset

    Directory of Open Access Journals (Sweden)

    Prashant K. Sarswat

    2013-01-01

    Full Text Available Alternative electrolytes were examined to evaluate photoelectrochemical response of Cu2ZnSnS4 films at different biasing potential. Selections of the electrolytes were made on the basis of relative Fermi level position and standard reduction potential. Our search was focused on some cost-effective electrolytes, which can produce good photocurrent during illumination. Thin films were grown on FTO substrate using ink of nanocrystalline Cu2ZnSnS4 particles as well as electrodeposition-elevated temperature sulfurization approach. Our investigations suggest that photoelectrochemical response is mostly due to conduction band-mediated process. Surface topography and phase purity were investigated after each electrochemical test, in order to evaluate film quality and reactivity of electrolytes. Raman examination of film and nanocrystals was conducted for comparison. The difference in photocurrent response was explained due to various parameters such as change in charge transfer rate constant, presence of dangling bond, difference in concentration of adsorbed species in electrode.

  18. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    Science.gov (United States)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  19. Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films

    International Nuclear Information System (INIS)

    Ko, J.H.; Kim, I.H.; Kim, D.; Lee, K.S.; Lee, T.S.; Jeong, J.-H.; Cheong, B.; Baik, Y.J.; Kim, W.M.

    2006-01-01

    Amorphous Zn-Sn-O (ZTO) thin films with relative Zn contents (= [at.% Zn]/([at.% Zn] + [at.% Sn])) of 0, 0.08 and 0.27 were fabricated by co-sputtering of SnO 2 and ZnO targets at room temperature. Changes in structural, electrical and optical properties together with electron transport properties were examined upon post-annealing treatment in the temperature range from 200 to 600 deg. C in vacuum and in air. Characterization by XRD showed that an amorphous ZTO thin film crystallized at higher temperatures with increasing Zn content. Crystallized ZTO films with a relative Zn content of 0.27 might not contain a single SnO 2 phase which is observed in the films of the other compositions. Amorphous ZTO films showed decreasing electrical resistivities with increasing annealing temperature, having a minimum value of 1 x 10 - 3 Ω cm. Upon crystallization, the resistivities increased drastically, which was attributed to poor crystallinity of the crystallized films. All the ZTO films were found to be degenerate semiconductors with non-parabolic conduction bands having effective masses varying from 0.15 to 0.3 in the carrier concentration range of 6 x 10 18 to 2 x 10 2 cm - 3 . As for a ZTO film with a relative Zn content of 0.27, the degree of non-parabolicity was much lower compared with films of the other compositions, leading to a relatively stable mobility over a wide range of carrier concentration

  20. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    Directory of Open Access Journals (Sweden)

    Jung-Sik Kim

    2016-09-01

    Full Text Available In this work, transparent conducting oxides (TCOs have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se4 (CZTSSe solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO or indium tin oxide (ITO and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  1. DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive

  2. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  3. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  4. Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films

    Energy Technology Data Exchange (ETDEWEB)

    Onuk, Zuhal [Department of Physics, Recep Tayyip Erdogan University, Rize, 53100 (Turkey); Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Rujisamphan, Nopporn [Nanoscience and Nanotechnology Graduate Program, Faculty of Science, King Mongkut’s University of Technology Thonburi, 10140, Bangkok (Thailand); Theoretical and Computational Science Center (TaCS), Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy [Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716 (United States); Bah, Mohamed [Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Tomakin, Murat [Department of Physics, Recep Tayyip Erdogan University, Rize, 53100 (Turkey); Shah, S.Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716 (United States)

    2017-02-28

    Graphical abstract: Scanning electron micrographs of the top view surfaces (left column) and cross sections of sputtered ZnO thin films prepared at various Ar:O{sub 2} ratios: (a) and (b) 10:0, (c) and (d) 7.5:2.5, (e) and (f) 5:5, (g) and (h) 2.5:7.5. - Highlights: • Nanocolumnar ZnO films were prepared by controlling the argon-oxygen sputtering gas ratio. • Oxygen partial pressure affects the band gap alignment of the ZnO films. • Optical transmission spectroscopy and XPS were used to study band gap shifts. - Abstract: We investigated the effects of growth conditions during magnetron sputtering on the structural, morphological, and optical properties of nanostructured ZnO thin films. Undoped ZnO thin films are deposited onto p-type Si (100) and corning 7059 glass substrates by RF magnetron sputtering using a ZnO target in combination with various Ar-O{sub 2} sputtering gas mixtures at room temperature. The effect of the partial pressure of oxygen on the morphology of ZnO thin film structure and band alignment were investigated. Thickness, and therefore the growth rate of the samples measured from the cross-sectional SEM micrographs, is found to be strongly correlated with the oxygen partial pressure in the sputtering chamber. The optical transmittance spectrometry results show that the absorption edge shifts towards the longer wavelength at higher oxygen partial pressure. X-ray photoelectron spectroscopy (XPS) used for determining the surface chemical structure and valence band offsets show that conduction band can be controlled by changing the sputtering atmosphere.

  5. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    International Nuclear Information System (INIS)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-01-01

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10 -4 Ω cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm 2 /Vs and carrier concentrations on the order of 10 20 cm -3 . All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10 -3 -10 -4 Ω cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  6. Crystallographic structure and grain size of polycrystalline Cu{sub 2}ZnSnS{sub 4} nanoparticles and thin films studied with XRD and SEM

    Energy Technology Data Exchange (ETDEWEB)

    Zutz, Folker; Chory, Christine; Riedel, Ingo; Parisi, Juergen [Thin Film Photovoltaics, Energy and Semiconductor Research Laboratory, University of Oldenburg, D-26111 Oldenburg (Germany)

    2011-07-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is a compound semiconductor with an absorption coefficient of >10{sup 4} cm{sup -1} and energy gap of about 1.5 eV. Because CZTS is comprised of abundant and non-toxic precursor elements the semiconductor represents an attractive material for low-cost thin film solar cells. CZTS nanoparticles (NP) were prepared in a low-temperature colloidal synthesis yielding high amounts per synthesis cycle. For thin film deposition the NPs were converted to an ink which can be processed to thin films via printing techniques. Finally, the thin films were annealed in argon atmosphere at different temperatures in order to control the growth of microcrystallites. The photoelectrical quality of the semiconductor sensitively depends on the relative concentrations of the precursor elements (band gap, crystallographic phases) and the average grain size (charge transport). We report on structural investigations (X-ray diffraction, electron microscopy) of CZTS dried powders and thin films processed from inks with varying chemical compositions. Further, the evolution of the grain size was studied as function of the annealing temperature.

  7. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique

    Science.gov (United States)

    Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah

    2018-04-01

    The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.

  9. Magnetically tunable dielectric, impedance and magnetoelectric response in MnFe{sub 2}O{sub 4}/(Pb{sub 1−x}Sr{sub x})TiO{sub 3} composites thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Kanchan, E-mail: bala.kanchan1987@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Kotnala, R.K. [CSIR, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Negi, N.S., E-mail: nsn_phy_hpu@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2017-02-15

    We have synthesized piezomagnetic–piezoelectric composites thin films MnFe{sub 2}O{sub 4}/(Pb{sub 1−x}Sr{sub x})TiO{sub 3}, where x=0.1, 0.2, and 0.3, using the metalorganic deposition (MOD) reaction method. The structural and microstructural analysis using the X-ray diffraction (XRD), AFM, and SEM reveals the presence of homogenous growth of both pervoskite and spinel phases in the composite films. Our results show that all the composites films exhibit good multiferroic as well as considerable magnetoelectric coupling. The impedance (Z′ and Z″) and electrical modulus (M′ and M″) Nyquist plots show distinct electrical responses with the magnetic field. Our analyses suggest that this electrical response arises due to the coexistence of the high resistive phase and the comparatively conductive phase in the MFO/PST composite films. The maximum magnetoelectric coefficient (α) is found to be 4.29 V Oe{sup −1} cm{sup −1} and 2.82 V Oe{sup −1} cm{sup −1} for compositions x=0.1 and 0.2. These values are substantially larger than those reported for bilayer composites thin films in literature and make them interesting for room temperature device applications. - Highlights: • Influence of Sr doping on multiferroic and magnetoelectric properties composites thin films of MnFe{sub 2}O{sub 4} and (Pb, Sr)TiO{sub 3}. • Dielectric constant and dielectric loss with application of magnetic field. • Magnetically tunable AC electrical properties. • Magnetoelectric coupling in MnFe{sub 2}O{sub 4}/(Pb, Sr)TiO{sub 3} composite films by passive method.

  10. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    Science.gov (United States)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  11. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhanyun; Chen Min; Chen Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); Pan Shirong, E-mail: stscdh@mail.sysu.edu.c [Artificial Heart Lab, the 1st Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080 (China)

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  12. Improvement of physical properties of ZnO thin films by tellurium doping

    Energy Technology Data Exchange (ETDEWEB)

    Sönmezoğlu, Savaş, E-mail: svssonmezoglu@kmu.edu.tr; Akman, Erdi

    2014-11-01

    Highlights: • We report the synthesis of tellurium-doped zinc oxide (Te–ZnO) thin films using sol–gel method. • Highly c-axis oriented Te-doped ZnO thin films were grown on FTO glasses as substrate. • 1.5% Te-doping ratio could improve the physical properties of ZnO thin films. - Abstract: This investigation addressed the structural, optical and morphological properties of tellurium incorporated zinc oxide (Te–ZnO) thin films. The obtained results indicated that Te-doped ZnO thin films exhibit an enhancement of band gap energy and crystallinity compared with non-doped films. The optical transmission spectra revealed a shift in the absorption edge toward lower wavelengths. X-ray diffraction measurement demonstrated that the film was crystallized in the hexagonal (wurtzite) phase and presented a preferential orientation along the c-axis. The XRD obtained patterns indicate that the crystallite size of the thin films, ranging from 23.9 to 49.1 nm, changed with the Te doping level. The scanning electron microscopy and atomic force microscopy results demonstrated that the grain size and surface roughness of the thin films increased as the Te concentration increased. Most significantly, we demonstrate that it is possible to control the structural, optical and morphological properties of ZnO thin films with the isoelectronic Te-incorporation level.

  13. Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM

    International Nuclear Information System (INIS)

    Lorenz, Harald; Zhao Qian; Turner, Stuart; Lebedev, Oleg I.; Van Tendeloo, Gustaaf; Kloetzer, Bernhard; Rameshan, Christoph; Penner, Simon

    2010-01-01

    Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO 2 and GeO 2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10 -1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10 -3 to 10 -2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO 2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 10 5 Pa O 2 . Preparation of GeO x films inevitably results in amorphous films with a composition close to GeO 2 , which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO 2 . Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In 2 O 3 and Ga 2 O 3 ) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.

  14. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    Science.gov (United States)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  15. Characterization of amorphous multilayered ZnO-SnO2 heterostructure thin films and their field effect electronic properties

    International Nuclear Information System (INIS)

    Lee, Su-Jae; Hwang, Chi-Sun; Pi, Jae-Eun; Yang, Jong-Heon; Oh, Himchan; Cho, Sung Haeng; Cho, Kyoung-Ik; Chu, Hye Yong

    2014-01-01

    Multilayered ZnO-SnO 2 heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO 2 oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO 2 layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO 2 layers. The field effect electronic properties of amorphous multilayered ZnO-SnO 2 heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO 2 layers. The highest electron mobility of 37 cm 2 /V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ∼10 10 obtained for the amorphous multilayered ZnO(1.5 nm)-SnO 2 (1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO 2 heterostructure film consisting of ZnO, SnO 2 , and ZnO-SnO 2 interface layers

  16. Synthesis of ZnS thin films from aqueous caustic of trisodium citrate and their properties

    Directory of Open Access Journals (Sweden)

    Martyn A. Sozanskyi

    2015-12-01

    Full Text Available Zinc sulfide (ZnS thin films due to their properties are widely used in various electronic optical devices. They are produced by several methods, among which – vacuum sublimation, high frequency sputtering method, quasiclosed volume method, sol-gel method, electrodeposition. These methods have high energy consumption which increases the price of ZnS thin films. Aim: The aim of this work is to establish the optimal parameters of the synthesis of ZnS thin films of the aqueous caustic and the correlation between content of zinc in the synthesized films determined by the method of stripping voltammetry and thickness, structural, morphological and optical parameters. Materials and Methods: The ZnS thin films were obtained from aqueous caustics of zinc-containing salt using chemical deposition. Fresh solution of zinc-containing salt, trisodium citrate (Na3C6H5O7 as a complexing agent, thiourea ((NH22CS and ammonium hydroxide (NH4OH was used for the synthesis of ZnS films by chemical deposition. The deposition was performed on prepared glass substrates with the area of 5,76 cm2. Results: The phase mixture of the films has been determined. It showed the presence of ZnS compounds in the cubic modification (sphalerite. Stripping voltammetry was used to determine the mass of zinc in the ZnS films on various conditions of synthesis, namely on the concentration of the initial zinc-containing salt, trisodium citrate, thiourea, deposition time and temperature. The surface morphology, optical properties, the thickness of the ZnS resulting films have been studied. Conclusions: The optimal conditions for the synthesis of ZnS films were found based on these data. Three-dimensional surface morphology of ZnS film studies showed its smoothness, uniformity, integrity and confirmed the correctness of determining the optimal synthesis parameters.

  17. Preparation of Aligned ZnO Nanorod Arrays on Sn-Doped ZnO Thin Films by Sonicated Sol-Gel Immersion Fabricated for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    I. Saurdi

    2014-01-01

    Full Text Available Aligned ZnO Nanorod arrays are deposited on the Sn-doped ZnO thin film via sonicated sol-gel immersion method. The structural, optical, and electrical properties of the Sn-doped ZnO thin films were investigated. Results show that the Sn-doped ZnO thin films with small grain size (~20 nm, high average transmittance (96% in visible region, and good resistivity 7.7 × 102 Ω·cm are obtained for 2 at.% Sn doping concentration. The aligned ZnO nanorod arrays with large surface area were also obtained for 2 at.% Sn-doped ZnO thin film. They were grown on sol-gel derived Sn-doped ZnO thin film, which acts as a seed layer, via sonicated sol-gel immersion method. The grown aligned ZnO nanorod arrays show high transmittance at visible region. The fabricated dye-sensitised solar cell based on the 2.0 at.% Sn-doped ZnO thin film with aligned ZnO nanorod arrays exhibits improved current density, open-circuit voltage, fill factor, and conversion efficiency compared with the undoped ZnO and 1 at.% Sn-doped ZnO thin films.

  18. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  19. Implanted ZnO thin films: Microstructure, electrical and electronic properties

    International Nuclear Information System (INIS)

    Lee, J.; Metson, J.; Evans, P.J.; Kinsey, R.; Bhattacharyya, D.

    2007-01-01

    Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films

  20. Effect of UV irradiation on Cu2ZnSnS4 thin films prepared by the sol–gel sulfurization method

    International Nuclear Information System (INIS)

    Miyazawa, Hayato; Tanaka, Kunihiko; Uchiki, Hisao

    2015-01-01

    Cu 2 ZnSnS 4 (CZTS) thin films were fabricated on Mo-coated soda lime glass substrates by the sol–gel sulfurization method, which is a non-vacuum process. UV irradiation was introduced to the drying process, resulting in a significant increase in the grain size and density as well as a remarkable improvement in the crystallinity of the CZTS films. In addition, sulfurization of the Mo substrate was suppressed due to the increased density. We confirmed that the carbon/metal ratio in the precursor increased as a result of the UV irradiation. - Graphical abstract: Surface and cross sectional SEM images of the (a) CZTS prepared without UV irradiation and (b) CZTS prepared with UV irradiation. - Highlights: • CZTS thin film was prepared by sol–gel sulfurization method. • UV irradiation was introduced during the drying process. • Density and crystallinity of the CZTS films were improved by the UV irradiation. • Sulfurization of Mo substrates was suppressed by the UV irradiation.

  1. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  2. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors for near-UV white LEDs.

    Science.gov (United States)

    Feng, Yaomiao; Huang, Jinping; Liu, Lili; Liu, Jie; Yu, Xibin

    2015-09-07

    A series of single-phase broadband white-light-emitting Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors were prepared by a solid state reaction. The luminescence property, and the crystal and electronic structures of the fluorophosphates were studied by photoluminescence analysis, XRD Rietveld refinement and density functional theory calculation (DFT), respectively. Under near ultraviolet excitation in the 250 to 430 nm wavelength range, the phosphors exhibit two emission bands centered at 440 and 556 nm, caused by the Eu(2+) and Mn(2+) ions. By altering the relative ratios of Eu(2+) and Mn(2+) in the compounds, the emission color could be modulated from blue to white. The efficient energy transfer from the Eu(2+) to Mn(2+) ions could be ascribed to the well crystallized host lattice and the facile substitution of Eu(2+) and Mn(2+) for Sr(2+) sites due to similar ionic radii. A series of fluxes were investigated to improve the photoluminescence intensity. When KCl was used as flux in the synthesis, the photoluminescence intensity of Sr5(PO4)3F:Eu(2+),Mn(2+) was enhanced by 85% compared with no fluxes added. These results demonstrate that the single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) with enhanced luminescence efficiency could be promising as a near UV-convertible direct white-light-emitting phosphor for WLED applications.

  3. Atomistic growth phenomena of reactively sputtered RuO2 and MnO2 thin films

    International Nuclear Information System (INIS)

    Music, Denis; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M.

    2015-01-01

    We have synthesized RuO 2 and MnO 2 thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO 2 nanorods and faceted, nanocrystalline MnO 2 , are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O 2 molecules are preferentially adsorbed at their respective RuO 2 ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO 2 surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO 2 . Due to this atomic scale decomposition, MnO 2 may have to be renucleated during growth, which is consistent with experiments

  4. Pengaruh Suhu Pembakaran terhadap Karakteristik Listrik Keramik Film Tebal Berbasis Fe2O3–MnO–ZnO untuk Termistor NTC

    Directory of Open Access Journals (Sweden)

    Puspita Sari

    2016-12-01

    Full Text Available Pembuatan keramik film tebal berbasis Fe2O3–MnO–ZnO untuk termistor NTC dari campuran Fe2O3 50% mol, MnO 25% mol, dan ZnO 25% mol telah dilakukan. Campuran serbuk Fe2O3, MnO dan ZnO yang telah digerus dicampurkan dengan organic vehicle (OV untuk membentuk pasta. Kemudian pasta dilapiskan di atas substrat alumina menggunakan teknik screen printing untuk membentuk film tebal. Film tebal mentah yang diperoleh, dibakar pada suhu yang berbeda yaitu 1000°C, 1100°C, dan 1200°C selama 2 jam. Sebelum dilakukan pengukuran resistansi, film tebal dilapisi perak terlebih dahulu sebagai kontak logam. Resistansi termistor diukur pada suhu 40°C–200 oC dengan beda suhu sebesar 5 oC. Analisis struktur kristal dan struktur mikro film tebal masing – masing dilakukan dengan menggunakan X – Ray Diffraction (XRD dan Scanning Electron Microscopy (SEM. Hasil analisis karakteristik listrik termistor yang dibakar pada suhu 1000 °C, 1100 °C, dan 1200 °C menghasilkan konstanta termistor berturut – turut sebesar 7700 K, 6995 K, dan 5701 K. Ketiga suhu pembakaran menghasilkan nilai konstanta termistor yang memenuhi kebutuhan pasar. Analisis struktur kristal menggunakan XRD menunjukkan bahwa keramik film tebal memiliki dua struktur yaitu struktur spinel kubik dan hematit heksagonal. Analisis struktur mikro menggunakan SEM menunjukkan bertambahnya ukuran butir sesuai dengan meningkatnya suhu pembakaran dengan ukuran butir film tebal yang dibakar pada suhu 1000 °C, 1100 °C, dan 1200 °C berturut – turut adalah 1.3 μm, 2.0 μm, dan 2.4 μm.

  5. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  6. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byunggu; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2017-01-15

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  7. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    International Nuclear Information System (INIS)

    Kim, Byunggu; Leem, Jae-Young

    2017-01-01

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  8. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    Science.gov (United States)

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  9. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  10. Fabrication and performance of ACTFEL display devices using manganese-doped zinc germanate as a green-emitting electroluminescent layer

    International Nuclear Information System (INIS)

    Kim, Joo Han; Yoon, Kyung Ho

    2010-01-01

    Alternating-current thin-film electroluminescent (ACTFEL) display devices fabricated using manganese-doped zinc germanate (Zn 2 GeO 4 :Mn) as a green-emitting electroluminescent layer material are described. The ACTFEL display devices were fabricated with a standard bottom emission structure having a multilayer stack of thin films in the metal/semiconductor/insulator/ metal (MSIM) configuration. The device was constructed on a transparent Corning glass substrate through which the emitted EL light passed. The Zn 2 GeO 4 :Mn emission layer was synthesized by using a RF magnetron sputter deposition method, followed by post-annealing at 700 .deg. C in air ambient for 1 hour. The obtained Zn 2 GeO 4 :Mn films were found to be polycrystalline with a rhombohedral crystal structure. A green emission spectrum with a maximum at approximately 538 nm was produced from the fabricated device. The chromaticity color coordinates of the EL emission were measured to be x = 0.308 and y = 0.657. The device demonstrated a sharp increase in the intensity of green EL emission upon increasing the AC peak voltage applied to the device above a threshold of 148 V.

  11. Comprehensive study of growth mechanism and properties of low Zn content Cd{sub 1-x}Zn{sub x}S thin films by chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carlos Anibal [Multidisciplinary Research Institute in Science and Technology, Ineergias, University of La Serena (Chile); Sandoval-Paz, Myrna Guadalupe; Saavedra, Renato; De la Carrera, Francisco [Department of Physics, Faculty of Physical and Mathematical Sciences, University of Concepcion (Chile); Trejo-Cruz, Cuauhthemoc [Department of Physics, Faculty of Sciences, University of Biobio, Concepcion (Chile); Aragon, Luis E.; Sirena, Martin [Centro Atomico Bariloche & Instituto Balseiro, CNEA & Univ. Nac. de Cuyo, Bariloche, Rio Negro (Argentina); Delplancke, Marie-Paule [4MAT, Universite Libre de Bruxelles, Brussels (Belgium); Carrasco, Claudia [Department of Materials Engineering, Faculty of Engineering, University of Concepcion (Chile)

    2016-11-15

    Cd{sub 1-x}Zn{sub x}S thin films have been studied extensively as window layers for solar cell applications. However, a mismatch between the Cd{sub 1-x}Zn{sub x}S and copper-indium-gallium-selenide absorber layers increases with Zn film concentration, which reduces the device efficiency. In this work, Cd{sub 1-x}Zn{sub x}S thin films with low Zn concentrations were analyzed. The effect of the addition of different molar Zn concentrations to the reaction mixture on the growth mechanism of Cd{sub 1-x}Zn{sub x}S thin films and the influence of these mechanisms on structural, optical and morphological properties of the films has been studied. Cd{sub 1-x}Zn{sub x}S thin films were synthesized by chemical bath deposition using an ammonia-free alkaline solution. Microstructural analysis by X-ray diffraction showed that all deposited films grew with hexagonal structure and crystallite sizes decreased as the Zn concentration in the film increased. Optical measurements indicated a high optical transmission between 75% and 90% for wavelengths above the absorption edge. Band gap value increased from 2.48 eV to 2.62 eV, and the refractive index values for Cd{sub 1-x}Zn{sub x}S thin films decreased as the Zn increased. These changes in films and properties are related to a modification in growth mechanism of the Cd{sub 1-x}Zn{sub x}S thin films, with the influence of Zn(OH){sub 2} formation being more important as Zn in solution increases. (author)

  12. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Satoru; Honda, Joji [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Sawayama, Tomohiro; Niikura, Seiji [SINLOIHI Company, Limited, 2-19-12 Dai, Kamakura 247-8550 (Japan)

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing the aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.

  13. Characterization of novel powder and thin film RGB phosphors for field emissions display application

    International Nuclear Information System (INIS)

    Chakhovskoi, A.G.; Hunt, C.E.

    1996-01-01

    The spectral response, brightness and outgassing characteristics of new, low-voltage phosphors for application in field-emission flat-panel displays, are presented. The tested phosphor materials include combustion synthesized powders and thin films prepared by RF-diode or magnetron sputtering, laser ablation and molecular beam epitaxy. These cathodoluminescent materials are tested with e-beam excitation at currents up to 50 μA within the 200-2000V (e.g. open-quotes low-voltageclose quotes) and 3-8 kV (e.g. open-quotes medium voltageclose quotes) ranges. The spectral coordinates are compared to commercial low-voltage P22 phosphors. Phosphor outgassing, as a function of time is measured with a residual gas analyzer at fixed 50 μA beam current in the low-voltage range. We find that levels of outgassing stabilize to low values after the first few hours of excitation. The desorption rates measured for powder phosphor layers with different thickness are compared to desorption from thin films

  14. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    Directory of Open Access Journals (Sweden)

    Deepu Thomas

    2014-01-01

    Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.

  15. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  16. A sea cucumber-like BiOBr nanosheet/Zn2GeO4 nanorod heterostructure for enhanced visible light driven photocatalytic activity

    Science.gov (United States)

    Zhang, Zhiping; Ge, Xin; Zhang, Xueyu; Duan, Lianfeng; Li, Xuesong; Yang, Yue; Lü, Wei

    2018-01-01

    In present work, a two-step hydrothermal/solvothermal method was developed to fabricate sea cucumber-like p-n heterojunctions of p-BiOBr/n-Zn2GeO4. The BiOBr nanosheets were grafted onto the surface of Zn2GeO4 nanorods. BiOBr/Zn2GeO4 nanocomposites exhibit remarkable photocatalytic activity under visible-light irradiation, and photocatalytic activity was studied in the catalytic test of rhodamine B decolorization. The mechanism for improved photocatalytic activity is interpreted in terms of the formation of type II band alignment between BiOBr and Zn2GeO4, which is confirmed by UV-vis diffuse absorption and VB-XPS spectra. BiOBr nanosheet as an admirable electron transport medium provide desirable specific surface area for the nanocomposite and a suitable band gap for heterojunction structure. Furthermore, scavenger experiments confirmed that h+ and {{{{O}}}2}\\cdot - were the main oxygen active species in the decolorization process.

  17. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    Science.gov (United States)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  18. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells

    Directory of Open Access Journals (Sweden)

    B. L. Guo

    2014-09-01

    Full Text Available The fabrication of environmental-friendly Cu2ZnSnS4 (CZTS thin films with pure kesterite phase is always a challenge to researchers in the field of solar cells. We introduce a simple non-vacuum sol-gel method to fabricate kesterite CZTS films. Ethylenediamine is used as the chelating agent and stabilizer and plays an important role in preparing stable precursor. X-ray diffraction, Raman and scanning electron microscopy studies suggest that the microstructure and optical properties of CZTS films depend strongly on annealing temperatures. The temperature dependence of conductivity of 500 °C annealed CZTS film shows that the Mott law dominates in the low temperature region and thermionic emission is predominant at high temperatures.

  19. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  20. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    International Nuclear Information System (INIS)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z 1 ) and nanograins by SILAR (Z 2 ). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10 2 Ω cm) is lower than that of SILAR deposited films (10 5 Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method

  1. Effect of Annealing Temperature on Structural, Optical, and Electrical Properties of Sol-Gel Spin-Coating-Derived Cu2ZnSnS4 Thin Films

    Science.gov (United States)

    Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram

    2018-02-01

    The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.

  2. Two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Zhao, Lilong; Pei, Shixin

    2015-01-01

    Ag-doped ZnO thin films were prepared by a sol–gel method. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis and photoluminescence spectra. The results show that the Ag in the ZnO thin films annealed at 500 °C for 1 h substitutes for Zn and exists in the form of Ag + ion (Ag Zn ) while the Ag in the ZnO thin films without a post-annealing mainly exists in the form of simple substance (Ag 0 ). The incorporation of Ag indeed can improve the ultraviolet emission of ZnO thin films and suppress the visible emissions at the same time. However, the mechanisms on the ultraviolet emission enhancement in the annealed and unannealed Ag-doped ZnO thin films are very different. As for the post-annealed Ag-doped ZnO thin films, the UV emission enhancement maybe mainly results from more electron–hole pairs (excitons) due to Ag-doping while for the unannealed Ag-doped ZnO thin films; the UV emission enhancement is attributed to the resonant coupling between exciton emission in ZnO and localized surface plasmon in Ag nanoparticles. - Highlights: • Ag-doped ZnO thin films have been prepared by the sol–gel method. • Ag-doping can enhance ultraviolet emission of ZnO thin films and depress the visible emissions at the same time. • There are two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films. • The UV emission enhancement from the resonant coupling between excitonic emissions and localized surface plasmon in Ag nanoparticle is very attractive

  3. Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Agersted, Karsten; Crovetto, Andrea

    2017-01-01

    We study the effect of the annealing atmosphere on grain growth of ligand-free and ligand-coated Cu2ZnSnS4 (CZTS) nanoparticle-based thin films by thermal analysis. We use thermogravimetric analysis (TGA) coupled with mass spectrometry (MS) to simultaneously monitor mass changes and evolved gases...... of both nanoparticle powders and inks. The investigation focuses on annealing in air, nitrogen and forming gas (5% H2 in Ar), i.e., oxidizing, inert, and reducing atmospheres. We find that the oleylamine capping ligands thermally decompose into smaller organic fragments starting below its boiling point......, with a slightly higher decomposition rate in reducing atmosphere. With nanoparticle inks, very modest grain growth is observed, with no differences between the atmospheres. Conversely, with nanoparticle powders, micron-sized grains appear all over for the ligand-free sample and some micron-sized grains are seen...

  4. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates

    International Nuclear Information System (INIS)

    Yuk, J. M.; Lee, J. Y.; Kim, Y.; No, Y. S.; Kim, T. W.; Choi, W. K.

    2010-01-01

    High-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy results showed that metallic Zn nanodots (NDs) were fabricated through transformation of ZnO thin films by deposition of SiO x on ZnO/n-Si (100) heterostructures. The Zn NDs with various sizes and densities were formed due to the occurrence of the mass diffusion of atoms along the grain boundaries in the ZnO thin films. The fabrication mechanisms of metallic Zn NDs through transformation of ZnO thin films deposited on n-Si substrates are described on the basis of the experimental results.

  5. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Science.gov (United States)

    Pomar, Alberto; Konstantinović, Zorica; Bagués, Nuria; Roqueta, Jaume; López-Mir, Laura; Balcells, Lluis; Frontera, Carlos; Mestres, Narcis; Gutiérrez-Llorente, Araceli; Šćepanović, Maja; Lazarević, Nenad; Popović, Zoran; Sandiumenge, Felip; Martínez, Benjamín; Santiso, José

    2016-09-01

    We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight ( 9º) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  6. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    Science.gov (United States)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  7. Control of the magnetic properties of LaMnO3 epitaxial thin films grown by Pulsed Laser Deposition

    Science.gov (United States)

    Martinez, Benjamin; Roqueta, Jaume; Pomar, Alberto; Balcells, Lluis; Frontera, Carlos; Konstantinovic, Zorica; Sandiumenge, Felip; Santiso, Jose; Advanced materials characterization Team; Thin films growth Team

    2015-03-01

    LaMnO3 (LMO), the parent compound of colossal magnetoresistance based manganites has gained renewed attention as a building block in heterostructures with unexpected properties. In its bulk phase, stoichiometric LMO is an A-type antiferromagnetic (AFM) insulator (TN = 140K) with orthorhombic structure that easily accommodate an oxygen excess by generating cationic (La or Mn) vacancies. As a result, a fraction of Mn 3+ changes to Mn 4+ leading to a double-exchange mediated ferromagnetic (FM) behavior. In thin films the AFM phase has been elusive up to now and thin films with FM ordering are usually reported. In this work, we have systematically studied the growth process of LaMnO3 thin films by pulsed laser deposition on SrTiO3 (001) substrates under different oxygen partial pressures (PO2) . A close correlation between the structure (explored by XRD) and the magnetic properties (SQUID measurements) of the films with PO2 has been identified. At high PO2 FM behavior is observed. In contrast, at very low PO2, the results obtained for unit cell volume (close to stoichiometric bulk values) and magnetic moment (0.2 μB/Mn) strongly indicate antiferromagnetic ordering. We acknowledge financial support from the Spanish MINECO (MAT2012-33207).

  8. UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites

    Science.gov (United States)

    Indrayana, I. P. T.; Julian, T.; Suharyadi, E.

    2018-04-01

    The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.

  9. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  10. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Vähä-Nissi, Mika; Pitkänen, Marja; Salo, Erkki; Kenttä, Eija; Tanskanen, Anne; Sajavaara, Timo; Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana; Karppinen, Maarit; Harlin, Ali

    2014-01-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al 2 O 3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al 2 O 3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al 2 O 3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  11. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  12. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Ho Seok [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Noh, Jin-Seo, E-mail: jinseonoh@gachon.ac.kr [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2016-03-31

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  13. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Ho Seok; Noh, Jin-Seo

    2016-01-01

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  14. Influence of bismuth doping on the structural and optical properties of ZnS thin films and nanopowders

    International Nuclear Information System (INIS)

    Mageswari, S; Palanivel, Balan; Dhivya, L; Murugan, Ramaswamy

    2013-01-01

    Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) thin films and nanopowders synthesized by the simple chemical bath deposition technique were characterized using x-ray diffraction (XRD), scanning electron microscope, energy dispersive x-ray analysis, an atomic force microscope (AFM) and ultraviolet visible (UV–Vis) and photoluminescence spectroscopy. XRD analysis revealed a sphalerite structure for Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) thin films. However, the XRD pattern of Zn (1−x/2) Bi x/3 S (x = 0.09) nanopowder revealed the co-existence of both sphalerite and hexagonal (wurtzite) phases. The crystallite size of Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) nanopowders were found to be in the range of 24 nm. AFM studies revealed that the film quality of Zn (1−x/2) Bi x/3 S (x = 0.09) was relatively good compared to other films. A notable decrease in the band gap of both the thin films and nanopowders were observed with incorporation of Bi 3+ in ZnS. These results indicate that Bi doped ZnS can be used to enhance the photocatalytic H 2 -production activity under visible and UV light. (paper)

  15. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    Science.gov (United States)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  16. Luminescence properties of CdSiO3:Mn2+ phosphor

    International Nuclear Information System (INIS)

    Lei Bingfu; Liu Yingliang; Ye Zeren; Shi Chunshan

    2004-01-01

    A novel long-lasting phosphor CdSiO 3 :Mn 2+ is reported in this paper. The Mn 2+ -doped CdSiO 3 phosphor emits orange light with CIE chromaticity coordinates x=0.5814 and y=0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn 2+ -doped CdSiO 3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the spin-forbidden transition of the d-orbital electron associated with the Mn 2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves

  17. Low-temperature heteroepitaxial growth of InAlAs layers on ZnSnAs{sub 2}/InP(001)

    Energy Technology Data Exchange (ETDEWEB)

    Oomae, Hiroto; Suzuki, Akiko; Toyota, Hideyuki; Uchitomi, Naotaka [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan); Nakamura, Shin' ichi [Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-0206, Kanagawa (Japan)

    2015-06-15

    We studied the epitaxial growth of InAlAs on ZnSnAs{sub 2} thin films to establish magnetic heterostructures involving ferromagnetic Mn-doped ZnSnAs{sub 2} (ZnSnAs{sub 2}:Mn) thin films. These heterostructures were successfully grown at temperatures around 300 C to maintain room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn. Reflection high-energy electron diffraction, X-ray diffraction measurements and cross-sectional transmission electron microscopy revealed that the InAlAs layers were pseudomorphically lattice-matched with ZnSnAs{sub 2,} even at the low temperature of 300 C. We attempted to prepare magnetic quantum well structures from the InAlAs/ZnSnAs{sub 2}:Mn magnetic multilayer structure. We found that InAlAs layers heteroepitaxially grown on ZnSnAs{sub 2} and ferromagnetic ZnSnAs{sub 2}:Mn films are suitable for preparing InP-based magnetic semiconductor quantum structures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    Science.gov (United States)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  19. Effects of Post Heat Treatments on ZnO Thin-Films Grown on Zn-coated Teflon Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Nam, Giwoong; Lee, Cheoleon; Kim, Dongwhan; Choi, Hyonkwang; Kim, Yangsoo; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of); Kim, Jin Soo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Jong Su [Yeungnam University, Gyeongsan (Korea, Republic of); Son, Jeong-Sik [Kyungwoon University, Gumi (Korea, Republic of)

    2015-06-15

    ZnO thin films were first grown on Zn-coated Teflon substrates using a spin-coating method, with various post-heating temperatures. The structural and optical properties of the ZnO thin films were then investigated using field-effect scanning-electron microscopy, X-ray diffractometry, and photoluminescence (PL) spectroscopy. The surface morphology of these ZnO thin films exhibited dendritic structures. With increasing post-heating temperature, all samples preferentially exhibited preferential c-axis orientation and increased residual tensile stress. All of the films exhibited preferential c-axis orientation, and the residual tensile stress of those increased with increasing post-heating temperature. The near-band-edge emission (NBE) peaks were red-shifted after post-heating treatment at 400 ℃. The intensity of the deep-level emission (DLE) peaks gradually decreased with increasing post- heating temperature. Moreover, the narrowest ‘full width at half maximum’ (FWHM) and the highest intensity ratio of the NBE to the DLE for thin films, were observed after post-heating at 400 ℃. The ZnO thin films fabricated with the 400 ℃ post-heating process provided the highest crystallinity and optical properties.

  20. Electroluminescent efficiency of alternating current thick film devices using ZnS:Cu,Cl phosphor

    International Nuclear Information System (INIS)

    Sharma, Gaytri; Han, Sang Do; Kim, Jung Duk; Khatkar, Satyender P.; Rhee, Young Woo

    2006-01-01

    ZnS:Cu,Cl phosphor is prepared with the help of low intensity milling of the precursor material in two step firing process. The synthesized phosphor is used for the preparation of alternating current thick film electroluminescent (ACTFEL) devices with screen-printing method. The commission international de l'Eclairge (CIE) color co-ordinates of the ACTFEL devices prepared by these phosphor layers shows a shift from bluish-green to green region with the change in the amount of Cu in the phosphor. The various parameters to improve the efficiency and luminance of the devices have also been investigated. The brightness of the ac thick film EL device depends on the particle size of the phosphor, crystallinity, amount of binding material and applied voltage. The EL device fabricated with phosphor having average particle size of 25 μm shows maximum luminescence, when 60% phosphor concentration is used with respect to binding material. EL intensity is also linearly dependent on frequency. It is due the increase of excitation chances of the host matrix or dopant ions with increasing frequency

  1. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    Science.gov (United States)

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  2. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  3. Preparation and characterization of chitosan/ZnAl2O4 films

    International Nuclear Information System (INIS)

    Araujo, P.M.A.G.; Santos, P.T.A.; Rodrigues, P.A.; Costa, A.C.F.M.; Araujo, E.M.

    2012-01-01

    Chitosan films have been explored for biomedical application, as the chitosan to be, low toxicity, abundant in nature, show affinity for dispersion loads and high mechanical strength. On the other hand, ZnAl 2 O 4 has energy gap of approximately 3.8 eV, which makes it useful for use as photoelectric device ultraviolet. Thus, this work has as objective to prepare films of quitosana/ZnAl 2 O 4 in proportions of 5:1, 5:2, 5:3, 5:4 and evaluate the structural, morphological and thermals characteristics. To this end, ZnAl2O4 first nanoparticles (NPs) was deagglomerated and 325 mesh sieve and added to chitosan diluted in 1% acetic acid, and dried at 60°C. After drying, a solution of 1M sodium hydroxide was added to obtain a film with neutral pH. The films were characterized by XRD, SEM and TG. For all proportions evaluated it was verified the presence of ZnAl 2 O)4 and chitosan phases. By micrographs, it was observed that there was formation of agglomerates of ZnAl 2 O 4 NPs both on the surface of the films, the encapsulated in chitosan. In all samples the ratio 5:4 showed the greatest consistency both in relation to the film surface of the nanoparticles in the chitosan matrix. TG/DTA curves of quitosana/ZnAl 2 O 4 film for all the samples showed that for the concentration of 5:1 to 5:3 occurred three mass loss while for concentration of 5:2 to 5:4 were only two stages decomposition. (author)

  4. One-step synthesis of PbSe-ZnSe composite thin film

    Directory of Open Access Journals (Sweden)

    Abe Seishi

    2011-01-01

    Full Text Available Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.

  5. Time and temperature dependent breakdown characteristics of ZnS:Mn films obtained by rf-magnetron sputtering

    Science.gov (United States)

    Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.

    1994-04-01

    Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.

  6. Magneto-optical effect in Mn-Sb thin films

    International Nuclear Information System (INIS)

    Attaran, E.; Sadabadi, M.

    2003-01-01

    The magneto-optic Kerr and Faraday effect of Mn-Sb thin films have been studied. The single and multilayer of this film have grown on glass substrate by evaporation. The optical rotation of linear polarized light has been measured by an optical hysteresis plotter in a I/O converter amplifier circuit. Our results indicate a polar Kerr rotation up to 0.5 degree and in a double Mn S b this rotation research to maximum

  7. Magnetic and optical properties of MgAl2O4-(Ni0.5Zn0.5Fe2O4 thin films prepared by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Takeshi Misu, Naonori Sakamoto, Kazuo Shinozaki, Nobuyasu Adachi, Hisao Suzuki and Naoki Wakiya

    2011-01-01

    Full Text Available Thin films composed of MgAl2O4 and (Ni0.5Zn0.5Fe2O4 ([MA(100-x-NZFx] films were grown on fused SiO2 substrates by pulsed laser deposition. X-ray diffraction measurements revealed that the films were polycrystalline, and that their lattice constant varied linearly with composition, indicating the formation of a solid solution. The film with x=60 was paramagnetic and those with x ≥ 70 were ferromagnetic. The films had a transparency above 75% in the visible range, but the transparency decreased with the x value. The optical band gaps were 2.95, 2.55, 2.30 and 1.89 eV for x=20, 40, 60, 80 and 100, respectively. The Faraday rotation angle increased with x in the visible range, and the film with x=70 exhibited a value of 2000 degrees cm-1 at 570 nm, which is comparable to the rotation angle of Y3Fe5O12. Owing to their high transparency, which extends into the visible range, the [MA(100-x-NZFx] films can be used in novel magneto-optical devices.

  8. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  9. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    Science.gov (United States)

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Effect of Al-doped on physical properties of ZnO Thin films grown by spray pyrolysis on SnO2: F/glass

    Directory of Open Access Journals (Sweden)

    Castagné M.

    2012-06-01

    Full Text Available Transparent conducting thin films of aluminum-doped zinc oxide (ZnO:Al have been deposited on SnO2:F/glass by the chemical spray technique, starting from zinc acetate (CH3CO22Zn.2H2O and aluminum chloride AlCl3. The effect of changing the aluminum-to-zinc ratio y from 0 to 3 at.%, has been thoroughly investigated. It was found that the optical and electrical properties of Al doped ZnO films improved with the addition of aluminum in the spray solution until y=2%. At this Al doping percentage, the thin layers have a resistivity equal to 4.1 × 10−4 Ω.cm and a transmittance of about 90 % in the region [600-1000] nm. XRD patterns confirm that the films have polycristalline nature and a wurtzite (hexagonal structure which characterized with (100, (002 and (101 principal orientations. The undoped films have (002 as the preferred orientation but Al doped ones have (101 as the preferred orientation. Beyond y= 1%, peak intensities decrease considerably.

  11. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    Science.gov (United States)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  12. Effects of Post- Heat Treatment of Nanocrystalline ZnO Thin Films deposited on Zn-Deposited FTO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2015-10-15

    The effects of heat-treatment temperature on the structural and optical properties of ZnO thin films were investigated with field-effect scanning electron microscopy (SEM), X-ray diffraction analysis, and photoluminescence (PL) measurements. The ZnO thin films were grown on Zn-deposited fluorine-doped tin oxide substrates by sol-gel spin coating. The SEM images of the samples showed that their surfaces had a mountain-chain-like structure. The film annealed at 400 ℃ had the highest degree of alignment along the c-axis, and its residual stress was close to zero. The PL spectra of the ZnO thin films consisted of sharp near-band-edge emissions (NBE) and broad deep-level emissions (DLE) in the visible range. The DLE peaks exhibited a green-to-red shift with an increase in the temperature. The highest INBE/IDLE ratio was observed in the film annealed at 400 ℃. Thus, the optimal temperature for growing high-quality ZnO thin films on Zn-deposited FTO substrates is 400 ℃.

  13. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  14. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    Science.gov (United States)

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  15. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  16. Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu{sub 2}ZnSnS{sub 4} thin film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Om Pal; Gour, Kuldeep Singh [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Parmar, Rahul [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Vidya Nand, E-mail: singhvn@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2016-07-01

    Sodium diffusion from soda lime glass (SLG) during high temperature annealing is known to play a crucial role in affecting the grain growth and defect passivation in chalocogenide/kesterite solar cells. Additional sodium is required when low temperature or short term annealing is used. Although this fact is known, a systematic comparative study for kesterite films is seldom reported. In the present study, Cu{sub 2}ZnSnS{sub 4} thin films were deposited on SLG and Mo coated SLG using stacked layer reactive sputtering. Na was deposited over the CZTS thin film and the film was annealed in N{sub 2} atmosphere in order to enhance the grain growth. This resulted in the shift in the XRD peak towards lower diffraction angle. The optical bandgap shifted from 1.45 eV to 1.38 eV with Na addition. Significant grain growth from hundreds of nanometer to micrometer was observed in samples with Na. Device fabricated in SLG/Mo/CZTS/CdS/ZnO/ITO configuration with Al front contact shows increase in efficiencies values from 1.50% to 2.84%. - Highlights: • Reactive sputtering with reduced annealing time have been used for the growth of CZTS thin film. • NaF has been deposited over precursor film before annealing. • Na addition resulted in grain growth, improved compactness and reduction in band gap. • An enhancement in the photovoltaic characteristics have been observed with addition of Na.

  17. Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi-630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi-630004 (India)

    2016-05-06

    Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  18. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Directory of Open Access Journals (Sweden)

    Alberto Pomar

    2016-09-01

    Full Text Available We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4 in a pristine perovskite matrix (LaMnO3 by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight (~9º c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  19. Preparation of highly oriented Al:ZnO and Cu/Al:ZnO thin films by sol-gel method and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Murugan, R. [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan); Ravi, G., E-mail: gravicrc@gmail.com [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2015-11-15

    Highly oriented thin films of Al doped ZnO (Al:ZnO) and Cu co-doped Al:ZnO (Cu/Al:ZnO) thin films were successfully deposited by sol–gel spin coating on glass substrates. The deposited films were characterized using X-ray diffraction analysis and found to exhibit hexagonal wurtzite structure with c-axis orientation. SEM images revealed that hexagonal rod shaped morphologies were grown perpendicular to the substrate surface due to repeated deposition process. High transmittance values were observed for pure ZnO compared to Al:ZnO and Cu/Al:ZnO thin films. The band gap widening is caused by the increase of carrier concentration, which is believed to be due to Burstein-Moss effect due to Al and Cu doping. PL spectra of Cu/Al:ZnO thin films indicate that the UV emission peaks slightly shifted towards lower energy side. XPS study was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O thin films to analyze the binding energy of Al, Cu, Zn and O. Magnetic measurement studies exhibited ferromagnetic behavior at room temperature, which may be due to the increase in copper concentration in the doped films. The ferromagnetic behavior can be understood from the exchange coupling between localized ‘d’ spin of Cu ion mediated by free delocalized carriers. - Highlights: • High quality of Al:ZnO and Cu co-doped Al:ZnO thin films were fabricated by sol–gel method. • The XRD analyses revealed that the deposited thin films have hexagonal wurtzite structure. • XPS was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O films to analyze the binding energy of Al, Cu, Zn and O. • SEM studies were made for Al:ZnO and Cu/Al:ZnO thin films. • RTFM was observed in Cu co-doped Al:ZnO thin films.

  20. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Luo, Lei; Qiao, Hui; Chen, Ke; Fei, Yaqian; Wei, Qufu

    2015-01-01

    Highlights: • ZnMn 2 O 4 nanofibers were successfully synthesized by a facile electrospinning and calcination method for lithium-ion batteries. • The as-prepared ZnMn 2 O 4 nanofibers, containing PVP and PAN with ratio of 1:9, exhibited a high initial discharge capacity of 1274 mAh g −1 , and the stabilized capacity was as high as 603 mAh g −1 after 60 cycles at a current density of 50 mA g −1 . • The as-prepared ZnMn 2 O 4 anode material showed good lithium storage performances and excellent rate capability and can be a promising electrode material for lithium-ion batteries in the future. - Abstract: In this paper, ZnMn 2 O 4 nanofibers were synthesized by a facile electrospinning and calcination method. Electrochemical properties of the nanofiber anode material for lithium-ion batteries were investigated. The as-prepared ZnMn 2 O 4 nanofibers, containing PVP and PAN with ratio of 1:9, exhibited a high initial discharge capacity of 1274 mAh g −1 , and the stabilized capacity was as high as 603 mAh g −1 after 60 cycles at a current density of 50 mA g −1 . Besides the high specific capacity and good cyclability, the electrode also showed good rate capability. Even at 2000 mA g −1 , the electrode could deliver a capacity of as high as 352 mAh g −1 . The results suggest a promising application of the electrospun ZnMn 2 O 4 nanofibers as anode material for lithium-ion batteries

  1. Influence of Ag thickness of aluminum-doped ZnO/Ag/aluminum-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan City 710, Taiwan (China); Yang, Ru-Yuan [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China); Hsiung, Chin-Min; Chu, Chien-Hsun [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China)

    2012-10-01

    Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm, which can be decreased to 3.8 Multiplication-Sign 10{sup -5} {Omega}-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 Multiplication-Sign 10{sup -3} {Omega}{sup -1}. It was shown that the multilayer thin films have potential for applications in optoelectronics. - Highlights: Black-Right-Pointing-Pointer High-quality Al-doped ZnO (AZO)/Ag/AZO Transparent Conducting Oxide films. Black-Right-Pointing-Pointer AZO films (30 nm) made by RF sputtering; E-beam evaporation for Ag film (5-15 nm). Black-Right-Pointing-Pointer Influence of Ag thickness on optical and electrical properties were analyzed. Black-Right-Pointing-Pointer High quality multilayer film with optimal intermediate Ag layer thickness of 10 nm. Black-Right-Pointing-Pointer 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm resistivity, 91.89% transmittance at 470 nm obtained and reproducible.

  2. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  3. Microstructural analysis nanoferritas Mn_0_,_5Zn_0_,_5Fe_2O_4 e Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M.

    2014-01-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn_0_,_5Zn_0_,_5Fe_2O_4 Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  4. Cu{sub 2}ZnSnS{sub 4} thin films obtained by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers: Influence of the ternary precursor features

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V.; Guillén, C., E-mail: c.guillen@ciemat.es; Trigo, J.F.; Herrero, J.

    2017-04-01

    Highlights: • Kesterite Cu{sub 2}ZnSnS{sub 4} is got by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers. • Smooth films are obtained by decreasing the growth temperature of Cu{sub 2}SnS{sub 3}. • The lattice strain and the electrical conductivity increase with the Cu-content. • The energy gap diminishes as the Cu-content and/or the surface roughness increase. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been grown by sulfurization of Cu{sub 2}SnS{sub 3} (CTS) and ZnS layers evaporated on glass substrates. Four CTS precursor films have been tested, with two different atomic compositions (Cu/Sn = 1.7 and Cu/Sn = 2.1) and substrate temperatures (350 and 450 °C), together with analogous ZnS layers deposited by maintaining the substrate at 200 °C. The sulfurization of the CTS and ZnS stacked layers was performed at 500 °C during 1 h. The evolution of the crystalline structure, morphology, optical and electrical properties from each CTS precursor to the CZTS compound has been studied, especially the influence of the ternary precursor features on the quaternary film characteristics. The kesterite structure has been identified after sulfurization of the various samples, with main (112) orientation and mean crystallite sizes S{sub 112} = 40–56 nm, being higher for the Cu-poor compositions. The CZTS average roughness has varied in a wide interval R{sub a} = 8–66 nm, being directly related to the CTS precursor layer, which becomes rougher for a higher deposition temperature or Cu content. Besides, the band gap energy and the electrical resistivity of the CZTS films have changed in the ranges E{sub g} = 1.54–1.64 eV and ρ = 0.2–40 Ωcm, both decreasing when the Cu content and/or the surface roughness increase.

  5. Construction of Zn2GeO4/Graphene Nanostructures with Dually-Protected Functional Nanoframes for Enhanced Lithium-Storage Performances

    International Nuclear Information System (INIS)

    Ding, Caihua; Zhao, Yongjie; Yan, Dong; Su, Dezhi; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2017-01-01

    Application products moving from small-sized devices to large-scale energy storage systems have pushed the development of lithium-ion batteries towards high-energy densities, high-power densities, and long cycle life. Germanium-based anode materials with high theoretical capacities are expected as promising anode candidates to fulfill those requirements, but suffer from the huge volume expansion upon lithiation, leading to serious material pulverization and capacity fading. Herein, a convenient and cost-effective strategy was conceived focusing on construction of dually-protected Zn 2 GeO 4 /graphene composites. The rationally designed composite was composed of hollowed Zn 2 GeO 4 nanostructures and flexible graphene layers, which acted as two functional nanoframes to synergistically alleviate the volume change during lithiation/delithiation. As a result, the Zn 2 GeO 4 /graphene composite exhibited high specific capacities, excellent cycling stability and desirable rate capability. Specifically, the Zn 2 GeO 4 /graphene composite electrode delivered specific capacity of 702 mA h g −1 at 300 mA g −1 after 600 cycles with capacity retention of 85%. In addition, a high reversible capacity of 600 mA h g −1 was retained over 1000 cycles at a high current density of 800 mA g −1 . Those achieved-results suggested that rational design of electrode nanostructures offers an effective insight for obtaining high-performance batteries.

  6. Preparation and evaluation of Mn3GaN1-x thin films with controlled N compositions

    Science.gov (United States)

    Ishino, Sunao; So, Jongmin; Goto, Hirotaka; Hajiri, Tetsuya; Asano, Hidefumi

    2018-05-01

    Thin films of antiperovskite Mn3GaN1-x were grown on MgO (001) substrates by reactive magnetron sputtering, and their structural, magnetic, and magneto-optical properties were systematically investigated. It was found that the combination of the deposition rate and the N2 gas partial pressure could produce epitaxial films with a wide range of N composition (N-deficiency) and resulting c/a values (0.93 - 1.0). While the films with c/a = 0.992 - 1.0 were antiferromagnetic, the films with c/a = 0.93 - 0.989 showed perpendicular magnetic anisotropy (PMA) with the maximum PMA energy up to 1.5×106 erg/cm3. Systematic dependences of the energy spectra of the polar Kerr signals on the c/a ratio were observed, and the Kerr ellipticity was as large as 2.4 deg. at 1.9 eV for perpendicularly magnetized ferromagnetic thin films with c/a = 0.975. These results highlight that the tetragonal distortion plays an important role in magnetic and magneto-optical properties of Mn3GaN1-x thin films.

  7. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    Science.gov (United States)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  8. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  9. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  10. Structural and optical analysis of ZnBeMgO powder and thin films

    International Nuclear Information System (INIS)

    Panwar, Neeraj; Liriano, J.; Katiyar, Ram S.

    2011-01-01

    Research highlights: → Structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤0.10; 0 ≤ y ≤ 0.20) powders and thin films. → Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of doping effect. → The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. → From the UV-visible optical band gap measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the solar blind region and is very useful for the deep UV detection. - Abstract: We here report the structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤ 0.15; 0 ≤ y ≤ 0.20) powders and thin films. From the Rietveld refinement of the powder X-ray diffraction (XRD) patterns it was revealed that the value of 'a' lattice parameter remains almost unchanged whereas 'c' parameter reduces with Be and Mg co-doping in ZnO. The Zn-O bond length also decreases in co-doped samples. Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of substitution. The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with increase in co-doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. From the UV-visible optical transmittance measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the

  11. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Johny, T. Anto [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Kumar, Viswanathan, E-mail: vkumar10@yahoo.com [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Imai, Hideyuki; Kanno, Isaku [Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-06-30

    Thin films of undoped and lithium-doped Zinc oxide, (Zn{sub 1-x}Li{sub x})O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO{sub 2}/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x {<=} 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e{sub 31}{sup Low-Asterisk} has been determined for the thin films having the composition (Zn{sub 0.95}Li{sub 0.05})O, to study their suitability for piezoelectric applications. - Highlights: Black-Right-Pointing-Pointer Preferentially c-axis oriented (Zn{sub 1-x}Li{sub x})O films were spin-coated on glass. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films exhibit dense columnar microstructure. Black-Right-Pointing-Pointer Low levels of lithium doping, increases the electrical resistivity of ZnO thin films. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films show high values of transverse piezoelectric coefficient, e{sup Low-Asterisk }{sub 31}.

  12. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Hongtao Ren

    2012-01-01

    Full Text Available Undoped ZnO thin films are prepared by polymer-assisted deposition (PAD and treated by postannealing at different temperatures in oxygen or forming gases (95%  Ar+5% H2. All the samples exhibit ferromagnetism at room temperature (RT. SQUID and positron annihilation measurements show that post-annealing treatments greatly enhance the magnetizations in undoped ZnO samples, and there is a positive correlation between the magnetization and zinc vacancies in the ZnO thin films. XPS measurements indicate that annealing also induces oxygen vacancies that have no direct relationship with ferromagnetism. Further analysis of the results suggests that the ferromagnetism in undoped ZnO is induced by Zn vacancies.

  13. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application

    International Nuclear Information System (INIS)

    Zhang Zhonghai; Hossain, Md. Faruk.; Arakawa, Takuya; Takahashi, Takakazu

    2010-01-01

    In this paper, various zinc oxide (ZnO) films are deposited by a versatile and effective dc-reactive facing-target sputtering method. The ratios of Ar to O 2 in the mixture gas are varied from 8:2 to 6:4 at a fixed sputtering pressure of 1.0 Pa. X-ray diffraction, spectrophotometer and scanning electron microscope are used to study the crystal structure, optical property and surface morphology of the as-deposited films. The Pt ultra-thin layer, ∼2 nm thick, is deposited on the surface of ZnO film by dc diode sputtering with a mesh mask controlling the coated area. The photocatalytic activity of ZnO films and Pt-ZnO films is evaluated by decomposition of methanol under UV-vis light irradiation. The variation of photocatalytic activity depends on the ratios of Ar to O 2 , which is mainly attributed to the different grain size and carrier mobility. Though the pure ZnO film normally shows a low gas-phase photocatalytic activity, its activity is significantly enhanced by depositing Pt ultra-thin layer.

  14. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    Science.gov (United States)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  15. Emission spectra of phosphor MgSO4 doped with Dy and Mn

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Chen Lixin; Tang Qiang; Luo Daling; Qiu Zhiren

    2001-01-01

    Emission spectra of phosphor MgSO 4 doped with Dy and Dy/Mn were measured with an optical multichannel analyzer and a linear heating system whose temperature was controlled by a microcomputer. The emission spectrum bands at 480 nm and 580 nm of phosphor MgSO 4 doped with Dy were observed in the three dimensional (3D) glow curves. Compared with the 3D spectrum of CaSO 4 :Dy and the spectrum bands of MgSO 4 :Dy shows the same wavelengths which resulted from the quantum transitions among the energy levels of Dy 3 '+ ions. The intensities of the glow peaks in both spectrum bands (480 nm and 580 nm) of phosphor MgSO 4 doped with Dy/Mn were dramatically reduced except the 380 degree C glow peak

  16. Studying Selective Transparency in ZnS/ Cu/ ZnS Thin Films

    International Nuclear Information System (INIS)

    Ksibe, A.; Howari, H.; Diab, M.

    2009-01-01

    Dielectric/ Metal/ Dielectric (DMD) thin films deposited on glass offer of significant energy saving in buildings and can find other applications of advanced materials design. In an effort to reduce the complexity and cost production of DMD films, physical vapor deposition was used for the laboratory manufacture of ZnS/ Cu/ ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Cu was used because of its low absorption in the visible spectrum and its thermal stability. The films produced were of good quality, with transmittance as high as 85%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilize the ZnS/ Cu/ ZnS films, improve its adherence on glass and increase the film thermal resistance up to 240 C. The influence of annealing on the optical properties was investigated. The experimental results show that the properties of the multilayers are improved with annealing in air. the change of maximum transmission indicates that, with the increase of annealing temperature, maximum transmittance was change. Multilayer films annealed at after 200 C, show a decrease in the maximum transmittance witch might be due to the diffused Cu atoms onto ZnS layer. (author)

  17. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  18. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India); Madanapalle Institute of Technology and Science, Department of Physics, Madanapalle, Chittoor, Andhra Pradesh (India); Kaur, Davinder [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India)

    2016-12-15

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L2{sub 1} structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization (M-T) and resistance (R-T) results confirmed that the monotonous increase in martensitic transformation temperatures (T{sub M}) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness (H), elastic modulus (E), plasticity index (H/E) and resistance to plastic deformation (H{sup 3}/E {sup 2}) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H{sup 3}/E{sup 2} (0.261) of Ni{sub 50.4}Mn{sub 34.96}In{sub 13.56}Cr{sub 1.08} film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications. (orig.)

  19. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    Science.gov (United States)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  20. Atomic layer deposition of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  1. Characterization of Hf/Mg co-doped ZnO thin films after thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chih-Hung; Chung, Hantsun [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Jian-Zhang, E-mail: jchen@ntu.edu.tw [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, I-Chun, E-mail: iccheng@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-11-03

    Rf-sputtered Mg{sub 0.05}Zn{sub 0.95}O thin films become amorphous/nanocrystalline with the addition of hafnium oxide. All films (thickness: ∼ 100 nm) sputter-deposited from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets are highly transparent (> 80%) from 400 to 800 nm. The Tauc bandgap ΔE (eV) increases with the Hf content. However, the bandgap decreases after thermal treatment. The reduction in the bandgap is positively correlated with the Hf content and annealing temperature. The residual stresses of films sputtered from Mg{sub 0.05}Zn{sub 0.95}O and Hf{sub 0.025}Mg{sub 0.05}Zn{sub 0.925}O targets are determined based on X-ray diffraction (XRD) data using a bi-axial stress model. The residual stresses of as-deposited films are compressive. As the annealing temperature increases, the residual stresses are relaxed and even become tensile. The bandgap narrowing after thermal treatment is attributed to the stress relaxation that changes the repulsion between the oxygen 2p and zinc 4s bands. Slight grain growth may also result in bandgap reduction because bandgap modification caused by the quantum confinement effect becomes significant in amorphous/nanocrystalline materials. The amorphous thin films reveal good thermal stability after 600 °C annealing for up to 2 h, as evidenced by the XRD and transmission spectra. - Highlights: • Thin films are sputtered from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets at room temperature. • Bandgap increases with Hf content but decreases with post-annealing temperature. • Bandgap narrowing after annealing partly results from the relaxation of stresses. • Bandgap narrowing partly results from quantum confinement effect by nanomaterials. • Hf doping increases resistivity due to the lattice disorder and enlarged bandgap.

  2. Effect of composition on SILAR deposited CdxZn1-xS thin films

    Science.gov (United States)

    Ashith V., K.; Gowrish Rao, K.

    2018-04-01

    In the group of II-VI compound semiconductor, cadmium zinc sulphide (CdxZn1-xS) thin films have broad application in photovoltaic, optoelectronic devices etc. For heterojunction aspects, CdxZn1-xS thin film can be used as heterojunction partner for CdTe as the absorber layer. In this work, CdZnS thin films prepared on glass substrates by Successive Ion Layer Adsorption and Reaction (SILAR) method by varying the composition. The XRD patterns of deposited films showed polycrystalline with the hexagonal phase. The crystallite size of the films was estimated from W-H plot. The bond length of the film varied w.r.to the composition of the CdxZn1-xS films. The urbach energy of the films was calcualted from absorbance data.

  3. Preparation and characterization of ZnTe thin films by SILAR method

    International Nuclear Information System (INIS)

    Kale, S.S.; Mane, R.S.; Pathan, H.M.; Shaikh, A.V.; Joo, Oh-Shim; Han, Sung-Hwan

    2007-01-01

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47

  4. Mn-doped Ge self-assembled quantum dots via dewetting of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aouassa, Mansour, E-mail: mansour.aouassa@yahoo.fr [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Jadli, Imen [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Bandyopadhyay, Anup [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Kim, Sung Kyu [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Lee, Jeong Yong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-03-01

    Highlights: • We report the new fabrication approach for producing a self- assembled Mn dpoed Ge quantum dots (QDs) on SiO{sub 2} thin film with a Curie temperature above room temperature. These magnetic QDs are crystalline, monodisperse and have a well-defined shape and a controlled size. The investigation opens new routes for elaboration of self-assembled magnetic nanocrystals - Abstract: In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO{sub 2} thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO{sub 2} thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.

  5. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  6. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  7. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    Science.gov (United States)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  8. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    International Nuclear Information System (INIS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jaeyoung; Kim, Jongsu; Kim, Jin Soo

    2014-01-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (∼85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  9. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  10. Ultraviolet Sensing by Al-doped ZnO Thin Films

    International Nuclear Information System (INIS)

    Rashid, A.R.A.; Menon, P.S.; Shaari, S.

    2011-01-01

    We report the fabrication and characterization of an ultraviolet photoconductive sensing by using Al-doped ZnO films. Undoped ZnO, 1 at.% and 2 at% of Al were prepared on quartz glass by sol gel method with annealing temperature of 500 degree Celsius for 1 hour. The presence of spherical shaped nanoparticles were detected for undoped ZnO by using FESEM. The absorption edge shifted to a lower wavelength by doping with Al and excitonic peak can be observed. The band gap values increased by adding Al. I-V curves reveal an improvement in electrical properties when the samples are illuminated by ultraviolet (UV) light with a wavelength of 365 nm. At 1 at.% of Al, the film have a larger increment in photocurrent response when illuminated with UV light compared to undoped ZnO and 2 at.% Al. The thin films have a longer recovery time than response time. (author)

  11. Photovoltaic properties of undoped ZnO thin films prepared by the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Zinc oxide (ZnO) can be used as a window material, transparent electrode and active layer in different types of solar cells, UV emitters, and UV sensors. In addition to being low cost, ZnO is more abundant than indium tin oxide. ZnO is non toxic and has a high chemical stability in reduction environments. When ZnO films are made without any intentional doping, they exhibit n-type conductivity. ZnO thin films can be prepared by reactive sputtering, laser ablation, chemical-vapour deposition, laser molecular-beam epitaxy, thermal evaporation, sol-gel, atomic layer deposition and spray pyrolysis, with the latter being simple, inexpensive and adaptable to large area depositions. In this work ZnCl{sub 2} was used as a source of Zn where it was dissolved in distilled water. The structural, electrical and optical properties of the films were investigated due to their important characteristic for solar cell applications. Polycrystalline ZnO thin films were deposited on glass substrate by spray pyrolysis using a home-made spraying system at substrate temperature of 450 degrees C. The films were characterized by recording and analyzing their I-V plots, their transmittance, X-ray diffraction and SEM micrographs. There resistivity was found to be about 200 ohms per cm and their bandgap energy about 3.27 eV. X-ray diffraction patterns revealed that the films have a hexagonal wurtzite structure and are highly ordered with a preferential orientation (002). SEM images revealed that the substrates are continuously covered and the surface of the film is uniform. 16 refs., 4 figs.

  12. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application

    International Nuclear Information System (INIS)

    Neogi, S.K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G.S.; Krishna, J.B.M.; Bandyopadhyay, S.

    2016-01-01

    The structural, morphological, optical and magnetic properties of Ar +9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10 14 (low), 10 15 (intermediate) and 10 16 (high) ions/cm 2 . Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10 16 ions/cm 2 with saturation magnetization (M S ) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn 2+ ions and V Zn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar 9+ ion implanted films. • The maximum magnetization was attained for highest dose of Ar 9+ implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  13. Mechanism of manganese (mono and di) telluride thin-film formation and properties

    Science.gov (United States)

    Sharma, Raj Kishore; Singh, Gurmeet; Shul, Yong Gun; Kim, Hansung

    2007-03-01

    Mechanistic studies on the electrocrystallization of manganese telluride (MnTe) thin film are reported using aqueous acidic solution containing MnSO 4 and TeO 2. Tartaric acid was used for the inhibition of hydrated manganese oxide anodic growth at counter electrode. A detailed study on the mechanistic aspect of electrochemical growth of MnTe using cyclic voltametry is carried out. Conditions for electrochemical growth of manganese mono and di telluride thin films have been reported using cyclic voltammetric scans for Mn 2+, Te 4+ and combined Mn 2+ and Te 4+. X-ray diffraction showed the formation of polycrystalline MnTe films with cubic, hexagonal and orthorhombic mixed phases. MnTe film morphology was studied using scanning electron microscope. Susceptibility and electrical characterization supports the anti-ferromagnetic behavior of the as-deposited MnTe thin film.

  14. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    Science.gov (United States)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  15. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong; Ding, Yong; Li, Zhou; Song, Jinhui; Wang, Zhong Lin

    2009-01-01

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed

  16. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    International Nuclear Information System (INIS)

    Dewald, Wilma; Sittinger, Volker; Szyszka, Bernd; Säuberlich, Frank; Stannowski, Bernd; Köhl, Dominik; Ries, Patrick; Wuttig, Matthias

    2013-01-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al 2 O 3 target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm 2 /Vs and electron density of 4.3 · 10 20 cm −3 from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm 2 /Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current

  17. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, Wilma, E-mail: wilma.dewald@ist.fraunhofer.de [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Sittinger, Volker; Szyszka, Bernd [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Säuberlich, Frank; Stannowski, Bernd [Sontor GmbH, OT Thalheim, Sonnenallee 7-11, 06766 Bitterfeld-Wolfen (Germany); Köhl, Dominik; Ries, Patrick; Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen, Sommerfeldstraße 14, 52074 Aachen (Germany)

    2013-05-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al{sub 2}O{sub 3} target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm{sup 2}/Vs and electron density of 4.3 · 10{sup 20} cm{sup −3} from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm{sup 2}/Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current.

  18. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: eminb@ktu.edu.tr [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)

    2011-10-17

    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  19. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    Science.gov (United States)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  20. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  1. Hierarchical porous ZnMn_2O_4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Rong, Haibo; Xie, Guiting; Cheng, Si; Zhen, Zihao; Jiang, Zhongqing; Huang, Jianlin; Jiang, Yu; Chen, Bohong; Jiang, Zhong-Jie

    2016-01-01

    A simple two-step procedure, which involves the synthesis of the Zn_0_._3_3Mn_0_._6_7CO_3 microspheres through a hydrothermal process and the subsequent calcination, has been used to synthesize the ZnMn_2O_4 microspheres with a hierarchical porous morphology consisting of the ZnMn_2O_4 sub-nanoparticles. When evaluated as anode materials for lithium ion batteries (LIBs), these hierarchical porous ZnMn_2O_4 microspheres could exhibit a stable reversible capability of ∼723.7 mAh g"−"1 at the current density of 400 mA g"−"1, which is much higher than those of the ZnMn_2O_4 based materials reported previously, indicating the great potential of using them as the anode for the LIBs. This is further supported by their better rate capability and higher cycling stability. Careful analysis has shown that the unique porous structure of the hierarchical porous ZnMn_2O_4 microspheres which consists of the ZnMn_2O_4 sub-nanoparticles plays an important role in their higher electrochemical performance, since it allows the accommodation of the volume expansion during the repeated discharge–charge cycles, preventing them from the structural destruction, and increase the accessibility of the electrode material to the Li"+ storage, making a better utilization of active materials and an easy diffusion of electrolytes in and out of the electrode material. - Graphical abstract: The ZnMn_2O_4 microspheres with a hierarchical porous morphology consisting of the ZnMn_2O_4 sub-nanoparticles have been synthesized by the calcination of the Zn_0_._3_3Mn_0_._6_7CO_3 microspheres and could exhibit superior electrochemical performance when used as anode materials for lithium ion batteries. - Highlights: • A simple procedure has been used to synthesize the ZnMn_2O_4 microspheres. • The ZnMn_2O_4 microspheres exhibit excellent performance when used in LIBs. • The porous structure plays a crucial role in their high performance. • These spheres exhibit a good morphology retention

  2. Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles with enhanced performances as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoqin [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh5697@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage, Guangzhou 510006 (China); Yao, Lingmin [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage, Guangzhou 510006 (China); Liu, Xiang, E-mail: iamxliu@njtech.edu.cn [Institute of Advanced Materials, Nanjing University of Technology, Nanjing 210009 (China); Xiang, Liangzhong [Department of Radiation Physics, Stanford University, Arastradero, PA 1070 (United States)

    2014-09-15

    Highlights: • Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles have been synthesized by hydrothermal method. • Zn{sub 0.96}Mn{sub 0.04}Fe{sub 2}O{sub 4} electrode shows the highest reversible capacity of 1157 mA h g{sup −1}. • The Zn{sub 0.96}Mn{sub 0.04}Fe{sub 2}O{sub 4} electrode shows promising cycling stability. - Abstract: Nanocrystalline Zn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) have been successfully synthesized by one-step hydrothermal method. The morphologies and electrochemical performance of Mn-doped ZnFe{sub 2}O{sub 4} in various proportions were investigated at room temperature, respectively. The Zn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} (x = 0.04) electrode in the as-synthesized samples showed the highest specific capacity of 1547 mA h g{sup −1} and 1157 mA h g{sup −1} in the initial discharge/charge process, with a coulombic efficiency of 74.8%. Additionally, excellent cycling stability was performed with a 1214 mA h g{sup −1} capacity retention at a current density of 100 mA g{sup −1} after 50 cycles. The corresponding mechanism was proposed which indicated that the Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles experienced an aggregation thermochemical reaction among ZnO, MnO and Fe{sub 2}O{sub 3} subparticles.

  3. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering

    International Nuclear Information System (INIS)

    Herrero, J.; Guillen, C.

    2004-01-01

    The improvement of the optical and electrical characteristics of indium tin oxide (ITO) layers is pursued to achieve a higher efficiency in its application as frontal electrical contacts in thin film photovoltaic devices. In order to take advantage of the polycrystalline structure of ZnO films as growth support, the properties of ITO layers prepared at room temperature by sputtering onto bare and ZnO-coated substrates have been analyzed using X-ray diffraction, optical and electrical measurements. It has been found that by inserting a thin ZnO layer, the ITO film resistivity can be reduced as compared to that of a single ITO film with similar optical transmittance. The electrical quality improvement is related to ITO grain growth enhancement onto the polycrystalline ZnO underlayer

  4. Effects of the ZnO layer on the structure and white light emission properties of a ZnS:Mn/GaN nanocomposite system.

    Science.gov (United States)

    Wang, Cai-Feng; Hu, Bo

    2017-10-01

    ZnO films were inserted between the ZnS:Mn films and GaN substrates by pulsed laser deposition (PLD). The structure, morphology, and optical properties of the ZnS:Mn/ZnO/GaN nanocomposite systems have been investigated. X-ray diffraction results show that there are three diffraction peaks located at 28.4°, 34.4°, and 34.1°, which correspond to the β-ZnS(111), ZnO(002), and GaN(002) planes, respectively. Due to the insertion of ZnO films, the diffraction peak intensity of ZnS:Mn in ZnS:Mn/ZnO/GaN is stronger than that of ZnS:Mn in ZnS:Mn/GaN, and the full width at half-maximum is smaller. Though the transmittance of ZnS:Mn/ZnO films is slightly lower than that of ZnS:Mn films, the transmittance is still higher than 80%. Compared with ZnS:Mn/GaN, an ultraviolet (UV) emission at 387 nm (originated from the near-band emission of ZnO) and a green light emission at about 520 nm appeared in the photoluminescence (PL) spectra of ZnS:Mn/ZnO/GaN, in addition to the blue emission at 435 nm and the orange-red emission at 580 nm. The emission at 520 nm may be related to the deep-level emission from ZnO and the interface of ZnS:Mn/ZnO. The PL spectrum of ZnS:Mn/ZnO/GaN covers the visible region from the blue light to the red light (400-700 nm), and its color coordinate and color temperature are (0.3103,0.3063) and 6869 K, respectively, presenting strong white light emission.

  5. Combinatorial investigation of the effects of sodium on Cu 2ZnSnSe4 polycrystalline thin films

    Science.gov (United States)

    Gibbs, Alex Hilton

    Cu2ZnSnSe4 (CZTSe) possess highly suitable optical and electronic properties for use as an absorber layer in thin film solar cells. CZTSe also has potential to achieve terawatt level solar energy production due to its inexpensive and abundant material constituents. Currently, fabricating CZTSe devices with the expected theoretical performance has not been achieved, making the growth and formation of CZTSe an interesting topic of research. In this work, a two-step vacuum fabrication process consisting of RF co-sputtering followed by reactive annealing was explored as a viable technique for synthesizing CZTSe thin films. Furthermore, the enhancement of the fabrication process by the incorporation of sodium during annealing was studied using a combinatorial approach. Film composition was analyzed using electron dispersive spectroscopy. Structure, phase morphology, and formation were determined using scanning electron microscopy, x-ray diffraction, atomic force microscopy and raman spectroscopy. Optical and electronic properties were characterized using UV-Vis and Voc were measurements under a one sun solar simulator. RF co-sputtering CuSe, ZnSe, and SnSe precursors produced films with good thickness uniformity, adhesion and stoichiometry control over 3 x 3 in 2 substrates. Composition measurements showed that the precursor films maintained stability during an annealing process of 580° C for 20 minutes producing near stoichiometric CZTSe. However, grain size was small with an average diameter of 350 nm. The CZTSe film produced by this process exhibited a suitable absorption coefficient of > 104 cm-1 and aband gap near 1.0 eV. The film also produced an XRD pattern consistent with tetragonal CZTSe with no secondary phase formation with the exception of approximately 12.5 nm of interfacial MoSe2 formation at the back contact. The combinatorial investigation of the influence of sodium on CZTSe growth and morphology was achieved using a custom built constant withdraw

  6. Chemical-bath ZnO buffer layer for CuInS{sub 2} thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Weber, M.; Scheer, R.; Lewerenz, H.J. [Hahn-Meitner-Institut, Abt. Grenzflaechen, Bereich Physikalische Chemie, Glienicker Strasse 100, D-14109 Berlin (Germany)

    1998-07-13

    ZnO buffer layers were grown by a chemical-bath deposition (CBD) in order to improve the interface quality in p-CuInS{sub 2} based solar cells, to improve the light transmission in the blue wavelength region, but also as an alternative to eliminate the toxic cadmium. The process consists of immersion of different substrates (glass, CIS) in a dilute solution of tetraamminezinc II, [Zn(NH{sub 2}){sub 4}]{sup 2+}, complex at 60-95C. During the growth process, a homogeneous growth mechanism which proceeds by the sedimentation of a mixture of ZnO and Zn(OH){sub 2} clusters formed in solution, competes with the heterogeneous growth mechanism. The mechanism consists of specific adsorption of a complex Zn(II) followed by a chemical reaction. The last process of growth results in thin, hard, adherent and specularly reflecting films. The characterization of the deposited CBD-ZnO layers was performed by X-ray diffraction (XRD), optical transmittance, scanning electron microscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-deposited films on glass show hexagonal zincite structure with two preferred orientations (1 0 0) and (1 0 1). High optical transmittance up to 80% in the near-infrared and part of the visible region was observed. The low growth rate of the films on CIS suggests an atomic layer-by-layer growth process.The device parameters and performance are compared to heterojunction with a standard CdS buffer layer

  7. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  8. Chemically synthesis and characterization of MnS thin films by SILAR method

    Science.gov (United States)

    Yıldırım, M. Ali; Yıldırım, Sümeyra Tuna; Cavanmirza, İlke; Ateş, Aytunç

    2016-03-01

    MnS thin films were synthesized on glass substrates using SILAR method. The film thickness effect on structural, morphological, optical and electrical properties of the films was investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with β-MnS structure and were covered well on glass substrates. The bandgap and resistivity values of the films decreased from 3.39 eV to 2.92 eV and from 11.84 × 106 to 2.21 × 105 Ω-cm as the film thickness increased from 180 to 350 nm, respectively. The refractive index (n) and dielectric constants (ɛo, ɛ∞) values were calculated.

  9. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    International Nuclear Information System (INIS)

    Akhavan, O.; Azimirad, R.; Safa, S.

    2011-01-01

    Highlights: → Unfunctionalized and functionalized MWCNT/ZnO thin films were synthesized by sol-gel method. → Zn-O-C carbonaceous bonds formed in the functionalized MWCNT/ZnO thin films. → The functionalized MWCNT/ZnO had stronger photoinactivation of the bacteria than the unfunctionalize type. → 10 wt% functionalized MWCNT content had the optimum antibacterial property. - Abstract: Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the unfunctionalized ones, for all of the various MWCNT contents (from 2 to 30 wt%). While the functionalized MWCNT-ZnO nanocomposites with the optimum MWCNT content of 10 wt% inactivated whole of the bacteria after 10 min UV-visible light irradiation, the unfunctionalized ones could inactivate only 63% of the bacteria under the same conditions. The significant enhancement of the photoinactivation of the bacteria onto the surface of the functionalized MWCNT-ZnO nanocomposites was assigned to charge transfer through Zn-O-C bands formed between the Zn atoms of the ZnO film and oxygen atoms of the carboxylic functional groups of the functionalized MWCNTs.

  10. Design and fabrication of ZnO/TiO2-based thin-film inverter circuits using solution processing techniques

    International Nuclear Information System (INIS)

    Liau, Leo Chau-Kuang; Kuo, Juo-Wei; Chiang, Hsin-Ni

    2012-01-01

    Novel and cost-effective ceramic-based thin-film inverter circuits, based on two layers of TiO 2 and ZnO films to construct junction field-effect transistors (FETs), were designed and fabricated by solution coating techniques. The double layers of the sol–gel ZnO and TiO 2 films were coated and characterized as a diode according to the current–voltage performance. Two types of FETs, the p-channel (p-FET) and the n-channel (n-FET) devices, were produced using different coating sequences of ZnO and TiO 2 layers. Both of the transistor performances were evaluated by analyzing the source–drain current versus voltage (I ds –V ds ) data with the control of the gate voltage (V g ). The ZnO/TiO 2 -based inverter circuits, such as the complementary-FET device, were further fabricated using the integration of the p-FET and the n-FET. The voltage transfer characteristics of the inverters were estimated by the tests of the input voltage (V in ) versus the output voltage (V out ) for the thin-film inverter circuits. (paper)

  11. Orientation of Zn3P2 films via phosphidation of Zn precursors

    Science.gov (United States)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  12. Photoluminescence spectroscopies and temperature-dependent luminescence of Mn{sup 4+} in BaGe{sub 4}O{sub 9} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoan; Hu, Yihua, E-mail: huyh@gdut.edu.cn

    2016-09-15

    New non-rare-earth red phosphor BaGe{sub 4}O{sub 9}:Mn{sup 4+} was prepared successfully via the traditional solid state reaction method. The luminescent performance was investigated by the steady-state photoluminescence (PL) and temperature-dependent PL/decay measurements. The excitation band of BaGe{sub 4}O{sub 9}:Mn{sup 4+} phosphor covers a broad spectral region from 250 nm to 500 nm, which matches well with the commercial near-UV and blue LEDs. The concentration quenching of Mn{sup 4+} in BaGe{sub 4}O{sub 9}:Mn{sup 4+} occurs at a low content of 0.5% due to the dipole–dipole interaction. We gained insight into the temperature-dependent relative emission intensity of BaGe{sub 4}O{sub 9}:Mn{sup 4+} phosphor, and determined the luminescence quenching temperature and the activation energy for thermal quenching (∆E) to be ~150 K and ~0.17 eV, respectively.

  13. Atomistic growth phenomena of reactively sputtered RuO{sub 2} and MnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2015-07-07

    We have synthesized RuO{sub 2} and MnO{sub 2} thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO{sub 2} nanorods and faceted, nanocrystalline MnO{sub 2}, are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O{sub 2} molecules are preferentially adsorbed at their respective RuO{sub 2} ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO{sub 2} surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO{sub 2}. Due to this atomic scale decomposition, MnO{sub 2} may have to be renucleated during growth, which is consistent with experiments.

  14. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2011-09-15

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  15. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay

    2011-01-01

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  16. Chitosan/ZnAl_2O_4 films: structural evaluation and photoluminescent

    International Nuclear Information System (INIS)

    Araujo, P.M.A.G.; Costa, A.C.F.M.

    2014-01-01

    The photoluminescent materials have been the focus of intense research and applications in optics, electronics and biological areas. This work reports obtaining chitosan/ZnAl_2O_4 film in proportions of 1: 1, 1: 2, 1: 3, 1:4 to 1:5 by weight, and assess the structural properties of the films and photoluminescence. The samples were characterized by XRD, FTIR, emission and excitation. By XRD was found that all samples showed characteristic peaks of chitosan and ZnAl_2O_4. The FTIR spectra for all concentrations of Qs/NPs films exhibit characteristic bands of Qs and trend banding of ions ZnAl_2O_4. The emission and excitation spectra revealed the presence of a broadband processes associated with charge transfer to the Al"3"+ O"2"-, all samples showed good photoluminescent properties being that higher intensities of photoluminescence gave to the film concentration 1:4 being promising for photoelectronic applications. (author)

  17. Effect of hydrogen doping on the properties of Al and F co-doped ZnO films for thin film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Yang, Tung-Hsin

    2016-04-30

    Aluminum and fluorine co-doped zinc oxide (AFZO) thin films were prepared in Ar + H{sub 2} atmospheres by rf magnetron sputtering at room temperature. The structural, electrical, and optical properties of the prepared films were investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, X-ray photoelectron spectroscopy, and ultraviolet–visible spectrometry, and their dependence on deposition atmosphere (i.e. H{sub 2} / (H{sub 2} + Ar) ratio) was studied. The resulting films showed a (0 0 2) diffraction peak, indicating a typical wurtzite structure, and the optimal film crystallinity was obtained with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%. The electrical resistivity of AFZO films decreased to 9.16 × 10{sup −4} Ω-cm, which was lower than ZnO:Al and ZnO:F films due to double doping effect of Al and F. The resistivity further decreased to below 5 × 10{sup −4} Ω-cm for the AFZO film with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%–5%. All the films regardless of hydrogen content displayed high transmittances (> 92%) in the visible wavelength range. Applying the developed AFZO films as front transparent electrodes, amorphous Si thin film solar cells were fabricated and the open-circuit voltage, fill factor, and efficiency of the cell with the hydrogenated AFZO film were improved in contrast to those without the hydrogenated film. - Highlights: • H{sub 2} doping improves optoelectronic properties of Al, F co-doped ZnO (AFZO) films. • Resistivity of AFZO films decreases to 4.4 × 10{sup −4} Ω-cm with the 3% H{sub 2}/(Ar + H{sub 2}) ratio. • AFZO films show high average visible transmittances of above 92%. • Efficiency of a-Si thin film solar cells is improved by AFZO:H as front electrode.

  18. Effect of annealing temperature on a single step processed Cu{sub 2}ZnSnS{sub 4} thin film via solution method

    Energy Technology Data Exchange (ETDEWEB)

    Prabeesh, P.; Selvam, I. Packia; Potty, S.N.

    2016-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is a promising material for thin film solar cell applications because of its excellent photovoltaic properties, high abundance and non-toxicity. Thin films of CZTS are generally fabricated by vacuum based techniques or by using toxic solvents and these routes reduce its attention as a low cost and environmental friendly material. In this study, we have prepared CZTS through a solution based single step approach using non-toxic chemicals by spin coating and studied the effect of annealing temperature in the range 350–550 °C in nitrogen atmosphere on structural, optical and electrical properties. XRD results revealed the formation of kesterite phase at all annealing temperatures, while the Raman studies indicated Cu{sub 2}SnS{sub 2} impurity phase in the film annealed at 550 °C. Band gap of the films annealed in nitrogen varies from 1.46 eV to 1.56 eV, depending on the annealing temperature. Optimum properties, such as, good crystallinity, dense structure, ideal band gap (1.49 eV) and good absorption coefficient (10{sup 4} cm{sup −1}), were obtained for the film annealed at 500 °C for 30 min in nitrogen. - Highlights: • Prepared CZTS film through one-step liquid based approach using non-toxic chemicals. • Studied the effect of N{sub 2} annealing on structural, optical and electrical properties. • The phase pure CZTS absorber film exhibited excellent photovoltaic properties • The film annealed at 500 °C for 30 min in nitrogen exhibited optimum properties.

  19. Effects of preannealing temperature of ZnO thin films on the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kao, M.C.; Chen, H.Z.; Young, S.L. [Hsiuping Institute of Technology, Department of Electronic Engineering, Taichung (China)

    2010-03-15

    The preferred (002) orientation zinc oxide (ZnO) nanocrystalline thin films have been deposited on FTO-coated glass substrates by sol-gel spin-coating technology and rapid thermal annealing for use in dye-sensitized solar cells (DSSC). The effects of preannealing temperature (100 and 300 C) on the microstructure, morphology and optical properties of ZnO thin films were studied. The ZnO thin films were characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM) and Brunauer-Emmett-Teller (BET) analysis. The photoelectric performance of DSSC was studied by I-V curve and the incident photon-to-current conversion efficiency (IPCE), respectively. From the results, the intensities of (002) peaks of ZnO thin films increases with increasing preannealing temperature from 100 C to 300 C. The increase in pore size and surface area of ZnO films crystallized at the increased preannealing temperature contributed to the improvement on the absorption of N3 dye onto the films, the short-circuit photocurrent (J{sub sc}) and open-circuit voltage (V{sub oc}) of DSSC. The higher efficiency ({eta}) of 2.5% with J{sub sc} and V{sub oc} of 8.2 mA/cm{sup 2} and 0.64 V, respectively, was obtained by the ZnO film preannealed at 300 C. (orig.)

  20. Magnetic neutron diffraction of MnO thin films

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Mannix, D.; Bernhoeft, N.; Hiess, A.; Ranno, L.; Givord, D.

    1999-01-01

    We report on magnetic neutron diffraction carried out on various epitaxial MnO(III) thin films grown on sapphire and MgO substrates. In all samples, of masses between 5 and 50 μg, magnetic Bragg peaks have been observed. The films exhibit what appears to be continuous phase-transitions in contrast to the strongly discontinuous transition exhibited by bulk samples. In addition, the Neel temperature of films prepared on sapphire substrates is strongly enhanced above that of the bulk whilst that of the film grown on MgO is depressed. The possibility to measure magnetic excitations in such thin film systems is discussed in the light of promising test results obtained from an inelastic magnetic neutron scattering experiment on the IN8 spectrometer. (authors)

  1. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  2. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Kayani, Zohra Nazir; Shah, Iqra; Zulfiqar, Bareera; Sabah, Aneeqa [Lahore College for Women Univ., Lahore (Pakistan); Riaz, Saira; Naseem, Shahzad [Univ. of the Punjab, Lahore (Pakistan). Centre of Excellence in Solid State Physics

    2018-04-01

    Cobalt-doped ZnO thin films have been deposited using a sol-gel route by changing the number of coats on the substrate from 6 to 18. This project deals with various film thicknesses by increasing the number of deposited coats. The effect of thickness on structural, magnetic, surface morphology and optical properties of Co-doped ZnO thin film was studied. The crystal structure of the Co-doped ZnO films was investigated by X-ray diffraction. The films have polycrystalline wurtzite hexagonal structures. A Co{sup 2+} ion takes the place of a Zn{sup 2+} ion in the lattice without creating any distortion in its hexagonal wurtzite structure. An examination of the optical transmission spectra showed that the energy band gap of the Co-doped ZnO films increased from 3.87 to 3.97 eV with an increase in the number of coatings on the substrate. Ferromagnetic behaviour was confirmed by measurements using a vibrating sample magnetometer. The surface morphology of thin films was assessed by scanning electron microscope. The grain size on the surface of thin films increased with an increase in the number of coats.

  3. Magnetic properties and loss separation in FeSi/MnZnFe{sub 2}O{sub 4} soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Lauda, M. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Füzer, J., E-mail: jan.fuzer@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, P. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Strečková, M.; Bureš, R. [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia); Kováč, J.; Baťková, M.; Baťko, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe{sub 2}O{sub 4} (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe{sub 2}O{sub 4}. • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  4. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Sin, N. D. Md. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Saurdi, I. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA Sarawak, Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shuhaimi, A. [Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University ofMalaya, 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A. H.; Khan, Haseeb A. [Research Chair of Targeting and Treatment Cancer Using Nanoparticles, Department Of Biochemistry, College Of Science, King Saud University, P.O: 2454 Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  5. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  6. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  7. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr [Faculty of Education, Hakkari Universty, 30000, Hakkari (Turkey); Gumus, Cebrail [Faculty of Science and Letters, Cukurova University, 01330, Adana (Turkey)

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  8. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    International Nuclear Information System (INIS)

    Li Chensha; Loutfy, Rafik O; Li Yuning; Wu Yiliang; Ong, Beng S

    2008-01-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process

  9. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li Chensha; Loutfy, Rafik O [Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Li Yuning; Wu Yiliang; Ong, Beng S [Materials Design and Integration Laboratory, Xerox Research Centre of Canada, 2660 Speakman Drive, Mississauga, Ontario L5K 2L1 (Canada)], E-mail: lichnsa@163.com

    2008-06-21

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  10. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu Xuechao; Zhang Huawei; Zhang Tao; Chen Boyuan; Chen Zhizhan; Song Lixin; Shi Erwei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn 2+ for Zn 2+ without additional acceptor doping. The substitution of N for O (N O −) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn 2+ and Mn 3+ via N O − . The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration

  11. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    Science.gov (United States)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  12. Characteristics of hydrogen co-doped ZnO : Al thin films

    International Nuclear Information System (INIS)

    Lee, S H; Lee, T S; Lee, K S; Cheong, B; Kim, W M; Kim, Y D

    2008-01-01

    ZnO films co-doped with H and Al (HAZO) were prepared by sputtering ZnO targets containing 1 wt% Al 2 O 3 on Corning glass at a substrate temperature of 150 deg. C with Ar and H 2 /Ar gas mixtures. The effects of hydrogen addition to Al-doped ZnO (AZO) films with low Al content on the electrical, the optical and the structural properties of the as-grown films as well as the vacuum- and air-annealed films were examined. Secondary ion mass spectroscopy analysis showed that the hydrogen concentration increased with increasing H 2 in sputter gas. For the as-deposited films, the free carrier number increased with increasing H 2 . The Hall mobility increased at low hydrogen content, reaching a maximum before decreasing with a further increase of H 2 content in sputter gas. Annealing at 300 deg. C resulted in the removal of hydrogen, causing a decrease in the carrier concentration. It was shown that hydrogen might exist as single isolated interstitial hydrogen bound with oxygen, thereby acting like an anionic dopant. Also, it was shown that the addition of hydrogen to ZnO films doped with low metallic dopant concentration could yield transparent conducting films with very low absorption loss as well as with proper electrical properties, which is suitable for thin film solar cell applications

  13. Transparent conducting thin films by co-sputtering of ZnO-ITO targets

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo Antonio; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-04-15

    Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67% as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  15. Optical and structural properties of thin films of ZnO at elevated temperature

    International Nuclear Information System (INIS)

    Kayani, Zohra N.; Afzal, Tosif; Riaz, Saira; Naseem, Shahzad

    2014-01-01

    Highlights: • Thin films of ZnO are prepared on glass substrates using dip-coating. • The X-ray diffraction showed that films are crystalline. • Optical measurements show that the film possesses high transmittance in visible region. • The transmission decreased with increased withdrawal speed. • The films has direct band gap in range 3.78-3.48 eV. - Abstract: Zinc oxide (ZnO) thin films were prepared on glass substrate by sol–gel dip-coating method. The paper presents the properties of zinc oxide thin films deposited on soda-lime-glass substrate via dip-coating technique, using zinc acetate dehydrate and ethanol as raw materials. The effect of withdrawal speed on the crystalline structure, surface morphology and optical properties of the thin films has been investigated using XRD, SEM and UV–Vis spectrophotometer. X-ray diffraction study shows that all the films have hexagonal wurtzite structure with preferred orientation in (0 0 2) direction and transmission spectra showed highly transparent films with band gap ranging from 3.78 to 3.48 eV

  16. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    Science.gov (United States)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  17. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  18. A Novel Orange-Red Emitting ZnB4O7:Eu3+ Phosphor with Urchin-Like Nanostructure

    Directory of Open Access Journals (Sweden)

    Hom Nath Luitel

    2015-01-01

    Full Text Available A novel phosphor, ZnB4O7:Eu3+, with urchin-like structure consisting of radially arranged high density nanorods was successfully synthesized by hydrothermal process at 150°C for 24 h. The nanorods were measured from 200 to 400 nm in diameter and several µm in length. The urchins were few µm to 40 µm in diameter. The ZnB4O7:Eu3+ phosphors were efficiently excited by ultraviolet (UV ~ 254 nm to visible light of ~ 220 to 450 nm and exhibited intense orange-red emission consisting of main peaks at 590, 615, and 695 nm due to the charge transfer in the host and f→f transitions (5D0 to 7F1,2,4 of the Eu3+ ions. Effect of the Eu3+ ions concentration on the photoluminescence (PL emission intensity was investigated and it was found that 5 at% Eu3+ is the optimum concentration. Meanwhile, the concentration quenching mechanism was discussed. The key parameters, such as temperature dependent PL and CIE values of ZnB4O7:Eu3+ phosphors, were studied. The ZnB4O7:Eu3+ phosphor exhibited good thermal stability and better absorption cross section compared to the commercial Y2O2S:Eu3+ phosphor. All these characteristics indicate that the phosphor will be a potential candidate for the UV based white LEDs.

  19. Effect of doping concentration on the structural, morphological, optical and electrical properties of Mn-doped CdO thin films

    Directory of Open Access Journals (Sweden)

    Manjula N.

    2015-12-01

    Full Text Available Thin films of manganese-doped cadmium oxide (CdO:Mn with different Mn-doping levels (0, 1, 2, 3 and 4 at.% were deposited on glass substrates by employing an inexpensive, simplified spray technique using a perfume atomizer at 375 °C. The influence of Mn incorporation on the structural, morphological, optical and electrical properties of CdO films has been studied. All the films exhibit cubic crystal structure with a (1 1 1 preferential orientation. Mn-doping causes a slight shift of the (1 1 1 diffraction peak towards higher angle. The crystallite size of the films is found to decrease from 34.63 nm to 17.68 nm with an increase in Mn doping concentration. The CdO:Mn film coated with 1 at.% Mn exhibit a high transparency of nearly 90 % which decreases for higher doping concentration. The optical band gap decreases with an increase in Mn doping concentration. All the films have electrical resistivity of the order of 10−4 Ω·cm.

  20. Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A = Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-12-02

    A series of single-phase phosphors based on KNaCa2(PO4)2 (KNCP):A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) have been prepared via the Pechini-type sol-gel method. Photoluminescence (PL) and cathodoluminescence (CL) properties of Ce(3+)-, Eu(2+)-, Tb(3+)-, Mn(2+)-, and Sm(3+)-activated KNCP phosphors were investigated. For the A singly doped KNCP samples, they exhibit the characteristic emissions of the A activator. Na(+) ions exhibit the best charge compensation result among Li(+), Na(+), and K(+) ions for Ce(3+)-, Tb(3+)-, and Sm(3+)-doped KNCP samples. The energy transfers from Ce(3+) to Tb(3+) and Mn(2+) ions as well as Eu(2+) to Tb(3+) and Mn(2+) have been validated. The emission colors of KNCP:Ce(3+)/Eu(2+), Tb(3+)/Mn(2+), Na(+) samples can be adjusted by energy transfer process and changing the Tb(3+)/Mn(2+) concentration. More importantly, white light emission in KNCP:Eu(2+), Mn(2+) system has been obtained. The KNCP:Tb(3+), Na(+) sample shows tunable luminescence from blue to cyan and then to green with the change of Tb(3+) concentration due to the cross-relaxation from (5)D3 to (5)D4. A white emission can also be realized in the single-phase KNCP host by reasonably adjusting the doping concentrations of Tb(3+) and Sm(3+) (reddish-orange emission) under low-voltage electron beam excitation. Additionally, the temperature-dependent PL properties of as-prepared phosphors reveal that the KNCP host has good thermal stability. Therefore, the KNCP:A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) phosphors could be regarded as good candidates for UV W-LEDs and FEDs.

  1. Magnetoresistance of magnetically doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A J; Mokhtari, A; Blythe, H J; Fox, A M; Gehring, G A [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M, E-mail: G.A.Gehring@sheffield.ac.u [Division of Superconductivity and Magnetism, University of Leipzig, D-04103, Leipzig (Germany)

    2009-08-26

    Magnetoresistance measurements have been made at 5 K on doped ZnO thin films grown by pulsed laser deposition. ZnCoO, ZnCoAlO and ZnMnAlO samples have been investigated and compared to similar films containing no transition metal dopants. It is found that the Co-doped samples with a high carrier concentration have a small negative magnetoresistance, irrespective of their magnetic moment. On decreasing the carrier concentration, a positive contribution to the magnetoresistance appears and a further negative contribution. This second, negative contribution, which occurs at very low carrier densities, correlates with the onset of ferromagnetism due to bound magnetic polarons suggesting that the negative magnetoresistance results from the destruction of polarons by a magnetic field. An investigation of the anisotropic magnetoresistance showed that the orientation of the applied magnetic field, relative to the sample, had a large effect. The results for the ZnMnAlO samples showed less consistent trends.

  2. Growth of Ca2MnO4 Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    International Nuclear Information System (INIS)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W.; Grygiel, C.; Rohrer, G. S.; Salvador, P. A.; Velazquez, M.; Kloe, R. de

    2014-01-01

    The local epitaxial growth of pulsed laser deposited Ca 2 MnO 4 films on polycrystalline spark plasma sintered Sr 2 TiO 4 substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca 2 MnO 4 grain had a single OR with the Sr 2 TiO 4 grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001] film ||[100][001] sub . The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides

  3. Influence of PANI Additions on Methanol Sensing Properties of ZnO Thin Films

    International Nuclear Information System (INIS)

    Mohammad Hafizuddin Jumali; Norhashimah Ramli; Izura Izzuddin; Muhammad Yahaya; Muhamad Mat Salleh

    2011-01-01

    The influence of PANI additions on methanol sensing properties of ZnO thin films at room temperature had been investigated. Commercial poly aniline powder (PANI) was mixed into 3 mL ZnO solution in five different weight percentages namely 1.25, 2.50, 3.75, 5.00 and 6.25 % to obtain ZnO/ PANI composite solutions. These solutions were spin coated onto glass substrate to form thin films. Microstructural studies by FESEM indicated that ZnO/ PANI films showed porous structures with nano size grains. The thickness of the film increased from 55 to 256 nm, proportionate to increment of PANI. The presence of 2 adsorption peaks at ∼310 nm and ∼610 nm in UV-Vis spectrum proved that addition of PANI has modified the adsorption peak of ZnO film. Methanol vapour detection showed that addition of PANI into ZnO dramatically improved the sensing properties of the sensor. The sensors also exhibited good repeatability and reversibility. Sensor with the amount of PANI of 3.75 wt % exhibited the highest sensitivity with response and recovery time was about 10 and 80 s, respectively. The possible sensing mechanism of the sensor was also discussed in this article. (author)

  4. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    Science.gov (United States)

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  5. Correlation between structural and electrical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Asadov, A.; Gao, W.; Li, Z.; Lee, J.; Hodgson, M.

    2005-01-01

    Thin ZnO films were deposited by radio frequency (r.f.) and direct current (d.c.) magnetron sputtering techniques onto glass substrates. Microstructural and electrical properties of ZnO films were studied using X-ray diffractometer (XRD), scanning electron microscope (SEM) and resistivity measurements. It was found that the size of the crystallites in the d.c. deposited films increased with increasing film thickness, while the crystallite size of r.f. deposited films remained unchanged. The d.c. deposited grains also had much stronger orientation related to the substrate than the r.f. films. XRD data indicated that the thin films with d<350 nm for r.f. and <750 nm for d.c. films have a very high degree of ZnO nonstoichiometry. This agreed well with the conductivity measurements and R(T) behaviour of the films with different resistance R. It was also found that the electrical resistivity of the samples increased exponentially with the thickness of films

  6. Growth and characterization of ZnO thin films prepared by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Fahoume, M.; Maghfoul, O.; Aggour, M. [L.P.M.C., Faculte des Sciences, Universite Ibn Tofail, BP. 133-14000 Kenitra (Morocco); Hartiti, B. [L.P.M.A.E.R., Faculte des Sciences et Techniques, B.P. 146 Mohammedia (Morocco); Chraibi, F.; Ennaoui, A. [L.P.M., Faculte des Sciences, Universite Mohammed V, BP.1014 Rabat (Morocco)

    2006-06-15

    ZnO thin films were deposited on either indium tin oxide-coated glass or copper substrate by the electrodeposition process, using zinc chloride and flowing air as precursors. The effect of pH on the structural and morphological ZnO films was studied and the optimum deposition conditions have been outlined. The kinetics of the growth of the films have been investigated. We note that the rate of deposition of ZnO in an acidic solution was larger than in a basic solution. The structure of the films was studied using X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The surface morphology and thickness of the films were determined using scanning electron microscopy. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure (zincite) at pH 4. The optical transmittance of ZnO decreases with varying film thickness. The optical energy bandgap was found to be 3.26eV. (author)

  7. High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

    Science.gov (United States)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-03-01

    Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol-gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10-3 to 8.725 × 10-4 Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.

  8. Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates

    Directory of Open Access Journals (Sweden)

    Pereira M. J.

    2014-07-01

    Full Text Available Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC. Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.

  9. Role of low O 2 pressure and growth temperature on electrical transport of PLD grown ZnO thin films on Si substrates

    Science.gov (United States)

    Pandis, Ch.; Brilis, N.; Tsamakis, D.; Ali, H. A.; Krishnamoorthy, S.; Iliadis, A. A.

    2006-06-01

    Undoped ZnO thin films have been grown on (100) Si substrates by pulsed laser deposition. The effect of growth parameters such as temperature, O 2 partial pressure and laser fluence on the structural and electrical properties of the films has been investigated. It is shown that the well-known native n-type conductivity, attributed to the activation of hydrogenic donor states, exhibits a conversion from n-type to p-type when the O 2 partial pressure is reduced from 10 -4 to 10 -7 Torr at growth temperatures lower than 400 °C. The p-type conductivity could be attributed to the dominant role of the acceptor Zn vacancies for ZnO films grown at very low O 2 pressures.

  10. An investigation on the In doping of ZnO thin films by spray pyrolysis

    Science.gov (United States)

    Mahesh, Devika; Kumar, M. C. Santhosh

    2018-04-01

    Indium doped zinc oxide (IGZO)thin films are gaining much interest owing to its commercial application as transparent conductive oxide thin films. In the current study thin films indium doped ZnO thin films have been deposited on glass substrates by chemical spray pyrolysis technique with an indium concentration of 1, 2.5 and 4% in Zinc source. The films show a peak shift in the X-Ray Diffraction patterns with varying indium doping concentration. The (101) peak was enhanced for the 2.5 % indium doped films and variation in grain size with the different doping levels was studied. The as-deposited films are uniform and shown high transparency (>90%) in the visible region. Average thicknesses of films are found to be 800nm, calculated using the envelope method. The film with 2.5 % of indium content was found to be highly conducting than the rest, since for the lower and higher concentrations the conductivity was possibly halted by the limit in carrier concentration and indium segregation in the grain boundaries respectively. The enhancement of mobility and carrier concentration was clearly seen in the optimum films.

  11. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  12. Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Fontenot, Ross S. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Allison, Stephen W., E-mail: steve.allison@emergingmeasurements.com [Emerging Measurements, Collierville, TN 38017 (United States); Lynch, Kyle J, E-mail: kjlynch@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Hollerman, William A. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Sabri, Firouzeh, E-mail: fsabri@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States)

    2016-02-15

    Zinc sulfide doped with manganese (ZnS:Mn) is one of the brightest triboluminescent materials known and has been studied for a variety of applications. The powder form of this material restricts its safe handling and utilization, which limits the range of applications that can take advantage of its unique properties. In this study, the tribo- and photo-luminescent properties as well as the mechanical properties of ZnS:Mn encapsulated in an inert and optically transparent elastomer – Sylgard 184, have been investigated and fully characterized. ZnS:Mn particles of 8.5 µm diameter were incorporated into the Sylgard 184 polymer matrix prior to the curing stage with increasing amounts targeting a final (mass) concentration of 5%, 15%, and 50%. Additionally, the effect of the ZnS:Mn particles on the overall surface properties of the encapsulating elastomer was investigated and reported here. It was observed that the triboluminescent emission from impact scales with phosphor concentration and was not affected by the encapsulating medium. - Highlights: • Polymer encapsulation effects on the luminescent properties of ZnS:Mn was investigated. • Sylgard 184 encapsulated with ZnS:Mn (5, 15, 50 wt%) were characterized. • The triboluminescent emission from impact, scales with phosphor concentration. • Effect of the elastomeric medium on luminescent properties of ZnS:Mn was determined. • The work presented here demonstrates the feasibility of ZnS:Mn-based flexible sensors.

  13. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    Science.gov (United States)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  14. Analysis of multiferroic properties in BiMnO3 thin films

    International Nuclear Information System (INIS)

    Grizalez, M; Mendoza, G A; Prieto, P

    2009-01-01

    Textured BiMnO 3 [111] thin films on SrTiO 3 (100) and Pt/TiO 2 /SiO 2 substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO 3 films. The films grown on SrTiO 3 (100) showed higher crystalline quality than those developed on Pt/TiO 2 /SiO 2 . Through optimized oxygen pressure of 5x10 -2 mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO 3 film was improved with respect to the previously reported value of 2x10 -1 mbar. The values of spontaneous polarization (P s ), remnant polarization (P r ), and coercive field (F c ) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P s and P r values and a low F c ). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO 3 films grown on SrTiO 3 and Pt/TiO 2 /SiO 2 substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  15. Accompanying growth and room-temperature ferromagnetism of η-Mn3N2 thin films by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yu, Fengmei; Liu, Yajing; Yang, Mei; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2013-01-01

    η-phase manganese nitride films have been grown on LaAlO 3 (100) and LaSrAlO 4 (001) substrates by using plasma-assisted molecular beam epitaxy. On the basis of reflective high energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy, it is confirmed that two types of η-Mn 3 N 2 with different lattice constants coexist in the films due to the lattice mismatches between the Mn 3 N 2 films and the substrates. Magnetic properties of the films were characterized by a superconducting quantum interference device magnetometer at room temperature. The Mn 3 N 2 films on LaAlO 3 substrate were found to have room-temperature ferromagnetism. Two potential interaction mechanisms are proposed regarding the origin of the observed ferromagnetism. - Highlights: ► The films of two types of η-Mn 3 N 2 have been grown by molecular beam epitaxy. ► Mn 3 N 2 A and Mn 3 N 2 B coexisted in the films on LaAlO 3 and LaSrAlO 4 . ► The room-temperature ferromagnetism of the Mn 3 N 2 films on LaAlO 3 was obtained

  16. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  17. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  18. Structural, optical and NO{sub 2} gas sensing properties of ZnMgO thin films prepared by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: chbil.widad@live.fr [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Boukadhaba, M.A. [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Madhi, I. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif (Tunisia); and others

    2017-01-15

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO{sub 2} for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  19. Modification of low temperature deposited LiMn2O4 thin film cathodes by oxygen plasma irradiation

    International Nuclear Information System (INIS)

    Chen, Chen Chung; Chiu, Kuo-Feng; Lin, Kun Ming; Lin, Hsin Chih

    2009-01-01

    Lithium manganese oxides have been deposited by radio frequency magnetron sputter deposition with relatively lower annealing temperatures and then post-treated with a radio frequency (rf) driven oxygen plasma. Following oxygen plasma irradiation, the film properties were modified, and the performance of the thin film cathode has been enhanced. The electrochemical properties of the treated thin-film cathodes were characterized and compared. The results showed that the samples with moderate plasma treatment also maintained good cyclic properties as cycled at a wide range potential window of 2.0 V-4.5 V. Its electrochemical properties were significantly improved by this process, even though the films were prepared under low annealing temperature.

  20. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells

    International Nuclear Information System (INIS)

    Li, Wei; Chen, Jian; Yan, Chang; Hao, Xiaojing

    2015-01-01

    Highlights: • Secondary phase segregation in CZTS based solar cells has been studied by TEM. • A “Zn layer exchange” behaviour was found in sulphurisation of Zn/SnCu stacked layers. • XAS reveals a large spike-like CBO (>0.86 eV) between CZTS and ZnS. • Larger ZnS secondary phase proportion increases solar cell’s V oc but limits J sc . - Abstract: Analysis of ZnS segregation behaviour and its influence on the device performance has been made on the Zn-rich Cu 2 ZnSnS 4 thin film solar cells. Cross-sectional transmission electron microscopy images reveal that ZnS is the main secondary phase in the Cu 2 ZnSnS 4 layer obtained from a sulphurised Zn/CuSn metallic stack. The excess Zn diffuses from back contact region to top surface of Cu 2 ZnSnS 4 layer accumulating in the form of ZnS. The solar cell with a higher Zn concentration shows a large quantity of isolated ZnS grains at Cu 2 ZnSnS 4 top surface which is close to CdS/Cu 2 ZnSnS 4 heterojunction interface. Soft X-ray absorption spectroscopy indicates a large spike-like conduction band offset between Cu 2 ZnSnS 4 and ZnS. Consequently, such much ZnS precipitates would increase series resistance and generate lower short-circuit current and external quantum efficiency. However, appropriate amount of ZnS at the space charge region of the solar cell has beneficial effects by reducing the heterojunction interface recombination. Therefore, an improved open-circuit voltage and a higher shunt resistance are achieved. This paper provides a possible method to intentionally segregate ZnS at the space charge region by depositing the Zn layer at the bottom of co-sputtered CuSn layer. Although it is difficult to synthesis a pure phase Cu 2 ZnSnS 4 absorber, we can utilise the ZnS secondary phase to improve the Cu 2 ZnSnS 4 solar performance by controlling the Zn-excess amount

  1. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kale, R.B.; Lokhande, C.D.

    2004-01-01

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E g ' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10 7 Ω cm

  2. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.; Mahesh, H. M., E-mail: hm-mahesh@rediffmail.com [Thin Film and Solar Cell Laboratory, Department of Electronic Science, Bangalore University, Jnanabharathi, Bangalore -560056 (India)

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  3. Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests

    Science.gov (United States)

    Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah

    2018-06-01

    Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.

  4. Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films

    KAUST Repository

    Mughal, Asad J.

    2017-01-11

    In this work, we employ a simple two-step growth technique to deposit impurity doped heteroepitaxial thin films of (0001) ZnO onto (111) MgAl2O4 spinel substrates through a combination of atomic layer deposition (ALD) and hydrothermal growth. The hydrothermal layer is doped with Al, Ga, and In through the addition of their respective nitrate salts. We evaluated the effect that varying the concentrations of these dopants has on both the structural and optical properties of these films. It was found that the epitaxial ALD layer created a ⟨111⟩MgAl2O4∥⟨0001⟩ZnO out-of-plane orientation and a ⟨1¯1¯2⟩MgAl2O4∥∥⟨011¯0⟩ZnO in-plane orientation between the film and substrate. The rocking curve line widths ranged between 0.75° and 1.80° depending on dopant concentration. The optical bandgap determined through the Tauc method was between 3.28 eV and 3.39 eV and showed a Burstein-Moss shift with increasing dopant concentration.

  5. Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors

    International Nuclear Information System (INIS)

    Yang, Bong Seob; Oh, Seungha; Lee, Ung Soo; Kim, Yoon Jang; Oh, Myeong Sook; Hwang, Cheol Seong; Kim, Hyeong Joon; Huh, Myung Soo; Jeong, Jae Kyeong

    2011-01-01

    Thin film transistors (TFTs) with In and Ga-free multicomponent Zn-Sn-Zr-O (ZTZO) channel layers were fabricated using the cosputtering approach. The incorporation of ZrO 2 into the Zn-Sn-O (ZTO) films increased the contact resistance, which led to the degradation of the transport properties. In contrast, the threshold voltage shift under negative bias illumination stress (NBIS) was largely improved from -12.5 V (ZTO device) to -4.2 V (ZTZO device). This improvement was attributed to the reduction in the oxygen vacancy defects in the ZTZO film, suggesting that the photoinduced transition from V O to V O 2+ was responsible for the NBIS-induced instability.

  6. Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong

    2011-01-01

    Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni 0.5 Zn 0.5 Fe 2 O 4 . The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 μm, a saturation magnetization of 150 emu/cm 3 , and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

  7. Electronic structure of the Zn(O,S)/Cu(In,Ga)Se2 thin-film solar cell interface

    Energy Technology Data Exchange (ETDEWEB)

    Mezher, Michelle [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Garris, Rebekah [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Mansfield, Lorelle M. [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Horsley, Kimberly [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Weinhardt, Lothar [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe Germany; Duncan, Douglas A. [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Blum, Monika [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Rosenberg, Samantha G. [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Bär, Marcus [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin Germany; Institut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, 03046 Cottbus Germany; Ramanathan, Kannan [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Heske, Clemens [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe Germany

    2016-03-10

    The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high-efficiency thin-film solar cells was derived using X-ray photoelectron spectroscopy, ultra-violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small-spike) conduction band alignment (here: a conduction band offset of (0.09 +/- 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high-efficiency Zn(O,S)-based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe.

  8. Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Lai, Min; Pei, Shixin

    2014-01-01

    Graphical abstract: The Gaussian fitting indicates that the PL spectra of the ZnO thin films include four emission peaks which are centered at 380, 520, 570 and 610 nm, respectively. The ZnO thin film deposited on an Ag substrate shows a stronger green emission and a weaker UV emission than the ZnO thin film directly deposited on a Si substrate annealed at 400 °C. With the rise of annealing temperature, the visible emission intensity and wavelength are largely changed. Highlights: • ZnO thin films have been prepared on Ag substrates by sol–gel method. • The Ag substrates have a great effect on the photoluminescence of ZnO thin films. • All the films exhibit three visible emission bands including green, yellow and red. • Annealing causes a large change of the visible emission intensity and wavelength. -- Abstract: In this work, ZnO thin films were prepared by sol–gel method on Ag substrates. The structural and optical properties of the films annealed at different temperatures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence, respectively. The results of XRD showed that all the ZnO thin films had a wurtzite phase and were preferentially oriented along the c-axis direction. The sample annealed at 400 °C exhibited better crystalline quality than the ZnO thin film directly deposited on a Si substrate annealed at the same temperature. The photoluminescence spectra showed that ZnO thin films had an ultraviolet emission band and three visible emission bands including green, yellow and red band. The sample annealed at 400 °C exhibited a stronger green emission and a weaker ultraviolet emission compared with the ZnO thin film deposited on a Si substrate annealed at the same temperature. The difference of the luminescence properties was thought to be originated from different substrates. As for the ZnO films on Ag substrates, the increase of annealing temperature led to different changes of visible emissions

  9. Heterojunction bipolar assembly with CrxTi1-xO2 thin films and vertically aligned ZnO nanorods

    International Nuclear Information System (INIS)

    Das, Soumen; Kim, Sang-Hoon; Park, Yong-Kyu; Choi, Cheol-Min; Kim, Dae-Young; Hahn, Yoon-Bong

    2010-01-01

    Polycrystalline and homogeneous Cr x Ti 1-x O 2 thin films were deposited on silicon (Si) substrates and on indium doped tin oxide (ITO) coated glass substrates by spin coating technique. We report the p-type conductivity in Cr x Ti 1-x O 2 thin films (x = 0.005, 0.05, 0.1, 0.15, 0.2) and variable turn-on voltages (V O ) in heterojunction ZnO-nanorod/Cr x Ti 1-x O 2 /ITO bipolar device. Results showed that V O varies substantially from ∼0.8 V (x = 0.005) to ∼0.53 (x = 0.2) for the bipolar assembly. X-ray photoelectron spectroscopy (XPS) showed that chemical state of Ti is the +4 valence state and Cr remains in three different oxidation states of +3. XPS in the valence band region showed a shift in the binding energy towards the lower energy side with increasing Cr intake confirming more p-type conductivity in Cr x Ti 1-x O 2 thin films.

  10. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    International Nuclear Information System (INIS)

    Ahumada-Lazo, R.; Torres-Martínez, L.M.; Ruíz-Gómez, M.A.; Vega-Becerra, O.E.

    2014-01-01

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media

  11. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahumada-Lazo, R.; Torres-Martínez, L.M. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Ruíz-Gómez, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Departmento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán 97310, México (Mexico); Vega-Becerra, O.E. [Centro de Investigación en Materiales Avanzados S.C, Alianza norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66600 Apodaca Nuevo León, México (Mexico); and others

    2014-12-15

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  12. Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers

    International Nuclear Information System (INIS)

    Picca, Rosaria Anna; Sportelli, Maria Chiara; Hötger, Diana; Manoli, Kyriaki; Kranz, Christine; Mizaikoff, Boris; Torsi, Luisa; Cioffi, Nicola

    2015-01-01

    Highlights: • PSS-capped ZnO NPs were synthesized via a green electrochemical-thermal method • The influence of electrochemical conditions and temperature was studied • Spectroscopic data show that PSS functionalities are retained in the annealed NPs • Nanostructured ZnO improved the performance of P3HT-based thin film transistors - Abstract: ZnO nanoparticles have been prepared via a green electrochemical synthesis method in the presence of a polymeric anionic stabilizer (poly-sodium-4-styrenesulfonate, PSS), and then applied as inorganic component in poly-3-hexyl-thiophene thin-film transistor active layers. Different parameters (i.e. current density, electrolytic media, PSS concentration, and temperature) influencing nanoparticle synthesis have been studied. The resulting nanomaterials have been investigated by transmission electron microscopy (TEM) and spectroscopic techniques (UV-Vis, infrared, and x-ray photoelectron spectroscopies), assessing the most suitable conditions for the synthesis and thermal annealing of nanostructured ZnO. The proposed ZnO nanoparticles have been successfully coupled with a poly-3-hexyl-thiophene thin-film resulting in thin-film transistors with improved performance.

  13. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    Science.gov (United States)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  14. Microstructural analysis nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction; Analise microestrutural de nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} sintetizadas por reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  15. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  16. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Jabri, S., E-mail: slaheddine.jabri@fst.rnu.tn [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Amiri, G.; Sallet, V. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Souissi, A. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammammlif 2050 (Tunisia); Meftah, A. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Galtier, P. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Oueslati, M. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia)

    2016-05-15

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  17. Deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xian Ming, E-mail: xianmingwu@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); Chen, Shang [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); He, Ze Qiang; Chen, Shou Bin; Li, Run Xiu [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China)

    2015-08-31

    LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films were deposited on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet by spray technique. The effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio on the phase and crystallization of the films were investigated with X-ray diffraction. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film lithium-ion battery using Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet as both electrolyte and substrate was also studied. The results show that the effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio has great effect on the phase and crystallization of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films deposited on the Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet. The optimal Li:Ti and Li:Mn molar ratio for the deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 7.2:5 and 1.05:2, respectively. The optimal annealing temperature and time for the deposition of LiMn{sub 2}O{sub 4} film on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 650 °C and 10 min. While those for Li{sub 4}Ti{sub 5}O{sub 12} film are 700 °C and 10 min. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film battery offers a working voltage about 2.25 V and can be easily cycled. - Highlights: • LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films spray deposited on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet • Film crystal phase depends on the spray solution composition and annealing conditions. • Prepared thin-film lithium-ion battery employs sintered pellet as electrolyte and substrate. • LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1

  18. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  19. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-01-01

    Highlights: • Al nano-concave arrays with different interpore distance (D c ) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al 2 O 3 spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D c and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D c ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D c ) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al 2 O 3 spacer was placed between the textured Al and the ZnO films (the Al/Al 2 O 3 -ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D c = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ (0,1) SPP resonance mode. In the Al/Al 2 O 3 -ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ (0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ (0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al 2 O 3 -ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  20. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    Energy Technology Data Exchange (ETDEWEB)

    Norek, Małgorzata, E-mail: mnorek@wat.edu.pl [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Łuka, Grzegorz [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Włodarski, Maksymilian [Institute of Optoelectronics, Military University of Technology, Str. Kaliskiego 2, 00-908 Warszawa (Poland)

    2016-10-30

    Highlights: • Al nano-concave arrays with different interpore distance (D{sub c}) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al{sub 2}O{sub 3} spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D{sub c} and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D{sub c} ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D{sub c}) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al{sub 2}O{sub 3} spacer was placed between the textured Al and the ZnO films (the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D{sub c} = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ{sub (0,1)} SPP resonance mode. In the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ{sub (0,1)} plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ{sub (0,1)} SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al{sub 2}O{sub 3}-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further

  1. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    Science.gov (United States)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  2. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A. K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-04-13

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  3. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  4. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun; Yoon, Hyungdo

    2011-01-01

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  5. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon [Dongguk University-Seoul, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China); Yoon, Hyungdo [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2011-10-15

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  6. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  7. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  8. Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films

    Science.gov (United States)

    Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.

  9. Structural and luminescence properties of yellow Y3Al5012:Ce3+ thin film phosphors prepared by Pulsed Laser Deposition

    CSIR Research Space (South Africa)

    Dejene, FB

    2012-07-01

    Full Text Available of the phosphore/epoxy hybrid system is the difficulty of achieving uniform emission of white light from the LED. In order to overcome the challenges of using mixtures of phosphore powders and epoxies thin film phosphore has been used. In this study, YAG phosphore...

  10. Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film

    Directory of Open Access Journals (Sweden)

    Horoz Sabit

    2018-03-01

    Full Text Available Synthesis and characterization of Mn-doped Sb2S3 thin films (TFs prepared by chemical bath deposition (CBD at room temperature have been documented and their structural, optical, morphological, magnetic and photovoltaic properties have been examined for the first time. Their structural properties reveal that the Mn-doped Sb2S3 TF has an orthorhombic phase structure of Sb2S3, and that the grain size of the Mn-doped Sb2S3 TF (72.9 nm becomes larger than that of undoped Sb2S3 TF (69.3 nm. It has been observed that Mn content causes the Sb2S3 TF band gap to decrease. This situation clearly correlates with band tailing due to the impurities that are involved. The morphological properties have revealed that the shape of the Mn-doped Sb2S3 TF is more uniform than the shape of its undoped counterpart. The study on its magnetic properties has demonstrated that the Mn-doped Sb2S3 TF exhibits paramagnetic behavior. Its paramagnetic Curie-Weiss temperature was found to be -4.1 K. This result suggests that there is an anti-ferromagnetic interaction between Mn moments in the Mn-doped Sb2S3 TF. Incident photon to electron conversion efficiency (IPCE and J-V measurements were also carried out for the Mn-doped Sb2S3 TF for the first time. The results have indicated that the Mn-doped Sb2S3 TF can be utilized as a sensitizer to improve the performance of solar cells. Another important observation on the photovoltaic properties of Mn-doped Sb2S3 TF is that the spectral response range is wider than that of undoped Sb2S3 TF. Our study suggests that the introduction of dopant could serve as an effective means of improving the device performance of solar cells.

  11. Study of sputtered ZnO thin films on SiO2 and GaP substrates

    International Nuclear Information System (INIS)

    Brath, T.; Buc, D.; Kovac, J.; Hrnciar, V.; Caplovic, L.

    2011-01-01

    We have investigated n-ZnO polycrystalline thin films prepared on SiO 2 and p-GaP substrate using magnetron sputtering technique. The structural and electrical properties of these structures were studied. The measured parameters give promising results with a possibility to utilize n-ZnO/p-GaP heterostructure for application in the solar cells development especially in the field of nanostructures. The prepared structures will be a subject of further research. (authors)

  12. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    Science.gov (United States)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  13. Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study

    Science.gov (United States)

    Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap

    2018-05-01

    First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.

  14. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films

    Science.gov (United States)

    Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua

    2017-11-01

    Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.

  15. Photoluminescence and electrochemical properties of transparent CeO{sub 2}-ZnO nanocomposite thin films prepared by Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Z.K.; Ghodsi, F.E.; Mazloom, J. [University of Guilan, Department of Physics, Faculty of Science, Namjoo Ave, P.O. Box 41335-1914, Rasht (Iran, Islamic Republic of)

    2017-02-15

    Nanocomposite thin films of CeO{sub 2}-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm{sup -2}) and diffusion coefficient (3.507 x 10{sup -17} cm{sup 2} s{sup -1}) belonged to the Ce/Zn (1:1) thin film. (orig.)

  16. Thermoluminescent dosimetry of new phosphors of Zn O exposed to beta radiation

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Grijalva M, H.; Barboza F, M.; Bernal, R.

    2004-01-01

    In this work, we report the thermoluminescence dosimetry of a new Zn O phosphor obtained by annealing of Zn S powder precipitated when Zn S films were grown by employing a CBD method. The collected Zn S powder was pressed in a die to form pellets which were subjected to different thermal treatments under air atmosphere. X-ray diffraction (XRD) patterns and energy-dispersive X-ray Spectrometry (EDS) analyses confirmed the transformation of Zn S to Zn O. The phosphors thus obtained were exposed to high doses of beta radiation and their thermoluminescent dosimetry show that these new phosphors are materials suitable to be used in high dose thermoluminescence dosimetry. (Author)

  17. Optoelectronic properties of doped hydrothermal ZnO thin films

    KAUST Repository

    Mughal, Asad J.

    2017-03-10

    Group III impurity doped ZnO thin films were deposited on MgAl2O3 substrates using a simple low temperature two-step deposition method involving atomic layer deposition and hydrothermal epitaxy. Films with varying concentrations of either Al, Ga, or In were evaluated for their optoelectronic properties. Inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of dopants within the ZnO films. While Al and Ga-doped films showed linear incorporation rates with the addition of precursors salts in the hydrothermal growth solution, In-doped films were shown to saturate at relatively low concentrations. It was found that Ga-doped films showed the best performance in terms of electrical resistivity and optical absorbance when compared to those doped with In or Al, with a resistivity as low as 1.9 mΩ cm and an optical absorption coefficient of 441 cm−1 at 450 nm.

  18. Photoluminescence properties of whitlockite-type Ca{sub 9}MgK(PO{sub 4}){sub 7}:Eu{sup 2+},Mn{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ning, E-mail: guoning@usst.edu.cn [Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Shuo; Chen, Jishen; Li, Jing; Zhao, Yuefeng; Wang, Lu; Jia, Chengzheng; Ouyang, Ruizhuo [Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lü, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-11-15

    Novel single-phased Eu{sup 2+}/Mn{sup 2+}-coactivated whitlockite-type Ca{sub 9}MgK(PO{sub 4}){sub 7} phosphors which can emit white light upon UV light excitation, are prepared by the solid-state method, and their luminescence properties are systematically investigated via a combination of X-ray powder diffraction and spectroscopy measurements. For Eu{sup 2+}–Mn{sup 2+} codoped samples, an efficient energy transfer process can takes place and its mechanism is a resonant type via a dipole-quadrupole interaction which can be elucidated by DexterГ—Віs theoretical model. Following the principle of energy transfer, myriad luminescence colors with a large gamut from blue to purplish red and across white zone in a line in the chromaticity diagram of the CIE can be obtained by simply adjusting the concentration ratio of Eu{sup 2+} to Mn{sup 2+}. Photoluminescence spectra reveal that the white color emission is originated from the combination of two emission bands of Eu{sup 2+} and Mn{sup 2+} ions. Additionally, their CIE chromaticity coordinates and correlated color temperatures (CCT) have been calculated and discussed in detail. The luminescence suggest that whitlockite-type phosphor, Ca{sub 9}MgK(PO{sub 4}){sub 7}, co-activated with europium and manganese, is a promising single-phased white-emitting candidate for use in ultraviolet-chip-based white LEDs.

  19. Quantum corrections to temperature dependent electrical conductivity of ZnO thin films degenerately doped with Si

    International Nuclear Information System (INIS)

    Das, Amit K.; Ajimsha, R. S.; Kukreja, L. M.

    2014-01-01

    ZnO thin films degenerately doped with Si (Si x Zn 1−x O) in the concentrations range of ∼0.5% to 5.8% were grown by sequential pulsed laser deposition on sapphire substrates at 400 °C. The temperature dependent resistivity measurements in the range from 300 to 4.2 K revealed negative temperature coefficient of resistivity (TCR) for the 0.5%, 3.8%, and 5.8% doped Si x Zn 1−x O films in the entire temperature range. On the contrary, the Si x Zn 1−x O films with Si concentrations of 1.0%, 1.7%, and 2.0% showed a transition from negative to positive TCR with increasing temperature. These observations were explained using weak localization based quantum corrections to conductivity

  20. Development of novel control system to grow ZnO thin films by reactive evaporation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2016-07-01

    Full Text Available This work describes a novel system implemented to grow ZnO thin films by plasma assisted reactive evaporation with adequate properties to be used in the fabrication of photovoltaic devices with different architectures. The innovative aspect includes both an improved design of the reactor used to activate the chemical reaction that leads to the formation of the ZnO compound as an electronic system developed using the virtual instrumentation concept. ZnO thin films with excellent opto-electrical properties were prepared in a reproducible way, controlling the deposition system through a virtual instrument (VI with facilities to control the amount of evaporated zinc involved in the process that gives rise to the formation of ZnO, by means of the incorporation of PID (proportional integral differential and PWM (pulse width modulation control algorithms. The effectiveness and reliability of the developed system was verified by obtaining with good reproducibility thin films of n+-ZnO and i-ZnO grown sequentially in situ with thicknesses and resistivities suitable for use as window layers in chalcopyrite based thin film solar cells.

  1. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    Science.gov (United States)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  2. Phonon Drag in Thin Films, Cases of Bi2Te3 and ZnTe

    Science.gov (United States)

    Chi, Hang; Uher, Ctirad

    2014-03-01

    At low temperatures, in (semi-)conductors subjected to a thermal gradient, charge carriers (electrons and holes) are swept (dragged) by out-of-equilibrium phonons due to strong electron-phonon interaction, giving rise to a large contribution to the Seebeck coefficient called the phonon-drag effect. Such phenomenon was surprisingly observed in our recent transport study of highly mismatched alloys as potential thermoelectric materials: a significant phonon-drag thermopower reaching 1.5-2.5 mV/K was recorded for the first time in nitrogen-doped ZnTe epitaxial layers on GaAs (100). In thin films of Bi2Te3, we demonstrate a spectacular influence of substrate phonons on charge carriers. We show that one can control and tune the position and magnitude of the phonon-drag peak over a wide range of temperatures by depositing thin films on substrates with vastly different Debye temperatures. Our experiments also provide a way to study the nature of the phonon spectrum in thin films, which is rarely probed but clearly important for a complete understanding of thin film properties and the interplay of the substrate and films. This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957.

  3. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  4. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Linjie; Wang, Lixin; Qin, Xiujuan; Cui, Li; Shao, Guangjie

    2016-01-01

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  5. Structural characterization of PbTi03, Sm0.6Nd0.4NiO3 and NdMnO3 multifunctional Perovskite thin films

    Directory of Open Access Journals (Sweden)

    Rapenne L.

    2012-06-01

    Full Text Available Different multifunctional (PbTiO3, Sm0.6Nd0.4NiO3, NdMnO3 thin films were grown by metalorganic chemical vapor deposition (MOCVD technique on SrTiO3 and LaAlO3 substrates. TEM and X-ray diffraction measurements reveal that almost single crystalline thin films can be epitaxially grown on the top of substrates. The relationship between the crystallographic orientation of the films and those of the substrates were determined by reciprocal space mapping and TEM analyses. PbTi03 thin films appear to be under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Relaxation mechanism as a function of the film thickness arises from coexistence of different type of domains and size and strain effect are analyzed. SmNiO3 thin films present diffuse scattering strikes and are less well organized when compared to PbTi03 thin films. Different domains are observed as well as an additional parasitic phase close to NiO. Its regular distribution can be associated to reduced transport properties. Preliminary observations on NdMnO3 thin films show that an amorphous phase is obtained during MOCVD that can be transformed in a single crystalline film by annealing. The films are under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Magnetic properties are investigated.

  6. Comparative study of ZnO thin films prepared by different sol-gel route

    Directory of Open Access Journals (Sweden)

    F Esmaieli Ghodsi

    2012-03-01

    Full Text Available   Retraction Notice    The paper "Comparative study of ZnO thin films prepared by different sol-gel route" by H. Absalan and F. E. Ghodsi, which appeared in Iranian Journal of Physics Research, Vol. 11, No. 4, 423-428 (in Farsi is translation of the paper "Comparative Study of ZnO Thin Films Prepared by Different Sol-Gel Route" by F. E. Ghodsi and H. Absalan, which appeared in ACTA PHYSICA POLONICA A, Vol 118 (2010 (in English and for this reason is retracted from this journal.The corresponding author  (and also the first author is the only responsible person for this action.   

  7. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    International Nuclear Information System (INIS)

    Boudjouan, F.; Chelouche, A.; Touam, T.; Djouadi, D.; Khodja, S.; Tazerout, M.; Ouerdane, Y.; Hadjoub, Z.

    2015-01-01

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I UV /I visible is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V zn . • The MEA ratio of 2.0 increases the V o density

  8. Monte Carlo study of the critical behavior and magnetic properties of La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Bedoya-Hincapie, C.M.; Jurado, F.J.; Riano-Rojas, J.C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion G, Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2010-11-15

    Critical exponents offer important information concerning the interaction mechanisms near the paramagnetic to ferromagnetic transition. In this work a Monte Carlo-Metropolis simulation of the critical behavior in La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films is addressed. Canonical ensemble averages for magnetization per site, magnetic susceptibility and specific heat of stoichiometric manganite within a three-dimensional classical Heisenberg model with nearest magnetic neighbor interactions are computed. The La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films were simulated addressing the thickness influence and thermal dependence. In the model, Mn magnetic ions are distributed on a simple cubic lattice according to the perovskite structure of this manganite. Ferromagnetic coupling for the bonds Mn{sup 3+}-Mn{sup 3+}(e{sub g}-e{sub g}'), Mn{sup 3+}-Mn{sup 4+}(e{sub g}-d{sup 3}) and Mn{sup 3+}-Mn{sup 4+}(e{sub g}'-d{sup 3}) were taken into account. On the basis of finite-size scaling theory, our best estimates of critical exponents, linked to the ferromagnetic to paramagnetic transition, for the correlation length, specific heat, magnetization and susceptibility are, respectively: v=0.56{+-}0.01, {alpha}=0.16{+-}0.03, {beta}=0.34{+-}0.04{gamma} and {gamma}=1.17{+-}0.05. These theoretical results are consistent with the Rushbrooke equalitiy {alpha}+2{beta}+{gamma}=2.

  9. Correlation between defect and magnetism of low energy Ar{sup +9} implanted and un-implanted Zn{sub 0.95}Mn{sub 0.05}O thin films suitable for electronic application

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Midya, N. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Pramanik, P. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Bhattacharyya, A. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Taki, G.S. [Variable Energy Cyclotron Centre, 1/AF, Salt Lake, Kolkata 700064 (India); Krishna, J.B.M. [UGC DAE CSR, Kolkata Centre, LB 8, Sector III, Salt Lake, Kolkata 700098 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2016-06-15

    The structural, morphological, optical and magnetic properties of Ar{sup +9} implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10{sup 14} (low), 10{sup 15} (intermediate) and 10{sup 16} (high) ions/cm{sup 2}. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10{sup 16} ions/cm{sup 2} with saturation magnetization (M{sub S}) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn{sup 2+} ions and V{sub Zn} related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar{sup 9+} ion implanted films. • The maximum magnetization was attained for highest dose of Ar{sup 9+} implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  10. Studies on nonvolatile resistance memory switching in ZnO thin films

    Indian Academy of Sciences (India)

    Six decades of research on ZnO has recently sprouted a new branch in the domain of resistive random access memories. Highly resistive and c-axis oriented ZnO thin films were grown by us using d.c. discharge assisted pulsed laser deposition on Pt/Ti/SiO2/Si substrates at room temperature. The resistive switching ...

  11. GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Medvedev, Alexander G; Mikhaylov, Alexey A; Grishanov, Dmitry A; Yu, Denis Y W; Gun, Jenny; Sladkevich, Sergey; Lev, Ovadia; Prikhodchenko, Petr V

    2017-03-15

    A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO 2 , crystalline tetragonal GeO 2 , and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g -1 at 250 mA g -1 (between 0 and 2.5 V vs Li/Li + cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.

  12. Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV:ZnO Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    Nurul Zayana Yahya

    2012-01-01

    Full Text Available Thin films of red color poly(2-methoxy-5(2′-ethylhexyloxy-phenylene vinylene (MEH-PPV containing different weight percent of ZnO nanoparticles were obtained by spin-coating techniques. The MEH-PPV:ZnO solutions were spin coated onto silicon and glass substrates. The spun MEH-PPV:ZnO thin films were then used to investigate optical properties by using ultraviolet-visible spectrometer (UV-Vis and photoluminescence spectrophotometer (PL. The morphologies were investigated by using field emission scanning electron microscopy (FESEM, while the identification of ZnO in the final product was determined by using energy-dispersive X-ray spectroscopy (EDS. The UV-Vis absorption band increases, while the optical bandgap decreases when the amount of ZnO nanoparticles increases. ZnO nanoparticles apparently have no effect on the conjugation segments of MEH-PPV. PL spectra show that the emission peak increases and slightly red shift as ZnO concentration increases. Based on SEM images of MEH-PPV:ZnO nanocomposite thin films, ZnO nanoparticles form agglomerated regions.

  13. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  14. Drying Temperature Dependence of Sol-gel Spin Coated Bilayer Composite ZnO/TiO2 Thin Films for Extended Gate Field Effect Transistor pH Sensor

    Science.gov (United States)

    Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-03-01

    This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.

  15. In situ photoelectron spectroscopy of LaMnO3 and La0.6Sr0.4MnO3 thin films grown by laser molecular beam expitaxy

    International Nuclear Information System (INIS)

    Oshima, M.; Kobayashi, D.; Horiba, K.; Ohguchi, H.; Kumigashira, H.; Ono, K.; Nakagawa, N.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    We have constructed a high-resolution photoelectron spectroscopy system combined with a laser molecular beam epitaxy (laser-MBE) chamber and have characterized composition-controlled La 1-x Sr x MnO 3 (LSMO) thin films. The importance of atomically flat surfaces by in situ photoelectron spectroscopy for revealing the intrinsic electronic structures has been demonstrated by comparing O1s, O2s and valence band spectra from the laser-MBE-grown LaMnO 3 and LSMO films with those from the scraped samples. Even for the laser-MBE-grown LSMO films, core levels and band structure exhibit strong dependence on surface morphology. For atomically flat LSMO films, we have also elucidated the hole-doping features into Mn3d e g band by substituting La with Sr by resonant photoelectron spectra

  16. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  17. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oral, A. Yavuz [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze 41400 (Turkey)]. E-mail: aoral@gyte.edu.tr; Bahsi, Z. Banu [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze 41400 (Turkey); Aslan, M. Hasan [Department of Physics, Gebze Institute of Technology, Gebze 41400 (Turkey)

    2007-03-15

    Zinc oxide thin films (ZnO, ZnO:Li, ZnO:Al) were deposited on glass substrates by a sol-gel technique. Zinc acetate, lithium acetate, and aluminum chloride were used as metal ion sources in the precursor solutions. XRD analysis revealed that Li doped and undoped ZnO films formed single phase zincite structure in contrast to Al:ZnO films which did not fully crystallize at the annealing temperature of 550 deg. C. Crystallized films had a grain size under 50 nm and showed c-axis grain orientation. All films had a very smooth surface with RMS surface roughness values between 0.23 and 0.35 nm. Surface roughness and optical band tail values increased by Al doping. Compared to undoped ZnO films, Li doping slightly increased the optical band gap of the films.

  18. Intermixing at the heterointerface between ZnS Zn S,O bilayer buffer and CuInS2 thin film solar cell absorber

    OpenAIRE

    Bär, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; S ez Araoz, R.; Lehmann, S.; Grimm, A.; Lauermann, I.; Loreck, Ch.; Sokoll, St.; Schock, H. W.; Fischer, Ch. H.; Lux Steiner, M.C.; Jung, Ch

    2006-01-01

    The application of Zn compounds as buffer layers was recently extended to wide gap CuInS2 CIS based thin film solar cells. Using a new chemical deposition route for the buffer preparation aiming at the deposition of a single layer, nominal ZnS buffer without the need for any toxic reactants such as, e.g. hydrazine has helped to achieve a similar efficiency as respective CdS buffered reference devices. After identifying the deposited Zn compound, as ZnS Zn S,O bi layer buffer in former in...

  19. Hierarchical porous ZnMn{sub 2}O{sub 4} microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Haibo; Xie, Guiting; Cheng, Si; Zhen, Zihao [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhongqing [Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang (China); Huang, Jianlin; Jiang, Yu; Chen, Bohong [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhong-Jie, E-mail: zhongjiejiang1978@hotmail.com [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China)

    2016-09-15

    A simple two-step procedure, which involves the synthesis of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres through a hydrothermal process and the subsequent calcination, has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles. When evaluated as anode materials for lithium ion batteries (LIBs), these hierarchical porous ZnMn{sub 2}O{sub 4} microspheres could exhibit a stable reversible capability of ∼723.7 mAh g{sup −1} at the current density of 400 mA g{sup −1}, which is much higher than those of the ZnMn{sub 2}O{sub 4} based materials reported previously, indicating the great potential of using them as the anode for the LIBs. This is further supported by their better rate capability and higher cycling stability. Careful analysis has shown that the unique porous structure of the hierarchical porous ZnMn{sub 2}O{sub 4} microspheres which consists of the ZnMn{sub 2}O{sub 4} sub-nanoparticles plays an important role in their higher electrochemical performance, since it allows the accommodation of the volume expansion during the repeated discharge–charge cycles, preventing them from the structural destruction, and increase the accessibility of the electrode material to the Li{sup +} storage, making a better utilization of active materials and an easy diffusion of electrolytes in and out of the electrode material. - Graphical abstract: The ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles have been synthesized by the calcination of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres and could exhibit superior electrochemical performance when used as anode materials for lithium ion batteries. - Highlights: • A simple procedure has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres. • The ZnMn{sub 2}O{sub 4} microspheres exhibit excellent performance when used in LIBs

  20. Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating

    Science.gov (United States)

    Gareso, P. L.; Musfitasari; Juarlin, Eko

    2018-03-01

    Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.